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ABSTRACT

The comprehension of non-linear effects in silicon is fundamental when designing ring resonator in the Silicon-
On-Insulator (SOI) platform. The optical field propagating in the ring waveguide suffers strong absorption due
to Two-Photon-Absorption (TPA) and Free-Carrier-Absorption (FCA) whose strength is proportional to the
input power in the ring. The free carriers generated via TPA can then heat the device through self-heating.
In this scenario, we present a new method for the modelling of non-linear effects in silicon based ring resonators.
Our numerical approach aims to solve the non-linear problem, which couple the variation of refractive index and
losses due to TPA, FCA and self-heating, with trap-assisted rate equations based on the Shockley-Read-Hall
(SRH) theory. We show for the first time, that the SRH formulation is capable of predicting the dependence of
free carrier lifetime on the power circulating in the ring. The new model is validated by comparing simulation
results with experimental measurements on a racetrack microring resonator at steady state and in time domain.
By the fitting of the experimental results, we determine the surface trap density to be 3 · 1012cm−2 assuming
donor like trap energy level around 0.9eV . Through time domain simulation we are able to reproduce oscillations
in the output power at the through port caused by the interplay of non-linear effects with self-heating.

Keywords: Shockley-Read-Hall, Free-Carrier-Absortpion, Two-Photon-Absorption, Self-hating, Racetrack res-
onator, Ring resonator, Non-linear effects in Silicon.

1. INTRODUCTION

Nowadays, several studies have established how silicon is affected by non linear effects in both C- and O-band
when the injected power is high.1–4 Two-photon-Absorption (TPA) and Free-Carrier-Absorption (FCA) are the
main mechanism responsible for the wavelength shift and distortion of the ring spectral response at steady state
when CW input power is just a few milliwatts. In TPA, two photons are absorbed generating an electron-hole
pair which cause a change in the refractive index (blue shift) called free-carrier dispersion (FCD). Free carriers
also contribute to higher absorption (FCA) rising the overall optical loss and reducing the quality factor of the
resonator. The generated carriers recombine releasing the energy in form of heat (self-heating) that increases
the temperature in the structure. As a consequence the refractive index changes and causes a red shift of the
ring resonance. The amount of spectral distortion of the ring response is thus determined by the density of
free-carriers accumulated in the conduction and valence band, and also by the temperature increase, which is
proportional to the dissipated power via the thermal impedance of the ring.
Similarly, periodic oscillations of the output power have been observed even with CW injection; these periodic
oscillations are due to an instability of the ring caused by the interplay between the temperature increase and
free carrier generation and recombination.5,6

In order to design rings with minimum non-linear response, we need therefore a precise modelling of the ring
spectral response both at steady state and in the time domain. Several works1–3 have already coupled TPA,
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FCA, FCD and self-heating effects into a system of equation. However they all rely on empirical values of carrier
lifetimes that are retrieved by fitting experimental measurements.1–3

The carrier lifetime in the silicon waveguide core and the ring thermal impedance are two relevant parameters
ruling the impact of nonlinear effects on the distorsion of the transmission coefficients and ring instability. Small
lifetime implies fast recombination of free carriers and reduction of three carrier absorption, while small thermal
resistance limits the temperature increase in the core.

A careful estimation of the carrier lifetime is therefore required to predict non-linear loss and free-carrier
dispersion in the ring. The aim of this work is to present a model which includes the Shockley-Read-Hall
theory in the formulation of non-linear effects and self-heating to find self-consistently the spectral response of
a racetrack resonator in the non-linear regime both in steady state and in time domain. The model details are
discussed in section 2. In section 3 the model is validated by comparing measurements of optical transmission
spectra and measured oscillating regimes. We show that our model reproduce well both measurement sets.

2. MODEL

We consider a SOI racetrack resonator illustrated in Fig. 1. Here Lc is the coupler length and Ld the length of
the straight waveguide, whereas r is the curvature radius. The coupler has a coupling factor κ and a transmission
coefficient t. η2 indicates the coupling loss in the bus-ring coupling region, the power loss per round trip in this
region is η2 ·Pbus,7 with Pbus the power entering in the coupler. The power conservation in the bus-ring coupling
region leads to (1− κ2)(1− η2) + κ2(1− η2) + η2 = 1.

With the introduction of coupling losses, the power transmission coefficients at the through and drop port
are written as:

Tdrop =
κ4(1− η2)2a

|1− t2aejθ|2

Tthr = t2
|1− (1− η2)aejθ|2

|1− t2aejθ|2
.

(1)

The optical power circulating in the racetrack waveguide is:

Pc = Pbus
κ2(1− η2)

|1− t2aejθ|2
. (2)

θ is the total phase variation per round trip, generally written as:

θ = θ0 +∆θ +
ng
c
(ωin − ω0)L, (3)

where θ0 is the phase variation per round trip at the reference angular pulsation ω0 in linear regime in the
waveguide with effective refractive index neff,0 and group refractive index ng, while ωin is the angular pulsation
of the input power. ∆θ(Pc,∆T ) is the total phase variation per round trip due to the non-linear effects and
self-heating, ∆T is the temperature variation within the whole structure. The loss of the optical field per round
trip is a = e−αeffL/2, where αeff accounts for both linear and non linear modal losses. We therefore can express
the effective waveguide loss as:

αeff (Pc) = α0 +∆α(Pc, ne, pe). (4)

α0 is the liner loss term taking into account bend losses and scattering loss. The second part of eq. (4) can be
written as ∆α(Pc, ne, pe) = αTPA(Pc) + αFC(ne, pe). Here αTPA(Pc) is the modal loss caused by two-photon
absorption, which depends on the power propagating in the ring, and αFC is the free-carrier absorption caused
the free carrier densities generated by TPA, namely the electron density per unit volume, ne, in conduction band
and hole density per unit volume, pe, in valence band.1,8, 9 In a similar way we can express the total effective
refractive index of the silicon core as neff (ne, pe,∆T ) = neff,0 + ∆neff (ne, pe,∆T ) with ∆neff the effective
refractive index variation caused by FCD and self-heating.



(b)

(a)

Figure 1: (a) Schematic of the racetrack resonator structure not to scale: here the electric fields at the input bus
port (Ebus), through port (Ethr), add (Eadd) and drop (Edrops) ports are displayed together with the circulating
field within the resonator (Ec). The black triangles represent the grating couplers allowing for vertical coupling
of light in the ring. In Figure(b) a zoom of the coupler section is displayed.

Generated Free electrons (holes) recombine with free holes (electrons) via Shockley–Read–Hall (SRH) recombi-
nation thanks to the presence of trapping states related to defects in the Si bulk material and at the waveguide
interface between silica and silicon.
These detrimental processes cause power absorption which is dissipated into heat giving a temperature increase,
∆T , in the silicon core; hence the silicon effective refractive index is modified by the temperature increase caused
by self-heating.1,2, 5

To write the drop and through transmission coefficients as function of the circulating power, FC density and
temperature variation, we express the resonant denominator in eq. (1) as function of the ratio Pbus

Pc
:

|1− t2aejθ|2 =
Pbus
Pc

κ2(1− η2), (5)

and the transmission coefficients of eq. (1) as:

Tdrop =
Pc
Pbus

κ2(1− η2)a

Tthr =
Pc
Pbus

· t
2

k2
· |1− (1− η2)aejθ|2

(1− η2)
.

(6)

To complete the description, we introduce now the Shockley–Read–Hall (SRH) model for carrier recombination
which allows us to get an explicit expression for the free carrier density of electrons and holes considering trap
recombination.



In,10 the authors demonstrate that the non-linear carrier dynamics can be well explained in the frame of the
rigorous SRH recombination theory.11 The findings could also justify why in previous works1–3 it was necessary
to assume an empirical carrier lifetime depending on circulating power to explain measured results.

In this work we couple the non-linear ring model with a rigours model of the SRH recombination where the
traps act as recombination/trapping center (trap-assisted recombination) upon the capture/trapping of a hole
and an electron.

2.1 Model of SRH carrier recombination

The simplest form of expressing free carrier recombination is through a a generic recombination term as N
τ , with

N the free carrier density, equal for both holes and electrons, and τ a lifetime for the recombination process. Such
formulation implies a constant carrier lifetime which is not true for the silicon waveguide case as experimental
measurement on Si straight waveguides10 showed that FC dynamics is dependent on the optical power in the
waveguide and thus the pump power. Following the general theory for SRH recombination,11 we indicate with
Nf the bulk trap density per unit of volume in the silicon waveguide; the latter is associated to surface traps

density Ns through the relation Nf = Ns · 2(W+h)
W ·h where we assume that surface defects are equally distributed

over all the contact surface between the silicon core and SiO2.
We consider donor type traps with non degenerate energy level Et,

10 which can assume any values between the
mid-gap to the bottom of the conduction band.

The free carrier generation rate per unit volume in the waveguide is G = αTPAPc

2ℏωinA
, while the rates of variation

of excess electron (ne) and hole (pe) densities generated by TPA are:11

∂ne
∂t

= G− 1

τn0

(
(n0 + n1 + ne)(ne − pe)

Nf
− nen1
ne + no

)
∂pe
∂t

= G− 1

τp0

(
(p0 + p1 + pe)(pe − ne)

Nf
− pep1
pe + po

)
.

(7)

At equilibrium, n0 and p0, are the electrons and holes concentration without considering traps; while the quantity
of electrons and hole related to the difference between the Fermi level of silicon and trap energy level are expressed
as n1 = n0e

(Et−ψf )/kbT and p1 = p0e
(ψf−Et)/kbT respectively.

τn0 = (Nfσnvn)
−1,τp0 = (Nfσpvp)

−1 represent the shortest capture time of carriers relative to trapping. σn,p
is the capture cross section, and vn,p the thermal velocity of electrons and holes equal to 2.3 · 107m/s and
1.65 · 107m/s.12

It is important to highlight the difference in capture cross section and thermal velocity of electrons and holes,
which cause the capture rate in the traps to unbalance electron and hole densities. As a result the simplifying
assumption that ne = pe = N fails, even when considering traps exactly at half the bandgap.
The electron capture cross section for donor type trap is a function of the energy of the traps (i.e., σn(Et)),
we extrapolate this function for energies above the mid-gap from measurements reported in.3 An important
quantity to be defined is γ = τn0/τp0, which is proportional to the ratio between the two capture cross sections.
As reported in the literature,3,10 it is not possible to measure both the electron and hole capture cross sections
when the trap energy level is far from the mid-gap; as a consequence, we suppose γ = 0.05 as calculated from
the ratio of measured cross-sections when Et is at mid-gap.3 Once a specific energy trap is chosen, the electron
capture cross section is uniquely determined through its energy relation, and the hole cross section by performing
σp = γ ·σn ·vn/vp. Lastly, we assume a non-zero residual doping of silicon equal to Na = 1015 cm−3 corresponding
to ψf ≈ 0.23 eV .

In steady state eq. (7), reduces to two polynomial equations with unknowns ne and pe. To ease the calculation,
the normalised excess electron and holes densities y = pe/p0, x = ne/p0

11 are introduced. In the case of holes,



the associated steady state equation is:

y3 + y2
{
(2 + b+ ab) +Neb/(1 + b)−Ge(1 + γ−1)

}
+ . . .

y {(1 + b)(1 + ab) +Neb/(1 + b)−Ge/γ(1 + b)(1 + a+ 2a/γ)−NeGe(1 + 2b)/γ(1 + b)} − . . .

−Ge
{
(1 + b)2(1 + a/γ)−Ne(Ge − γ)/γ2

}
= 0.

(8)

Where a = n1/p0, b = p1/p0, Ge = G τn0

p0
, Ne = Nf/p0 are all normalised parameters with respect to the hole

carrier density at equilibrium.
Eq. (8) can be solved analytically yielding:

yk =

{
2

√
−p
3
cos

[
1

3
arccos

(
3q

2p

√
−p
3

)
− 2πk/3

]
− by

3ay

}
p =

3aycy − b2y
3a2y

q =
2b3y − 9aybycy + 27a2y

27a3y
,

(9)

with k = 0, 1, 2. Among the three different solutions, k = 0 guarantees the condition 0 < (pk,e − nk,e)/Nf <
1,which represents the fraction of occupied traps, to be satisfied. As a result only this solution is physically
acceptable, for this reason the index k is omitted in the remaining discussion being always equal to zero. A
similar expression is obtained in the case of electron density.
For any generation rate Ge, we can write an effective electron and hole lifetime defined as:11

τn,p = x, y · τn0
Ge

. (10)

2.2 Steady state model of non-linear loss and self-heating

We are now able to calculate at steady state, thanks to eq. (8) and (??) the density of free carriers (electrons and
holes) generated for a fixed value of input bus power. The generation of such carriers due TPA causes non-linear
loss written as9 :

αTPA =
βTPA
Aeff

Pc, (11)

where βTPA = 0.8 cm/GW is the TPA absorption coefficient in C-band.1,8, 13,14 The effective area Aeff takes
into account the portion of area in which the mode interacts with the non linear medium and it is calculated
as::9

Aeff =
Z2
0

n2Si

∣∣∣∫ ∫Atot
ℜe
{
E(x, y)×H(x, y)

}
· ezdxdy

∣∣∣2∫ ∫
A
|E(x, y)|4dxdy

, (12)

where A is the silicon cross section area, Atot the total area of the simulation domain (including both Si and
SiO2 layers) where the electromagnetic field has been computed. Z0 = 377Ω is the free-space wave impedance.
The optical confinement factor (Γ) in the silicon cross section of the waveguide is:15,16

Γ =
nSicϵ0

∫ ∫
A
|E(x, y)|2dxdy∫ ∫

Atot
ℜe
{
E(x, y)×H(x, y)

}
· ezdxdy

, (13)

with ez the unit vector pointing in the propagation direction z, and nSi = 3.48 is the refractive index of Silicon.
The modal field distribution E(x, y) and H(x, y) in eq. (12) and (13) are obtained by optical simulation based
on the Field-Mode-Matching (FMM) method,17,18 and cross-checked with a Finite-Element-Method solver.



The modal losses due to free-carrier-absorption are expressed as a function of the excess electron and hole
densities obtained by the SRH recombination model, through the empirical expression:19

αFC = Γ
(
8.88 · 10−21n1.167e + 5.84 · 10−20p1.109e

)
. (14)

Free carriers contribute, together with self-heating, to change the effective refractive index as ∆neff =
∆neff,FCA +∆neff,T with:19

∆neff,FCA = −Γ(5.4 · 10−22n1.011e + 1.53 · 10−18p0.838e ), (15)

obtained experimentally. In both eq. (14) and (15), ne and pe are expressed in [cm−3].
For what regards the temperature effect on the refractive index, its derivation is similar to,1,5 where the variation
of temperature inside the ring resonator is computed as:

∆T = ZT · Pd, (16)

with ZT being the thermal impedance of the ring, and Pd the power dissipated by the ring. In order to be able
to explicitly write such power, we assume that all the optical power lost due to linear and non linear effects
is converted into heat,5 neglecting the irradiated field in the cladding. As a result, for energy balance, Pd is
computed as the difference between the input bus power and the power collected at drop and through ports:

Pd = (1− Tdrop − Tthr) · Pbus. (17)

Lastly the variation of refractive index due to heat generation is:

∆neff,T = Γ
dnSi
dT

∆T, (18)

with dnSi

dT = 1.86 · 10−4K−1 being the silicon thermo-optic coefficient.1

The expressions for the effective loss αeff and phase variation ∆θ are a function of Pbus and Pc; eq. (2) is a
complex non-linear equation with unknown Pc. The latter has been solved numerically for different fixed bus
power at any input wavelength λ, and the effective loss and transmission coefficient calculated consequently.
It is important to remind that, the non-linear equation expressed in eq. (2) can have up to three distinct possible
solutions,5 which arise when entering in the so called bi-stable regime. Experimentally the observable cases are
those related to a forward and reverse wavelength sweep. A forward sweep is based on increasing the injected
wavelength with respect to a previous stable state (i.e., wavelength sweep from blue to red), whereas the reverse
one by performing the opposite sweep (from red to blue).2,5, 9

In the present case we will always consider a forward wavelength sweep performed at different bus power when
comparing our model with measured transmission coefficients at steady state.

2.3 Time domain formulation

Non-linear effects are not only detrimental from the steady state point of view; it has been observed that, for
high power and pump wavelength close to the resonant frequency, the ring usually enters in an unstable regime
characterised by an oscillating output power.5,6 Such effect originates from the interplay of free carriers and
self-heating, which cause the refractive index to oscillate over time. Consequently, the resonant frequency of the
ring resonator shifts below and above its cold value periodically with a period of the order of µs.
The strength and period of these oscillations depend on the ring thermal properties (thermal capacitance Ci and
impedance Zi) and on the free carrier density.
We thus extend the previously introduced model to the temporal domain similarly to what done in.5,6 In
particular equations (11), (14),(15), and (18) still holds, however the circulating power Pc(t), ne(t), pe(t), and
the temperature variation ∆T (t) are now time dependent.
The differential equation of the circulating field Ec in the racetrack can be obtained through the inverse Fourier
transform of eq. (2) by performing the Taylor expansion of ej·θ around θ0; the reference pulsation ω0 corresponds
to the cold ring resonance such that ej·θ0 ≈ 1. Expressing the circulating field in the ring as Ering(t) =
Ec(t) · e(−j·ω0t), we get the equation of Ec:



∂Ec
∂t

= −

(
κ ·
√
1− η2

t2a
Ein + Ec(t)(

1

t2a
− 1) + j · L

c
∆ωr · Ec(t)

)
/τg, (19)

with Pin = |Ein|2,Pc = |Ec|2, ∆ωr = ω0 ·∆neff , and τg = L · ng/c.
In eq. (19), the round trip loss a and ∆ωr are time dependent when the ring is not stable, because the carrier
density in eq. (7) and temperature may oscillate with time.

The temperature dynamic is written as5,6

∂∆Ti(t)

∂t
= −∆Ti(t)

Zi · Ci
+
Pd(t)

Ci
. (20)

Which at steady state, ∂∆Ti(t)
∂t = 0, reduces to eq. (17). ∆Ti is the temperature variation at each node of the

equivalent electrical circuit called Foster model20 shown in Figure 2; the total temperature increase in the silicon
core is then ∆T (t) =

∑n
i ∆Ti(t).
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Figure 2: Temperature variation obtained from thermal transient simulation of the complete racetrack resonator,
note that in thermal simulation the dissipated power is set to 10mW , hence the thermal impedance is generally
calculated from the steady state temperature variation as as Z = ∆T/10mW .5 In the inset the schematic of the
equivalent circuit model is displayed with the values of the four thermal impedances and time constants used for
the fitting of the thermal transient.

In the Foster model, the total temperature variation in time in the device is expressed as:

∆T (t) =

n∑
i

∆Ti ·
(
1− e

t
ZT,iCi

)
, (21)



where ∆Ti is the temperature variation at each node i, which is related to the thermal impedance as Zi =
∆Ti/10mW . The equivalent circuit is composed of a series of n nodes attributed to the complex heat flow
between the stack of different Si and SiO2 layers in the device structure; each node is the result of the parallel
between Zi and Ci,

20 whose product represents the thermal time constant, i.e., τth,i = ZT,iCi.
2,5, 6 The values for

Zi and Ci can be calculated by fitting transient thermal simulation obtained by means of a commercial thermal
solver. We report in Figure 2 the temperature variation in the ring when at t = 0 we start to dissipate 10mW of
power in the silicon waveguide core. It is clear that 4 nodes provide already a good fitting; in addition the shortest
thermal relaxation lifetime is calculated to be as small as 14ns, which we assume to be related to the heat prop-
agation in the silicon core and often neglected in the literature,5 where instant heating propagation is considered.

The system of ordinary differential equations formed by eq. (7), (19), and (20), for i which goes from 1 to 4
represent the total 7 differential equations to be solved for any input power.
In the following sections, experimental and theoretical results addressing both the steady state and time domain
oscillations are presented .

3. RESULTS

To validate our model, in this section we analyse the transmission spectrum and oscillating characteristics of a
racetrack resonator. The ring details such as the waveguide cross section, length and coupling coefficients κ2 are
summarized in Table 1.

Parameter Racetrack resonator (λ0 = 1540.315nm) Unit Source

L 80 µm -
W 450 nm -
h 215 nm -
Γ 1 - Electromagnetic mode solver.

Aeff 0.075 µm2 eq. (12)
neff,0 2.33 - Electromagnetic mode solver
ng 4.26 - Electromagnetic mode solver
κ2 0.066 - Fitting of Tthr(λ) in linear regime
α0 1.995 dB/cm Fitting of Tthr(λ) in linear regime
η2 0.013 - Fitting of Tthr(λ) in linear regime
Q 8492 - Fitting of Tthr(λ) in linear regime
ZT 5044 K/W Thermal simulation

Table 1: Parameters used in the model retrieved from low power fitting, electromagnetic mode solver and thermal
simulation.

3.1 Steady state analysis

We measured the output power at the through port of the racetrack resonator by injecting light of an Agilent
81980A tunable laser amplified with an erbium doped fiber amplifier (EDFA). In this way powers we were able
to reach powers entering in the ring as high as 7dBm .
The transmission coefficient at the through port is then measured as the ratio between the measured output
power and the power in the bus. Such spectrum is obtained by a forward wavelength sweep around one selected
resonant wavelength of the ring λ0. The sweeping rate is 4pm/s.
Fig.3 (a) and 3 (b) show the shift of the resonant frequency, ∆λ = λres − λ0, and transmission coefficient at
resonance extracted from the measured transmission spectra reported in Fig. 3 (c), versus the input bus power
in mW . Here the red circles are associated to several measurements made on the ring in similar environmental
conditions.

We fitted the spectrum calculated at Pbus = 3dBm, shown in Figure 3 (c), in order to extract the coupling
parameters κ2, η2, α0 summarised in table 1 assuming the ring to be in linear regime. The value for linear losses
α0 has been varied between 1.6dB/cm and 2dB/cm which represent the typical range of linear losses provided
by the foundry for the fabrication.



0 1 2 3 4 5 6
P

bus
, mW

-0.1

0

0.1

0.2

0.3

0.4

0.5

, n
m

Measurement
Fitting

1540 1540.2 1540.4 1540.6 1540.8
Wavelength, nm

-15

-10

-5

0

T
ra

ns
m

is
si

on
, d

B

Q factor = 8492.2858
2 = 0.066804;

 eq = 1.995 dB/cm

res  = 1540.315 nm  
2=0.013

Measurement
Fitting

(a)

0 1 2 3 4 5 6
P

bus
, mW

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

T
th

r,
re

s

Measurement
Fitting

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
, nm

0

0.2

0.4

0.6

0.8

1

T
ra

sm
is

si
on

 c
oe

ff
ic

ie
nt

 (
T

th
r)

P
bus

=2.9dBm

P
bus

=4.1dBm

P
bus

=4.6dBm

P
bus

=5.3dBm

P
bus

=6dBm

P
bus

=6.5dBm

P
bus

=6.9dBm

(c)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
, nm

0

0.2

0.4

0.6

0.8

1

T
ra

sm
is

si
on

 c
oe

ff
ic

ie
nt

 (
T

th
r)

P
bus

=2.9dBm

P
bus

=4.1dBm

P
bus

=4.6dBm

P
bus

=5.3dBm

P
bus

=6dBm

P
bus

=6.5dBm

P
bus

=6.9dBm

(d)

Figure 3: Resonant wavelength shift ∆λ (a) and transmission coefficient variation at resonance (b) as a function
of the input bus power. In the inset, low power fitting of the experimental transmission coefficient. The red
circles represent values of different measurements in approximately the same coupling conditions. Example of
transmission coefficients at different input bus power measured (c) and simulated (d) by sweeping the input
wavelength from the blue to red side of the resonant wavelength.

We fit with the theoretical model reported in section 2.1 and 2.2 the measurements in Fig. 3 (a)-(b). The
fitting procedure is based on the search for the values of Nf and Et that minimize the relative error defined as
the difference between the measured and simulated variation of resonant wavelength and transmission coefficient.
The displayed simulation results in black line in Fig. 3 (a)-(b) were obtained with Nf = 4.56 · 1017 cm−3 and
energy gap around Et = 0.937 eV . The choice of these parameters is unique when fitting both the wavelength
and transmission shift, the electron capture cross section is therefore σn = 1.64 · 10−17cm2. The calculated
surface trap density is then Ns = 3.32 · 1012 cm−2, which is close to what is found typically in the literature in
the case of a straight waveguide with trap in the mid-gap, i.e. 1011 − 1012cm−2.10

With this set of parameters, the simulated transmission spectra is shown in Fig.3 (d) in comparison with a set
of measured spectra displayed in Fig. 3 (c) for different bus input powers. With increasing Pbus, the circulating
power cause higher propagation loss and variation of silicon refractive index within the silicon core. These first
result in a slight blue shift of the resonant wavelength, see Figure 3 (a), due to FCD being dominant over the
temperature rise effect on the refractive index; then a significant red shift caused by self-heating appears. Figures
3 (a), (b) and (d) show that the model can reproduce well the measured results at steady state thanks to the
SRH theory.

In figure 4 (a) we report the the effective lifetimes of carriers in the core of the ring; we observe that, as
consequence of the asymmetric capture cross sections an thermal velocities, the two lifetimes are different and



dependent on the circulating power. The trend of the computed non linear carrier lifetime at steady state is in
line with other studies1–3 where the carrier lifetime was assumed to be power dependent to explain experimental
findings.
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Figure 4: Electron and holes effective lifetime (a), temperature variation and total losses in the ring (b) as a
function of the circulating power. The dashed line in (b) indicates the level of linear loss. The black vertical line
represents the circulating power caluclated with Pbus = 3dBm.

The steady state carrier density is the balance between the increase of the TPA generation rate, which is
proportional to the increase of Pbus, and the capture rate in the traps. As a consequence, the carrier density
does not follow the generation rate, as the rate for a trap to recombine a captured electron / hole pair increases
due to the greater number of carriers available. The overall result will be a decreasing carrier lifetime, which is
what is seen in the case of the hole carrier density in Fig. 4 (a). In particular, the energy level of the trap, the
capture cross section, the doping and the temperature determine how these effective lifetimes depend on Pc. It
is interesting to note that the trap energy gap closer to the CB than the VB is the origin for the much faster
capture of electrons with respect to holes.
As a result, the created electrons are more easily trapped than holes, in the case of low power they recombine
very slowly due to the small availability of holes capable of reaching the trap state, thus they may return to the
conduction band leaving the traps behind empty again.21 This process, further enhanced by having a n-type
trap in a p-type silicon waveguide, causes a reduction of the carrier recombination rate, which translates in a
higher lifetime for both holes and electrons. For very large power, both τn,p, eq. (10), will tend to a constant
value defined as τ∞ = τn0(1 + γ−1) which is equal for both electrons and holes. In this limit the generation is
so high that the number of generated free-carriers exceeds the total quantity of traps which become all filled
(saturated traps); in our case τp,e,∞ = 121ns.
Lastly, Figure 4 (b) reports the calculated temperature increase and effective losses(see eq. (4)) at resonance
versus the circulating power in the silicon core. Here the dashed red line represents the linear losses in the ring.

3.2 Dynamic response

Figure 5 (a) shows the normalised electrical signal recorded at optical receiver (with 1.1 GHz bandwidth) collect-
ing the output power at the thorough port of the ring. The bus input power is calculated to be around 11dBm
with λin ≈ λ0. To get such an high value of bus power, another EDFA, with higher amplification, has been
utilised.

As it is possible to see, the recorded signal is not constant when we inject CW input power. Because the
input power is high enough and the pump wavelength rather close to the cold resonance frequency, we measure
stable oscillations. The measured trace in Fig. 5 (a) in line with experimental results from other studies.5,6

Figure 5 (b) reports the results obtained by applying the model of section 2.3 and assuming for the ring the
parameters calculated from the fitting of the steady state measurements. In both figures the transmissions have
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Figure 5: (a) Normalised measured output signal versus time by the optical receiver at the through port for an
input bus power equal to approximately 11dBm. (b) Normalised model response at the through port injecting
the same bus power of 11dBm.

been normalised as done in [6]. The comparison of Figs. 5 (a) and (b) shows that the model can reproduce quite
well the periodic oscillations of the output power with a measured period of 1.1µs in the experiment and 1.4µs
in simulations.

Some discrepancy is observed in the temporal region highlighted by the red circle in the simulated time traces.
This mismatch can be attributed to a possible experimental misalignment of the pump wavelength with the cold
resonant frequency. In addition the thermal time constant indicates the speed at which free carriers cause the
build up of the self-heating inside the ring: a smaller τth,i would produce a faster thermal dissipation affecting
the overall signal period and relative position of the different peaks.
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Figure 6: (a)Temperature variation of the four nodes that form the equivalent thermal circuit. (b) FCA and
temperature contributions to the effective refractive index in the silicon core (left), on the right the variation
of the resonant wavelength ∆λ within the racetrack resonator over time is shown. The red dashed line in (b)
denotes the case when the resonance of the ring is equal to its cold value, i.e., λres = λ0.

To explain the measured trace in Fig. 5 we compare in Fig.6 (a) the temperature contributions of the four
thermal nodes being part of the equivalent circuit illustrated in Fig. 2. The nodes that exhibit longer thermal



time constants, i.e., ∆T2 and ∆T3, need a longer amount of time with respect to the other two to dissipate the
heat caused by self-heating. The overall effect of these 4 temperatures on the refractive index, ∆neff,T , is shown
in Fig. 6 (b) along with the contribution of free-carriers to the effective refractive index change. To compare the
strength of these two effects, ∆neff,FCA is reported with reversed sign.
Analyzing the total variation of the resonance wavelength we identify four regions marked with numbers (1 to
4) in Fig. 6 (b). In the time range marked with (1) the pump wavelength and cold resonant frequency are
almost aligned causing a large increase in circulating power, this leads to FC generation responsible for a blue
shift of the resonant frequency (FCD) which cause the pump and cold frequency to misalign resulting in a rapid
decrease of circulating power. In the meantime, the self-heating, originated by FC absorption, starts red shifting
the resonance to its cold value (2). During this process, both FCD and self-heating increase in strength due to
carriers generated by the rise in circulating power as the ring resonance is approaching again the cold resonance.
However, once the ring resonance is again at the cold resonance (3), the maximum achievable circulating power is
lower than in the initial case (1), because the Q factor is greatly degraded by the presence of many free carriers.
The absorbed carriers translate into further heat dissipation making the resonance keep on shifting towards the
red. Thus Pc decreases and therefore also the carriers generated. In time interval (4) the ring slowly cools down
to the initial state once the slowest thermal dissipation process concludes; here Pc increases again and the whole
process restarts.
The complete behaviour of ne, pe, Pc and thermal dissipation explained above are all in agreement with the
literature,5,6 indicating that the model can be used to explain the experimental results even in time domain.

4. CONCLUSION

We have presented a new approach for the description of TPA, FCA and self-heating in silicon ring resonator
by including the Shockley–Read–Hall theory. In addition, we have demonstrated that free carrier lifetime is
dependent on the power circulating in the ring through trap-assisted recombination. Thanks to this assumption,
we were able to fit the distortion of the ring transmission spectra with increasing input power at steady state and
also reproduce periodic oscillation in the ring resonator transmission at the through port with CW input power.
For power in the bus waveguide in the range 2 − 6dBm, the hole lifetime turned out to be approximately one
order of magnitude larger than electron lifetimes. Thereby, the hole density is significantly higher than the elec-
tron density, suggesting that holes are the main source of free-carrier absorption and dispersion in the analysed
racetrack resonator. In summary, our results proved to be in accord with previously published papers, but in
this work they have been obtained without any empirical expressions for the carrier lifetime. From this analysis
we deduce that surface trap densities around 1012cm−2 play a remarkable role in defining the trap-recombination
process of holes and electrons in sub-micron waveguides. We therefore believe that this model may provide new
insight into the development of a tool for the design of narrow band silicon photonic mirrors for hybrid III-V
high power tunable lasers.
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