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A New Method to Estimate Geometrical Optics 
Contribution in Arbitrary Linear Stratified Planar 

Structures 
 

Vito Daniele, and Guido Lombardi 
 
 Abstract – The interest of studying Geometrical 
Optics (GO) contribution in arbitrary linear stratified 
planar structures is of great importance in practical 
problems. In this letter we propose a new procedure 
based on Bresler-Marcuvitz transversalization method 
and equivalent network modelling that is useful to 
compute source contributions in Wiener-Hopf 
formulations of complex scattering problems where 
angular and/or stratified structures are present. The 
Generalized Wiener-Hopf technique has demonstrated 
the capability to handle new complex canonical 
problems through both exact and semi-analytical 
factorization methods. 

 
1. Introduction 

 
 The Wiener-Hopf technique in its generalized 
form has been applied effectively in electromagnetic 
wave scattering problem for angular regions (wedge 
problems), see the monographies [1-2] and references 
there in. Following the procedure first proposed in [3], 
we aim at extend the Wiener-Hopf (WH) technique in 
angular regions for arbitrary linear wave scattering 
problems [3-6]. This technique can be also extended to 
geometries containing angular regions and/or stratified 
planar regions, see for instance [7]. We start our 
formulation from electromagnetic applications [3-5] and 
we extend the procedure to elasticity as reported in [6]. 
The method is based on two steps: the deduction of the 
Generalized Wiener-Hopf Equations (GWHEs) for 
angular region problems [3-6] and the solution of the 
equations using the semi-analytical procedure of 
factorization known as Fredholm factorization method, 
see for instance [8-9]. A key point to implement the 
solution of GWHEs for arbitrary linear stratified media 
via Fredholm factorization method is the extraction of 
source term that is related to GO components. For this 
reason this letter is dedicated to estimate GO 
contribution in arbitrary linear stratified planar 
structures with the help of equivalent network models 
and Bresler-Marcuvitz transversalization method.  

 
2. Transverse Equations in Stratified Media 

 
 In this paper we use only time harmonic fields 
with a time dependence specified by the factor j te ω  



which is omitted. In absence of sources located at finite, 
the Maxwell’s equations assume the abstract form 
[5,10] in the Euclidean space of dimension six 
 
( W) 0∇Γ − =ψ   (1) 
 
where:   
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with W containing the dyadic permittivity ε , the 
dyadic permeability μ , and the additional coupling 

parameters ,ξ ζ for general bi-anisotropic media. 
We introduce Cartesian coordinates (z,x,y) and we 
consider stratification along the y direction. 
The study of the wave motion in stratified media is 
significantly simplified if we introduce the transverse 
equations of the fields. These equations involve only the 
components tψ  of the field ψ  that remain continuous 
along the stratification according to the boundary 
conditions on the interfaces. According to the boundary 
conditions we have 
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where [1,1,0,1,1,0]t diag=I . The transverse equations 
are obtained using [10] as reported in [5] 
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with matrix differential operator 
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whose terms are explicitly defined and reported in [5] 
One of the most important relation in the procedure is  
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with 0,0, ,0,0,

t

y y yE H=ψ  



 that relates the 

discontinuous longitudinal component to transverse 
components without partial derivative along y (only the 
third and the sixth rows are non null). 
Note that the transverse equations (4) are defined in the 
Euclidean space of dimension four instead of six since 
the third and the sixth row are null for the definition (3). 



In the following we consider invariance of the geometry 
along z as for stratified media. With this limitation if the 
sources depend on a zj oe α−  factor, also the total field 
depends on the same factor, i.e. 

( , ) ( , ) oj z
c y f y x e α−=ψ ρ 


. Furthermore, to study the 

variation of the fields in x, we introduce the Fourier 
transform 
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That yields from (4) the ordinary differential equations 
 

( , ) ( ) ( , )t t
d y M y
dy

η η η− =ψ ψ  (8) 

 
with ( ) ( , )oM M j jη α η= − − , see (5). 
The definition of explicit form of ( )M η  and related 
properties need symbolic elaboration that can be 
performed with the help of software like Wolfram 
Mathematica [11]. ( )M η  for isotropic and anisotropic 
cases are reported in [5]. 

 
3. Circuit Model of an Arbitrary semi-

infinite layer 
 

 To introduce a circuital modelling we define as 
voltage and current the components in the Euclidean 
space of dimension two related to the Fourier transforms 
of tψ . More precisely we define  

( , ) ( , ), ( , ) t
t y y yη η η=ψ V I   (9) 
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(10) 

 
Let’s consider the plane y=yo and an arbitrary stratified 
medium located at y>yo in presence of arbitrary sources. 
The linearity of the problem impose that ( , )oyηV  and 

( , )oyηI  satisfy the equation 
 

s eZ= +V V I   (11) 
 
where ( , ) ( , )o oy yη η= =V V I I  and, ( )s s η=V V  
and ( )e eZ Z η=  are called the Thevenin voltage and the 
Thevenin impedance. We estimate the Thevenin voltage 

sV  at y=yo by imposing perfect magnetically 



conducting (PMC) boundary condition at y=yo, i.e. 
0=I . The impedance Ze is the 2x2 matrix that relates 

V and I  when in the region y>yo the sources are 
vanishing. The circuital model of the region y>yo is 
illustrated in Fig. 1. The Norton representation is the 
dual circuit of the Thevenin one. Similar consideration 
apply in the stratified region located at y<yo. 

 
Fig.1. Thevenin representation of the half space y>yo 
In the Thevenin’s model of a half-infinite layer 

( )e eZ Z η=  represents the characteristic impedance of 

the medium. In particular the matrix ( )c cZ Z η=
 

 is the 

characteristic impedance that relates V and I  in the 

direction y>yo in absence of sources, while the matrix 

( )c cZ Z η=
 

 relates V and −I  in the direction y<yo. 

 
4. Circuit Model of an Arbitrary Multi-layers 

 
Let us consider an homogeneous slab defined between 

0 and  y=dy = . Solution of (8) yields 
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with the transmission matrix of the slab 0<y<d defined 
by 
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η
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This 4x4 matrix has as elements the 2x2 matrices 
A,B,C,D defined in terms of M matrix of dimension 
four (see section 2). Fig. 2 reports a convenient 
representation of (12) in terms of two-port network 
model. This representation is also valid for a slab 
constituted by a cascade of s homogeneous consecutive 
slabs 1,2,3… In this case the transmission matrix of the 
multi-layer slab is the product of the transmission 
matrices relevant to each slab: 
 



3 31 1 2 2... ...M dM d M de e e= = =
A B
C D 1 2 3T T T T  (14) 

 
Fig.2: Top: slab filled by arbitrary linear medium. 
Bottom: network equivalent model. 

 
5. The Eigenvalues and the Eigenvectors  

 
The eigenvalues and the eigenvectors of the matrix M 
reported in (8) are very important in studying the 
solution of the equation. For example they allow the 
evaluation of function of M such the exponentials that 
appears in (13)-(14). We study the eigenvalues and the 
eigenvectors of M defined in the Euclidean space of 
dimension four (see section 2) 
 

( ) ( )( ) ( ) ( ) ( )i i
iM η η γ η η=ψ ψ  (15) 

 
where ( )( ), ( )i

iγ η ηψ  are respectively the eigenvalues 
and the eigenvectors. Since M is a semi-simple matrix 
we have 
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where 1 4[ ( ),.., ( )]J diag γ η γ η=  and 

(1) (4)[ ( ),.., ( )]U η η= ψ ψ  and 
( ) ( ) ( ) ( ) ( )

1 2 3 4( ) ( ), ( ), ( ), ( )
ti i i i iη ψ η ψ η ψ η ψ η=ψ . 

In presence of a passive medium we observe that two 
eigenvalues (say 1 2,γ γ ) present non-negative real part 

and the other  two 3 4,γ γ  present non- positive real part. 
Whence ( ) ( )i ηψ  (i=1,2) are called progressive 



eigenvectors and ( ) ( )i ηψ  (i=,3,4) are called regressive 
eigenvectors. The eigenvectors of M provide the 
characteristic impedance of a medium. In fact [9] we 
have 
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  (17) 
Furthermore the transmission matrix ( )M de η  (13) is 
obtained by ( ) 1M d J de Ue Uη −=  where 

1 4( ) ( )[ ,.., ]d dJde diag e eγ η γ η= . 
 

6. Plane Waves in a Arbitrary Medium  
 

Plane waves in a arbitrary are solutions of the transverse 
equations (4) with (5) of the form 
 

je= - k r
t oψ ψ   (18) 

 
where , , tz x y=r  is the observation point, 

, ,
t

y o ok α η=k  the propagation vector and oψ  is a 

constant vector of dimension four. Taking into account 
that 

yjk
y
∂
= −

∂
, (4) becomes 

 
M( )y ojk η=o oψ ψ  (19) 

 
where yk  are related to the eigenvalues of matrix M as 

defined in section 5. For a given set of ,o oα η  we have 

four possible propagation constants yk  and four 

polarizations oψ  i.e. 
 

( )( ), ( )i
yi i ijk γ η η= =oψ ψ , i=1,2,3,4 (20) 

 
We call progressive the plane waves where i=1,2 and 
regressive the plane waves where i=3,4. Examples of 
values are given in [12]. For each values of yk  (we 
omit the subscript i) we define a propagation vector and 
a propagation constant as 
 

2 2 2 2 2,o o y o ok k kα η τ α= = + + = −k        (21) 

 
that identify the direction of the wave in term of zenithal 
angle β  and azimuthal angle oϕ : sino o oη τ ϕ= − , 



coso kα β= . We recall that the field tψ  contain 
only the transverse components of the electromagnetic 
field. The discontinuous components Ey,Hy, are related 
to the transverse ones through (6).  

 
6. The Reflection Problem 

 
Considering the network modelling of semi-infinite 
medium we build the network representation of the 
reflection problem as reported in Fig. 3. 

 
Fig.3. Top: Plane wave reflection between two semi-
infinite homogenous bi-anisotropic media. Bottom: 
network modelling based on the Thevenin’s equivalence 

 
In the network representation the impedances 1cZ  and 

2cZ  are the characteristic ones obtained in (17). We 
observe that the model is completed considering sources 
in region 1 (y>0) that yields (by imposing PMC 
termination at y=0) the Thevenin voltage 
2 ( , )inc

o oα ηV  where ( , )inc
o oα ηV  is the incident 

voltage at y=0. The incident voltage ( , )inc
o oα ηV  is 

related to the regressive incident plane wave that 
constitute the source in region 1. Without loss of 
generality we suppose the presence of only one kind of 

incident plane:
( )

( , )
iinc inc

o o oVα η = =V V V  where 

oV  is the intensity of the plane wave and 
( )i

V  is the 
voltage part (i.e. the first two components) of one of the 



regressive eigenvector 
( )i

cψ  (i=3,4) of the matrix M 

relevant to medium 1., i.e. 
( ) ( ) ( )

1 2| | '
i i iψ ψ=V . 

Analyzing the circuit model of Fig. 3 we have  
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where (0) (0)= = Γ = Γref ref inc incV V V V  define the 
reflected voltage at y=0 and the 2x2 reflection matrix 
Γ is given by: 
 

1 1
3 2 1 2 2 1 1 21 2 ( ) ( )( )c c c c c c cT Z Z Z Z Z Z Z− −Γ = − = + = + +  (24) 

 
While exciting/illuminating the structure with one  
regressive wave either i=3 or i=4, in general we get as 
reflected waves all the progressive reflected waves 
(i=1,2) of the medium 1and all the regressive 
transmitted waves (i=3,4) of the medium 2. We can 
evaluate the coupling coefficient in terms of the 
reflection matrix Γ . Taking into account that the 
reflected wave  
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1 2( ) y yref
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contains all the progressive plane wave present at y>0, 
we obtain the excitation coefficients 1 2,o oC C  by 
considering that at y=0 we get 
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that yields 
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Similar considerations apply for the evaluation of plane 
waves transmitted in the medium 2 (y<0). By indicating 
with tiγ  and ( )i

tV (i=3,4) the regressive eigenvalues 

and eigenvectors of the matrix tM ( )oη  defined in the 
medium 2, we have for y<0: 
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7. Conclusions 

 
 This work proposes a new effective method to 
estimate GO contributions in arbitrary linear stratified 
planar structures, based on equivalent network models 
and Bresler-Marcuvitz transversalization theory.  
The method is in particular useful to start the analysis of 
novel complex canonical problems constituted of 
angular and/or stratified structures with the Generalized 
Wiener Hopf Technique as in [13]. 
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