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A B S T R A C T   

The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task, which often in-
volves conflicting goals to be faced. In this work, levelized cost of energy (LCOE) and CO2 emissions have been 
addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) 
algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater 
awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations 
of the following components were investigated: photovoltaic panels, wind turbines, batteries, hydrogen and 
diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy 
into hydrogen, a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity 
during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load per-
formance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty 
were also considered for a more accurate techno-economic assessment. The proposed methodology was applied 
to the Froan islands (Norway), which were chosen as a reference case study since they are well representative of 
many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed 
that energy storage devices are key components to reduce the dependency on fossil fuels. In particular, the 
hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in 
the cost of energy. Hydrogen, in fact, allows the battery and RES technologies not to be oversized, thanks to its 
cost-effective long-term storage capability. Concerning the extreme case with no diesel, the cheapest configu-
ration, which includes both batteries and hydrogen, has an LCOE of 0.41 €/kWh. This value is around 35% lower 
than the LCOE of a system with only batteries as energy storage.   

1. Introduction 

Off-grid electrification in remote areas by means of renewable-based 
energy systems is needed to achieve main sustainable energy goals [1]. 
The rapid decline in technology costs is making renewable energy so-
lutions a cost-competitive choice to extend electricity access in many 
unelectrified areas [2]. There is great potential to hybridize or even 
replace off-grid diesel-based systems with renewable energy generators 
[3]. Relying on local renewable energy sources (RESs) can represent an 
eco-friendly and cost-effective solution to release the off-grid commu-
nity from the dependence on fossil fuels or to avoid unreliable and 
excessively expensive grid connections [4]. However, because of the 
fluctuating behavior of variable RESs (such as solar and wind), electrical 
energy storage (EES) systems should be considered to achieve high RES 
penetration levels [5,6]. Batteries are generally the first choice as 

storage medium due to their high performance, flexibility and declining 
costs [7]. Hydrogen-based storage solutions can also become necessary 
to depend entirely on non-dispatchable RESs, thanks to their long-term 
storage capability [8,9]. 

Concerning off-grid areas, relying only on diesel generators can 
result in a high cost of energy [4,10]. Diesel-based power production is 
often not affordable because of the high operating costs due to 
geographical remoteness (with related transport issues) and highly 
fluctuating fuel prices [11,12]. On the other hand, energy systems that 
are based only on local RESs can also incur high costs due to the system 
oversizing, which is necessary to provide a reliable power supply service 
over the entire year [10,13]. The hybridization of the energy system can 
be an effective solution to reduce the levelized cost of energy (LCOE). 
Malheiro et al. [10] reported that the use of diesel generators (DGs) 
allowed the battery not to be oversized. In fact, the authors observed 
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that, without a diesel back-up system, the battery capacity became 
around three times higher than that required in the configuration with 
both batteries and DGs, with consequent significant increase in the LCOE 
value. Similar considerations were reported by Odou et al. [13], who 
investigated the techno-economic feasibility of hybrid renewable energy 
systems (HRESs) for sustainable rural electrification. They observed that 
the photovoltaics-diesel-battery configuration was the most 
cost-effective choice: batteries were in fact necessary to decrease the DG 
operational costs because of the reduced fuel consumption; at the same 
time, diesel genset allowed the battery capacity to be reduced by around 
70% compared to the case with no diesel. Cai et al. [11] also showed that 
a system based on PV, batteries and diesel generators was cheaper than a 
system with only DGs. This is because the exploitation of solar energy 
reduced the consumption of the diesel fuel, which accounted for a 
considerable share of the LCOE. The inclusion of hydrogen in off-grid 
HRESs was also reported to be beneficial in decreasing the LCOE [14]. 
Dawood et al. [15] investigated different HRESs for remote communities 
and showed that a hybrid storage solution with both batteries and 
hydrogen was the most cost-effective option. Hydrogen, in fact, avoids 
the need for batteries with too large capacity [16]. Marchenko et al. [17] 
found that the storage hybridization resulted in the cheapest HRES 
configuration thanks to both the high efficiency of batteries and the 
long-term storage capacity of hydrogen-based systems. The economic 
benefits of combining batteries and hydrogen were also reported by 
Kalantari et al. [18], who investigated RES-based energy systems for 
application in remote mines. 

The optimal design of hybrid renewable energy systems can be 
achieved by means of single-objective or multi-objective approaches. 
Multi-objective optimization problems (MOPs) should be considered 
when multiple and conflicting goals need to be addressed [19]. The 
objective functions of the optimization problem usually include system 
costs (e.g., in terms of LCOE) and environmental concerns such as 
operational CO2 emissions [20,21], fossil fuel consumption [22] or 
equivalent life cycle CO2 emissions [23,24]. According to the search 
approach, MOPs can be classified into: 1) Pareto-based techniques that 
employ ranking and selection in the population to generate the Pareto 
front and 2) non-Pareto-based techniques that involve the combination 
of objective functions and problem transformation [25]. Meta-heuristic 
methods such as genetic algorithms (GAs), evolutionary algorithms 
(EAs) and particle swarm optimization (PSO) algorithms are broadly 
used to solve HRES optimization problems [26]. Compared to the other 
meta-heuristic techniques, PSO may be easier to implement since it re-
quires fewer parameters [27]. It is also characterized by great robustness 

and high convergence speed, which makes it a suitable choice for the 
design of energy systems [28]. 

The present work has been carried out under the EU project REMOTE 
[29], whose main goal is to demonstrate the economic and environ-
mental advantages derived from adopting H2-based storage solutions in 
off-grid areas. Cost of energy, environmental issues and reliability of the 
power supply have been addressed by means of the ε-constraint method, 
employing the PSO technique as optimization algorithm. Different HRES 
configurations were analysed by combining the following components: 
PV panels, wind turbines, diesel generators, hydrogen and batteries. 
Cost-emissions Pareto fronts of the various energy systems were derived 
and compared for an in-depth investigation of the role of hydrogen 
storage in scenarios characterized by different levels of energy inde-
pendence. A sensitivity analysis on the diesel price was also carried out, 
being this value highly variable and impacting on the LCOE. The aim of 
this work is to provide a wide overview about stand-alone energy sys-
tems in remote environments, investigating the role of hydrogen in the 
HRES optimal design. The sizing methodology was applied to the Froan 
archipelago, which is located off the west coast of Norway and currently 
interconnected to mainland by an outdated sea cable that needs to be 
replaced. The replicability potential is very high considering plenty of 
minor islands in Northern Europe in the same situation. 

The structure of this work is as follows: Section 2 reports the 
modeling of the hybrid energy system together with its control strategy. 
The design optimization approach is then defined in Section 3. Section 4 
introduces the reference case study that has been selected for the techno- 
economic analysis. Section 5 shows the main sizing results and related 
discussion. Finally, major conclusions are summed up in Section 6. 

2. HRES modeling and operation 

The general layout of the proposed optimization framework is shown 
in Fig. 1, where the main input and output data are reported. Input 
parameters include: time series of electrical demand and meteorological 
data (ambient temperature, solar irradiance, wind velocity), technical 
specifications of the HRES components (efficiency curves, modulation 
ranges, etc.), economic data (investment, operation, maintenance and 
replacement costs, fuel price, discount rate) and constraints (reliability 
of the energy system, periodicity in the storage levels, CO2 emissions, 
maximum size of the components). The main outputs of the optimization 
problem are as follows: the optimal sizes of all the HRES components, 
the behavior of the energy system over the selected time horizon 
(renewable energy usage, load coverage, power profiles), economic 

Fig. 1. Optimization framework developed in this work to perform the optimal design of stand-alone hybrid renewable energy systems.  
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indicators (levelized cost of energy, net present cost), technical in-
dicators (lifetime of components, etc.) and environmental indicators 
(amount of CO2 that has been released during the HRES operation). 

In the following sub-sections, the system configuration and the 
mathematical models of each component of the off-grid system will be 
discussed. 

2.1. HRES architecture 

The general layout of the hybrid renewable energy system is shown 
in Fig. 2. It comprises the following components: photovoltaic panels 
(PV), wind turbines (WT), batteries (BT), a hydrogen-based power-to- 
power (P2P) system and a diesel generator (DG), which are connected to 
an AC busbar [30], as in the Norwegian demo site of the REMOTE 
project [29]. 

The H2-based P2P system includes an electrolyzer (EL) for the con-
version of electricity into hydrogen, a pressurized hydrogen tank (HT) to 
store the produced hydrogen gas and a fuel cell (FC) for the reconversion 
of H2 into electricity. Different HRES configurations (obtained from the 
general layout by including different subsets of the above-listed com-
ponents) were analysed in this work to better investigate the importance 
of EES hybridization under different fossil fuel-based cases. 

2.2. PV system 

The solar PV generation was computed as follows [22]: 

PPV (t) = fPV ⋅PPV,rated⋅
G(t)
GSTC

⋅
[
1+ αP⋅

(
Tcell(t) − Tcell,STC

)]
(1)  

where PPV (in kW) is the power delivered by PV panels, PPV, rated (in kW) 
is the rated power of the PV system, G (in kW/m2) is the incident ra-
diation over the PV panel tilted surface, GSTC (1 kW/m2) is the incident 
radiation at standard test conditions (STC), Tcell (in ◦C) is the PV cell 
temperature, Tcell,STC (25 ◦C) is the PV cell temperature under STC, αP (in 
1/K) is the temperature coefficient of power and finally fPV is the 

derating factor accounting for reduced PV output in real-world oper-
ating conditions. 

The following relationship was used to evaluate the PV cell tem-
perature [31]: 

Tcell(t) = Ta(t) +
G(t)
0.8

⋅
(
Tcell,NOCT − 20

)
(2)  

where Ta (in ◦C) is the ambient temperature and Tcell,NOCT (in ◦C) is the 
nominal operating cell temperature. The procedure applied to derive the 
incident radiation G is described in detail in the Appendix A. Main 
meteorological data were taken from PVGIS tool referring to a typical 
meteorological year (TMY) [32]. 

2.3. Wind turbine generators 

The output power of the wind turbine was computed by employing a 
characteristic power versus wind speed curve, as the one described 
below [33]: 

PWT(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
⃒
⃒if vw(t) ≤ vw,ci

PWT,rated⋅
v3

w(t) − v3
w,ci

v3
w,r − v3

w,ci
,

⃒
⃒if vw,ci ≤ vw(t) ≤ vw,r

PWT,rated,
⃒
⃒if vw,r ≤ vw(t) ≤ vw,co

0,
⃒
⃒if vw(t) ≥ vw,co

(3)  

where vw,ci, vw,co, and vw,r (in m/s) correspond to the cut-in, cut-out and 
rated wind speed, respectively. PWT(t) (in kW) is the produced wind 
power, whereas PWT,rated (in kW) is the rated power of the machine. 

TMY wind speed data (with hourly resolution) were taken from [32], 
referring to a reference height (href ) of 10 m. They need thus to be 
corrected to the turbine height (hWT): 

vw(t) = vw,ref (t)⋅
(

hWT

href

)α

(4) 

Fig. 2. General layout of the hybrid renewable energy system.  
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where vw,ref (in m/s) is the wind speed measured at the reference height 
and α is the exponent law coefficient. The latter depends on the surface 
topology. A value of 0.14 was adopted, which is typical for flat surfaces 
[52]. 

2.4. Battery storage system 

The battery component was treated as an energy tank, modifying its 
charge level based on the power exchanged with the bus bar. The state- 
of-charge (SOC) parameter, which represents the ratio of the stored 
energy to the battery rated capacity, was used to describe the state of the 
battery as follows: 

SOC(t)=SOC(t− 1)⋅(1− σBT)+
PBT,ch(t − 1)⋅Δt⋅ηBT,ch⋅ηrect

CapBT
−

PBT,dc(t − 1)⋅Δt
ηinv⋅ηBT,dc⋅CapBT

(5)  

where σBT is the hourly self-discharge rate of the battery, PBT,ch/dc (in 
kW) is the battery charging/discharging power, ηBT,ch/dc is the battery 
charging/discharging efficiency, ηinv is the inverter efficiency, ηrect is the 
rectifier efficiency and CapBT (in kWh) is the capacity of the battery. 

The SOC of the battery should also be bounded between a minimum 
and maximum value: 

SOCmin ≤ SOC(t) ≤ SOCmax (6) 

The lower SOC threshold was imposed to avoid damaging the storage 
bank by excessive discharge. 

In the present work, the lithium-ion technology was considered for 
the battery component, given its better performance compared to the 
lead-acid alternative [14]. 

2.5. Hydrogen-based P2P system 

The hydrogen-based P2P system comprises an electrolyzer operating 
up to 30 bar, a pressurized hydrogen storage tank (maximum storage 
pressure of 28 bar) and a fuel cell working at ambient pressure. No 
compression step is therefore required between the electrolyzer and the 
storage. The proton-exchange membrane (PEM) technology was 
assumed for both the EL and FC components. The PEM option is in fact 
recommended when dealing with variable renewable energy sources (as 
in the case of wind generation) because of its good dynamic behavior 
[34]. 

The level-of-hydrogen (LOH) in the tank, which is defined as the 
ratio of the stored H2 energy to the H2 tank capacity, was obtained as: 

LOH(t) = LOH(t − 1) +
PEL(t − 1)⋅Δt⋅ηEL

CapH2
−

PFC(t − 1)⋅Δt
ηFC⋅CapH2

(7)  

where PEL/FC (in kW) is the electrolyzer/fuel cell operating power, ηEL/FC 
is the efficiency of the electrolyzer/fuel cell system (including also BOP 
losses) and CapH2 (in kWh) is the rated capacity of the hydrogen tank (in 
terms of energy content of hydrogen). 

At any time-interval, the following constraints on the lower and 
upper limit of the LOH should be respected: 

LOHmin ≤ LOH(t) ≤ LOHmax (8) 

The minimum LOH value was chosen to effectively overcome 
downstream pressure drops and allow the fuel cell to be fed with 
hydrogen. The LOHmin can be derived as the ratio between the minimum 
and maximum HT pressure. 

Electrochemical devices were imposed to work within specific 
boundaries for a safe and efficient operation. A minimum operating 
power of 10% and 6% (defined as percentage of the rated power) was set 
for the electrolyzer and fuel cell, respectively [4]. Too low partial loads 
may in fact lead to safety issues because of the risk of explosive gas 
mixtures (related to hydrogen cross-diffusion) [35]. Reduced current 

densities are also responsible for an enhancement of the chemical 
degradation of the PEM membrane [36]. Moreover, the low-load oper-
ation also causes the efficiency to drop sharply because of the prevalence 
of the BOP consumption [14]. 

Variability in RES production and load requires that the fuel cell and 
the electrolyzer continuously adapt their operating point to reliably 
cover the load demand and store the surplus renewable energy. Part- 
load performance curves are thus recommended to get a more accu-
rate techno-economic assessment. In this work, efficiency curves, taken 
from Ref. [14], were used to model the performance of the 
hydrogen-based devices. They were implemented within the optimiza-
tion process by means of polynomial functions. 

2.6. Diesel generator 

The diesel fuel consumption was computed according to the 
following relationship [37–39]: 

consDG(t) = aDG⋅PDG,rated + bDG⋅PDG(t) + consstart,DG (9)  

where consDG (in L/h) is the fuel consumption, PDG,rated (in kW) is the DG 
rated power, PDG (in kW) is the DG operating power and consstart,DG (in L/ 
start-up) represents the DG start-up penalty. The terms aDG (in L/kWh) 
and bDG (in L/kWh) correspond to the coefficients of the fuel con-
sumption curve. They were set equal to 0.08415 L/kWh and 0.246 L/ 
kWh, respectively. 

The term consstart,DG was expressed as follows: 

consstart,DG = Fstart⋅
(
aDG⋅PDG,rated + bDG⋅PDG,rated

)
(10)  

where Fstart represents a factor accounting for the extra fuel due to the 
DG start-up. Its value is usually lower than 0.083, equal to around 5 min 
at rated power [38,39]. In the present work, we considered a value of 
0.067, representing approximately 4 min of continuous high-load 
operation [40]. 

A minimum service level was imposed to the diesel generator to 
avoid its operation with low efficiency: 

PDG(t) ≥ yDG,min⋅PDG,rated (11)  

where yDG,min is the minimum output power, set to 30% of the rated 
power [10,38]. 

2.7. Energy management of the HRES 

An energy management strategy (EMS) was developed to perform 
simulations of the hybrid renewable energy system over a 1 yearlong 
time horizon with hourly resolution. In a configuration with storage 
hybridization (i.e., both battery and hydrogen), batteries act as shorter- 
term storage whereas hydrogen works as longer-term storage, inter-
vening when the maximum or minimum BT SOC values are reached. The 
battery component is thus used to mitigate RES intermittency and to 
protect the H2-based components from too frequent start-ups and shut-
downs, which would negatively affect their lifetime. 

The detailed logical block diagram of the adopted EMS can be found 
in [4]. However, we modified it in the present study to include the 
operation of the diesel genset. 

Whenever the load demand is greater than the renewable power, 
priority of intervention is the following: battery discharging first, then 
fuel cell operation and finally diesel generator operation. The same 
priority rule is kept also when one of these components (i.e., BT, FC and 
DG) is not included within the HRES. The diesel generator (if present) is 
thus operated as a final back-up device and according to a load following 
dispatch strategy, i.e., it is operated (compatibly with its modulation 
range) so as to cover the unmet fraction of primary load. In case the load 
to be covered by the DG is lower than the DG minimum power, the diesel 
generator operates at its minimum power to feed the load (the FC/BT 
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power is lowered accordingly and the excess power, if any, is used to 
charge the battery). 

When the load demand is lower than the available renewable power, 
the energy surplus from RES is first stored in batteries (if present), then 
converted into H2 by means of electrolyzers (if present) and finally 
curtailed. 

3. HRES optimal sizing 

3.1. Sizing approach 

The optimal sizing was performed by using the PSO technique. The 
main goal is to identify the system configuration (i.e., sizes of PV, WT, 
BT, EL, FC, HT and DG components), that allows the LCOE to be 
minimized. 

The general structure of the optimization problem is summarized 
below: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(LCOE)

C1 : UL ≤ ULtarget

C2 : SOC(tend) ≥ SOC(tin)

C3 : LOH(tend) ≥ LOH(tin)

C4 : mCO2 ,op ≤ mCO2 ,op,target

(12) 

C1-C4 are the constraints that have been imposed in the optimization 
process. C1, which corresponds to the reliability constraint, ensures that 
the unmet load (UL) index is not higher than a certain target value. The 
UL is defined as the ratio of the total not served energy to the total en-
ergy demand over the selected time horizon T (i.e., 1 year): 

UL(%) =

∑T
t=1PNS(t)⋅Δt

∑T
t=1PLD(t)⋅Δt

(13)  

where PNS (in kW) is the not served power and PLD (in kW) is the load 
demand. A value of 0% was set for ULtarget so that the electrical demand 
is covered at all times by the stand-alone power system [22,41]. 

The storage autonomy constraints C2 and C3 ensure that the energy 
in the storage systems at the end of the year is greater than or equal to 
that present at the beginning of the simulation (in this work, a value of 
0.5 was chosen for the initial SOC and LOH) [42,43]. Finally, C4 refers to 
the constraint on the yearly amount of CO2 that is released by the 
operation of the HRES. This value is due to the fuel that is consumed by 
the diesel generator [20,21]. The annual CO2 emitted during HRES 
operation was computed as follows: 

mCO2 ,op =
∑T

t=1
consDG(t)⋅cCO2 ,DG (14)  

where consDG (in L/h) is the diesel fuel consumption (evaluated ac-
cording to Eq. (9)) and cCO2 ,DG (in kg/L) is the related CO2 emission 
coefficient, which lies in range 2.4–3.5 kg/L [44]. The mCO2 ,op quantity is 
therefore strictly correlated to the energy independence of the site (i.e., 
amount of fuel that should be periodically transported to the island to 
run the diesel genset). 

Cost-emissions Pareto fronts were derived for different system con-
figurations. The ε-constraint method was employed to minimize both 
the LCOE and CO2 emissions of the system [27,45]. According to this 
technique, the multi-objective optimization problem is solved by opti-
mizing one objective and treating the remaining ones as constraints. 
First, two different single-objective optimization problems were per-
formed to find the upper (mCO2 ,op,max) and lower (mCO2 ,op,min) limits of the 
annual CO2 emissions. In more detail, in order to evaluate the mCO2 ,op,max 

value, a single-objective minimum-cost optimization was carried out, 
independently of the CO2 emissions, as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

min(LCOE)
C1 : UL ≤ ULtarget
C2 : SOC(tend) ≥ SOC(tin)

C3 : LOH(tend) ≥ LOH(tin)

(15) 

The mCO2 ,op,min value was instead quantified by performing a single- 
objective minimum-emissions optimization, independently of the 
costs, as reported below: 

Table 1 
Technical input parameters for the HRES components.  

Component Value Ref. 

PV power plant   
Derating factor, fPV  0.86  
Nominal operating cell temperature, Tcell,NOCT  44 ◦C [57] 
Temperature coefficient, αP  − 0.003 1/K [57] 
PV surface slope, β  49◦ [32] 
PV surface azimuth, ϕ  2◦ [32] 
Albedo of the ground, ρg  0.2 [58] 
Incident irradiance at STC, GSTC  1 kW/m2  

PV cell temperature at STC, Tcell,STC  25 ◦C  
Lifetime 20 yr  
Wind power plant   
Turbine height, hWT  30 m [59] 
Wind speed reference height, href  10 m [32] 
Exponent law coefficient, α  0.14 [42] 
Cut-in wind speed, vw,ci  3 m/s [59] 
Cut-out wind speed, vw,co  25 m/s [59] 
Rated wind speed, vw,r  13 m/s [59] 
Lifetime 20 yr  
Diesel generator   
Fuel consumption curve parameter, aDG  0.08415 L/kWh [37–39] 
Fuel consumption curve parameter, bDG  0.246 L/kWh [37–39] 
Start-up extra fuel parameter, Fstart  0.067 [40] 
Minimum power, yDG,min (% of rated power)  30% [10,38] 
CO2 emissions, cCO2 ,DG  3 kg/L [44] 
Operating hours (over lifetime), Nh,tot,DG  20,000 h [44] 
BOP lifetime 20 yr  
Li-ion battery   
Charging efficiency, ηBT,ch  0.95 [60,61] 
Discharging efficiency, ηBT,dc  0.95 [60,61] 
Self-discharge, σBT  5%/month [41] 
Minimum SOC, SOCmin  0.2 [41,61] 
Maximum SOC, SOCmax  1  
Battery bank lifetime From the lifetime curve [62] 
BOP lifetime 20 yr  
Hydrogen tank   
Minimum pressure, pmin  3 bar [4] 
Maximum pressure, pmax  28 bar [4] 
Minimum LOH, LOHmin  pmin/pmax  

Maximum LOH, LOHmax  1  
Lifetime 20 yr  
PEM electrolyzer   
Minimum power (% of rated power) 10% [63] 
Efficiency, ηEL  Efficiency curve [14] 
Operating hours (over lifetime), Nh,tot,EL  40,000 h [49] 
On-off cycle number (over lifetime), Nst,tot,EL  5,000 [64] 
BOP lifetime 20 yr  
PEM fuel cell   
Minimum power (% of rated power) 6% [4] 
Efficiency, ηFC  Efficiency curve [14] 
Operating hours (over lifetime), Nh,tot,FC  30,000 h [42,65] 
On-off cycle number (over lifetime), Nst,tot,FC  10,000 [66] 
BOP lifetime 20 yr   
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⎧
⎪⎪⎨

⎪⎪⎩

min
(
mCO2 ,op

)

C1 : UL ≤ ULtarget
C2 : SOC(tend) ≥ SOC(tin)

C3 : LOH(tend) ≥ LOH(tin)

(16) 

The CO2 emission interval thus obtained was divided into n steps. 
The Pareto front was then built by resolving n single-objective optimi-
zation problems that minimize the LCOE, while subject to a constraint 
on the annual CO2 emission (which is varied between mCO2 ,op,min and 
mCO2 ,op,max). The structure of each single-objective optimization is out-
lined in Eq. (12). 

Concerning the PSO algorithm, the population size was set to 100. A 
value of 2 was chosen for both the cognitive and social parameters [46]. 

The size of each HRES component was allowed to vary between zero 
and a certain upper boundary (UB), which was chosen so as not to be a 
constraint on the optimal size. According to the scenario under analysis, 
the UB of some components was set to zero (e.g., UB of the battery size in 
the H2 scenario and UB of the hydrogen-based equipment in the BT 
scenario). 

3.2. LCOE estimation 

Techno-economic data, that are required as input for the modeling of 
the HRES and for the evaluation of the LCOE, are listed in Table 1 and 
Table 2 (main specifications of PV, battery and hydrogen-based com-
ponents were taken from Ref. [14]) . 

The following relationship was used for the estimation of the LCOE 
(in €/kWh): 

LCOE =
CNPC,tot

∑n
j=1

Etot,j

(1+d)j

(17)  

where CNPC,tot (in €) is the overall system net present cost (NPC), Etot,j (in 
kWh) is the load demand covered by the HRES during j-th year, n is the 
lifetime of the project (set to 20 years in this study) and d is the real 
interest rate (which is a function of the nominal interest rate and the 
annual inflation rate). 

The system NPC was derived as follows (with i = PV, WT, EL, FC, BT, 
HT, DG and k = EL, FC, BT, DG): 

CNPC,tot =
∑

i
Cinv,i,0 +

∑n

j=1

∑
kCrep,k,j +

∑
iCOM, i,j

(1 + d)j −
∑

k

Csal,k,n

(1 + d)n (18)  

where Cinv,i,0 (in €) is the investment cost of the i-th component at the 
beginning of the simulation, Crep,k,j (in €) is the replacement cost of the k- 
th component during the j-th year (it is null in case there is no 
replacement in that year), COM, i,j (in €) is the operation & maintenance 
(OM) cost of the i-th component for the j-th year and finally, Csal,k,n (in €) 
is the salvage cost of the k-th component occurring at the end of the 
project lifetime. 

Concerning investment costs, the following power function was 
employed for the electrolyzer and fuel cell [4]: 

cinv =

(
Prated

Prated,ref

)ninv

⋅
cinv,ref ⋅Prated,ref

Prated
(19)  

where cinv (in €/kW) is the specific investment cost referred to an EL/FC 
system with rated power Prated (in kW), cinv,ref (in €/kW) is the reference 
specific investment cost of a reference EL/FC system with rated power 
Prated,ref (in kW) and ninv is the cost exponent of the power function. These 
parameters were derived by fitting the cost data reported in Refs. [47] 
and [48] and are suitable for kW-size H2-based devices. 

The investment cost of the compressed H2 storage (of 470 €/kg) was 
taken from [49], which is in accordance with other studies from the 
literature [50–53]. Overall, the costs that have been chosen for the HRES 
components are also in line with the REMOTE partners’ knowledge [4]. 

Replacement costs were assessed as a fraction of the investment cost. 
The values of the component lifetimes should be defined to estimate 
when replacements take place over the entire 20-year time horizon. In 
this study, lifetimes of components that may potentially be replaced (i. 
e., EL, FC, BT and DG) were computed based on how they operate over 
the reference year. In more detail, the lifespan of the EL/FC devices was 
determined from the yearly number of operating hours (Nh,yr,EL/FC) and 
start-ups (Nst,yr,EL/FC), according to the relationship reported in [14]. The 
battery duration was estimated by computing the lifetime throughput 
(from the battery lifetime curve) and dividing this value by the annual 
throughput (i.e., the yearly amount of energy flowing through the bat-
tery) [54]. The diesel genset life was finally evaluated from the ratio of 
the total amount of DG working hours (Nh,tot,DG) to the number of DG 
yearly working hours (Nh,yr,DG). The lifetime of the project was set as 
upper threshold for the lifetime of all the components of the HRES [14]. 

As shown in Eq. (18), a salvage cost term was also included for all the 
components that may be subject to replacement. The salvage value, 
which depends on the replacement cost, was computed supposing that it 
is directly proportional to the remaining lifetime of the component. 

A fixed OM cost was considered for the PV, WT, BT and HT com-
ponents. OM costs of the electrolyzer and fuel cell were instead assumed 
to consist of a fixed and variable contribution (the variable term was 
supposed to be proportional to the EL/FC operating time) [49]. The OM 
cost of the diesel generator was evaluated according to the amount of 
fuel that is consumed and to the number of DG operating hours: 

COM, DG =
∑T

t=1
consDG(t)⋅costfuel + cOM, DG,op⋅Nh,yr,DG (20) 

Table 2 
Economic input parameters for the HRES components.  

Component Value Ref. 

PV power plant   
Investment cost 1,547 €/kW [4] 
Fixed OM costs (% of Inv. cost) 24 €/kW/yr [4] 
Wind power plant   
Investment cost 1,175 €/kW [67] 
Fixed OM costs (% of Inv. cost) 3%/yr [4] 
Diesel generator   
Investment cost 420 €/kW [41] 
Replacement cost 420 €/kW [41] 
Variable OM costs, cOM, DG,op  0.4 €/h [41] 
Fuel cost, costfuel  2 €/L (ref. case) [4] 
Li-ion battery   
Investment cost (system) 550 €/kWh [4,41] 
Replacement cost (battery module) 275 €/kWh [68] 
Fixed OM costs 10 €/kWh/yr [61] 
Hydrogen tank   
Investment cost 470 €/kg [49] 
Fixed OM costs (% of Inv. cost) 2%/yr [49] 
PEM electrolyzer   
Ref. specific investment cost, cinv,ref  4,600 €/kW [47] 
Ref. rated size, Prated,ref  50 kW [47] 
Cost exponent, ninv  0.65 [47] 
Replacement cost (% of Inv. Cost) 26.7% [69] 
Fixed OM costs (% of Inv. Cost) 1/3∙4%/yr [49] 
Variable OM costs (% of Inv. Cost) 2/3∙4%/yr [49] 
PEM fuel cell   
Ref. specific investment cost, cinv,ref  3,947 €/kW [48] 
Ref. rated size, Prated,ref  10 kW [48] 
Cost exponent, ninv  0.7 [14] 
Replacement cost (% of Inv. Cost) 26.7% [69] 
Fixed OM costs (% of Inv. Cost) 1/3∙4%/yr [49] 
Variable OM costs (% of Inv. Cost) 2/3∙4%/yr [49] 
Other assumptions   
Real discount rate, d  4.9% [4] 
Project lifetime, n  20 yr [55]  
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where COM, DG (in €/yr) is the DG OM cost, costfuel (in €/L) is the price of 
the diesel fuel, cOM, DG,op (in €/h) is the specific OM cost associated to DG 
operation and Nh,yr,DG (in h) is the number of DG operating hours over 
the reference year. 

The fuel price is generally high in off-grid remote locations [55]. A 
value of around 2 €/L is suggested in Refs. [4,41,56]. Alberizzi et al. [56] 
reported that the fuel price varies from approximately 1.4 €/L up to 3 
€/L in remote areas. In the present work, a sensitivity analysis of the 
diesel price in the range from 1 to 3 €/L was performed to better 
investigate its influence on the HRES optimal sizing (2 €/L was consid-
ered for the reference case). 

4. Froan case study 

The Froan archipelago has been considered in the present analysis as 
case study to perform the techno-economic assessment. It consists of 4 
islands close to the coast, near Trondheim (Norway), and connected to 
the mainland grid through an outdated sea cable, whose expected 
remaining lifespan is around 5 years [3]. The replacement of the sea 

cable would require expensive (and invasive) engineering and civil 
works. Alternative solutions need therefore to be considered to provide 
electrical power to the site. An immediate choice could be the installa-
tion of an on-site diesel generator; however, its usage should be limited 
as much as possible being the Froan archipelago a nature reserve and 
conservation area. Energy production based on local RESs thus repre-
sents an interesting and eco-friendly alternative. Electrical energy stor-
age systems should be accounted for within the RES-based solution to 
enhance the independence of Froan from imported diesel fuel. EES de-
vices would in fact improve the exploitation of local renewable energy 
and mitigate the variability in renewable energy production and load 
demand, thus securing the power supply throughout the entire year. 

Main meteorological and load hourly profiles over a reference year 
for the Froan site are reported in Fig. 3 [32,70]. Load data were directly 
provided by the end-user of the selected site [70]. The annual electrical 
demand is approximately 561 MWh. The peak load is slightly higher 
than 100 kW and the average daily load demand accounts for about 1, 
538 kWh. Electricity consumption in summer is primarily due to 
tourism, whereas during winter the power consumption is mainly due to 
heating and, to a lesser extent, to lightning. 

5. Results and discussion 

The optimal sizing was first carried out focusing on a system fully 
relying on local wind and solar sources (i.e., 100% RES-based system). 
Main sizing outcomes are reported in Table 3: it can be seen that the 
optimal fossil-fuel-free configuration is characterized by the hybridiza-
tion of both power sources (PV and WT) and storage (BT and H2). Even 
though solar energy is scarce in the selected site (which is typical for 
northern climates), it is economically convenient to install PV together 
with wind turbines. In fact, solar energy compensates for the reduced 

Fig. 3. Input meteorological and load data profiles over a reference year in Froan: solar irradiance (total irradiance over the PV panel tilted surface), ambient 
temperature, wind velocity (10 m height) and electrical load. 

Table 3 
Main sizing results and technical KPIs referred to the 100% RES-based HRES.  

Sizing results 
PWT,rated 

[kW]  
PPV,rated 

[kW]  
CapBT 
[kWh]  

PEL,rated 

[kW]  
PFC,rated 

[kW]  
CapHT 
[kg]  

LCOE 
[€/kWh] 

483 318 277 115 90 718 0.410 
Technical KPIs 
Nh,yr,EL 

[h]  
Nst,yr,EL 

[-]  
LEL 

[yr]  
Nh,yr,FC 

[h]  
Nst,yr,FC 

[-]  
LFC 

[yr]  
LBT 

[yr]  

3294 293 7 2022 234 11 12  
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availability of the wind source during the summer period. It can also be 
noted that a large HT size is required to make the energy system 100% 
based on local RESs. The hydrogen-based storage system is crucial to 
deal with the seasonality of the RES supply and the electrical load. The 
level-of-hydrogen over the year is shown in Appendix B (Fig. B.1). The 
resulting system LCOE is about 0.410 €/kWh, which is lower than the 
cost of energy referred to an alternative scenario with sea cable 
replacement (approximately 0.630 €/kWh [4]). Technical key perfor-
mance indicators (KPIs) are also shown in Table 3: according to the 

system simulation, battery modules and fuel cell stacks should be 
replaced once during the project, with lifetimes of 12 and 11 years, 
respectively; whereas the electrolyzer stack, whose lifetime is around 7 
years, needs two replacements. 

Main results from the energy balance simulations on a yearly basis 
are displayed in Fig. 4. As shown in Fig. 4a, most of the electrical load 
(approximately 77%) is covered by direct consumption of energy com-
ing from the PV and WT. However, in order to make the site energy 
independent, the hybrid P2P system must intervene covering 

Fig. 4. Coverage of the yearly load (a) and usage of yearly RES production (b) for the 100% RES-based HRES.  

Fig. 5. Cost-emission Pareto fronts for a) BT + H2, b) BT, c) H2 and d) No EES scenarios. Light blue triangles correspond to configurations with the presence of 
hydrogen, whereas red coloured percentages represent DF values. 
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approximately 23% of the annual load, of which around two-thirds are 
met by the fuel cell and the remaining fraction by the battery compo-
nent. Fig. 4b reports how the annual RES production is divided between 
load (direct consumption), battery storage, hydrogen storage through 
electrolysis and curtailment. The latter term accounts for around 32% of 
the overall renewable production. This value is high, but it is unavoid-
able in off-grid systems that aim to achieve the energy self-sufficiency by 
relaying completely on local RESs. 

The sizing optimization was then performed including the diesel 
generator component to better investigate the role of hydrogen in the 
optimal design of stand-alone HRESs. Cost-emissions Pareto fronts were 
derived considering different system scenarios: 1) RES+DG+BT+H2 
(BT+H2), 2) RES+DG+BT (BT), 3) RES+DG+H2 (H2) and finally 4) 
RES+DG (No EES). Main results of the four cases are reported in Fig. 5, 
where the LCOE is displayed as a function of the yearly CO2 emissions 
(in tonnes per year) and fuel consumption (in litres per year). A sensi-
tivity analysis on the diesel fuel cost in the range from 1 to 3 €/L was 
carried out for the sake of comparison. Diesel fraction (DF) values are 
also displayed for the cheapest configuration of each cost-emission 
curve. DF represents the fraction of the yearly electrical demand that 
is covered by the diesel generator (the remaining fraction is therefore 
covered by the renewable P2P system). 

Fig. 5 shows that, for all the 4 scenarios, a reduction in the LCOE 
implies an increase in CO2 emissions (or related fuel consumption). 
Concerning the hybrid storage scenario (Fig. 5a) and 2 €/L as fuel price, 
it was found that the most cost-effective configuration has an LCOE of 
around 0.34 €/kWh with approximately 84 tonnes of CO2 released 
yearly by the system operation (the related DF value is around 11.6%). 
The LCOE of the cheapest configuration moves to 0.26 and 0.38 €/kWh 

when considering a fuel price of 1 and 3 €/L, respectively, which shows 
the high influence of this value on the cost of energy. By comparing 
Fig. 5a and b, it can be noted that the least expensive configurations are 
the same for the BT+H2 and BT scenarios. This means that there is no 
need to include hydrogen when no constraints on the usage of diesel 
generators are imposed: the cost-optimal system is in fact composed of 
RESs (both PV and WT) together with batteries and diesel generators. By 
decreasing the amount of allowed CO2 in the BT+H2 scenario, it can be 
observed that the hydrogen storage system appears in the optimal sys-
tem configuration at around 30–40 tonnes of CO2 per year (light blue 
triangles in Fig. 5a). The cost of energy then slightly increases up to 0.41 
€/kWh when a 100% RES-based system is achieved. Regarding instead a 
system that relies only on batteries as energy storage (Fig. 5b), by pro-
gressively limiting the operation of the diesel generator, the LCOE rises 
sharply to a maximum of 0.64 €/kWh. Hydrogen thus turns out to be 
necessary to limit the system costs when energy independence from 
fossil fuels is pursued. This is also confirmed by the LCOE trend of the H2 
scenario (Fig. 5c), which slowly increases by decreasing CO2 emissions 
until reaching an LCOE of 0.44 €/kWh for the diesel-free configuration. 
Additional considerations about the effectiveness of H2 in achieving 
cost-optimal HRES configurations can be found in Appendix B. Finally, 
Fig. 5d refers to a scenario with only RESs and diesel genset, without the 
inclusion of electrical energy storage devices. It is shown that the yearly 
CO2 emissions cannot go below 81 tonnes per year, which corresponds 
to an DF of around 10.7%. The LCOE at this value of DF is in the 0.77–0.9 
€/kWh range. For the sake of completeness, a system configuration with 
only DG was also simulated, resulting in an LCOE of 0.81 €/kWh (with a 
diesel price of 2 €/L) and approximately 648 tonnes of CO2 per year. 
Energy storage systems are therefore essential to reduce the system costs 

Fig. 6. a) Battery capacity in the BT+H2 and BT scenarios; b) RES (PV and WT) rated power in the BT+H2 and BT scenarios; c) EL and FC rated power in the BT+H2 
scenario; d) HT capacity in the BT+H2 scenario. All figures are referred to the case with a diesel fuel cost of 2 €/L. 
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and reach higher levels of RES penetration. It is also noteworthy that 
renewable configurations based EES devices are cost competitive 
compared to an alternative solution based on the sea cable replacement 
(whose LCOE is 0.630 €/kWh [4]). 

Fig. 6 focuses on the BT+H2 and BT scenarios to better understand 
the LCOE trends reported in Fig. 5. The cheapest configuration is char-
acterized by the same system architecture for the two scenarios: around 
254 kW of PV, 407 kW of WT, 774 kWh of BT and 90 kW of DG. By 
limiting the operation of the DG, the resulting LCOE increment is due to 
an increase in size of the EES and RES technologies. More specifically, 
concerning the BT scenario, the rated capacity of the battery increases 
abruptly, reaching a value of approximately 3,090 kWh for the config-
uration with no DG (which is approximately 4 times higher than the 
battery capacity with no CO2 constraints). PV and WT sizes increase as 
well, moving from 254 to 512 kW (PV) and from 407 to 912 kW (WT). 
The system configuration of the BT+H2 scenario is the same as that of 
the BT scenario until around 40 tonnes of CO2 per year (i.e., 120,000 L of 
diesel fuel per year). Below this CO2 value, installing an H2-based 

storage system becomes economically convenient. The presence of 
hydrogen is in fact useful to avoid the oversizing of the battery 
component (Fig. 6a) thanks to the low-cost high-capacity H2 tank. By 
reducing the amount of yearly CO2, it can be noted that the battery size 
decreases when hydrogen intervenes in the optimal HRES configuration 
(i.e., CO2 lower than around 40 t/yr). When no CO2 is released by the 
system, the battery capacity is 277 kWh in the BT+H2 scenario, which is 
around 11 times lower than the size that is required in the BT scenario (i. 
e., 3,090 kWh). The hybrid storage case also needs smaller PV and WT 
sizes (Fig. 6b): in the DG-free case, the RES rated power is almost halved 
when switching from BT to BT+H2 scenario. The hydrogen effectiveness 
relies also in the fact that, in H2-based P2P systems, the storage capacity 
and power are decoupled and belonging to different components. Fig. 6c 
shows that the required FC and EL sizes are roughly constant, in the 
range of 80–90 kW and 105–115 kW, respectively. The H2 tank capacity 
instead increases considerably up to about 718 kg when no diesel fuel is 
consumed (Fig. 6d). 

Thus, the H2-based P2P system is essential to achieve a cost- 
competitive solution, even though it has lower roundtrip efficiency 
(EL+FC) compared to batteries. 

The ability of hydrogen to mitigate the LCOE rise is also clearly 
displayed in Fig. 7, where the LCOE breakdown is shown considering a 
diesel price of 2 €/L. By decreasing the diesel fuel consumption, the 
steep rise in LCOE of the BT scenario could be avoided with the inclusion 
of hydrogen: the cost contributions due to battery, photovoltaic and 
wind turbine systems (green, yellow and dark blue regions, respectively) 
remain almost constant, or even decrease, when hydrogen appears 
within the cost-optimal configuration (Fig. 7a). These contributions, 
instead, become increasingly relevant when trying to enhance the in-
dependence from fossil fuels by relying only on batteries as EES 
(Fig. 7b). 

6. Conclusion 

Cost-emission Pareto fronts have been developed for different con-
figurations of stand-alone HRESs. The ε-constraint method was 
employed to address the multi-objective optimization problem. The 
proposed methodology was applied to a real off-grid insular community 
located in northern Europe. 

When no constraints are imposed on the operation of the DG, the 
cheapest configuration consists of renewable generators (PV and WT), 
batteries and diesel genset. More specifically, DG is necessary to make 
the energy supply reliable and avoid the necessity of batteries with too 
large capacity. At the same time, batteries are required to better exploit 
the local RESs, thus reducing the system costs because of the lower fuel 
consumption. 

By progressively enhancing the independence from fossil fuels, the 
inclusion of hydrogen in the HRES was shown to be essential to limit the 
increase in LCOE, even though its roundtrip efficiency is lower than that 
of batteries. This is because the cost-effective long-term storage capa-
bility of hydrogen allows the battery and the PV/WT systems not to be 
oversized. Considering the case with no diesel, the cost of energy of the 
BT+H2 scenario is 0.41 €/kWh, which is approximately two thirds of the 
LCOE of the BT scenario. The battery capacity that is required in the 
hybrid storage case is roughly 11 times smaller than that of a system 
with only batteries. Moreover, the RES rated power is almost halved 
when switching from battery-only storage to hybrid battery-hydrogen 
storage. Renewable-based configurations were also found to be an 
economically feasible choice compared to an alternative solution based 
on sea cable replacement (whose cost is about 0.63 €/kWh). 

To sum up, energy storage systems are key components to improve 
the independence from fossil fuels, with hydrogen playing an essential 
role in reducing the cost of energy. 

Fig. 7. LCOE breakdown for the BT+H2 (a) and BT (b) scenarios as a function 
of the yearly CO2 emissions and fuel consumption (referred to the case with a 
diesel fuel cost of 2 €/L). 

P. Marocco et al.                                                                                                                                                                                                                                



Journal of Energy Storage 46 (2022) 103893

11

Acronyms 

AC Alternating current 
BOP Balance of plant 
BT Battery 
CT Curtailed 
DF Diesel fraction 
DG Diesel generator 
DST Daylight saving time 
DV Decision variable 
EA Evolutionary algorithm 
EES Electrical energy storage 
EL Electrolyzer 
EMS Energy management strategy 
EOT Equation of time 
FC Fuel cell 
GA Genetic algorithm 
HRES Hybrid renewable energy system 
HT Hydrogen tank 
LCOE Levelized cost of energy 
LD Load 
LOH Level-of-hydrogen 
LPSP Loss of power supply probability 
NOCT Nominal operating cell temperature 
NPC Net present cost 
OM Operation and maintenance 
PEM Proton exchange membrane 
PSO Particle swarm optimization 
PV Photovoltaic 
PVGIS Photovoltaic geographical information system 
P2P Power-to-power 

RES Renewable energy sources 
SOC State-of-charge 
STC Standard test conditions 
TMY Typical meteorological year 
UB Upper boundary 
UL Unmet load 
WT Wind turbine 
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Appendix A. Insight on PV power production 

The total irradiance over the PV panel tilted surface was computed as follows [58]: 

G(t) = Gb,n(t)⋅cos(θ) + Gd,h(t)⋅Fc,s + Gt,h(t)⋅ρg⋅Fc,g (A.1)  

where Gb,n (in kW/m2) is the direct normal irradiance, Gd,h (in kW/m2) is the diffusive irradiance over the horizontal surface, Gt,h (in kW/m2) is the 
total irradiance over the horizontal surface, ρg is the ground albedo, Fc,s is the collector-sky view factor, Fc,g is the collector-ground view factor and 
finally θ is the angle of incidence to the tilted surface. The profiles of Gb,n, Gd,h and Gt,h were obtained from PVGIS tool [32], considering a typical 
meteorological year. 

The terms Fc,s and Fc,g were determined in the following way: 

Fc,s =
1 + cos(β)

2
(A.2)  

Fc,g =
1 − cos(β)

2
(A.3)  

where β represents the slope of the PV panel tilted surface, whose value (the optimal one) was taken from Ref. [32]. 
The angle of incidence (θ) was evaluated by applying the following relationship: 

cos(θ) = cos(β)⋅cos(θz) + sin(β)⋅sin(θz)⋅cos(ϕs − ϕ) (A.4)  

where θz is the zenith angle, ϕs is the solar azimuth and ϕ is the PV panel surface azimuth (an optimal value, derived from PVGIS, was considered for 
ϕ). 

The zenith angle (θz) parameter was defined as: 

cos(θz) = cos(Φ)⋅cos(δ)⋅cos(ω) + sin(Φ)⋅sin(δ) (A.5) 
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where Φ is the latitude, δ is the declination and ω is the hour angle. 
The declination can be derived by applying the approximated Cooper formula, which is function of the day of the year n as follows: 

δ = 23.45⋅sin
(

360⋅
284 + n

365

)

(A.6) 

The hour angle was instead assessed as: 

ω = (h − hculm)⋅
360
24

(A.7)  

where h corresponds to the standard time, i.e., the time given by local clock and hculm is the noon time, i.e., the time given by local clock when the sun is 
at its highest point above the horizon (crosses the local meridian). 

The term hculm is given by: 

hculm = 12 +
Lloc − Lref

15
−

EOT
60

+ DST (A.8)  

where Lloc is the longitude of the observer’s meridian, Lref is the longitude of the meridian for the local time zone, EOT (in minutes) is the equation of 
time and DST is the daylight saving time parameter (equal to 1 when in force and 0 otherwise). 

Finally, the following expression was employed to assess the solar azimuth angle (ϕs): 

cos(ϕs ) =
cos(θz)⋅sin(Ф) − sin(δ)

sin(θz)⋅cos(Ф)
(A.9)  

Appendix B. Hydrogen storage 

Fig. B.1 displays the LOH profile over the year for the 100% RES-based energy system. As reported in Table 3, the related HT size accounts for 
approximately 718 kg of hydrogen. It can be noted that the minimum value of LOH is around 0.11 (which corresponds to the LOHmin parameter set as 
input).; 

To further investigate the role of H2 in the HRES optimal design, the LCOE of the 100% RES-based energy system was evaluated as a function of the 
HT cost (see Fig. B.2). This cost was varied from 200 to 1100 €/kg to cover the range of 20 to 100 €/Nm3 reported in Ref. [71]. Moreover, for the sake 
of completeness, the effect of the battery system cost (stack + BOP) was also analysed. As shown in Fig. B.2, hydrogen is confirmed to be fundamental 
to lower the LCOE across the entire range of HT and BT storage costs. 

Fig. B.1. Level-of-hydrogen over the year for the 100% RES-based HRES.  
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