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Abstract: The primary objective of a hybrid electric vehicle (HEV) is to optimize the energy con-
sumption of the automotive powertrain. This optimization has to be applied while respecting the 
operating conditions of the battery. Otherwise, there is a risk of compromising the battery life and 
thermal runaway that may result from excessive power transfer across the battery. Such considera-
tions are critical if factoring in the low battery capacity and the passive battery cooling technology 
that is commonly associated with HEVs. The literature has proposed many solutions to HEV energy 
optimization. However, only a few of the solutions have addressed this optimization in the presence 
of thermal constraints. In this paper, a strategy for energy optimization in the presence of thermal 
constraints is developed for P2 HEVs based on battery sizing and the application of model predic-
tive control (MPC) strategy. To analyse this approach, an electro-thermal battery pack model is in-
tegrated with an off-axis P2 HEV powertrain. The battery pack is properly sized to prevent thermal 
runaway while improving the energy consumption. The power splitting, thermal enhancement and 
energy optimization of the complex and nonlinear system are handled in this work with an adaptive 
MPC operated within a moving finite prediction horizon. The simulation results of the HEV SUV 
demonstrate that, by applying thermal constraints, energy consumption for a 0.9 kWh battery ca-
pacity can be reduced by 11.3% relative to the conventional vehicle. This corresponds to about a 
1.5% energy increase when there is no thermal constraint. However, by increasing the battery ca-
pacity to 1.5 kWh (14s10p), it is possible to reduce the energy consumption by 15.7%. Additional 
benefits associated with the predictive capability of MPC are reported in terms of energy minimi-
zation and thermal improvement. 

Keywords: energy minimization; adaptive model predictive control; battery sizing; thermal  
limitation; mild hybrid electric vehicle 
 

1. Introduction 
Energy management optimization is a key focus of research in the automotive indus-

try as the need to enhance fuel economy and minimise environmental pollution grows. 
Hybrid electric vehicles (HEVs) continuously grow in popularity due to their contribu-
tions in enhancing fuel economy and reducing environmental pollution through the op-
timum use of dual power sources and regenerative braking [1–4]. The HEV combines 
power sources from the electric machine and the internal combustion engine (ICE). To 
optimise and control energy consumption, the HEVs splits the power request of the 
powertrain between the ICE and the electric machine (EM).  
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This often increases the use of the electric machine at low vehicle speeds while the 
ICE is utilized when needed at high speeds where the fuel efficiency is optimum [3,4]. The 
sophisticated powertrain of the HEVs however complicates the design of the energy con-
trol strategy known as the energy management strategy (EMS) [5]. 

The hybrid electric vehicle (HEV) powertrain can exist in series, parallel or combined 
(series-parallel) configuration typologies [6–8]. Due to a double-clutch system, the parallel 
HEV topology creates the possibility to operate in pure ICE mode, when only the ICE is 
used; in pure electric mode, when only the EM is used; or in power-assisted mode, when 
the ICE and EM are used together. Among the HEV powertrain configurations is the par-
allel P2 model that is adapted in this work, and the scheme is shown in Figure 1. P2 con-
figuration can be On-axis or Off-axis depending on the position of the EM.  

In the Off-axis P2 HEVs as in the figure, the ICE shaft can be linked to the EM shaft 
through the axis gear, chain or belt. A generic case with a P2 off-axis configuration was 
considered as it involves additional variables, such as the transmission ratio and efficiency 
of belt drive. However, it can be converted to an on-axis configuration by setting the afore-
mentioned parameters to unity. When C0 is open, the vehicle runs on pure electric mode 
with an efficient regeneration of the braking energy. The presence of a clutch C1 creates 
the possibility to use the EM as a starter to crank the ICE and for gear shifting. 

 
Figure 1. P2 Off-axis Configuration HEV powertrain integrated with an energy management system 
(EMS). 

For energy optimization and control based on a backward model, the powertrain 
torque request at the transmission model (TM) is satisfied with the combination of torques 
provided by the ICE and EM. The battery pack serves as an energy reservoir to store and 
release energy to the EM. The EMS interfaces with the ICE, the EM and the battery pack 
through the engine control unit (ECU), the electric machine control (EMC) and the battery 
management system (BMS), respectively.  

A positive torque request is required to accelerate the vehicle. On the other hand, a 
negative torque regenerated from the vehicle kinetic energy during deceleration or down-
hill is deployed for battery charging [7]. It is possible to drive the EM with the torque from 
ICE during traction. Some authors propose a load shifting mode as a strategy to operate 
on the high-efficiency zone of the ICE. However, previous analysis according to [9] has 
not shown a clear benefit of such an approach especially from the point of view of energy 
consumption minimization. Hence, the load shifting mode has been avoided in this anal-
ysis. 

Lithium-ion cells are becoming popular electricity storage or power equipment due 
to their high specific energy, high specific power, lightweight, high voltage output, low 
self-discharge rate, low maintenance cost, long service life as well as low mass–volume 





































World Electr. Veh. J. 2022, 13, 33 20 of 22 
 

In the paper, the realistic prediction horizon realizable with on-board vehicle systems 
was considered. However, it would be interesting to see the potential of fuel consumption 
and thermal control improvement using MPC with an optimal prediction horizon to ob-
tain comparable results with dynamic programming-based optimization. The results 
shown in this paper were obtained without considering the influence of battery ageing. 
Therefore, such analysis could be of interest for future research. 
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