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Closed-Loop Dynamic Control of a Soft Manipulator
Using Deep Reinforcement Learning

Andrea Centurelli, Luca Arleo , Alessandro Rizzo , Senior Member, IEEE, Silvia Tolu , Member, IEEE,
Cecilia Laschi , Senior Member, IEEE, and Egidio Falotico , Member, IEEE

Abstract—The focus of the research community in the soft
robotic field has been on developing innovative materials, but the
design of control strategies applicable to these robotic platforms is
still an open challenge. This is due to their highly nonlinear dynam-
ics which is difficult to model and the degree of stochasticity they of-
ten incorporate. Data-driven controllers based on neural networks
have recently been explored as a viable solution to be employed for
these manipulators. This letter presents a neural network-based
closed-loop controller, trained by a deep reinforcement learning
algorithm called Trust Region Policy Optimization (TRPO). The
training takes place in simulation, using an approximation of the
robot forward dynamic model obtained with a Long-short Term
Memory (LSTM) network. The trained controller allows following
different paths executed with different velocities in the workspace
of the robot. The results demonstrate that the controller is effective
in normal working conditions and with a payload attached to the
end-effector of the manipulator.

Index Terms—Manipulator dynamics, robot control, robot
learning, soft robotics.

I. INTRODUCTION

THE development of control strategies for soft manipulators
is still an open challenge since these platforms exhibit

infinite degree-of-freedom and highly non-linear dynamics. [1].
The most commonly used strategy to obtain a model for

these robots has been a constant curvature approach based on
Bernoulli-Euler mechanics alongside an improvement of it that
leverages the assumption of a piecewise constant-curvature [2].
These models have been used for the development of con-
trollers [3], [4], [5] that started to explore the possibility to make
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soft manipulators interact with the environment. Effective appli-
cation in real-world scenarios are limited for soft manipulators
also because of deflection they exhibit under loading conditions
as in the case of a payload attached to the manipulator.

Recently, as an alternative approach, data-driven techniques
have been applied to address the challenge of modeling soft
continuum manipulators. An early example of neural network-
based control is shown in [6], where a continuous nonlinear
feedback is coupled with a neural network-based feedforward
to for the dynamic uncertainties of the robot. This approach
is an application of the methodology described in [7], where
the variables to be controlled belong to the configuration space
of the manipulator. Only a few years later, a model-free static
controller was developed in [8] using a feed-forward neural
network to learn the inverse kinematics of a non-redundant
manipulator. This approach was later improved and expanded
in [9] and [10] to account for redundancies. Another notable
example is presented in [11], which focuses on a linear model
predictive control (MPC) for a continuum robot using a system
identification based on the Koopman operator to derive the
model of the robot. The same authors later improved their work
in [11] by switching to a nonlinear model predictive control
(NMPC) with and without linearized feedback. Another hybrid
modeling approach, combining machine learning methods with
an existing first-principles model, is presented in [12] to improve
overall performance for a sampling-based non-linear model pre-
dictive controller. An extensive survey on the control strategies
for soft manipulators is presented in [13].

Concerning reinforcement learning (RL) applications to soft
robots, there are still only a few examples to cite, among
which [14] where the authors developed a positional open-
loop control of a pneumatically actuated continuum robot us-
ing Deep-Q-Network (DQN), achieving accurate point-to-point
positioning in quasi-static conditions. The same authors later
improved their work in [15] by using the same methodology to
provide feedback, producing a closed-loop controller that relies
on a parametric model based on Cosserat rod theory that is, once
again, developed for quasi-static conditions. The preliminary
work in [16] based on RL was then extended in [17] where
a multi-objective optimization is applied on a soft robot with
the same design principles as the ones used in this letter to
achieve both position and stiffness control of the manipulator.
Recently, in [18] different RL algorithms were used for the
control of a simulated rod-based soft robot. This work presented
a comparison of control performances for these algorithms, but
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the proposed approach is not applicable to a real robot due to
the huge number of trials needed for the learning.

A complete overview of machine learning methods for soft
robots is provided in [19]. Although the aforementioned are
brilliantly thought implementations, they lack the capability to
function outside the quasi-static working conditions or do not
consider payloads attached to the manipulator. With respect to
controllers dealing with a payload attached to the manipulator,
in [20] a partially supervised methodology was implemented on
a pneumatically actuated soft robot: a neural network is trained
on data gathered through offline trajectory optimization. This
dynamic controller is used only for point-reaching tasks. Recent
approaches present also controllers for soft manipulators under
variable loading conditions [21], [22], but they rely on a static
model of the robot or can track low dynamics trajectories. In
this work, we present, for the first time, a closed-loop dynamic
controller based on RL for tracking tasks that can deal with
different payloads attached to the end effector of the manip-
ulator. The training takes place in simulation, relying on an
approximation of the robot forward dynamic model obtained
with a Long-short Term Memory (LSTM) network. The letter
is organized as follows: in Section II we present the soft arm
used in this work and the experimental setup; in Section III we
present the neural network used for the approximation of the
forward dynamic model; in Section IV we present the controller
based on the Trust Region Policy Optimization algorithm; in
Section V we show the results in tracking tasks with and without
payload attached to the soft robot; we conclude in Section VI by
discussing the results and presenting future research directions.

II. EXPERIMENTAL SETUP

The methodology developed was tested on a pneumati-
cally actuated soft continuum robot. The positional coordinates
needed to train the networks are taken using a VICON motion
capture system with 8 infrared cameras; the position of a point
is the centroid of the triangle defined by 3 markers attached to
the cylindrical body of the robot. The inputs to the manipulator
are given through MATLAB, which interfaces with an Arduino
Due. The latter sends a digital signal that, after being converted to
analog with a simple DAC, controls as many electronic pressure
regulators as the robot actuators.

A. Am-I-Support

The validation platform named AM-I-Support [23], shown
in Fig. 1, is given by the evolution of the previously devel-
oped I-Support [24], [25]. This manipulator is composed of
two identical modules, called proximal and distal, connected to
each other through nuts and bolts to allow complex movements
and span a larger task space. Like in its previous version,
each AM-I-Support module is actuated only through its three
pneumatic chambers, even if its design allows more degrees
of actuation through cables pulled by three DC motors. This
robot is fabricated following a Design for Additive Manufac-
turing (DfAM) approach, with the material used to 3D-print it
being:

Fig. 1. AM-I-Support robot. Refer to [23] for further details.

Fig. 2. AM-I-Support’s task space.

� a thermoplastic polyurethane with Shore A hardness equal
to 80 (TPU 80 A LF), for the pneumatic actuator chambers
and the rings placed along the chambers,

� polylactic acid for the terminals.
This choice of materials allows large elongations and de-

formations thanks to its tensile module of 20–25 MPa, which
ensures a maximum actuation pressure of 400KPa. Actuating
all the three chambers of a module at once with said maxi-
mum pressure, the maximum elongation ΔLmax ≈ 47%L0 is
achieved, with L0 ≈ 220mm being the resting length of both
modules. On the other hand, actuating only one chamber to its
limit leaving the other two idle results in the module maximum
bending angle of θmax ≈ 137◦ (w.r.t. the axis orthogonal to the
base). These two extremes in the robot performance are only
achievable while assuring the steady-state hypothesis, whereas
in a dynamic task they are hardly reachable because of the delay
generated by the intrinsic material properties of the manipulator
and by the response of the low-level control of the pressure
valves.

The task space of this manipulator (Fig. 2) is included in a
cube of size 50× 50× 17 cm. In the figure both the end-effector
and mid-section task spaces are shown, respectively in orange
and blue; as it is to be expected, the movements of the proximal
module (at the top) are reduced due to the weights of the distal
one (at the bottom), but they nevertheless contribute to the robot
dexterity and its capability to achieve complex configurations.



Lastly, the manipulator has a terminal on its tip that allows it to
be interfaced with a gripper. For the experiments, the terminal
was instead directly interfaced with the weights for the sake of
the implementation simplicity.

III. FORWARD DYNAMIC MODEL APPROXIMATION

A. Preliminaries

This work relies on an abstraction of the controller training
from any physical parametrization of the forward model of the
manipulator to be controlled. This feature allows the methodol-
ogy to be applied to any soft robot, whereas almost any type of
approximated physical model would make it applicable only to
specific manipulators. A possible solution for the achievement
of this important property can be found in Recurrent Neural
Networks (RNN), such as LSTM networks [26]. LSTM net-
works have been proven to fare better than simpler feedforward
networks in the prediction of data belonging to time series.

Considering that by virtue of the theory of manipulators
dynamics the control inputs are functions of the manipulator’s
task space variables of their derivative:

τ = f (x, ẋ, ẍ)

Where τ is the actuation vector, the robot inputs, and x is
the three-dimensional position vector. Discretizing acceleration
and velocity with a time-step δt leads the control inputs to be
functions of the present and past task space variables as follows:

τ t = f (xt−2,xt−1,xt, δt) (1)

Considering that the δt can be taken as constant in case a fixed
control frequency is chosen, the only dependence is on the
current task space variable and the ones belonging to the previous
2 timesteps.

The sampling of the dataset to train the network is done by
pseudo-random motor babbling at the frequency of 10Hz, where
the next set of actuations is obtained by adding a randomly
sampled Δτ that spaces between ±20% of the total actuation
range. The maximum and minimum values of Δτ have to be
chosen rather carefully: variations in actuation that are too high
would saturate either the physical capabilities of the robot or
the response of the electro-valves, further enhancing the non-
linearity of the system; moreover, extreme transitions such as
|Δτ | > 15% are seldom or never used in real applications. On
the other hand, a network trained on deltas that are too close
to 0 would make the outcome of the erratic action choices of
the reinforcement learning agent impossible to predict, hence
adding a degree of stochasticity to the environment that could
prevent the convergence of the training. The positional coordi-
nates sampled through a VICON tracking system are relative to
both end-effector and mid-section. A total of 10 000 samples,
which can be seen scattered throughout the task space in Fig. 2,
are gathered in less than 16 minutes. To ensure the proper
functioning also in the situation in which the manipulator is
moving weights, a total of three of the aforementioned datasets
are taken: one without weight, one carrying a weight of 115 g,
and the last one carrying 165 g.

TABLE I
PREDICTION ERRORS OF THE FORWARD MODEL

B. Forward Dynamic Model

Starting from the aforementioned hypotheses, a model selec-
tion is carried out based on the horizon length T that defines how
many past positional coordinates the input should encompass.
The mapping that represents the forward dynamic model is hence
given by:

(w, τ t,xt, . . .,xt−T ) → xt+1 (2)

where w is the weight with which the dataset was taken. Both
the task spaces and actuation spaces of the robot are initially
normalized in the range [−1,+1]. The weight input is instead
normalized between 0 and 1, with 1 coinciding with the maxi-
mum weight of 165 g. These inputs and outputs are used to train
a simple feedforward neural network whose hyperparameters
were optimized by verifying the performance with different
neuron numbers (32, 64, 128, or 256), number of layers (1 or
2), and activation functions (ReLu, tanh, or sigmoid). Then,
another model selection on the horizon length is carried out
using the fixed hyperparameters found with the aforementioned
optimization: the network has two layers of 64 neurons, with
layers activations being sigmoid and the output activation being
linear. To prevent overfitting, the dataset is first split between
training set (75%), validation set (10%), and test set (15%).
Then, during training an early stop strategy with patience of 100
steps is employed alongside a learning rate (LR) step decay of
70% and patience of 50 steps to ensure the validation loss is non-
increasing. The results shown in Table I justify the assumption
made earlier in (1): an horizon length of T = 1 is not sufficient
to approximate the dynamics of the system, whereas increasing
it to T = 2 gives a much better prediction performance which
is further improved with a horizon of T = 3, and plateaued for
longer sequences.

A subsequent and wider model selection was carried out by
adding to the inputs in (2) the actuation values for the past T
timesteps, resulting in:

(w, τ t, . . ., τ t−T ,xt, . . .,xt−T ) → xt+1 (3)

These inputs lend themselves to be used for the training of an
LSTM network as the information belonging to each timestep
(including the weight) can be used as input to an LSTM cell.
A heuristic hyperparameter optimization is carried out for this
type of network too, this time to find the most suitable num-
ber of neurons (in a range between 32 and 256), activation,
and recurrent activation functions (ReLu, sigmoid, and tanh).
The performance increase is significant, as can be seen from



Fig. 3. Training results without early stop. In the legend T indicates the horizon length for the position and actuation inputs. Early stop and learning rate decay
prevent the training loss to further decrease while the validation loss plateaus.

the interquartile ranges (IQR) of the errors in Table I (the
two numbers represent the 25th and the 75th percentiles of the
error). The optimal horizon length is once again T = 3. For this
model, adding further past information improves the prediction
power of a minuscule amount. Only the errors relative to the
end-effector prediction are shown, although the LSTM network
also predicts the mid-section positions, with errors having a 99%
confidence interval of 0.79; 0.84 mm in the best configuration.
Fig. 3 shows the MSE loss (3 a) and MSE validation loss
(3 b) without the aforementioned precautionary measures. The
application of early stop and LR decay prevents this, hence
guaranteeing uniform prediction errors through the task spaces
of the manipulators.

To ensure that a recurrent neural network really provides an
advantage with respect to its feedforward counterpart, the results
of the best performing LSTM are compared to the ones given
by the best performing feedforward neural network, which is
obtained with a further hyperparameter search carried out in the
same fashion described earlier in this chapter. The comparison
shows that the LSTM produces estimates with errors that are
20% lower than the ones of the feedforward neural network
trained with the same dataset.

IV. LEARNING ENVIRONMENT

Once the approximated dynamics of the manipulator are
achieved, it is used as an environment for the training of the
control policy.

A. Elements of Reinforcement Learning

The application of reinforcement learning is built upon a
mathematical framework to describe the interaction between an
agent and an environment; this framework is known as Markov
Decision Process (MDP) and it consists of the 5-tuple

(S,A, Pa, Ra, γ)

which for the problem at hand is defined as follows:
� S is the state space, where each state s is given by

a vector containing the weight w being carried, the
next target position xtar

t+1 ∈ R3, the current tracking error
et = xtar

t − xee
t ∈ R3 (where the superscript ee stands for

end-effector), and the current positional coordinates of the

manipulator’s points captured by the VICON system: both
end-effector and mid-section positions xee,mid

t ∈ R6. The
state is hence defined as:

st =
[
w,xtar

t+1, et,x
ee,mid
t

]
∈ R13.

� A is the action space; the actions a produced by the agent
coincide with the six actuations given to the pneumatic
chambers of the manipulator to be controlled.

at = τ t ∈ R6 0 ≤ at ≤ 350 kPa

� Pa(s, s
′) is the probability that action a takes the agent

from state s to state s′.
� Ra(s, s

′) is the reward function that maps the transition
from a state s to a successive state s′ to the immediate ex-
pected reward r, a scalar value that quantifies how well the
agent is performing the objective task. The reward function
for the tracking task is simply given by the opposite of the
cartesian tracking error in the 3D space:

rt = −‖xtar
t − xee

t ‖2
More elaborate reward functions could be engineered to re-
duce the training time. The application of simple variations,
such as giving additional rewards in case the end-effector
stays within a radius of 10 mm and 5 mm from the target, or
punishments whenever the current error becomes greater
than the previous one, were tried only to verify slight to
no improvements. For this reason, the simplest reward
possible has been kept as the standard.

� γ is the discount factor that is responsible for how much
weight is given to distant future rewards.

B. Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) [27] is one of
the best performing on-policy algorithms in the field of Deep
Reinforcement Learning. As the name suggests, the focal point
of the algorithm is the presence of a trust region that prevents
excessively aggressive updates of the policy network parameters
which, if accepted carelessly, could lead to a drop in the gradient
ascent that would nullify the training progress done until the
misstep. The objective function to be maximized is relative to



Fig. 4. Training Overview. The approximated forward model acting as an environment receives as inputs the current and past positions and actuations and predicts
the next position. The controller acts as the RL agent, receiving the randomly generated target position, the weight carried, the current error, and the current position,
and predicting the next optimal actuation to maximize the reward. z−1 represents a time delay operator.

the so-called relative policy performance identity:

maximize
π′

η (π′)− η(π) (4)

where π is the current policy, π′ is the new policy, and the
operator η(·) is the expected sum of discounted rewards when
the action, and hence the agent’s trajectory τ , is sampled from
the argument policy:

η (π) = E
τ∼π

[
T∑

t=0

γtrt

]

with γ being the discount factor. The constraint applied to the
maximization in (4) is where the trust region concept comes to
light:

s.t. E
s∼dπ

[DKL (π′‖π) [s]] ≤ δ

where DKL(·‖·) is the Kullback-Leibler (KL) divergence be-
tween two policies, given the state s sampled from dπ , the
discounted future state distribution.

C. Training Overview

An intuitive overview of the training process is shown in
Fig. 4. As it can be seen, the environment is given by the
approximated direct dynamic model of the manipulator previ-
ously obtained with the LSTM network; this predicts the next
end-effector and mid-section position, given as input the weight
applied to the end-effector, current action at ≡ τ t coming from
the agent, alongside the previous actuations and positional co-
ordinates shown in (3). The agent on the other hand receives
the LSTM predictions as observations, as well as the tracking
error, the next target position and, once again, the weight the
manipulator is carrying. This next target position is taken from a
randomly generated path obtained through a simple interpolation
of a set of 5 randomly sampled points of the task space and
the end-effector resting position. This secures that every subset
of the task space is explored thoroughly; to ensure that the
interpolation produces a path whose every point belongs to
the task space, trajectories that have points outside of it are
discarded.

TABLE II
TRPO HYPERPARAMETERS

TABLE III
CONTROLLER NETWORK HYPERPARAMETERS

Furthermore, a random normalized weight sampled uniformly
in [0,1] with a resolution of 0.1 (equivalent to a weight of≈ 17 g)
is applied at every episode. The agent policy network, whose
hyperparameters are reported in Table III, is thus trained to
become the closed-loop controller to be applied to the manipu-
lator. The controller, although receiving only positional data, is
trained while performing trajectories at various velocities that
are randomized by the interpolation process, in an environment
that contains the dynamics of the system.

The training was carried out on a GPU (an NVIDIA GeForce
GTX 1050 Ti) with the parameters shown in Table II for the
gradient descents of the policy and the state-value function
networks, while 8 CPUs (Intel(R) Core(TM) i7-8750H CPU @
2.20 GHz and 16 GB of RAM) were used to parallelize as many
agents on each of them. The communication overhead between
the various agents and the GPU, and the inefficiency of running
a recurrent neural network on a CPU are overshadowed by the
advantages of parallelization. The optimized training procedure
takes about 40 minutes to complete.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on March 08,2022 at 16:39:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Tracking error during the training.

Fig. 6. Overview of the controlled system. z−1 represents a time delay
operator.

The rolling average of the tracking error seen in example Fig. 5
plateaus at around 8.5mm for the AM-I-Support robot; further
training does not contribute substantially to the performance.

V. RESULTS

The tests made can be divided into two couples: firstly we
tested the generalization of the controller without weight on
three benchmark trajectories; secondly, the controller was im-
plemented on the same trajectory with different weights. Both
test methodologies were first carried out in-silico, and then on
the real manipulator (whose controller is shown in Fig. 6). The
actuation frequency, and hence also the sampling frequency of
the VICON system, is the same (10Hz) as the one used to collect
the datasets on which the forward model was trained.

A. Dynamic Tracking Without Weight Disturbances

Three benchmark trajectories were selected for this test sec-
tion: a circumference of radius 150mm, a lemniscate of width
300mm, and a wavy circumference of radius 150mm, all per-
formed twice. The choice of these three specific shapes is purely
demonstrative: the test in-silico is carried out to prove that the
controller is able to generalize on trajectory shapes that it did not
explore during training. Importantly, the points of the circle are
equidistant from each other, whereas the points of the other two
benchmarks accumulate around the bends of the shapes. This
provides good examples of both constant and variable velocity
trajectories.

1) Test In-Silico: The training proved to generalize well both
at constant and at variable velocity, with results coherent with
the rewards of the training final episodes (as shown in Table IV).

TABLE IV
ERRORS [MM] IN SIMULATION

TABLE V
ERRORS [MM] ON THE ROBOT

The time to complete the circumferences on the AM-I-
Support is of 17 seconds whereas it takes 12 and 20 seconds
to make the lemniscate and the wavy circumference, respec-
tively. The velocities that the end-effector achieves are between
85 mm/s and 170 mm/s.

2) Test on the Manipulator: The second set of tests, the
most significant ones, is carried out on the real manipulators.
The trials are performed by first transferring the trained neural
network from TensorFlow to MATLAB, which can easily inter-
face with both the Arduino Due and the VICON cameras. The
performance of the controller (shown in Table V and in Fig. 7)
decreases only slightly when it is placed in the real environment,
proving that the approximation provided by the LSTM network
is precise enough to guarantee a valid environment substitute to
the manipulators. The plot shows the cartesian errors during the
three tests, whose averages were 12.4mm for the lemniscate,
15.5mm for the wavy circumference, and 11.8mm for the
circumference

B. Dynamic Tracking With Weight Disturbances

To test the tracking under the disturbance of weights attached
from the end-effector it was necessary to choose a benchmark
trajectory that fits in the reduced task space that the manipulator
end-effector covers when carrying an object; in fact, when the
maximum weight of 165 g is applied, the task space ranges
for the x and y coordinate shrink of approximately 25% of
the no-load scenario, whereas the range for z reduces of 50%.
For this reason, the benchmark trajectory is a circumference
with a radius of 10 cm. The tests are once again run first on
the approximated environment and then on the manipulator, in
the no-load condition, with the two weights that the forward
model is trained on (115 g and 165 g), and on two extra sets of
different weights (50 g and 130 g) for validation purposes. The
weights during both the trials, in-silico and on the manipulator,
are known a priori by the controller. It was not in the scope
of this letter to estimate the carried weight online, although
future developments will include it. Having an online, reliable
estimation of the weight will be fundamental for the controller to



Fig. 7. Closed-loop trajectories and cartesian error on the AM-I-Support, without weights. The scattered green points indicate the target positions. The trajectory
starts in the robot’s resting position (z ≈−420mm), and then move to a plane with z =−440mm. During training, no planar trajectory was given as input, further
proving the controller generalization capability.

TABLE VI
ERRORS [MM] IN SIMULATION (WITH WEIGHTS)

0(�) weight not seen during training

TABLE VII
ERRORS [MM] ON THE ROBOT (WITH WEIGHTS)

0(�) weight not seen during training

avoid a drop in performance. This could be either treated from the
software point of view via the implementation of online system
identification techniques (possibly neural network-based), or
from the hardware point of view by equipping the base of the
manipulator with a scale that recognizes the extra weight added.

1) Test In-Silico: As said when explaining the training struc-
ture, the controller during training sees weights going from 0 g
to 165 g with a resolution of 16.5 g. The results in Table VI show
tracking errors that are comparable with the ones obtained with-
out weight in the previous section. The performance decreases

Fig. 8. Closed-loop trajectories on the AM-I-Support, with weights. The green
target trajectory has an initial height that varies with the weight, and a final height
of z =−460mm.

slightly when increasing the weight but is still satisfactory.The
fact that the errors for the weights unseen during the forward
model training are in line with the others is a first proof that
LSTM (i.e. the environment) generalizes well over different
disturbances.

2) Test on the Manipulator: The results for the tracking on
the manipulator with the weights are shown in Table VII and
in Fig. 8. The average cartesian errors for the trial with 115 g
and 50 g are respectively 15.2mm and 15.8mm. Although the
errors are slightly larger than for the undisturbed scenario, the
controller still proves to be working well. It should be noticed
that for the disturbed scenario there is a significant difference
in terms of accuracy between the first and the second execution
of the trial due likely to the impact of the payload on the initial
movement of the robot.



VI. CONCLUSION

In this letter, we presented a learning-based closed-loop con-
trol strategy employable on any continuum and/or soft robot for
dynamic tracking tasks. The two steps to achieve this entail two
branches of artificial intelligence: firstly, supervised learning
on recurrent neural networks is used to provide a simulated
manipulator without the need for any parametric knowledge
of its dynamics, and secondly, reinforcement learning that is
based on this approximation is successfully implemented to
create the control scheme. By relying on the learning of the
forward dynamic model we demonstrate that it is possible to
apply deep RL algorithms for the dynamic control of real soft
manipulators. Furthermore, the proposed method is particularly
well suited for manipulators that are either low-budget or whose
assembly generates inherent variability of their physical prop-
erties. The results showed that the tracking accuracies with and
without a payload are comparable, proving that the disturbance
is successfully learned by the controller. It should be considered
that, as mentioned, the workspace of the manipulator when an
object is attached is lower. Our dynamic controller extends the
capability of the one presented in [16] where only the proximal
module of the robot was controlled (keeping the distal one
passive). Moreover, considering other recent approaches that
deal with payload attached to the soft manipulator and rely on a
static model of the manipulator [22] or can track low dynamics
trajectories [21], our controller guarantees faster and smoother
tracking movements, keeping a comparable level of accuracy.
Further development of this control scheme would go in the
direction of continual learning, for example by advancing the
training of the controller network directly on the robot. Moreover
it would be advantageous to introduce an online estimation of
the weight attached to the robot, as discussed earlier.
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