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A mean-field analysis of a network
behavioural–epidemic model

Kathinka Frieswijk, Lorenzo Zino, Member, IEEE , Mengbin Ye, Member, IEEE , Alessandro Rizzo, Senior
Member, IEEE , and Ming Cao, Fellow, IEEE

Abstract— The spread of an epidemic disease and the
population’s collective behavioural response are deeply
intertwined, influencing each other’s evolution. Such a co-
evolution typically has been overlooked in mathematical
models, limiting their real-world applicability. To address
this gap, we propose and analyse a behavioural–epidemic
model, in which a susceptible–infected–susceptible epi-
demic model and an evolutionary game-theoretic decision-
making mechanism concerning the use of self-protective
measures are coupled. Through a mean-field approach,
we characterise the asymptotic behaviour of the system,
deriving conditions for global convergence to a disease-
free equilibrium and characterising the endemic equilibria
of the system and their (local) stability. Interestingly, for
a certain range of the model parameters, we prove global
convergence to a limit cycle, characterised by periodic
epidemic outbreaks.

Index Terms— Network analysis and control; Stability of
nonlinear systems

I. INTRODUCTION

MATHEMATICAL models of epidemic spreading on net-
works have been of increasing interest to the systems

and control community [1]–[4]. Since 2020, the COVID-19
pandemic has given an extra impetus to such an interest [5],
[6]. In particular, the ongoing pandemic has highlighted the
key role of human behavioural response in shaping the course
of an epidemic outbreak and how such a response is deeply
intertwined with the epidemic spreading process. Some ef-
forts have been made to incorporate human behaviour into
epidemic models [7]–[12], in particular, by adding an alert
state, in which individuals take self-protective measures based
on factors such as the awareness of the infection prevalence
[9], [12], communication with neighbours [10], awareness
campaigns [11], [12], or by incorporating opinion dynamics
mechanisms [13], [14]. While these models proved useful
in capturing some key aspects of real-world epidemics, their
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inherent oversimplification of the evolving nature of human
behaviour limits their practical applicability.

Recently, evolutionary game theory has emerged as a pow-
erful framework to develop realistic behavioural–epidemic
models [15]–[20]. In [21], a novel game-theoretic paradigm
was proposed, in which human decision making and epidemics
co-evolve on a two-layered network, with the decision making
influenced by a range of factors such as social influence,
interventions, risk perception, and immediate and accumulated
costs of using protection. However, except for the approxima-
tion of the epidemic threshold, [21] relies only on numeri-
cal simulations, which suggest that the behavioural–epidemic
model can reproduce a wide range of behaviours, including
eradication of the disease, convergence to endemic equilibria,
or periodic oscillations and multiple epidemic waves.

In this letter, we expand on [21] to provide an analytical
treatment of the long-term behaviour of a game-theoretical
behavioural–epidemic model. To this aim, we propose a
continuous-time implementation of the framework proposed
in [21], combined with a susceptible–infected–susceptible epi-
demic model. Through a mean-field approach [22], we derive
analytical results on the asymptotic behaviour of the system.
After having established the epidemic threshold, we analyse
the behaviour of the system below and above such a threshold.
Below the threshold, we prove global convergence to a disease-
free equilibrium (DFE). Above the threshold, we characterise
the endemic equilibria (EEs) of the system and their local
stability properties. Furthermore, we derive conditions under
which the system undergoes periodic oscillations with multiple
waves, converging to a limit cycle. Finally, numerical simu-
lations suggest that the locally exponentially stable equilibria
are also globally stable, paving the way for future research
towards extending our theoretical findings.

II. MODEL

Notation: The set of real, real nonnegative, and strictly
positive real numbers is denoted by R, R≥0, and R>0,
respectively. We say that an event E is triggered by a
Poisson clock with (possibly time-varying) rate qE(t), if
lim∆t↘0 P

[
E occurs during (t, t+∆t)

]
/∆t = qE(t).

A. Population and Network Model
We consider a population of n individuals V = {1, . . . , n}.

Each individual i ∈ V is characterised by a two-dimensional
state (xi(t), yi(t)), reflecting their behavioural state xi(t) ∈



(a) Two-layer network (b) Co-evolving dynamics

Fig. 1: Illustration of the network model and dynamics.

{0, 1} and health state yi(t) ∈ {S, I}, at time t ∈ R≥0. In
particular, an individual i ∈ V either chooses to use self-
protective measures (xi(t) = 1) at time t, thereby preventing
any possible contraction of the disease, or to not employ
them (xi(t) = 0); simultaneously, the individual can have two
different health states: yi(t) = I if i is infected, and yi(t) = S
if i is healthy and susceptible to the infection.

Each individual is represented by a node in a two-layer tem-
poral network G(t) = (V, EI, EC(t)), illustrated in Fig. 1a. The
influence layer captures social influence on the individual’s
decision-making process through the (possibly directed) link
set EI, whereby node j is an (out)-neighbour of i ((i, j) ∈ EI)
if and only if (iff) j can influence i’s behaviour. The set of
neighbours of i is denoted by Ni := {j ∈ V : (i, j) ∈ EI},
with size di := |Ni|. Since the spreading of a disease typically
evolves much faster than social ties do, we assume that the
influence layer is time-invariant.

Disease transmission from an infectious to a susceptible
individual occurs through interactions in close physical prox-
imity, henceforth denoted by contacts, modelled by the contact
layer EC(t), where {i, j} ∈ EC(t) iff i and j have a contact
at time t ∈ R≥0. We assume that contacts are generated
according to a continuous-time activity-driven network [23],
in which each individual i ∈ V is assigned an activity rate
ai ∈ R>0, which captures the level of physical activity of
individual i. Then, i activates if triggered by a Poisson clock
with rate ai and, once active, generates a contact with another
individual, selected uniformly at random from V \ {i}.

B. Behavioural–Epidemic Model

In the behavioural–epidemic framework proposed in [21],
each individual i ∈ V decides whether to adopt self-protective
measures according to an evolutionary game-theoretic mech-
anism [24], depending on social influence, risk perception,
costs for adopting self-protective measures, frustration, and
government policy interventions. Here, we propose a simpli-
fied decision-making mechanism in which the last two factors
are omitted. Such a simplification allows the reduction of the
number of parameters involved in the system, simplifying its
analysis and the presentation of the results, without restricting
the broad range of possible emergent behaviours, as we shall
demonstrate in this letter.

To capture these factors, we introduce the payoff function

π
(i)
1 (t) =

1

di

∑
j∈Ni

xj(t) + ζȳ(t) , (1a)

which captures the payoff for adopting self-protective mea-
sures (xi = 1), where ȳ(t) := 1

n

∣∣{i ∈ V : yi(t) = I}
∣∣

denotes the infection prevalence at time t; and

π
(i)
0 (t) =

1

di

∑
j∈Ni

(
1− xj(t)

)
+ c , (1b)

which captures the payoff associated with not adopting self-
protections. The first term, present in both formulae, represents
social influence: the more neighbours of i adopt a certain
action, the higher the payoff for the corresponding action. The
term ζȳ(t), with ζ ∈ R≥0, increases the payoff for adopting
self-protections as the infection prevalence grows, capturing
the risk perception. Here, we assume that people react in
a linear fashion in response to the information they receive
on the infection prevalence ζȳ(t), but more complex and
nonlinear terms may be considered. Finally, the constant c ∈
R≥0 represents the psychological, social, and economical cost
per unit-time associated with the adoption of self-protections,
thereby increasing the payoff for not adopting self-protections.

Individuals change their behaviour following a stochastic
implementation of the classical imitation dynamics mecha-
nism, which is often used in evolutionary game theory [24],
[25], in which they imitate their peers triggered by Poisson
clocks with rate equal to their corresponding payoff functions.
Specifically, an individual i who is not adopting self-protective
measures at time t (i.e. xi(t) = 0) will adopt them if triggered
by a Poisson clock with rate

q
(i)
01 (t) =

1

di

∑
j∈Ni

xj(t)π
(j)
1 (t) , (2a)

and an individual i who is adopting them (i.e. xi(t) = 1) will
stop if triggered by a Poisson clock with rate

q
(i)
10 (t) =

1

di

∑
j∈Ni

(
1− xj(t)

)
π
(j)
0 (t) . (2b)

Simultaneously, if a susceptible individual i (yi(t) = S)
who does not use protective measures (xi(t) = 0) has a
physical encounter with an infected individual k (yk(t) = I),
then i becomes infected with per-contact infection probability
λ ∈ (0, 1]. We assume that self-protective measures are
100% effective in preventing contagion. Hence, if individual
i employs protections at time t (xi(t) = 1), then they cannot
be infected at time t. Following [26], we compute that if i is
susceptible at time t (yi(t) = S), then i will become infected
if triggered by a Poisson clock with rate

q
(i)
SI(t) =

λ(1− xi(t))

n− 1

(
naiȳ(t) +

∑
j∈V:yj(t)=I

aj

)
, (3)

where the first term in the parentheses accounts for the
contact initiated by i with infected individuals, and the second
accounts for contacts initiated by infected individuals who
interact with i. If the disease can be transmitted only in
one direction, then only the corresponding term should be
considered in Eq. (3). Note that if individual i employs
protection at time t, then q

(i)
SI(t) = 0. An infected individual i

(yi(t) = I) spontaneously recovers, if triggered by a Poisson
clock with node-independent and time-invariant rate µ ∈ R>0.
All the state transitions and rates are shown in Fig. 1b.



III. MEAN-FIELD DYNAMICS

The evolution of the state of each individual (xi(t), yi(t)),
i ∈ V , is determined by independent Poisson clocks. Hence,
the state of the system follows a Markov process on a state
space with size growing exponentially with the population size
n, making its direct analysis unfeasible. We employ a mean-
field relaxation of the stochastic process to derive analytical
insight, following the n-intertwined mean-field approach de-
scribed in [22]. Specifically, we define and study for each
individual i ∈ V the probabilities of adopting protective
behaviours p

(i)
x (t) := P [xi(t) = 1] and of being infected

p
(i)
y (t) := P [yi(t) = I], which evolve according to

ṗ(i)x = (1− p(i)x )q
(i)
01 − p(i)x q

(i)
10 , (4a)

ṗ(i)y = (1− p(i)y )q
(i)
SI − p(i)y µ . (4b)

Also, we introduce the macroscopic variables

x(t) :=
1

n

∑
i∈V

p(i)x (t) , y(t) :=
1

n

∑
i∈V

p(i)y (t) , (5)

which are the average probability that a randomly selected
individual is adopting protections and is infected at time t,
respectively. Let x̄(t) := 1

n

∑
i∈V xi(t) denote the fraction

of adopters of self-protection in the population at time t.
In the limit of large-scale populations, n → ∞, the central
limit theorem ensures that x̄(t) and ȳ(t) converge to x(t) and
y(t), respectively. Hence, the macroscopic variables in Eq. (5)
approximate with arbitrary accuracy the fraction of adopters
of self-protective measures and the epidemic prevalence, for
any finite-time horizon [27].

In the rest of this letter, we will make the following
simplifying assumption.

Assumption 1: We assume that a) the influence layer is
complete, i.e. Ni = V, ∀ i ∈ V; b) individuals have homoge-
neous activity, i.e. ai = α ∈ R>0, ∀ i ∈ V; and c) individuals
have the same initial probability of adopting protections, i.e.
p
(i)
x (0) = px(0) ∈ [0, 1],∀ i ∈ V .

Under item a) of Assumption 1, Eq. (1) reduces to π1(t) =
x(t)+ζy(t) and π0(t) = 1−x(t)+c, where we have dropped
the index i since the payoffs are uniform across the population.
Under Assumption 1, we derive a planar system that governs
the mean-field evolution of the macroscopic variables (proof
in Appendix A) and rigorously analyse it.

Proposition 1: In the limit of large-scale populations n →
∞ and under Assumption 1, the two macroscopic quantities
in Eq. (5) evolve according to the following planar system:

ẋ = x(1− x)(2x+ ζy − 1− c) ,
ẏ = 2αλy(1− x)(1− y)− µy .

(6)

The following result guarantees that Eq. (6) is always
well-defined, i.e. that the variables x and y, which represent
fractions of the population, remain within [0, 1]× [0, 1].

Lemma 1: The domain [0, 1]× [0, 1] is positively invariant
for Eq. (6).

Proof: The domain [0, 1]× [0, 1] is compact and convex
and the vector field in Eq. (6) is Lipschitz-continuous. Hence,
Nagumo’s Theorem can be applied (see [28]). We are left with
checking the direction of the vector field at the boundaries of
the domain. We observe that ẋ = 0 for x = 0 and x = 1,

while ẏ = 0 for y = 0 and ẏ < 0 for y = 1, implying
that any trajectory such that (x(0), y(0)) ∈ [0, 1] × [0, 1] has
(x(t), y(t)) ∈ [0, 1]× [0, 1] for any t ≥ 0.

In the following, we will make some realistic assumptions
on the model parameters. In particular, we want to guarantee
that the use of self-protective measures is always preferred
when the entire population is infected, while their use is
disfavoured in the absence of a disease. To guarantee this,
we need to enforce in Eq. (1) that, for any x ∈ [0, 1],
π1(t) < π0(t), if y = 0, and π0(t) < π1(t), if y = 1. These
conditions are satisfied by making the following assumption.

Assumption 2: We assume that c > 1 and ζ > c+ 1.

IV. MAIN RESULTS

We study the asymptotic behaviour and the equilibria char-
acteristics of the behavioural–epidemic model using the mean-
field system in Eq. (6). The following lemma characterises
the equilibria of the system in Eq. (6) and their local stability
properties. Its proof can be found in Appendix B.

Lemma 2: Under Assumption 2, Eq. (6) has at most five
equilibria: three on the boundary of [0, 1]× [0, 1], two in the
interior. The three equilibria on the boundary are:

i) the DFE (0, 0), which is locally asymptotically stable
if λ ≤ µ

2α (with exponential stability if strict inequality
holds), and a saddle point if λ > µ

2α ;
ii) the DFE (1, 0), which is a saddle point;

iii) the protection-free EE (0, 1 − µ
2αλ ), which exists iff

λ > µ
2α . When it exists, it is locally asymptotically

stable if ζ ≤ 2αλ(1+c)
2αλ−µ (with exponential stability if strict

inequality holds) and a saddle point if ζ > 2αλ(1+c)
2αλ−µ .

Next, define

β± :=
1

4

[
c+ 3− ζ ±

√
(c+ 3− ζ)2 + 8

[
ζ
(
1− µ

2αλ

)
− 1− c

]]
.

The two EEs in the interior are:
iv)

(
β+, 1− µ

2αλ(1−β+)

)
, which exists iff λ > µ

2α(1−β+) and
one of the following conditions is satisfied: a)
c− 1 + 2µ

αλ +
√

4µ
αλ

(
c− 1 + µ

αλ

)
≤ ζ < c+ 3, where neces-

sarily c < 4αλ
µ − 3; or ζ ≥ c+ 3 and ζ > 2αλ(1+c)

2αλ−µ . If it
exists, it is locally exponentially stable if 4αλ

ζ (1 −
β+)

2 < µ < 2(1 − β+)(αλ − β+), and unstable if
µ < 4αλ

ζ (1− β+)
2 or µ > 2(1− β+)(αλ− β+).

v)
(
β−, 1− µ

2αλ(1−β−)

)
, which exists iff λ > µ

2α(1−β−) and

c− 1 + 2µ
αλ +

√
4µ
αλ

(
c− 1 + µ

αλ

)
≤ ζ < min

{
c+ 3, 2αλ(c+1)

2αλ−µ

}
,

where necessarily c < 4αλ
µ − 3. If it exists, it is

locally exponentially stable if 4αλ
ζ (1 − β−)

2 < µ <

2(1−β−)(αλ−β−), and unstable if µ < 4αλ
ζ (1−β−)

2

or µ > 2(1− β−)(αλ− β−).
Lemma 2 leads to the establishment of the epidemic thresh-

old for the system in Eq. (6), i.e. the conditions under which
the system converges to one of the DFEs.

Theorem 1: Assume that Assumption 2 holds and λ ≤ µ
2α .

Then, if x(0) < 1, the system in Eq. (6) converges to the DFE
(0, 0); otherwise, it converges to the DFE (1, 0).

Proof: Let f(y) = 2αλy(1 − y) − µy. By [2, Lemma
4.1], the solution of ż = f(z) converges to z = 0 if



(a) ζ = 5 (b) ζ = 8 (c) ζ = 9.5

Fig. 2: Simulations of Eq. (6) for different values of the risk perception parameter (in the captions) for Example 1. Stable
equilibria, saddle points and unstable equilibria are marked with a black, black-white and white asterisk, respectively.

λ ≤ µ
2α . As a consequence of the nonnegativity of y(t)

(Lemma 1) and the fact that ẏ ≤ f(y), y(t) converges to 0.
If x(0) = 1, convergence to (1, 0) is straightforward, since
x = 1 is an invariant manifold. Otherwise, since y(t) → 0
and c > 1, there exists a time t̄ > 0 such that y(t) ≤ c−1

2ζ ,
for any t ≥ t̄. From Eq. (6), we observe that for any t > t̄,
ẋ = x(1− x)(2x+ ζy − 1− c) < −x(1− x)(c− 1)/2,
which yields the claim.

Theorem 1 fully characterises the behaviour of the system
when the disease is not highly infectious, i.e. λ ≤ µ

2α . In the
following, we will consider the opposite scenario λ > µ

2α .
We also assume c ≥ 4αλ

µ − 3, ensuring that the unique
endemic equilibrium only exists for a high enough level of
risk perception ζ. Under an upper bound of c, which depends
on the other model parameters, Lemma 2 reduces to the
following proposition, which clearly illustrates the role of the
risk perception ζ. The proof is reported in Appendix C.

Proposition 2: Let λ > µ
2α and 4αλ

µ − 3 ≤ c < 32αλ
5µ − 3.

Under Assumption 2, the following hold:

i) if ζ < 2αλ(1+c)
2αλ−µ , then Eq. (6) has three equilibria: the

DFEs (0, 0) and (1, 0), which are saddle points, and the
(locally) exponentially stable EE (0, 1− µ

2αλ );
ii) if ζ > 2αλ(1+c)

2αλ−µ , then Eq. (6) has four equi-
libria: three saddle points—the DFEs (0, 0), (1, 0),
and the EE (0, 1 − µ

2αλ )—and the interior EE
(β+, 1 − µ

2αλ(1−β+) ), which is (locally) exponen-
tially stable iff ζ satisfies all of the following three
conditions: a) ζ > c− 1 + 25µ

8αλ + 5
2

√
µ
αλ (c− 1 + 25µ

16αλ ), b)
ζ > αλ

2αλ−µ ((c+ 1)[1−
√

(αλ− 1)2 + 2µ] + αλ(c− 3) + 2µ), and
c) ζ < αλ

2αλ−µ ((c+ 1)
[
1 +

√
(αλ− 1)2 + 2µ] + αλ(c− 3) + 2µ).

Proposition 2 focuses on local stability and instability
of endemic equilibria. In the following result we establish
sufficient conditions under which sustained oscillations with
periodic epidemic waves occur, with proof in Appendix D.

Theorem 2: Let Assumption 2 hold, λ > µ
2α , and 4αλ

µ −
3 ≤ c < 32αλ

5µ − 3. Furthermore, assume ζ > 2αλ(1+c)
2αλ−µ ,

ζ > c− 1 + 25µ
8αλ + 5

2

√
µ
αλ (c− 1 + 25µ

16αλ ), and ζ > αλ
2αλ−µ [(c +

1)[1+
√
(αλ− 1)2 + 2µ]+αλ(c−3)+2µ]. If the initial con-

dition x(0), y(0) is in the interior of the domain [0, 1]× [0, 1],
then the system in Eq. (6) converges to a periodic solution,
within the domain [0, 1]× [0, 1− µ

2λα ].

We conclude the section by presenting an example.
Example 1: Let c = 3, α = 3, λ = 0.5, and µ = 1. In

Fig. 2a, we set the risk perception to ζ = 5, which satisfies
the conditions in item i) of Proposition 2. Hence, the only
(locally) stable equilibrium of Eq. (6) is the EE (0, 1− µ

2αλ ).
Simulations suggest that all trajectories converge to it. In
Fig. 2b, we increase the risk perception to ζ = 8, which
satisfies all the conditions in item ii) of Proposition 2. Hence,
the interior EE is locally stable: all trajectories converge to it,
suggesting globally stability. Finally, we set ζ = 9.5, which
satisfies the conditions of Theorem 2. Consistently, all the
trajectories in Fig. 2c converge to a limit cycle.

V. CONCLUSION

We studied a behavioural–epidemic model in which human
behaviour and epidemics co-evolve in a mutually influencing
manner. Employing a mean-field approach, we painted an
extensive picture of the system behaviour, including a stability
analysis of the equilibria and the expression of the epidemic
threshold. Furthermore, we explored the role of risk perception
in the occurrence of periodic oscillations and established
conditions for global convergence to such a periodic solution.

Our promising results pave the way for several avenues of
future research. First, the numerical findings suggest that our
local stability results might be extended towards obtaining
global results. Second, interventions may be incorporated,
towards designing control policies to favour a collective be-
havioural response and mitigate an epidemic outbreak.Third,
our theoretical analysis relies on the simplifying Assump-
tion 1. Efforts should be placed towards extending our the-
oretical findings to more general scenarios, including non-
trivial directed networks. Finally, further factors should be
incorporated into the model, including limited effectiveness
of self-protections, accumulation of socio-economic fatigue,
and nonlinear terms to capture more complex risk perception
(as in [21]). This will be key for real-world applications.
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APPENDIX

A. Proof of Proposition 1

In the limit n → ∞, Eq. (4a) reduces to ṗ
(i)
x = (1 −

p
(i)
x )x(x + ζy) − p

(i)
x (1 − x)(1 − x + c). Similarly, using

item b) of Assumption 1 and Eq. (3), we write Eq. (4b) as
ṗ
(i)
y = λ(1−p

(i)
x )(1−p

(i)
y )2α n

n−1y−µp
(i)
y . Next, observe that,

under item c) of Assumption 1, p(i)x (t) is the same ∀ i ∈ V , so
we drop the index i and write p

(i)
x (t) = x̄(t) = x(t), where

the last equality holds for n → ∞. Finally, we combine the
expressions above and Eq. (5), to derive Eq. (6).

B. Proof of Lemma 2
Solving ẏ = 0 yields y = 0 or (1−x)(1−y) = µ

2αλ , where
for the latter, µ

2αλ > 0 necessarily requires x < 1 and y < 1
as conditions. Here, (1 − x)(1 − y) = µ

2αλ with x < 1 and
y < 1 can be written as y = 1 − µ

2αλ(1−x) . If y = 0, then
the solutions to 0 = ẋ = x(1− x)(2x− 1− c) in the domain
[0, 1] are given by x = 0 and x = 1. Thus, the only DFEs are
(0, 0) and (1, 0). Next, let us consider equilibria (x, y) with
y = 1− µ

2αλ(1−x) ∈ (0, 1), x ∈ [0, 1), and let µ < 2αλ(1−x)

for existence of the equilibria. Substituting y = 1− µ
2αλ(1−x)

in ẋ = 0 yields x(1 − x)(2x + ζ(1 − µ
2αλ(1−x) ) − 1 −

c) = 0, which for x < 1 has solutions x = 0, and
β± = 1

4 (c+ 3− ζ ±
√

(c+ 3− ζ)2 + 8[ζ(1− µ
2αλ )− 1− c]). The

EEs are given by (0, 1− µ
2αλ ) and (β±, 1− µ

2αλ(1−β±) ). First,
we investigate for which values of ζ we have (c+ 3− ζ)2 +
8[ζ

(
1− µ

2αλ

)
− 1− c] = ζ2 +2ζ(1− c− 2λ

αλ )+ (c− 1)2 ≥ 0,
which is a necessary condition for β± ∈ R. Note that the
roots of ζ2 + 2ζ(1− c− 2λ

αλ ) + (c− 1)2 are ζ± = c − 1 +
2µ
αλ ±

√
4µ
αλ (c− 1 + µ

αλ ). Since ζ− < c − 1, β± ∈ R iff
ζ ≥ ζ+. Next, we study for which values of ζ and c we
have β± ∈ (0, 1), while assuming that the previously identified
conditions necessary for β± ∈ R hold. We start with β+. If
ζ < c + 3, then β+ > 0. If ζ ≥ c + 3, then β+ > 0 iff
ζ > 2αλ(1+c)

2αλ−µ , for which ζ(1 − µ
2αλ ) − 1 − c > 0. Observe

that β+ < 1 iff
√
(c+ 3− ζ)2 + 8[ζ(1− µ

2αλ )− 1− c] <
ζ + 1 − c, which is always satisfied. Hence, β+ ∈ (0, 1) if
ζ ≥ c + 3 and ζ > 2αλ(1+c)

2αλ−µ , or if ζ < c+ 3. Combining
this with the conditions for β+ ∈ R, yields the regions of ζ
for which β+ ∈ (0, 1). Note here that if ζ > 2αλ(1+c)

2αλ−µ , then
β+ ∈ R. The condition on c in a) results from the fact that, for
the region to exist, the lower bound must have a lower value
than the upper bound. Likewise, we consider β−. Observe
that β− > 0 iff ζ < min{c + 3, 2αλ(c+1)

2αλ−µ } and β− < 1 iff√
(c+ 3− ζ)2 + 8[ζ(1− µ

2αλ )− 1− c] > c−ζ−1, which is
satisfied. Combining the above with the conditions ensuring
that β− ∈ R, gives the regions of ζ for which β− ∈ (0, 1).

Then, we study local stability. First, we consider the DFE
(0, 0). Linearising Eq. (6) about (0, 0), we find that the
eigenvalues of the Jacobian matrix are 2αλ−µ and −(c+1) <
0, where the former is negative iff 2αλ < µ. Thus, the
equilibrium is locally exponentially stable (LES) if 2αλ < µ,
and a saddle point if 2αλ > µ. The case 2αλ = µ is
studied separately, yielding asymptotic stability. Computations
are omitted due to space constraints. Next, we consider the



DFE (1, 0). In a similar way, we linearize the system about
the equilibrium and we find the eigenvalues of the Jacobian
matrix, which are given by c− 1 > 0 and −µ < 0, implying
that the DFE (1, 0) is a saddle point. Now consider the EE
(0, 1 − µ

2αλ ), with µ < 2αλ, so it exists. Linearising the
system about this equilibrium, we obtain a Jacobian matrix
with eigenvalues ζ(1 − µ

2αλ ) − 1 − c and µ − 2αλ < 0, so
the equilibrium is LES if ζ < 2αλ(1+c)

2αλ−µ , and a saddle point if
the opposite inequality holds. If the equality holds, Eq. (6) is
studied directly (computations omitted), yielding asymptotic
stability. Finally, consider the interior EE with x = β+. Let
β+ ∈ (0, 1) and µ < 2αλ(1 − β+) for existence. Linearising
Eq. (6) about the EE yields the Jacobian matrix

A =

[
2β+(1− β+) ζβ+(1− β+)

− µ
1−β+

(1− µ
2αλ(1−β+) ) µ− 2αλ(1− β+)

]
.

By the determinant-trace method, the EE with x = β+ is LES
if 4αλ

ζ (1 − β+)
2 < µ < 2(1 − β+)(αλ − β+) and unstable

if at least one of the opposite inequalities holds. By replacing
β+ with β− in the argument above, we complete the proof by
obtaining the conditions for the other interior EE.

C. Proof of Proposition 2

Item i) follows from Lemma 2. We now prove ii). Under
the parameter constraints imposed by the hypothesis of the
proposition, it follows from Lemma 2 that Eq. (6) has three
equilibria on the boundary: (0, 0), (1, 0) and (0, 1− µ

2αλ ), all
of which are saddle points. Moreover, the interior EE with
x = β− does not exist. For existence of the interior EE
with x = β+, we need λ > µ

2α(1−β+) , which is equivalent

to
√

(c+ 3− ζ)2 + 8[ζ(1− µ
2αλ )− 1− c] < ζ + 1− c− 2µ

αλ ,
where the right-hand side (RHS) is positive for λ > µ

2α

and ζ > c + 3. Note that c + 3 ≤ 2αλ(1+c)
2αλ−µ iff c ≥

4αλ
µ − 3. Squaring both sides, algebraic simplifications yield

the equivalent expression µ
αλ + c− 1 > 0, which holds.

The interior EE is LES iff 4αλ
ζ (1 − β+)

2 <
µ < 2(1 − β+)(αλ − β+) (Lemma 2). The
condition µ < 2(1 − β+)(αλ − β+) is equivalent to
1
2 [αλ+ 1 + 1

2 (ζ − c− 3)]
√
(c+ 3− ζ)2 + 8

[
ζ
(
1− µ

2αλ

)
− 1− c

]
<

2αλ− µ+ 1
4 (ζ − c− 3)2 + 1

2 (ζ − c− 3)(αλ+ 1) + [ζ(1− µ
2αλ )− 1

−c]. For λ > µ
2α and ζ > max{c+3, 2αλ(1+c)

2αλ−µ }, both the left-
hand side (LHS) and RHS of the equation above are positive.
After squaring both sides and some straightforward rewriting,
we obtain the equivalent condition (2αλ−µ)ζ2− 2(αλ)2[c−
3+ 1

αλ (c+1+2µ)]ζ+2(αλ)2(c2+2αλ(1−c)−2µ−1) < 0,
where the roots of the polynomial are given by
ζ̄± = αλ

2αλ−µ ((c+ 1)[1±
√
(αλ− 1)2 + 2µ] + αλ(c− 3) + 2µ).

The leading term of the polynomial on the LHS is positive,
so the condition is satisfied iff ζ̄− < ζ < ζ̄+.

Next, µ > 4αλ
ζ (1 − β+)

2 is equivalent to

(ζ + 1− c)
√
(c+ 3− ζ)2 + 8[ζ(1− µ

2αλ )− 1− c] > ζ2 + (c− 1)2

+2ζ(1− c− 5µ
4αλ ), where the roots of the RHS are

ζ̃± = c− 1 + 5µ
4αλ ±

√
5µ
2αλ (c− 1 + 5µ

8αλ ). For c < 32αλ
5µ − 3,

we have c + 3 > ζ̃+, so the RHS is positive. Squaring
both sides and rewriting yields the equivalent expression

−ζ3+[2(c−1)+ 25µ
4αλ ]ζ

2−(c−1)2ζ < 0, where the roots of the

LHS are ζ = 0 and ζ̆± = c−1+ 25µ
8αλ±

5
2

√
µ
αλ (c− 1 + 25µ

16αλ ).

Since c > 1 implies ζ̆− < c−1, we need ζ > ζ̆+ for stability.

D. Proof of Theorem 2
Under the conditions of Theorem 2, Eq. (6) has three saddle

points on the boundary: (0, 0), (1, 0) and (0, 1− µ
2αλ ), and the

unique fully unstable interior EE (β+, 1 − µ
2αλ(1−β+) ). Also,

ẏ < 0 if y ̸= 0 and µ
2αλ > (1−x)(1−y). For all y > 1− µ

2αλ ,
we have µ

2αλ > 1−y ≥ (1−x)(1−y), so ẏ < 0. Furthermore,
ẏ = −µxy ≤ 0 at y = 1− µ

2αλ , which implies that the region
[0, 1]× [0, 1− µ

2αλ ] is attractive and invariant.
We study now the behaviour of the system near the bound-

aries of [0, 1]×[0, 1− µ
2αλ ], and examine whether it is possible

to reach the boundary of the domain. Consider the boundary
x = 1. Let us assume that the trajectory reaches x = 1 − ε,
with ε > 0 arbitrarily small at time t0. From Eq. (6), we
observe that ẋ(t0) = ε(1 − ε)(1 + ζy − c − 2ε) when
x(t0) = 1 − ε. Hence, ẋ can be positive only if y > c−1

ζ .
We consider the regions Rε := [1 − ε, 1] × [ c−1

ζ , 1 − µ
2αλ ]

and Sε := [1− ε, 1]× [0, c−1
ζ ], where ẋ can be positive only

in Rε, while it is negative in Sε. Furthermore, we derive
the following uniform bound for any pair (x, y) ∈ Rε: ẏ =
−µy + 2αλyε(1− y) < −µ c−1

ζ < 0, for ε sufficiently small.
Similarly, we observe that ẋ = x(1− x)(2x+ ζy − 1− c) ≤
k(1−x), for some constant k > 0. These bounds yield a strict
bound on the distance between the trajectory and x = 1 before
the trajectory exits the region Rε from the bottom and enters
Sε. We define u(t) = 1−x(t). The uniform bound on ẋ in Rε

is equivalent to −u̇ ≤ −k(−u), so by the Gronwall-Bellman
inequality [29], −u(t) ≤ −u(t0)e

−k(t−t0), which is equivalent
to x(t) ≤ 1 − εe−k(t−t0), for any t ≥ t0. Here, we used the
fact that x(t0) = 1− ε. Then, the uniform bound on ẏ in Rε

is used to derive a bound on the time needed for the trajectory
to exit Rε. Specifically, since the length along the y-axis of
Rε is equal to (1 − µ

2αλ − c−1
ζ ), and the time-derivative of

the trajectory along the y-component is negative and greater
in modulus than µ c−1

ζ , then there necessarily exists a time
t̃ ≤ ζ(1− µ

2αλ − c−1
ζ )/(µ(c− 1)) such that y(t0 + t̃) < c−1

ζ

and x(t0+ t̃) ≤ 1− ε′, with ε′ = εe−kt̃. Hence, the trajectory
will exit from Rε and will enter Sε, in which ẋ < 0 and ẏ < 0.
This establishes that the trajectory cannot further approach the
boundary x = 1, nor re-enter Rε from the boundary between
Sε and Rε. Thus, there exists a constant ε′ > 0 such that
[0, 1− ε′]× [0, 1− µ

2αλ ] is positively invariant for Eq. (6).
A similar argument guarantees that any trajectory that

starts from the interior is bounded away from the boundaries
y = 0 and x = 0. Since convergence to the boundaries is
impossible, the boundary equilibria points cannot be reached
if the initial conditions of the system are in the interior of
the domain (0, 1) × (0, 1). Finally, we consider the open set
(x, y) ∈ (0, 1) × (0, 1 − µ

2αλ ). Since the unique interior EE
is an unstable point under the above conditions, there does
not exist a homoclinic orbit. It follows directly from the
generalised Poincaré-Bendixson theorem [30] that every non-
empty compact ω-limit set of an orbit is periodic.


