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Abstract

The research activity discussed in the following manuscript is based on the design,
implementation and testing of deep learning architectures for two different contexts:
Industry and Healthcare. In the first case, the research activity was carried out at
the European Organization for Nuclear Research (CERN) with the aim to model the
magnetic hysteresis in the context of electromagnets. The main goal of physicists
and engineers working at CERN is the study of high-energy physics. In order to
understand the fundamental structure of matter, the particles are made to collide
together at a very high speed, close to the speed of light. At this aim, a chain of
interconnected accelerators allows the acceleration of charged particles up to 6.5
TeV (Tera electron Volt) per beam in the Large Hadron Collider (LHC). In particle
accelerators, the beam circulates in a ring of magnets and is accelerated by the radio
frequency cavities. The magnets produce a bending magnetic field that rises in
proportion to the beam momentum. Hence, a precise knowledge of magnetic field
values is crucial for various subsystems, especially for beam control. Consequently,
there is a strong motivation to investigate new models to complement or even replace
measurements, when the latter is not available. At this aim, a deep neural network
architecture has been proposed for predicting the magnetic field in iron-dominated
magnets. According to the results, the proposed architecture is the one that fits the
measured field most closely, with a percent error below 0.02 %. These outcomes
outperform the current approaches present in the literature and are very encouraging
for forthcoming real-time applications.
The second case study regards the healthcare context and it was carried out in
collaboration with the University Hospital Federico II, which has provided the dataset
consisting of 170 anonymized exams of patients with fracture and 38 anonymized
exams of patients without fracture. The assessment of exams, consisting of computed
tomography images in trauma patients, is fundamental to adopt the pertinent therapy
and conduct them towards highly specialized centers. Often, patients are directed to
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the regional reference center specialized in maxillofacial trauma even if they do not
need surgical treatment. This causes incongruous hospitalizations, leading patients
to a condition of discomfort and stress. For this purpose, a deep neural network
was designed to detect fractures in the maxillofacial region of injured patients. The
tests show the network capability of distinguishing between fractured and normal
bone with an accuracy of 80 %. Even if the automated detection system cannot
replace medical staff, it can contribute to validate radiologists’ doubts and decisions,
representing a useful tool to prevent patient injury by minimizing diagnostic delays
and incongruous hospitalization.
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Introduction

Nowadays deep learning techniques are widely used both in Industry and Healthcare
fields and they are one of the main sources of success for artificial intelligence
systems. Deep learning is a sub-category of machine learning and indicates a branch
of Artificial Intelligence (AI) that refers to algorithms inspired by biological neural
networks, therefore called artificial neural networks. By means of sophisticated
algorithms, which are capable of automatically examining data such as audio, video,
images or time series, deep learning is experiencing years of rapid progress, allow-
ing, in some cases, to exceed the performance of human beings. Deep learning
techniques are widely used in fields such as image classification (e.g. by means of
objects identification in the image), autonomous driving (e.g. vehicles are able to
identify dangerous situations in the surrounding area), language recognition and
processing (e.g. real-time translation), security (e.g. facial recognition and video
surveillance), medical diagnosis (e.g. cancer cell, fracture or drug detection).

In this thesis, two cases studies are presented. As regards Industry, deep learning
methods are introduced to model the hysteretic behaviour of iron-dominated magnets,
available at CERN. The modelling of hysteresis loops is a challenging theme in
the field of computational magnetism, as a consequence of the non-linearity and
historical dependence of ferromagnetic materials. In this context, a multi-layered
neural network based on past values of input and output feedback is proposed to
model the hysteretic behaviour of iron-dominated magnets. Test results prove that
the presented NARX model is able to fit the quadrupole measured field, guaranteeing
a percent error below 0.02 %.
The second case study regards the healthcare context. In this case, deep learning
techniques are introduced to realize an automated detection system of fractures in
patients with maxillofacial trauma. The possibility of having a fracture detection
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system based on AI capable to find out the presence of fractures in injured patients
would be of great help in clinical practice. What often happens is that, if there is no
need for urgent treatment in the craniofacial region, injured patients are transferred
from the emergency room to the nearest center specialized in maxillofacial trauma-
tology. Here, the reassessment of the clinical case in a specialist setting frequently
points out the incongruity of hospitalization with often a lack of indications for
possible surgery. These patients necessitate only home medical treatments. In this
context, an automated detection system would therefore reduce treatment costs and
physical and mental distress for patients. The proposed system for maxillofacial
fracture detection is able to recognize fractured and normal bone in computed tomog-
raphy scans of harmed patients with an accuracy of 80 %. This result is particularly
encouraging given the thinness of the bones and the anatomical complexity of the
splanchnocranium area and it demonstrates the feasibility of using deep learning
techniques for the detection of maxillofacial fractures on computed tomography
images.
Part of the work described in this thesis was also previously published in [1] and [5].
The manuscript is divided in the following four chapters:

• in Chapter I, an overview on the impact of deep learning techniques in Industry
and Healthcare context has been presented;

• in Chapter II, two main application contexts in which deep learning models
can be employed have been analyzed; then, the learning process of a neural
network architecture has been described; furthermore, particular attention has
been paid to the architectures that play a fundamental role in deep learning.
Finally, transfer learning, of fundamental importance in particular scenarios,
has been presented together with the residual neural network that can be
adopted in this context as a starting point for a new model dedicated to a
specific task;

• in Chapter III, the research activity carried out at CERN has been presented.
A multi-layered neural network architecture has been proposed to model
magnetic hysteresis in the context of electromagnets;

• in Chapter IV, in the healthcare context, a deep learning model has been
proposed to automatically detect fractures in patients with maxillofacial trauma.
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The anonymized images have been obtained from the U.O.C. of Maxillofacial
Surgery of the University Hospital “Federico II”.



Chapter 1

Background: the impact of Deep
Learning in Industry and Healthcare
context

Everyone benefits from deep learning even if they often do not realize it. Facial
recognition technology allows social media platforms to help users tag or share
photos of friends [6]; search engines that suggest which movies to watch or which
items to buy based on user preferences [7]; digital home assistants equipped with a
spoken language interface that retrieves the weather or time, plays music, sets alarms
[8] and so on. As anticipated in the Introduction, deep learning is a sub-category
of neural networks, which is a sub-category of machine learning, which in turn is a
sub-category of AI, where learning is based on the assimilation of data representation.
The relationship between artificial intelligence and its subcategories is shown in
Fig. 1.1.

AI involves all the computational machines capable of performing tasks character-
istic of human intelligence. Examples of these tasks include language understanding,
planning, learning and problem solving, object and sound recognition [9].
Machine learning is essentially a way to implement artificial intelligence; an AI sub-
group that focuses on the ability of machines to receive a series of data and learn on
their own. Specifically, machine learning is the ability of a machine to learn without
being explicitly programmed. It is therefore a way to “train” an algorithm so that it
can learn from various environmental situations. A huge amount of data is required
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Fig. 1.1 Artificial intelligence and its subcategories.
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for the training in order to allow the algorithm to adapt and improve according to
the situations that occur [10]. Machine learning automates the construction of the
analytical model, using neural network methods and statistical modeling to find
hidden information in data.
Neural networks are computing systems consisting of interconnected units, called
neurons, that process information by responding to external inputs, transmitting the
related information between different units [11]. In particular, the neural networks
process the incoming information, select only the necessary ones and on the basis of
this information arrive at a conclusion.
Deep learning uses huge models of neural networks with various processing units,
capable of learning complex models through a huge amount of data. In particular,
neural networks with more than 3 layers (including the input layer and the output
layer) constitute deep learning models [12].

1.1 Deep Learning in Industrial Context

By means of neural networks and their ability to analyze data such as audio, time
series, video and images, deep learning is attracting more and more interest and is
used in a lot of different contexts. One of the main fields of application is Cyber
Security [13]. By means of deep learning, the effectiveness of IT system security
measures can be significantly increased and much more robust security systems can
be deployed. Systems based on deep learning techniques are able to identify not only
known but also unknown threats, which are detected by the system as anomalies of
the neural network recognition model. Attacks can be of various types such as spam,
malware, network intrusions, insider threats, fake data injection and so on. Deep
learning architectures are also designed to detect possible fraud [14]. These systems
are able to identify serial scammers who modify their habits to evade controls or,
for example, credit card fraud. Roy et al. in their work [15] highlight that credit
card fraud caused a loss of $3 billion for North American financial institutions in
2017. They evaluated a set of deep learning topologies able to detect credit card
fraud and proposed a framework for parameter tuning to allow financial institutions
to minimize losses by preventing fraudulent behavior.
Another application of deep learning that is very popular is the chatbot that is a
program that simulates human conversations, allowing users to interact with dig-
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ital systems as if they were speaking with a real person [16]. These systems are
mainly used for customer assistance both for purchased products and to guide them
during the purchase of products or services [17]. This solution is mainly used in
the insurance, banking and telecommunications fields. Chatbots are able to com-
municate instantly with customers, consumers, followers. Many companies have
had the opportunity to connect with a potentially unlimited number of customers,
even proactively, that is, without necessarily having to wait for an initiative from
the user himself. Other advantages consist in providing news and information in
a timely manner based on parameters provided by customers or users; answering
questions in real-time, directly solving many logistical problems; cost reduction
for online interaction with the customer; implementing targeted promotional and
marketing activities. So a well-crafted chatbot makes business life easier. However,
the disadvantages are not lacking. Chatbots are often considered to be complicated
and take a long time to understand what customers want; they may not understand a
question if it does not refer to something they have previously learned, leading the
customer to leave the chat and not to make purchases [18]. In the assistance field,
deep learning has also given rise to voice assistants such as Microsoft’s Cortana,
Google’s Assistant, and Amazon’s Alexa [19]. In this case, deep learning algorithms
are used not only to recognize people’s natural language but also to improve the
voice assistants’ performance according to the requests and behavior of the user,
so as to interact with him in an increasingly timely and relevant manner. Virtual
assistants aim to make people’s lives easier. For example, virtual assistants can buy
cinema tickets online, gather information on an event, make appointments, check
train times. Furthermore, given their ability to interact not only with people but also
with different types of wireless devices, virtual assistants are able also to control
home appliances and other connected tools, thus creating smart homes [20].
Another context in which deep learning techniques can be used with great success
is the content creation [21] such as articles, captions, essays and so on. By using
deep learning, it is possible to create systems able to write in a specific language,
learning its punctuation, grammar, spelling and even different styles of writing. In
addition, it is also possible to create systems that can replicate human handwriting
[22]. Finally, other two main fields of interest for deep learning techniques are
mobility and, more generally, industry. By means of the possibilities offered by
deep learning, self-driving vehicles have made great strides [23]. These vehicles use
computer vision to reproduce human vision and are able to recognize objects present
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in the environment around them, such as lost cargo, to move safely. Deep learning
and computer vision techniques are also used in industry [24] for the realization of
collaborative robots that support operators in production and assembly chains and in
predictive maintenance.
Specifically, computer vision aims to reproduce the tasks and functions of the human
visual apparatus [25]. In artificial vision systems, the image is acquired through
sensors that send the signal to the computer, which in turn digitizes and stores it. The
image is then analyzed by the neural network architecture that, on the base of its cur-
rent knowledge, can make decisions. These systems are based on machine learning
and machine training through supervised and unsupervised learning algorithms. The
most ambitious challenge of artificial vision concerns the ability of the system to start
from a two-dimensional image and process and reconstruct the 3D context in which it
is inserted. The three-dimensional object recognition approaches are based on neural
networks, in particular, convolutional neural networks [26]. Computer vision also
has multiple fields of application but it is in industry and manufacturing that in recent
years it is spreading more and more [27]. The diffusion of these systems is mainly
due to their ability to improve product quality controls, optimize the production pro-
cess and increase workplace safety. More specifically, one of the main applications
based on deep learning and computer vision techniques that have spread in industry
concerns the predictive maintenance [28]. In this context, machine learning and
artificial vision approaches allow robots to capture images of the various equipment
in the surrounding environment and the enormous amount of data relating to the
operating parameters (such as operating temperature, vibration, noise and so on). All
this information supports operators to assess the status of the devices in real-time and
helps to reduce unplanned downtime, preventing breakdowns. Furthermore, based on
production data (such as number of pieces produced, downtime machine, production
time, alarms and so on), machine learning algorithms are able to extract patterns that
the eye and the human mind could not capture, generating models able to understand
if a product will leave the production line with sufficient quality (Quality Check and
Anomaly Detection) [29]. The quality analysis of the products is carried out both at
the end of the production process on the completed product and along the production
line. In the latter case, the systems send the data and any alerts to report defects to
the operators.
Another area in which deep learning finds application in the industrial sector is
autonomous driving for vehicles moving in the workplace, used, for example, to
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relocate the various components along the line, in complete safety [30]. In addition,
to improve safety in the workplace, these systems are able to analyze the facility and
the behavior of the operators to report potentially dangerous situations, contributing
to the prevention of accidents [31]. Furthermore, by equipping robots with artificial
intelligence and vision systems, it is possible to replace operators in particularly
dangerous situations, improving their working conditions.
Finally, a further industrial application worth mentioning is the barcode scanning
and reading [32]. Hand-held scanners can be replaced with computer vision sys-
tems integrated with features such as optical character recognition (OCR) or optical
barcode recognition (OBR) . In this way, it is possible to optimize the production
process and assure that all components are at the right time and in the right place
along the production line.

1.2 Deep Learning in Healthcare Context

In addition to the industrial context, the AI-based technologies and, in particular,
deep learning applications have penetrated all sectors of the healthcare world, from
the improvement of the healthcare process management to the discovery of new
drugs [33, 34]. Although it is still improbable that the AI-based tool can completely
replace doctors and nurses, modern technologies have already started transforming
the healthcare industry.
The identification and diagnosis of diseases are the main fields for which solutions
based on machine learning and, in particular, on deep neural networks are used. It is
very difficult for a medical practitioner to call to mind all the information necessary to
make a rapid and accurate diagnosis, taking into account all the knowledge, including
experiments and academic papers. In this context, it is possible to feed an AI-based
system with relevant data and let the computer sift through the huge database of
information, instead of relying on much more limited human knowledge. The dis-
eases identification was therefore one of the first healthcare fields of application of
this type of technology, especially where precise diagnoses are required in a short
time with a high rate of criticality, such as oncology [35, 36]. Computer vision tech-
nologies together with hundreds of thousands of diagnostic images have improved
the recognition of breast cancer [37], melanoma [38], ocular retinopathies [39], but
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these are just a few examples of cancer that can be detected through deep learning
architectures. In this context, the AI applications are increasingly widespread and
reliable, less and less “experimental” or for the benefit of a few cutting-edge centers.
Another area where machine learning is spreading faster and faster is the realization
of personalized therapies [40–42]. The latter is able to provide more effective treat-
ment by means of a combination of individual health data and predictive analysis,
representing an area of research and experimentation of great scientific interest.
By means of huge amounts of data and diagnoses, the AI-based tool can estimate
patient risk based on the similarity of symptoms and genetic information. In fact,
by means of the analysis of big data, it is possible to predict how a patient may
respond to a certain treatment, thus turning therapeutics decisions away from a trial
and error approach and reducing health diseases and financial burdens [43]. With the
convergence of all the sensitive patients’ data towards unique government providers,
in the future it will be possible to obtain more easily individualized anamnesis in line
with the habits and lifestyle of the patient, medical records, real-time data, family
inheritance, stress, allergies and so on. Furthermore, valuable support to personal
data collection is offered by wearable devices [44]. In addition to data collection,
these devices also allow the monitoring of the user’s vital parameters (for example,
saturation and heartbeat) and can provide suggestions on healthier lifestyles, behavior
and posture [45]. Furthermore, applications based on deep learning can be used for
the creation of automatic reporting that might potentially save the doctors significant
amounts of time [46].
Deep learning is also spreading in the study of new drugs [47, 48]. It is used at
different stages of the development process: from the initial screening of chemical
and organic compost to the prediction of the success rate based on biological factors.
Even in this case, the availability of large volumes of data is fundamental to guarantee
the development of AI-based drug research, since most of the current pharmaceutical
data is proprietary [49]. However, several partnerships have been established among
pharmaceutical companies, technology companies and academia that allow AI re-
search projects based on proprietary data. One of the most significant examples is the
company Atomwise which has established collaborations with the world’s leading
pharmaceutical companies and academic entities, gaining access to information that
allows the identification of an innovative candidate drug molecule to be used for
multiple sclerosis treatments [50]. Another important project is Microsoft’s Project
Hanover which, in partnership with the Knight Cancer Institute, is developing AI
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technologies for precision cancer treatment using molecular pharmacology [51]. The
project consists of a platform capable of reviewing the literature to automatically
search for effective anticancer treatments based on patients’ specific profile [52].
In this context, machine learning techniques have several potential applications
that may help to guide clinical trial research [53]. For example, the application of
advanced predictive analysis in the identification of candidates for clinical trials
could offer a much wider range of data, including medical visits and social media,
as well as genetic information on target populations. The introduction of better
sampling procedures would lead to smaller, cheaper and faster studies [54]. Machine
learning approaches can also be used for remote monitoring [55] and access to data
in real-time [56], ensuring constant monitoring of biological signals to identify any
anomalies in time. A different possibility for these kinds of applications include
the use of electronic health records to reduce data errors and extract diagnoses and
investigation results [57], such as the machine learning-based framework to identify
type 2 diabetes subjects, realized by Zheng et al. [58].
Another field of application of deep learning algorithms is planning a radiotherapy
treatment [59]. Planning a radiotherapy treatment is an extremely complex activity
that involves various professionals and is strongly based on data analysis. The radio-
therapist oncologists outline the contours of the volume occupied by the tumor in
the images collected by the Computed Tomography (CT) scan and also the contours
of the surrounding risk organs that must be safeguarded during treatment. Medical
physicists draw up different treatment plan proposals, based on the CT images and
dose-volume objectives suggested by oncologists. The definition of a treatment
plan requires not only the indication of the direction and intensity of the several
high-energy x-ray beams generated by the machine but also the relative position
of the patient on the couch. Consequently, it is a problem with a large number of
variables (for example, define the trajectory of the arcs that the beams can follow
in order to distribute the irradiation over different healthy regions to minimize the
damage to the healthy organs and at the same time concentrate the crossing of the
beams precisely on the tumor to be affected) and different constraints (for example,
the amount of radiation to be delivered in the volume occupied by the tumor as well
as that acceptable to surrounding healthy tissues and organs). From this procedure, a
series of plans are proposed and are subjected to the evaluation of the oncologists
who have the final decision on the treatment. The possibility offered by machine
learning algorithms is to propose a radiotherapy treatment plan, using a database



12 Background: the impact of Deep Learning in Industry and Healthcare context

containing a large number of patients and related treatment plans. McIntosh et al., in
their work [60], propose a machine learning algorithm that provides radiotherapy
treatment plans for the treatment of prostate cancer. The input of the model consists
of the images collected from the CT scan of a new patient; the algorithm compares
them with a database of patients with the related radiotherapy plans and outputs the
new treatment plan. The results of the study show that this AI-based tool may be a
useful technology in clinical practice as long as it is subjected to all quality controls
that are already performed on the plans developed by human experts to foster trust in
these tools and ensure the best treatments possible for patients.
Another application of deep learning technologies is the monitoring and prediction
of epidemics around the world [61]. Data sources include data collected from satel-
lites, real-time social media updates, historical web information and so on. For
example, Punn et al. in their work [62] explored deep learning models to understand
the everyday exponential behaviour of COVID-2019 along with the prediction of
future spread across the nations, by utilizing real-time data from the Johns Hopkins
dashboard. Another example is provided by Kalipe et al. that in their work [63]
focus on deep learning to help predict malaria outbreaks based on climatic factors,
such as temperature and humidity. Predicting the severity of epidemics is particularly
crucial in third world countries, which often lack medical infrastructure, education
opportunities and access to medical care. Therefore, an approach based on deep
learning could be used in the future to predict malarial epidemics and enable the
necessary preventive measures to be taken to avoid the loss of life due to malaria or,
more generally, epidemics.
“Virtual” medical assistants represent another important application of machine
learning technologies in the Healthcare world [64]. The categories of users who
would benefit most from the virtual assistants are patients with chronic diseases,
the elderly and patients in rural areas where access to care is limited [65–67]. One
of the advantages of using virtual medical assistants is that patients may feel less
embarrassed and more honest when sharing private details with them rather than a
human for fear of being judged. Furthermore, the nursing staff is often overburdened
with responsibility, which damages patients’ well-being and increases the probability
of patient safety incidents. In this context, by automating repetitive tasks, virtual
nurses can substitute human staff, reducing the risk of accidents while performing
their work. Finally, virtual nurses can monitor post-operative patients to make sure
their condition does not get worse. They can answer patient questions, collect vital
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signs and make an appointment with the doctor. They are available day and night
every day of the week and are programmed to show empathy. This approach leads to
economic savings for the healthcare system and an improvement of the quality of
services provided [68].
Alongside the benefits, there is a certain number of limitations that deep learning has
to face in the healthcare context. First of all, there is the issue of the availability of
data. One of the principal aspects in the construction of a deep learning model is to
be able to draw on a dataset that is representative of all possible subjects, so that it is
as heterogeneous as possible [69]. The best case would be represented by training
the models on a set of data that are very similar, if not identical, to those listed in
electronic medical records. Unfortunately, it may happen that only small datasets
are available, often collected from small clinical centers, sometimes of bad quality
(characterized by noise, generated by erroneous data) [70].
Another problem that deep learning faces is privacy. As mentioned above, having
datasets consisting of correctly compiled medical records would be ideal. However,
these data are protected by the legislation that considers them as sensitive informa-
tion. Therefore, it is more and more difficult to find real data in this context due
to strict ethical and legal requirements to safeguard patient privacy [71], making
machine learning models more difficult to define. A solution could be to hand over
the clinical data to the patient himself, who will then decide what use to make of it
[72].
Another important aspect is the impact of potential biases on the deep learning algo-
rithms [73]. The biases can be generated by missing data and patients not detected
by algorithms, misclassification and measurement error, sample size and underes-
timation. These biases and gaps in the dataset might contribute to socioeconomic
disparities in the healthcare context. Therefore, during the development of a machine
learning system, it is essential to understand how much these biases, represented by
the data, will influence the final model and which tools to use to cope with this issue
[74].
An important point in using machine application in the healthcare context consists
in the sufficient experience needed for the final evaluation of the system’s output.
Doctors and patients must understand the limitations of these tools, such as the im-
possibility of a certain model to be able to generalize about another type of problem.
It can be very dangerous to blindly rely on machine learning models since it may
lead to erroneous decisions. For example, a doctor could underestimate a delicate
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case if the algorithm returns a wrong result, below a certain alarm threshold or if
the virtual assistant answers the questions of patients and doctors incorrectly [75].
Finally, it is important to have a strong interaction between different teams of doctors,
biologists and computer scientists. They must operate together so that they can real-
ize usable models in their respective fields. If there is no collaboration between the
teams, there is the risk that computer scientists build systems unsuitable for doctors.
Finally, it must take into account not only research works published in traditional
scientific journals but also computer manuscripts presented in conferences such as
ICML (International Conference on Machine Learning) and NeurIPS (Conference
on Neural Information Processing Systems) , which bring important innovations in
the machine learning field for the healthcare context.
In conclusion, machine learning, and in particular deep learning, is increasingly infil-
trating the medical field, playing an important role in health improvement. Machine
learning systems introduce numerous advantages such as the streamlining of medical
and bureaucratic procedures, more accurate and rapid diagnosis, the acquisition of
global therapeutic knowledge, greater specialization of medical personnel. However,
the availability of quality data is necessary (not always possible); it is necessary to
address the lack of shared data collection procedures and, finally, the presence of the
human component in the final evaluation of the diagnosis remains fundamental to
avoid any errors in the system outcomes.



Chapter 2

Deep Learning and the power of
Transfer Learning

As anticipated in the previous chapter, deep learning uses artificial neural networks
for learning, by means of multi-layer architectures that are capable to process infor-
mation and identifying features to solve complex problems. In the following sections,
the two principal kinds of problems that machine learning, and in particular neural
network models, can cope with are described. Then, the learning process of a model
is described and the main deep learning architectures, feed-forward and recurrent,
are introduced. Finally, the possibility of adopting cross-validation techniques to
perform hyperparameters optimization is explored and, to conclude, the transfer
learning approach is presented.

2.1 Application Contexts

As anticipated in Chapter 1, there are a lot of different tasks for which machine learn-
ing, and in particular neural networks and deep learning, can be adopted successfully.
In this section, two main tasks are presented: classification and regression tasks.
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2.1.1 Classification Problems

In classification tasks, the machine learning algorithm has to identify the category or
class, k, to which a certain input belongs. In order to perform the task, it generates a
function f : Rn→{1, ...,k}. In the field of machine learning, this is fundamentally
reflected in the content of the dataset, a collection of input data and relative targets
that can be used by a machine learning algorithm for learning and prediction purposes,
and on the choice of the loss function. In this case, the dataset targets are discrete
values while the loss function generally corresponds to the Cross-Entropy or its
variants. Object recognition is an example of classification problems: the image,
typically identified by a matrix of pixel brightness values, represents the input, while
the discrete value, representing the object in the picture, is the output of the model.
For example, Affonso et al. in their work [76] used deep learning for biological image
classification, in particular to classify the quality of the wood board. They compared
deep learning techniques with traditional machine learning algorithms (such as
nearest neighbors [77], support vector machines [78]). The results showed that deep
learning techniques have reached predictive performance higher than traditional
classification techniques, especially in the most complex scenarios. Another example
is provided by Lecun et al. [79] that used deep learning techniques for document
recognition, in particular for handwritten character identification. Also in this case,
deep learning algorithms outperformed all the other traditional techniques. Another
application context in which deep learning has been applied successfully is face
recognition, as shown in [80], where the authors proposed deep neural networks to
perform facial landmark recognition and unrestricted face detection. This technology
is the basis for automatic image tagging [81]. The research studies presented above
are just a few examples of the many application contexts where deep learning can be
successfully adopted, outperforming the traditional approaches.

2.1.2 Regression Problems

In the case of regression problems, machine learning, and in particular neural net-
works and deep learning, has to forecast a continuous value, given a certain input. In
order to perform the task, it generates a function f : Rn→ R. The type of this task
is analogous to a classification problem, apart from the format of the output, which
is a continuous value and not a discrete one, and the loss function that generally
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corresponds to the Square Error or its variants.
Regression problems are present in a great variety of domains. An example is offered
by Sreehari et al. in the context of environmental monitoring. In their work [82], they
used multiple linear regression to forecast climate variables, in particular rainfall
prediction, that can be useful for farmers to make appropriate planting decisions or
to evaluate the possibility of floods or droughts. Another application field is finance
and marketing. In this context, Gopalakrishnan et al. [83] proposed a method to
examine the sales of a big supermarket and forecast future sales in order to improve
their incomes. Deep learning techniques for regression problems are also used in the
energy field as shown in Ref. [84], where an ensemble of deep learning algorithms
has been presented to estimate the electricity load demand, which is crucial for
implementing the energy policies. Finally, deep learning for regression tasks has
been applied also to medical imaging. Suter et al. in their work [85] used deep
learning algorithms to predict the survival time for patients with high-grade brain
tumors.

2.2 How does the learning process work?

Deep learning operates with artificial neural networks in such a way as to allow
machines to learn more “deeply” by means of the use of multiple layers. Artificial
neural networks exploit hidden layers to create multiple layers of abstraction. Each
layer adds more and more detailed information so that the network is able to provide
reliable output and can solve complex pattern recognition problems. As the number
of hidden layers and input data increases, the output of the neural network will be
more and more precise: deep learning systems improve their performance as the data
received increases.
As described in Sec. A.1, the neuron can be identified as the nonlinear function of
a weighted linear combination. The parameters of the linear combination are the
weights, W, and they represent the parameters of the model. The learning (or training)
of the network aims to estimate the weights and once they have been estimated the
network can be used for prediction.

There are four main types of learning processes:
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• Supervised learning [86]: in this case, the model is built from training data,
consisting of input data and the relative targets. Therefore, in this type of
learning, during the training process, the desired output signals are already
known. However, the training data do not provide information regarding the
behavior of the other intermediate layers. These layers are used by the learning
algorithm to generate the desired output, but what each intermediate layer
should do is not specified by the training data. Therefore, it is the role of the
learning algorithm to determine how to employ these layers.
From the analysis of the input data and the relative target, the network learns
associations and rules and uses them to make predictions in the future. Classi-
fication and regression techniques are based on this type of learning;

• Unsupervised learning [87]: in this type of learning the inputs are provided
without the relative targets. The machine learning algorithm will have to find
a structure within the data and extrapolate significant information to make
predictions;

• Semi-supervised learning [88]: considering supervised and unsupervised learn-
ing, semi-supervised learning is a hybrid model in which of all the data present
in the training set, only some of them are paired with their respective tar-
gets. The network will find the connections between the remaining inputs and
outputs;

• Reinforcement learning [89]: in this case, there are no associations between
incoming and outgoing inputs and the network learns to improve its perfor-
mance through interaction with the environment. Once a certain goal to be
achieved has been established, actions that approach the goal are reinforced,
while those that move away from it are penalized. Through this mechanism,
the network learns to distinguish the right actions from the wrong ones. An
example in which reinforcement training is used successfully is the training of
a system for the game of chess.

In the case of supervised learning, the basic idea of the training process relies on
the comparison between the target and the predicted output of the neural network
that gives rise to an error, used to better adjust the weights with an optimization
technique. The goal of the neural network is to find the best weights in order to
minimize errors.
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2.2.1 Gradient Descent Optimization

The optimization process consists in minimizing a function f (x), acting on x. In this
case, the function to be minimized is called error function or loss function or even
cost function.
The derivative of a function y = f (x), with both x and y real numbers, is identified by
f ′(x) or dy

dx and provides the slope of the function f (x) at x. It provides information
on how to change the input x to have a corresponding variation in the output y, since
f (x+ ε) ≈ f (x)+ ε f ′(x). Consequently, it is possible to reduce f (x) by applying
iteratively little variations to x with the opposite sign of f ′(x). This procedure is
known as gradient descent and it is the optimization technique that is mainly used in
neural networks [90].
If f ′(x) = 0, there is no information regarding the direction in which to move. In this
case, x values are called stationary points (local minimum/maximum). For a local
minimum, it is not possible to further minimize the function with infinitesimal steps.
Instead, if f (x) reaches the absolute lowest value, then the corresponding x value
is called global minimum. In deep learning architectures, there may be multiple
local minima, which are not optimal, making the optimization process very difficult,
particularly when x is multidimensional.
Often, it can happen that the function has n > 1 arguments, that is f : Rn→ R, with
still one scalar output. In this case, partial derivatives are used for the optimization
procedure. ∂

∂xi
f (x) is the partial derivative that evaluates how the function f (x)

changes when only the xi variable increases at x. In this context, the term gradient is
introduced to represent the derivative with respect to a vector. In fact, the gradient of
function f (x), ∇x f (x), contains all the partial derivatives, generalizing the concept
of derivative. The i-th element of the gradient represents the partial derivative of
function f (x) with respect to the variable xi. In this case, stationary points are the
points for which all the elements of the gradient are zero. The directional derivative
with direction u, that is a unit vector, is defined as the slope of f (x) in direction u. In
order to minimize f (x), the direction in which the function decreases in the fastest
way should be chosen and it can be demonstrated that it happens when u is oriented
in the opposite direction of the gradient [91]. This means that the function can be
minimized by moving along the orientation of the negative gradient. In this case,
the gradient descent algorithm identifies the next point x′ as x′ = x− ε∇x f (x), with
ε the learning rate, which is a positive scalar that identify the step size and can be
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chosen in many different ways [92]. The choice of learning rate is, in fact, crucial
for the optimization process. If the learning rate is too large there is the risk to jump
over minima; on the other hand, if the learning rate is too small, then the algorithm
will take a long to converge with the possibility to get stuck in a local minimum. To
avoid these issues, usually, the learning rate is varied over the course of the training
process.
In this case, the gradient descent will converge if all the elements of the gradient are
zero or, practically close to zero.
So, gradient descent is an iterative algorithm and at each iteration i, the next value of
θ is given by Eq. 2.1:

θ
i+1 = θ

i− ε
i
∇ f (θ i) (2.1)

where θ contains all the weights of the artificial neural network, ε is the learning
rate and ∇ f (θ i) is the gradient with regards to the values of the weights at iteration
i. The technique used for estimating the gradient of the error function is the back-
propagation rule. It is the chain rule [93], in the sense that the derivative of a
composed function with regards to the input, f (g(x)) can be computed by multiplying
two derivatives: the derivative of the external function with regards to the internal
one (d f

dg ) and the derivative of the internal function to regards to the input (dg
dx ), as

shown in Eq. 2.2:

d
dx

f (g(x)) =
d f
dg

dg
dx

(2.2)

In a multi-layer neural network (see Section A.1 in Appendix A for more details
about multi-layer neural networks), the output y can be represented as a function
of the previous layers y = f n( f n−1(...( f 1(x)))). It is a composed function, where
the more external function, f n, represents the last layer of the network, while the
innermost function is linked with the first layer of the network. The derivative of the
output with regards to the input is given by Eq. 2.3:

dy
dx

=
d f n

d f n−1
d f n−1

d f n−2 ...
d f 1

dx
(2.3)
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Since the computation of the derivative of the output with regards to the input,
or to intermediate values, is performed from the last layer of the network to the
first layer, the information is back-propagated, hence the name of back-propagation
algorithm.

Depending on how much data are used to calculate the gradient of the cost
function, three variants of the gradient descent optimization exist: batch gradient
descent; stochastic gradient descent and mini-batch gradient descent. On the basis of
the quantity of data chosen, there will be a trade-off between the time needed for the
parameters update and the accuracy of the update itself.
During the batch gradient descent optimization, the estimation of the gradient of
the cost function is performed for the whole training dataset. This means that the
weights update is executed after the presentation to the network of all the data of the
training dataset. The presentation of the entire dataset to the network together with
the weights update represents one epoch. Since the gradients for the total dataset
must be computed to perform only one update, this type of optimization can be slow
and hardly practicable for huge datasets. Furthermore, it is not possible to add new
data on the fly to the training dataset, updating the model online.
On the contrary, the stochastic gradient descent (SGD) executes a weights update
for each sample of the training set. This means that after the presentation of each
sample of the dataset, the weights of the network are changed. SGD avoids redundant
samples, executing one updating at a time, contrary to the batch gradient descent
that executes redundant calculations for huge datasets, recalculating gradients for
similar samples, which do not contribute much to the learning, before each update.
Consequently, this optimization technique is faster than the previous one and it can
be adopted to online updates of the training dataset.
Finally, the last optimization algorithm is the mini-batch gradient descent. In this
case, it performs an update for each mini-batch containing n training samples. So,
instead of using too many samples for one epoch, as in the case of the batch gradient
descent, it uses fewer samples but more than one, as in the SGD optimization. The
idea is to shuffle the training data set to avoid pre-existing order of samples and, then,
to partition the training dataset into mini-batches of a certain batch size. Usually,
the size of the mini-batches varies from 50 up to 256, but it depends on the specific
application.
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2.3 Deep Learning Architectures

Multi-layer neural networks with more than one hidden layer are called deep neural
networks. The number of layers represents the depth of a network hence the term
“deep learning”. In the following sections, some examples of deep neural networks
are presented.

2.3.1 Convolutional Neural Networks

Convolutional Neural Network (CNN) is an example of multi-layer neural networks,
finding application in a lot of domains. CNNs can be used in classification problems
[94], meaning that given an image the network’s outcome is the probability to belong
to one class; in image retrieval problems [95], in which the network receives in
input an image and returns information about that image (such as Google’s engine
research); for detection problem [96], in which the network is able to recognize the
presence of a particular object; in segmentation problem [97], in which the network is
able to recognize the elements present in the image; in image captioning application
[98], where the CNN receives the image in input and its output is the caption of the
image, which try to explain the content of the image; in image colorization [99],
where the neural network, given a grayscale photograph as input, returns a plausible
color version of the image; in self-driving cars, the CNN can support autonomous
driving by identifying, for example, road cracks and objects along the way [100].
CNN can be also fed with input videos [101], considering them as a sequence of
images or, in other applications, CNN can be used to provide a 3D representation of
an image, starting from its 2D representation [102]. In this case, the neural network
learns to infer 3D representations of the world by means of a training dataset of 3D
movies [103].
CNN is a deep learning algorithm that learns complex representations of visual data
by means of a vast amount of data. Its architecture is inspired by the human visual
system: single neurons react to stimuli only in the narrow area of the visual range
that is the receptive field; the overlapping of these fields covers the whole visual field.
The CNN learns a large number of layers of transformations, applied one on top of
the other to extract an increasingly more sophisticated representation of the input
data. Assigning importance, through learnable weights and biases, to the different
features and elements present in the image, it is able to distinguish one image from
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Fig. 2.1 A CNN architecture to recognize handwritten digits.

another. A general CNN architecture used to classify, for example, handwritten
digits is shown in Fig. 2.1.

There are four main elements in a CNN architecture: Input Data, Convolutional
Layer, Pooling Layer and Classification Layer. As shown in Fig. 2.1, the network
is essentially made up of a chain of Convolutional and Pooling Layers, alternating
one after the other. In particular, the early convolutional layers are responsible for
catching low-layer features, while the final convolutional layers are able to capture
high-layer features.
In the following paragraphs, each layer type is described in detail.

Input Data

The input layer consists of a data vector representing the pixels of the input image.
For example, in the case of a color image of 28x28 pixels, the input vector must have
a length of 28x28x3, where 3 is the number of color channels. In fact, for each pixel
of the 28x28 size image, there will be 3 values that represent the three colors of the
image in RGB format (Red, Green and Blue), as shown in Fig. 2.2.
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Fig. 2.2 Example of input data: a 5x5x3 RGB image.
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One might think of using a fully connected network, in which there is no loss of
information. The problem is that a fully connected network leads to a combinatorial
explosion in the number of nodes and connections required. With a very small 28x28
pixel color image, it would lead to already have 2 352 nodes in the first layer (28x28
pixels x 3 color channels), with 2 352 connections each. An image with a more
reasonable size of 1 000×1 000 would lead to one million nodes with one million
connections for each node. Therefore, this solution would not be scalable and totally
unrealistic to implement. Conversely, by using a CNN it is possible to scale down
the images into a way that is easier to handle while retaining features that are crucial
to making a good prediction. Consequently, the CNN represents the best architecture
not only for learning features but also for being scalable to huge datasets, typical of
classification problems.

Convolutional Layer

The convolutional layer is the main layer of the network. Its goal is to identify
patterns, such as vertical and horizontal lines, corners, curves, circles or squares
represented in the input image. In each convolutional layer one or more filters can
be applied: the greater their number, the greater the complexity of the features that
can be identified. The main component of the convolutional layer is the digital
filter, or kernel, a small mask that is scrolled over the different positions of the input
image; for each position, an output value is generated by executing the scalar product
between the mask and the portion of the input covered (Fig. 2.3).

In Fig. 2.3, the filter is represented by a 3×3 matrix. Therefore, the filter will
examine only a portion (receptive field) of the 5x5 input image. Moving on, the filter
shifts to the right with a given stride value until it scans the complete width of the
image. The stride controls how a filter convolves surrounding the input volume and
represents the number of pixels by which the filter shifts (in this case, stride is 1,
which means the filter convolves surrounding the input volume by shifting one pixel
at a time). Then, it moves to the beginning (left) of the next line of the image and,
with the same stride value, it moves, repeating the process until the whole image is
explored.
In the case of images with more than one channel (for example, RGB), the filter must
have a depth equal to that of the input image. Therefore, matrix multiplication will
be performed between the n-th filter and n-th slice of the input image ([F1, I1]; [F2,
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Fig. 2.3 Scalar product between a 3x3 filter and a portion of the input covered.

I2]; [F3, I3]). After that, all the scalar products are summed with the bias to have a
final squashed one-depth channel feature matrix output.

So in the end, the image will be scanned piece by piece by the filter, obtaining
a smaller matrix (in this case, 3x3), known as feature map, that is the output of the
scalar products between the mask and the portions of the input covered. In this case,
the feature map size is 3x3 and, in general, it can be computed by Eq. 2.4:

Output size =
(I−F)

S
+1 (2.4)

where I is the height/width of the input image (in this case, it is 5), F is the filter
size (in this case, it is 3) and S is the stride.
In the previous case, the resulting feature map has reduced dimension with respect
to the input size. However, it is possible to have a feature map of the same size as
the original image by using zero padding. Zero padding pads the input with zeros
around the border. If stride is 1, in order to have the result of the convolution of the
same input dimension, the zero padding must be set to:

Zero padding =
(F−1)

2
(2.5)
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Fig. 2.4 Feature map transformation after a ReLU layer.

In this case, a single pad is sufficient to have a feature map of 5x5 size. Zero
padding can be used, for example, in the initial layers of the network to retain as
much information regarding the original input volume in order to extract low-level
features. By adding zero padding, the general formula to compute the feature map
size is given by Eq. 2.6:

Output size =
(I−F +2P)

S
+1 (2.6)

where P is the padding.

Typically, after a convolutional layer a nonlinear layer, or activation layer, is
added immediately thereafter and it can be considered an integral part of the convo-
lutional layer (that’s the reason why in Fig. 2.1 there is only the convolutional block).
The goal of this nonlinear layer is to include nonlinearity in a network that essentially
has just been performing linear operations in the convolutional layers. The Rectified
Linear Unit (ReLU) is used as a nonlinear function because of its computational
efficiency [104] and aims to remove previously obtained non-useful values. In fact,
applying the function y=max(0, x) to all of the input values, this layer just changes
all the negative values of the activation map into zero, as shown in Fig. 2.4.
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Fig. 2.5 Max and Average Pooling.

Pooling Layer

Typically, each convolutional layer is followed by a pooling layer which aims to
reduce the input size [105], making the representations smaller and more manageable.
There are two kinds of pooling: max pooling and average pooling. The former
considers a filter and a stride of the same length. Then, it applies the filter to the input
matrix and outputs the maximum value from the portion of the input covered by the
filter. Meanwhile, the average pooling returns the average of all the values contained
in the part of the image covered by the filter. In Fig. 2.5 is shown an example of max
and average pooling.

Classification Layer

The classification layer is the one that actually performs the classification of the input
images. It is able to learn nonlinear combinations of high-level features. After the
last pooling layer, the input image is flattened into a column vector to be in a suitable
form for the Multilayer Perceptron (MLP), (see Section A.1 in Appendix A for more
details about MLP) that characterizes the last part of the network. The flattened
output is therefore sent to a feed-forward neural network and the back-propagation
is applied to each iteration of the training. After a series of epochs, the network is
able to recognize dominating and specific low-level features in the input images that
allow it to classify them, using the softmax activation function of the last layer. The
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Fig. 2.6 TDNN block diagram.

softmax function [106] transforms a vector of N real values (they can be positive,
negative, zero or greater than one) into a vector of N real values, between 0 and 1,
that sum to 1. So they can be interpreted as probabilities and the CNN will output
the class to which the input image belongs with the highest probability.

2.3.2 Time Delay Neural Network and Nonlinear Autoregressive
Exogenous Neural Network

In this paragraph, other two examples of deep neural networks are outlined. The
first example is represented by the Time Delay Neural Network (TDNN), shown in
Fig. 2.6. In this architecture, past observations of the input are added to the current
input data to model long term temporal dependencies with training times comparable
to standard feed-forward deep neural networks [107].

In a TDNN architecture, the basic unit of a neural network, which calculates
the weighted sum of the inputs to pass it throughout a nonlinear function, includes
also delayed values of the input x, xt−1 until xt−N [108]. If there are m input values,
each input value will be considered together with its N delayed values, as shown in
Fig. 2.7.

In this case, there will be different weights for each input and its delayed values.
For instance, if N = 2 and m = 16, then 48 different weights are needed to calculate
the weighted sum. By means of the possibility to introduce past values of the inputs,
in TDNN architectures the neurons are able to make a comparison between the
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Fig. 2.7 TDNN basic unit.

current input and its past history.

The second example is the Nonlinear Autoregressive Exogenous Neural Network
(NARX) [109], shown in Fig. 2.8. This type of architecture relies not only on the
past observation of input data but also on temporal output feedback.

Compared to other recurrent neural models (see Section A.2 in Appendix A for more
details about recurrent neural networks), which have feedback from hidden neurons
[110], the NARX architecture has feedback that comes only from the output layer.
Nevertheless, it has been demonstrated that NARX networks can be used instead of
conventional recurrent networks without any computational loss and that they are
computationally powerful at least as powerful as Turing machines [111].

2.4 Hyperparameters Optimization through Cross-
Validation techniques

Almost all the machine learning models are characterized by a wide number of
parameters, called hyperparameters, that need to be specified [112]. The tuning of
the hyperparameters is not trivial and no hard-and-fast rules exist for guaranteeing
the optimal result on a certain dataset.
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Fig. 2.8 NARX block diagram.

Examples of hyperparameters for deep learning architectures are the number of
layers, the number of nodes per layer, the size of filters, learning rate, described in
Sec. 2.2.1, weight decay and dropout. Weight decay [113] consists in adding a term
to the error function of the model to penalize the network’s weights by shrinking
them during the back-propagation. This mechanism helps the network to generalize
better, preventing the model from fitting the noise of training data. Dropout [114] is
another technique used to improve the network’s generalization. In this case, neurons
are randomly dropped out together with their connections during the training process.
This mechanism prevents neurons from co-adapting and consequently resulting in an
overly specialized model on a specific training dataset (overfitting problem [115]).
Different sets of hyperparameters may give rise to different models and a model
selection process can be used to select the best performing model. There are different
model selection techniques that can be adopted but the most common procedure is
the K-Fold Cross Validation.
The term cross-validation refers to the fact that a crossing between the training and
validation sets is performed in subsequent rounds. In fact, the idea is to test each
sample of the dataset and, therefore, is especially used in the case of small datasets.
On the other side, the term K-fold refers to the fact that the iteration over a dataset
is repeated K times. During each round, the dataset is split into K sets: one set
is employed as validation set, while the remaining K−1 sets are used together as
training set.
In order to understand how the K-Fold Cross Validation can be used as a model
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Fig. 2.9 K-Fold Cross Validation process for model evaluation with K=5.

selection technique, it may be useful to understand before how the K-Fold Cross
Validation can be used for model evaluation, as shown in Fig. 2.9.

In this case, the 5-Fold Cross Validation is used with a fixed hyperparameters
set. In each round, the learning algorithm trains the models on the training folds,
giving rise to five different models, fitted on distinct but partially overlapping training
sets. On the contrary, the five resulting models were evaluated on non-overlapping
validation sets. The final cross-validation performance can be calculated by means
of the arithmetic mean of the K different performances resulting from each iteration.
After having presented the K-Fold Cross Validation for model evaluation, it is
possible to proceed to describe the K-Fold Cross Validation process for model
selection, which is the most common case this technique is used for.
The idea is to keep a separate set for test that do not contain samples already included
in the training set. In Fig. 2.10, the K-Fold Cross Validation for model selection is
presented.

The first step of the process consists in evaluating the models characterized
by N different hyperparameters sets. Hence, for each hyperparameters set, the K-
Fold Cross Validation procedure is performed on the training set, which consists of
training data and training labels, generating N models with different performances.
In the second step, the hyperparameters set that returned the highest performance
during the K-Fold Cross Validation is selected and the model is trained on the entire
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Fig. 2.10 K-Fold Cross Validation for the model selection process.

training set using the selected hyperparameters set. Finally, during the last step, the
test dataset is used for the final evaluation of the model obtained in the previous step.

2.5 Transfer Learning

Building and training neural networks from scratch necessitates large datasets as well
as enormous computational resources. For example, CNNs for image classification
are trained on billions of images, using several servers running for multiple weeks
[116]. This process is not always practicable especially for most medical researchers.
Transfer learning allows to overcome this difficulty, adopting the extremely fine-
tuned characteristics of CNNs, trained on billions of data, as a baseline for a new
model [117]. The idea, shown in Fig. 2.11, is to keep the weights of a network that
has been trained on a huge amount of data and to “fine-tune” the model with the
specific dataset of a certain case study. In order to fine-tune the network, the last
layer of the pre-trained network will be replaced with a new one characterized by
random weights, to let it adapt to the specific domain and target task. At this point,
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Fig. 2.11 Block diagram representing the concept of transfer learning.

all the weights of the other layers are freezed (in order to not change them during the
training of the network) and the network is trained normally.

The idea on which transfer learning is based is that the first layers of a network
extract low-level features, such as edges and curves, which are present in all the
images, while the next layers are able to extract increasingly complex features up
to the last layers of the network that extract high-level features to carry out the
classification of the image. Since every network needs to detect curves and edges,
rather than using random initialization of weights for training the whole network, it is
appropriate to use the weights of the pre-trained model, freezing them and focusing
the training on the more important layers for the final image classification, which are
the last ones.
A relevant aspect in using the transfer learning approach is the choice of the pre-
trained model, which is crucial to reach good performances in the new domain. For
instance, in case of image classification problems, several pre-trained models are
available (like Resnet [118], AlexNet [119], Inception-v3 [120]), trained on huge
datasets such as ImageNet [121]. Conversely, for other types of tasks, different
models must be chosen: for example, for the text classification task, pre-trained
architecture such as Word2Vec [122] and BERT [123] can be employed.
Residual Network (ResNet) is an example of CNN architecture that can be used
as pre-trained network for image classification. The deep CNN won in 2015 the
Challenge “ImageNet Large Scale Visual Recognition” (ILSVRC) [124]. There are
several ResNet variants that differ not only for the number of layers but are often
novel architectures, such as ResNeXt [125], or Densely Connected CNN [126]. In
particular, the training of ResNet50 was performed on a dataset consisting of more
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than a million pictures from the ImageNet database [127]. The neural network has
50 layers and is able to classify images of 1 000 different object categories, such
as mushroom, castle, apron and several species of animals (dog, spider, cat, etc.).
Consequently, the neural network has learned a huge quantity of features over a large
set of images. The images used as input of the network have a size of 224-by-224.
The ResNet50 architecture is characterized by 4 stages:

• Initial convolution with kernel size of 7x7 and max-pooling with kernel size
of 3x3;

• 9 convolutional layers:

– first convolutional layer with kernel size of 1x1 and 64 different kernels;

– second convolutional layer with kernel size of 3x3 and 64 different
kernels;

– third convolutional layer with kernel size of 1x1 and 256 different kernels;

These three convolutional layers are repeated in block three times;

• 12 convolutional layers:

– first convolutional layer with kernel size of 1x1 and 128 different kernels;

– second convolutional layer with kernel size of 3x3 and 128 different
kernels;

– third convolutional layer with kernel size of 1x1 and 512 different kernels;

These three convolutional layers are repeated in block four times;

• 18 convolutional layers:

– first convolutional layer with kernel size of 1x1 and 256 different kernels;

– second convolutional layer with kernel size of 3x3 and 256 different
kernels;

– third convolutional layer with kernel size of 1x1 and 1 024 different
kernels;

These three convolutional layers are repeated in block six times;

• 9 convolutional layers:
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– first convolutional layer with kernel size of 1x1 and 512 different kernels;

– second convolutional layer with kernel size of 3x3 and 512 different
kernels;

– third convolutional layer with kernel size of 1x1 and 2 048 different
kernels;

These three convolutional layers are repeated in block three times;

• Average Pooling layer and a fully connected layer characterized by 1 000
neurons with a softmax function in the end.

Using pre-trained models for the learning process offers several advantages such
as reducing the training time (deep learning network’s training takes a very long
time in case of millions of data); saving computational resources (deep learning
network’s training often needs powerful resources) and less data is needed for train-
ing. Although transfer learning has its advantages, it also has its limits. One of the
major limitations in using transfer learning is the issue of negative transfer [117].
If a model performs less well after transfer learning, then a negative transfer has
taken place. It is possible to use transfer learning only if the target problem and the
initial problem are sufficiently similar. If the training dataset of the new domain
is not enough related to the dataset the pre-trained network has been trained on,
the model may have worse performance than the expected one. At the moment,
no explicit standards regarding what kind of tasks are sufficiently related (or how
algorithms identify related tasks) exist, making it difficult to prevent negative transfer.



Chapter 3

Deep Learning for Industry:
Hysteresis Modelling in
Iron-Dominated Magnets

3.1 Background and Motivation

The non-linearity and historical dependence characterizing ferromagnetic materials
cause hysteresis modelling to be a complex aspect of computational magnetism
[128–134]. Such problem is typically evaluated in presence of sinusoidal current
waveforms, that characterize electrical machines [135–137], while it is relatively un-
explored in presence of more complex excitation current waveforms that characterize
the cyclical operation of particle accelerators. An example of this kind of waveform
is shown in Fig. 3.1.

Such waveforms consist of almost periodic sequences that include pulses with
trapezoidal shapes. The slopes, corresponding to the ramp-rates of the cycle, vary
from one cycle to another as well as plateaux (flat-top and flat-bottom) levels. The
latter corresponds to the hysteresis loop reversal points; their succession widely
influences the relationship B(I), between the magnetic field and the excitation current.
In such circumstances, B(I) is very complicated and difficult to forecast. Within
particle accelerators the radio frequency cavities accelerate the beam that circulates
in a ring of magnets. These magnets produce bending magnetic fields that increase
proportionally to the beam momentum. Consequently, “the precise knowledge of
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Fig. 3.1 Typical excitation waveform in the Low Energy Ion Ring (LEIR) accelerator.
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the magnetic field, B(t), at any instant of time during a magnetic cycle is critical not
only for beam and power supply control but also for beam diagnostics and qualitative
feedback to various operators. The required Normalized Root Mean Square Error
(NRMSE) for the correct functioning of the accelerators complex is typically 0.01 %
[138]” [1].
The superconducting dipoles of the LHC produce high field, reaching 8.4 T, but “it is
relatively unaffected by perturbations” [139]. Then, a semi-empirical model (FiDeL)
[139] is able to model the relationship between magnetic field and excitation current,
B(I), accurately. However, in iron-dominated magnets, which represent the most
common case, the iron core gives rise to nonlinear effects such as hysteresis, eddy
currents that may be of the order of the percent or more. In these cases, the problem
of the modelling of the B(I) relationship becomes more difficult [140, 141]. Recent
attempts using Preisach models [142, 143] could not achieve an accuracy better than
0.2 %, while Jiles-Atherton differential models [144] are shown to be unsuitable for
their difficulty in dealing with “minor hysteresis loops”. Alternatively, measurements
may be performed in real-time in reference magnets, powered in series with the
accelerator rings. For example, at CERN, six of the synchrotrons operate by means
of the feedback from measurements performed by real-time magnetic measurement
systems (the so-called “B-train” [145]). However, these kinds of measurement
systems are often expensive and complex to realize, and in some cases difficult to
deploy (for instance, due to absence of sufficient space to install sensors, which
are used for the measurements, near the vacuum chamber crossed by the beam).
Consequently, there exist a solid motivation for exploring new types of models
to support or rather substitute measurements. Moreover, even if it is possible to
implement and deploy real-time measurement systems, such models may be useful,
for example, during periods of hardware maintenance or shut-down of the machines,
when the real-time measurement is not available.
Recently particular interest has been addressed to artificial neural networks, currently
employed in a lot of fields relative to time-series forecast with impressive results
[146–148, 111], while they are still relatively uninvestigated in magnetic applications.
For example, in Ref. [149], a hybrid architecture, including Preisach model and
Neural Network, is shown to model hysteresis in the case of “ARMCO” pure iron.
The proposed model is able to reach an NRMSE of the order of 0.7 %. In fact,
artificial neural networks are increasingly used to model magnetic hysteresis coupled
with classical approaches such as Wlodarski, Preisach, Jiles-Atherton and Chua-
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Stronsmoe models [135, 137, 150]. In Ref. [135], one of the first attempts at
describing the memory mechanism is proposed in systems with rate-independent
hysteresis using a combination of Preisach state updating rules and a feed-forward
neural network. The model is identified by tuning the weights of the network
architecture through a back-propagation based algorithm. Developments following
the approach in Ref. [135] are also reported in Refs. [136, 151, 152]. In Refs. [153]
and [154], a different hybrid approach is presented by combining an artificial neural
network with a Fourier Descriptor to assess simulated hysteresis loops. The method
is suitable when a distorted sinusoidal magnetic field H excites, in steady state, the
ferromagnetic core of a device and allows to handle problems that appear in classical
approaches when static hysteresis, eddy currents and anomalous losses should be
considered.
An interesting modelling perspective is proposed in Ref. [155]. A neural network
architecture to model hysteresis is reported by using an array of neural networks, in
which each neural network is specialized to model a specific part of the hysteresis
loop. Then, the total hysteresis loop is rebuilt by combining the different neural
networks’ predictions. The authors simulate a synthetic material’s behavior by means
of a Jiles–Atherton model, using simulated curves, such as sinusoidal waveforms.
Another study, focused on the hysteretic behavior of a transformer core, is presented
by Du et al. [137]. Their study is dedicated to forecasting a single hysteresis cycle
and, generally, it is not capable to analyze the magnetic field for a long time.
Therefore, a completely different approach is proposed to fit the magnet response,
based on deep neural networks. In order to realize a network able to meet the
requirement in terms of NRMSE of 0.01 %, different models are investigated and
chosen on the basis of a trade-off between the prediction capability of the network
and the model complexity. In particular, the simplest architecture, that is the MLP, is
taken as a starting point and fine-tuned to realize more complex multi-layered neural
networks, able to model the magnet response. Specifically, the results show that the
NARX, relying on input and output past values to understand the underlying physics,
is the architecture that best models the hysteretic behaviour of iron-dominated
magnets.
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Fig. 3.2 NARX general architecture. The neurons’ computation is forward: it starts from the
first layer; then, it updates intermediate layers; finally, it computes the output of the network,
y(n).

3.2 Proposal

The phenomenon consists in the evaluation of the output y (that is the magnetic field)
as a function, f, of the input u (that is the excitation current), K previous inputs and
H previous outputs:

y(n) = f (u(n),u(n−1), ...,u(n−K),

y(n−1), ...,y(n−H))
(3.1)

with n a discrete time index. The past values of the magnetic field and excitation
current will allow the system to model the history-dependent feature that is the
magnetic hysteresis. The aim of the work is to describe Eq. 3.1 through a NARX
[156]. The NARX architecture is shown in Fig. 3.2.

The general architecture consists of L layers, each one characterized by a certain
number of neurons. The input of the network goes through all the layers up to the
last one. The outputs a1

j of the A1 neurons from the first layer l = 1 can be calculated
by Eq. 3.2:
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with φ A1 the activation function for neurons belonging to the first layer; W O
jh the

weights that represent the connection’s strength from the output h to the j-th neuron
of the first layer, while the weights W I

jk represent the connection’s strength from the
input k to the j-th neuron of the first layer. A similar equation (Eq. 3.3) can be used
to calculate the neurons’ output for the next layers:
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with l ∈ {2, . . . ,L} the index of the layer; φ Al the activation function for the
neurons of the layer l; W l

ji the weights representing the connection’s strength from
the i-th neuron of the layer l−1 to the j-th neuron of the layer l and the term al−1

0

is set to 1 to reproduce the bias W l
j0. Finally, the output neuron y is calculated by

Eq. 3.4:

y(n) =
AL−1

∑
i=0

W E
i aL

i (n) (3.4)

where the identity was used as activation function and the weights W E
i represent

the connection’s strength from the i-th neuron of the L-th layer to the output neuron,
y. To summarize, the set of hyperparameters characterizing the neural network
is θ = (L,A,K,H), while all the layers, l ∈ {1,L}, use the hyperbolic tangent as
activation function φ Al(x).

3.2.1 Case Study

Experimental Setup

The measurement campaign was carried out at CERN, by using a Reference quadrupole
magnet (Fig. 3.3).
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Fig. 3.3 “Quadrupole used for the measurement campaign. At the tip of the pole, the Hall
probe based FM302 teslameter measures the magnetic field”.

“The magnet was fed by a power supply (A&D AG BIP1540) that is able to
provide an output current up to 40 A and an output voltage of 10 V. An NI PXI 461
card, driven by custom C++ software, was used to control the power supply, while
the current was measured by means of a LEM IT60 ULTRASTAB DCCT with an
accuracy of 3 ppm. The magnet was excited with ten sequences of seven different
cycles”. An example of some of the waveforms used is shown in Fig. 3.4. These
kinds of waveforms were specifically conceived to operate with curves analogous to
the ones employed in particle accelerators [157].
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Fig. 3.4 “Sample of the excitation current sequence, I(t), in black and the magnetic field
sequence, B(t), in red from the collected dataset. The ordinate axis has two different scales:
on the left, in black, for the current, I(t), and on the right, in red, for the magnetic field, B(t).
In Panel (a) the shape of an entire sequence of data collected is shown; while Panels (b), (c)
and (d) represent a zoom of a set of seven cycles, last two and one cycles of the set of seven
cycles, respectively” [1].

The two sequences of excitation current consist of seven trapezoidal cycles, each
lasting approximately 5 seconds. The current starting value is zero and reaches
25 A on the higher flat-top, to which the major hysteresis loop corresponds. Before
starting the acquisitions, a degaussing of the magnet was performed. The flat-top
levels, representing the inversion points in the magnetic history, are all different in
the different sequences, while the field ramp-rate, i.e. the slope of the cycle ramp, is
constant for both test and training cycle sequences.
“A Hall probe-based FM302 teslameter (from Projekt Elektronic GmbH), charac-
terized by a sensitivity of 1 V/T, was used to measure the magnetic field. The Hall
probe was positioned at the pole of the magnet in order to measure the peak field
in the gap. The same PXI card used for the power supply was used to acquire the
output voltage at a raw sampling rate of 2.5 kS/s with a resolution of 24 bits. The
maximum magnetic field measured is Bmax = 0.16 T, while the noise level of the
measurement, computed from its standard deviation on the plateaus, is around 13 µT,
i.e. 8.1 ·10−5 relative to the maximum”.
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The hysteresis graph is represented by the relationship, B(I), between the mag-
netic field, B, and the current, I. This relationship can be described as the sum of two
contributions (Eq. 3.5): the predominant one (B0 +G · I) that is a linear contribution
and a smaller one (B̂(I)) that is the nonlinear part.

“B(I) = B0 +G · I + B̂(I)” (3.5)

Since the relationship is essentially linear, a Linear Model [158] can be adopted for
modelling the magnetic response, in the first approximation setting aside its nonlinear
part. As a result, the offset B0 and the gain G of the least-square linear regression can
be computed and they correspond to 7.79 ·10−4 T and 6.50 ·10−3 T/A, respectively.

The residual of the Linear Regression (LR), B̂(I), is crucial in the construction of
datasets used to train and test the networks. In fact, in opposition with existing hybrid
models [149, 135, 153], the learning of the networks is devoted to the nonlinear
component of magnetic hysteresis, while cutting out the linear part and modelling it
with a separate LR.

Fig. 3.5 shows another representation of the magnetic behaviour in terms of
transfer function Tf, defined by Eq. 3.6 as the field-to-current ratio:

“Tf(I) =
B(I)

I
=

B0

I
+G+

B̂(I)
I

” (3.6)

In this figure, it is possible to appreciate “how the magnetic response moves
discontinuously from the lower branch of the hysteresis loop to the upper one”.
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Fig. 3.5 Plot of the transfer function of the magnet (Tf(I)), defined by Eq. (3.6) as “the ratio
between the magnetic field and the excitation current”.

Preparation of the Dataset

“The raw dataset D̄ consists of ten sequences of excitation current and magnetic field
waveforms and each sequence is composed of 7 magnetic cycles. The acquisition
rate is 2.5 kS/s (sampling time 400 µs) for a total of 871 440 samples. The network
architecture selection and training phases were performed on a reduced subset D that
includes 87 144 samples at the sample rate of 250 S/s (corresponding to a sampling
interval of 4 ms). The subsampled dataset, D, was split into two sets: DL was used
for the architecture’s training and the remaining half, DE, was used for the test and
statistical error evaluation”. For the first dataset, DL, the data were organized in cou-
ples [IL(n),BL(n)], where IL(n) is the excitation current and BL(n) is the magnetic
field. For the dataset DE, the same type of parameters in input/output of the neural
architecture are used, [IE(n),BE(n)]. Hence, the data in DL was split into training
Dtrain

L , validation Dval
L and test Dtest

L sets with a 60:20:20 split ratio, respectively.
The training dataset contains only a few of all possible combinations of different
flat-top levels. “Each combination is related to a different branch of the hysteresis
loop. The accuracy of the prediction performed on the test combinations measures
the interpolating power of the neural network architecture under test. In addition,
another version of the datasets, D̂L = [ÎL(n), B̂L(n)] and D̂E = [ÎE(n), B̂E(n)], was
considered by replacing the measured field with its nonlinear component (Eq. 3.5).
The total magnetic field can be calculated by adding back the network output, ŷ, to
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Table 3.1 Summary of dataset usage.

Magnetic field
Input

Model Selection
Dataset

Training
Dataset

Test
Dataset

Magnetic field
Estimation

As measured DL@ 250 S/s Dtrain
L ,Dval

L @ 250 S/s
DE @ 250 S/s
DE @ 2.5 kS/s B≈ y

Nonlinear
component only D̂L@ 250 S/s D̂train

L , D̂val
L @ 250 S/s

D̂E @ 250 S/s
D̂E @ 2.5 kS/s B≈ B0 +GI + ŷ

the previously subtracted LR. The reason for this decomposition is to train the net-
work on a dataset that has a much smaller dynamic range, considering the physically
interesting part of the magnet’s response, which is the nonlinear part”. A schematic
summary of the way these datasets have been used in the course of this work is given
in Table 3.1.

All the architectures were designed and tested with the “neural network Toolbox
in Matlab 2018b”. Both simulations and training were executed on a computer with
Ram 8 GB, Clock 3.2GHz and an Intel Core i5.

Model Selection and Evaluation

The overall method used to select the network architecture is illustrated schematically
in Fig. 3.6.

Fig. 3.6 Block diagram of the model selection. The procedure starts with the layer selection
that takes as input the dataset DL; once chosen the number of the layers, there is the second
step consisting in the choice of the number of neurons per layer, A. In the third and fourth
steps, there is the input (K) and output (H) delay buffer length selection, respectively. The
results of the best architecture models selected during the second (θ̃MLP1, θ̃MLP2), third
(θ̃T DNN1, θ̃T DNN2) and fourth (θ̃NARX1, θ̃NARX2, θ̃NARX3, θ̃NARX4) steps are shown in Tab. 3.3
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Table 3.2 Definition of the hyperparameters for the model selection.

Hyperparameter Multilayer
Perceptron Time Delay Autoregressive

Exogenous
L {1, ..., 15} L̃MLP L̃MLP
A {1, ..., 10}L ÃMLP ÃMLP
K 0 {1, ..., 35} K̃T DNN
H 0 0 {1, ..., 35}

Table 3.3 Hyperparameters θ̃ selected by Alg. 1 and used for the tests evaluation. In the last
column, the corresponding number of neuron connections |W | are listed.

Hyperparameters L A K H |W |
θ̃MLP1 2 (10, 9) 0 0 129
θ̃MLP2 4 (1, 1, 1, 10) 0 0 37

θ̃T DNN1 2 (10, 9) 26 0 379
θ̃T DNN2 4 (1, 1, 1, 10) 31 0 67
θ̃NARX1 2 (10, 9) 26 31 689
θ̃NARX2 2 (7, 8) 26 17 381
θ̃NARX3 4 (1, 1, 1, 10) 31 31 98
θ̃NARX4 4 (1, 8, 5, 4) 31 31 153

The approach of the model selection can be summarized in four steps, corre-
sponding to the choice of the four hyperparameters of the network: the first step,
set the number of the neurons to ten per layer, consists in the choice of the number
of the layers, L; in the second step, fixed the number of the layers, chosen in the
previous step, the number of neurons for each layer, Al , is selected. Therefore, for
these two steps, static structures without feedback are considered. Next, the feedback
on the input, K, is introduced and the third step is dedicated to choosing it. Finally,
as the last step, there is the choice of the output feedback, H, to reach the NARX
architecture. The intervals of values used for the selection of L, Al , K and H are
listed in Tab. 3.2.

The optimal hyperparameters found during the model selection process are shown
in Tab. 3.3. Afterwards, they were used to test the models trained on the entire dataset,
DL.

The pseudo-code representing the selection process is presented in Algorithm 1.

Algorithm 1 contains the pseudo-code that describes the selection process. The
dataset D in input to the algorithm represents both the full and the nonlinear com-
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Algorithm 1 “Model Evaluation and Selection (M , params,D)” [1]

Require: “set M of hyperparameters θ j for each model to evaluate (see Table 3.2)
set params of simulation parameters (see Table 3.4 in Sec. 3.2.1)
the dataset D”

Ensure: “set Score of evaluations for each model in M ”
1: [Dtrain

L ,Dval
L ,Dtest

L ] = Split(DL,60 : 20 : 20)
2: for θ j ∈M do ▷ “Loop1: iterate over the set of different models”
3: for i = 1 : R do ▷ “Loop2: repeat learning R times”
4: repeat
5: W = train(θ j, params,Dtrain

L ,Dval
L )

6: until term_condition (params) ▷ Loop3: training instance
7: [Btest

L , Itest
L ]← Dtest

L
8: yi← y(θ j,W ; Itest

L )
9: Error(i)← RMSE(yi,Btest) ▷ as defined in Eq. 3.7

10: end for
11: Score( j) = model_evaluate(Error,θ j) ▷ calculate BC scores, Eq. 3.8
12: end for

ponent only dataset. The pseudo-code includes three loops. Loop1 is the first loop
and iterates over M , that is a “set of models each one characterized by its own
hyperparameter vector (θ j)”. The model with the best prediction capability and the
lowest complexity will be chosen. Loop2 is the second loop and contains the train
function and provides an estimation of the prediction error on the test dataset Dtest

L

for R times, improving the results’ statistical significance. Finally, Loop3 represents
a training instance performed according to the training dataset Dtrain

L , the validation
dataset Dval

L and the training parameters shown in Tab. 3.4.

Table 3.4 “Set of parameters in input to Algorithm 1” [1]

params Value Description
epochs 200 Max. training epochs
maxFail 6 Max. validation failures
minGrad 1 ·10−7 Min. gradient
muMax 1 ·1010 Max. µ value

R 200 Learning repetitions

The training process allows the weights W to be updated iteratively in order
to reduce the prediction error using the Levenberg-Marquardt (LM) method [159],
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while the hyperparameters set θ j is kept fixed. The process will be interrupted when
one of the termination criteria is satisfied. The function term_condition contains the
termination criteria that includes:

• the validation error does not decrease within maxFail epochs;

• training epochs have reached the maximum number (epochs);

• “the LM damping factor, µ , overtakes its maximum value (muMax). During
the LM algorithm, µ moves continuously between a Newton-like (µ ≈ 0)
optimization and the steepest gradient descent (µ≫ 0) one”. If µ assumes too
large values, this means that one is very far from a minimum, so the search
has failed.

After the training process, the validation dataset, Dval
L , is used to improve the network

generalization. The training will be stopped when the generalization stops improving.
On the other hand, the test dataset Dtest

L does not affect the training and is only used to
evaluate the network performance. One of the statistical parameters used to evaluate
it is the Root Mean Square Error (RMSE) , calculated as in Eq. 3.7:

RMSE(yi,Dtest) =

vuut ∑
n∈N

(yi(n)−Btest(n))2

|N|
(3.7)

“where yi = y(θ j,W ; Itest
L ) is estimated by Eq. (3.1), using the current set of

hyperparameters and weights, and |N| is the number of samples for the test dataset”.

The model selection process aims to select the best network architecture by
maximizing the model evidence P(D|θ j), that indicates in terms of probability the
preference expressed by the data for the j− th model of hyperparameters θ j. “Since
the calculation of this probability is analytically intractable, several approximations
of the term have been proposed in literature [158]. These approximations, like
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), are
based on penalization terms of the model complexity that takes into account the
number of weights |W | determined by the choice of hyperparameters set θ j”. For
this case study, the Bridge Criterion (BC) was selected as information criterion, since
it merges the benefits of both BIC and AIC [160], and it is calculated as in Eq. (3.8):



3.2 Proposal 51

Score( j) = |N| ln

 
1
R

R

∑
i=1

Error2(i)

!
+ |N|2/3 · (1 + 1/2 + ... + 1/ |W |) (3.8)

Thus, the best architecture is selected taking into account both prediction per-
formance, as given by Error, and complexity, as defined by the number of weights,
|W |, related to the selection of the hyperparameters. For this purpose, the function
model_evaluate attributes to each hyperparameter vector, θ j, a score based on the
BC: by minimizing this term it is possible to maximize the evidence of the j-th
model.

Static and Dynamic Network Structures

The algorithm starts with the evaluation of static network performance, with no
feedback in input. In this case, the neural network under test is an MLP architecture,
characterized by the hyperparameters set θMLP that includes “the number of hidden
layers (L) and the number of neurons for each layer (Al)”. An example of static
architecture is shown in Fig. 3.7, with two hidden layers characterized by a tanh
activation function, while the output layer is linear.

Fig. 3.7 Generic scheme of an MLP. The first green block represents the input layer, where
the input is the excitation current I(n); the second and the third blocks represent the two
hidden layers with A1 and A2 neurons respectively. In each hidden layer, there are two
blue boxes representing the weights, W, and the bias, b; the two hidden layers use a tanh
activation function. The fourth block represents the output layer, which is linear. The output
of the neural network is the predicted value y(n) estimating the magnetic field B(n) and
corresponding to the last green block.

Starting with the MLP architecture, the model selection process compares dif-
ferent structures with a fixed number of neurons (10) per layer but with different
numbers of layers, up to fifteen as shown in Tab. 3.2. This first step of the process
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aims at selecting the optimal depth for the neural network architecture. According to
the model_evaluate function, the architectures with less than 8 hidden layers have
the best BC scores. In fact, after the 8-th layer, the BC scores increase, showing a
worse behaviour of the network models. Therefore, structures with two and four
hidden layers were chosen as suited candidates for the next step of the selection pro-
cess, providing a good compromise between complexity and performance. During
the second step, fixed the number of layers, the process moves on to the selection
of the number of neurons (up to 10) for each layer. Therefore, with the two first
steps, the process selected static MLP networks by defining the hyperparameters
L and A, shown in Tab. 3.3. After the choice of the number of layers and neurons,
the model selection process moves on to augment the static architectures by adding
temporal feedback. First, it starts adding past observations of the excitation current,
which means past input values. In this case, the architecture becomes a TDNN,
characterized by the hyperparameters set θT DNN . The scheme of the TDNN structure
used is shown in Fig. 3.8 for the case of two layers.

Fig. 3.8 Scheme of the TDNN. The architecture has two hidden layers, with A1 and A2
neurons respectively, and a delay of K units for the input. The activation function is tanh in
the two hidden layers and linear in the output layer.

During this step, the process evaluates the effect of the third hyperparameter that
is the input delay buffer length, K. Finally, in the last step, the process includes the
evaluation of the last hyperparameter, that is the length of the output buffer, H. In
Fig. 3.9 the scheme of a NARX architecture with two layers is shown.
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Fig. 3.9 Scheme of a two-layer NARX. The architecture L = 2 layers, with A1 and A2 neurons
respectively, and a delay buffer length of K and H units for the input and output respectively.

In this case, using the optimal hyperparameters set formerly selected, that are L,
A and K, the process only varies the hyperparameter H in the range {1, . . . ,35}. The
resulting network with hyperparameters θNARX is a NARX architecture that includes
the length of the output buffer, H. Tab. 3.3 shows the best hyperparameters sets (θ̃ )
chosen by Alg. 1.

Results and Discussions

An entirely new dataset, DE, was used to evaluate the performance of the best
models characterized by the hyperparameters listed in Tab. 3.3. In order to calculate
the RMSE(y,DE), y = y(θ ,W ; IE) was estimated for each model. “To facilitate the
comparison with the requirements, the RMSE values were normalized with respect
to the maximum measured field. As a result, the results are also provided in terms of
NRMSE:

NRMSE(y,DE) =
RMSE(y,DE)

Bmax
·100 (3.9)

In addition to the NRMSE, other two measures of performance were introduced,
i.e. the Maximum Absolute Error (MAE) :

MAE(y,DE) = max{|y(n)−BE(n)|}n∈N (3.10)

and the Maximum Percent Error (MPE) , normalized with respect to the maximum
measured field:

MPE(y,DE) =
MAE(y,DE)

Bmax
·100 (3.11)
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The test dataset, DE, consists of samples acquired at the same sample rate of the
learning dataset, that is 250 S/s. A further performance evaluation is performed on a
second test dataset, D̄E, characterized by samples acquired at the raw sample rate of
2.5 kS/s”.

The tables containing the results for all the models are presented in Tables 3.5
and 3.6.

Table 3.5 “Comparison of the performances among the different architectures, evaluated
on the test datasets DE, considering the decimated data rate of 250 S/s. The evaluation has
been performed through the RMSE, NRMSE, MAE and MPE first for the LR alone, then for
the neural networks trained on the full dataset DL and finally for the hybrid models LR+*,
where the LR is combined with the neural network trained on the nonlinear component only
D̂L. In this last case, the reconstructed magnetic field is computed by Eq.3.5: the linear
component (B0 +G · I) is computed through the LR coefficients; the nonlinear component
(B̂) is approximated by the neural network output. The corresponding hyperparameters are
listed in Tab. 3.3” [1].

Architecture Test Hyperparameters RMSE NMRSE MAE MPE
Dataset [T] (%) [T] (%)

Linear
Regression G, B0 9.07 ·10−04 5.67 ·10−01 2.60 ·10−03 1.61

MLP1 DE θ̃MLP1 8.70 ·10−04 5.44 ·10−01 2.60 ·10−03 1.64
MLP2 DE θ̃MLP2 8.83 ·10−04 5.52 ·10−01 2.50 ·10−03 1.55

TDNN1 DE θ̃T DNN1 7.95 ·10−04 4.97 ·10−01 1.90 ·10−03 1.21
TDNN2 DE θ̃T DNN2 8.05 ·10−04 5.03 ·10−01 2.20 ·10−03 1.39
NARX1 DE θ̃NARX1 2.12 ·10−05 1.32 ·10−02 3.36 ·10−04 2.10 ·10−01

NARX2 DE θ̃NARX2 2.13 ·10−05 1.33 ·10−02 3.17 ·10−04 1.98 ·10−01

NARX3 DE θ̃NARX3 2.05 ·10−05 1.28 ·10−02 3.11 ·10−04 1.95 ·10−01

NARX4 DE θ̃NARX4 2.05 ·10−05 1.28 ·10−02 3.12 ·10−04 1.95 ·10−01

LR+MLP1 DE G, B0, θ̃MLP1 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.16
LR+MLP2 DE G, B0, θ̃MLP2 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.17

LR+TDNN1 DE G, B0, θ̃T DNN1 8.05 ·10−04 5.03 ·10−01 1.90 ·10−03 1.21
LR+TDNN2 DE G, B0, θ̃T DNN2 7.97 ·10−04 4.98 ·10−01 1.90 ·10−03 1.20
LR+NARX1 DE G, B0, θ̃NARX1 7.99 ·10−04 4.99 ·10−01 1.90 ·10−03 1.19
LR+NARX3 DE G, B0, θ̃NARX2 7.99 ·10−04 5.00 ·10−01 1.90 ·10−03 1.19
LR+NARX3 DE G, B0, θ̃NARX3 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.20
LR+NARX4 DE G, B0, θ̃NARX4 8.01 ·10−04 5.01 ·10−01 1.90 ·10−03 1.19
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Table 3.6 “Comparison of the performance among the different architectures, evaluated on
the test dataset D̄E, at the full data rate of 2.5 kS/s. The evaluation has been performed
through the RMSE, NRMSE, MAE and MPE, first, for the LR alone, then for the neural
networks trained on the full dataset DL and, finally, for the hybrid models combining LR
with the neural network trained on the nonlinear component only (D̂L). The corresponding
hyperparameters are listed in Tab. 3.3” [1].

Architecture Test Hyperparameters RMSE NMRSE MAE MPE
Dataset [T] (%) [T] (%)

Linear
Regression G, B0 9.07 ·10−04 5.67 ·10−01 2.60 ·10−03 1.61

MLP1 D̄E θ̃MLP1 8.70 ·10−04 5.44 ·10−01 2.60 ·10−03 1.64
MLP2 D̄E θ̃MLP2 8.83 ·10−04 5.52 ·10−01 2.50 ·10−03 1.55

TDNN1 D̄E θ̃T DNN1 1.10 ·10−03 6.66 ·10−01 2.70 ·10−03 1.67
TDNN2 D̄E θ̃T DNN2 8.52 ·10−04 5.32 ·10−01 2.50 ·10−03 1.56
NARX1 D̄E θ̃NARX1 9.92 ·10−06 6.20 ·10−03 4.63 ·10−05 2.89 ·10−02

NARX2 D̄E θ̃NARX2 1.27 ·10−05 8.00 ·10−03 6.90 ·10−05 4.31 ·10−02

NARX3 D̄E θ̃NARX3 9.22 ·10−06 5.80 ·10−03 3.98 ·10−05 2.49 ·10−02

NARX4 D̄E θ̃NARX4 9.28 ·10−06 5.80 ·10−03 4.06 ·10−05 2.54 ·10−02

LR+MLP1 D̄E G, B0, θ̃MLP1 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.16
LR+MLP2 D̄E G, B0, θ̃MLP2 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.17

LR+TDNN1 D̄E G, B0, θ̃T DNN1 8.05 ·10−04 5.03 ·10−01 1.90 ·10−03 1.18
LR+TDNN2 D̄E G, B0, θ̃T DNN2 7.97 ·10−04 4.98 ·10−01 1.90 ·10−03 1.18
LR+NARX1 D̄E G, B0, θ̃NARX1 7.98 ·10−04 4.99 ·10−01 1.90 ·10−03 1.17
LR+NARX2 D̄E G, B0, θ̃NARX2 7.98 ·10−04 4.99 ·10−01 1.90 ·10−03 1.17
LR+NARX3 D̄E G, B0, θ̃NARX3 7.99 ·10−04 5.00 ·10−01 1.90 ·10−03 1.17
LR+NARX4 D̄E G, B0, θ̃NARX4 8.00 ·10−04 5.00 ·10−01 1.90 ·10−03 1.17

For each model, the optimal hyperparameter set (listed in Tab. 3.2) and the
corresponding error norms are shown in both tables. The output of the LR model
gives an “MPE of the order of the percent, which corresponds to the relative width of
the hysteresis loop”. While in other contexts this type of error might be an indication
of a good linearity of the magnet under test, it is unacceptable for this application.
As next step, the results of the architectures trained on the DL dataset are analyzed
and are reported in the upper half of Tab. 3.5 and Tab. 3.6. The results of “both
the static (MLP) and the dynamic neural networks with input feedback (TDNN)”
are of the same order of magnitude as the LR. For the NARX models, instead, the
performances are much better, gaining two orders of magnitude and reaching an
NRMSE of 0.006 % in the best case, while with the reduced dataset, the results are
around a factor two worse (0.01 %). Thanks to the output feedback, which consists
of the past values of the magnetic field, the NARXs prove to be able to reconstruct
the dynamics of the magnet very accurately. Furthermore, it is worth noting “that the
maximum length of the output buffer, K = 35, corresponds during the training phase
to a total duration of 140 ms, which is shorter than the time interval needed to cover
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Table 3.7 Performances comparison among different solutions that represent the state of the
art for the modelling of hysteresis [1].

Architecture Metric Value
Deep Neural Network

(MLP with two hidden layers),
Ref. [137] Root Mean Square Error 0.13 %

Preisach + Feed-forward
neural network

(one hidden layer), Ref. [135] Maximum Absolute Error 13 %
Preisach, Ref. [143] Relative Error 0.2 %

Preisach + Recurrent Neural
Network, Ref. [149] NRMSE 0.7%

Neural Network,
Ref. [150] Relative Error < 8 %

Genetic Algorithm +
Neural Network, Ref. [153] Mean Square Error < 5 %

even only two consecutive inversion points of the magnetic cycle. In the classical
approaches, such as the Preisach models, the whole sequence of inversion points is
indispensable as input to the model to reconstruct accurately the magnetic history.
Instead, with the NARX architecture, the information regarding the magnetic history
appears to be encoded implicitly by the neural network, despite the shortness of the
output delay buffer. Therefore, the role of these input/output buffers might be limited
to the reconstruction of the short-term dynamics (for instance, the ripple of a power
supply or the decay of eddy currents)”. The improved performances of the neural
networks, shown in Tab. 3.6, with a shorter duration in the case of a higher sampling
rate (buffer duration of 14 ms) seem to confirm this hypothesis.

In Tab. 3.7, a comparison between the results listed in Tables 3.5 and 3.6 and
those in literature representing the state of art of similar reconstruction problems are
reported.

In Ref. [137], “a Deep Neural Network has been used to reconstruct the mag-
netization curve with an RMSE of 0.13 %”. The network performs as the MLP
model (8.70 ·10−4 T) and performs worse than the NARX architecture that is able
to reach an RMSE of 2.12 ·10−5 T. In Ref. [135], a hybrid approach consisting of a
“Preisach memory block plus a feed-forward Neural Network has been used to model
the magnetic hysteresis. In this case, the solution reaches a maximum prediction
error of around 13 %, higher than the MAE for a NARX network that is of the order
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of 10−4” (Tab. 3.5). In Ref. [143], a classical approach based on Preisach has been
used to model the hysteresis of a combined magnet. This method allows obtaining a
relative error around 0.2 %, while with a NARX architecture it is possible to achieve
a Mean Percent Error of about 0.2 %. In Ref. [149], a combined approach based on
Preisach and Recurrent Neural Network has been proposed to model the hysteretic
behaviour of the ARMCO pure iron. The results show an NRMSE of about 0.7 % in
the prediction of the magnetic flux density, worse respect to the NRMSE reached
with a NARX network that is in the order of 10−2 (Tab. 3.5). In Ref. [150], a neural
network architecture has been presented to model nonlinear hysteretic inductors.
The results show a relative error lower than 8 %, higher than the MPE obtained with
a NARX network that is around 2 ·10−1 % (Tab. 3.5). Lastly, in Ref. [153] a hybrid
approach based on Genetic Algorithm and Neural Network has been presented for
the hysteresis modelling, achieving “a Mean Square Error lower than 5 %. Tab. 3.5
shows an RMSE in the order of 10−5 for the NARX network, reaching therefore a
better result with respect to the literature”.

In Fig. 3.10 and in Fig. 3.11, the nonlinear component of the field, B̂E , predicted
by a NARX architecture is presented “as a function of the time or the current”,
respectively. The measured and the predicted fields match closely, showing the
ability of the NARX architecture to model the nonlinear part of the magnetic field
with high accuracy.
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Fig. 3.10 Measured (B̂E, in blue) and estimated (ŷNARX, in green, with θ̃NARX1 as hyperpa-
rameters set) nonlinear part of the magnetic field, B̂, as function of the time, t.
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Fig. 3.11 Measured (B̂E, in blue) and estimated (ŷNARX, in green, with θ̃NARX1 as hyperpa-
rameters set) nonlinear part of the magnetic field, B̂, as function of the current, I.

Finally, a hybrid approach was considered to predict the magnetic field: the
linear part is modeled by the LR while the nonlinear component is modeled by
the networks that, in this case, are trained on the nonlinear component dataset, D̂L

(bottom halves of Tables 3.5 and 3.6). With the hybrid modelling, all the architectures
learned on D̂L and combined with the LR perform almost equally. In particular,
the results are comparable with those of the MLP and TDNN networks trained on
the entire dataset DL, showing the inability of the hybrid architectures to reach the
higher performance of the NARX trained on the entire signal contained in DL. As
result, the best way to model the dynamic part of the magnetic field is using input
and output delay buffers in NARX architectures and avoiding pre-processing data
through the extrapolation of the nonlinear component of the signal. In this case,
an NRMSE of 0.006 % can be reached in the best case. Furthermore, a statistical
performance evaluation by using “one-way analysis of variance (ANOVA)” was
performed in terms of Absolute Errors for both datasets DE, reported in Tab. 3.5, and
D̄E, reported in Tab. 3.6. Starting with ANOVA on DE, the test showed “a significant
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statistical effect on the different groups with F [16,754 · 103] = 13 · 103, p < 107.
Then, the post hoc Tukey’s test also revealed a significant difference from all the
models to the LR (null hypothesis). The analysis shows that the model TDNN2, the
best performing architecture excluding NARXs, is not statistically different from
TDNN1, MLPs and LN+TDNN2 (p > 0.01). Conversely, the test shows that all the
NARX models are statistically different from the other models (p < 10−5), while
they are not statistically different among them (p > 0.01). On the dataset D̄E, the
ANOVA analysis shows again a significant statistical effect on the different groups
with F(16,754 ·103) = 14 ·103, p < 10−7. Post hoc analyses show that the models
resulting from a hybrid approach (LR+∗) are not significantly different among them
(p > 0.01). Furthermore, the LR+∗ models’ group is not statistically different
(p > 0.01) from, at least, one of the MLP models group. This result confirms that
the hybrid models could at best replicate the performance of the MLP models, and
are unable to reach the better performance of the NARX architectures to reconstruct
the original signal”. As regards the TDNN models, the test shows that TDNN2 is
not statistically different (p > 0.01) from MLP1, while TDNN1 is a model different
from the others, performing as the worst one. This confirms that changing the input
buffer length is not enough for the TDNN models “to let them adapt to the signal
when a different input rate is given. Fig. 3.12 illustrates the results of the ANOVA
analysis performed on the dataset D̄E, showing the Absolute Error together with the
95 % confidence interval for each model (straight line)”.
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Fig. 3.12 ANOVA analysis results in terms of “Absolute Errors for all the models on Dataset
D̄E. For each model, the horizontal lines represent the 95 % confidence interval”. All the
models can be clustered into five groups: LR group in gray that is the baseline; “MLP and
LR+∗ group in yellow, TDNN1 in pink, TDNN2 in blue and the NARX group in orange” [1].

The models can be partitioned into four groups with the LR as a baseline, in gray.
Only TDNN1 (in pink) performs worst of the LR group since it completely fails to
model the magnet behaviour at the higher sample rate of D̄E. The behavior of the
LR+∗ group is comparable to the MLPs one, in yellow, and they perform better than
the LR group. TDNN2, in blue, performs slightly better than the yellow group, while
the NARX group, in orange, has the best performances since it manages to adapt
to the new sample rate, significantly overcoming the other groups’ performances.
Finally, an evaluation of the training and simulation time of the architectures whose
hyperparameters are listed in Tab. 3.3 was performed and the results are listed in
Tab. 3.8.
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Table 3.8 Training and simulation times. The neural networks considered for the times’
evaluation are the ones trained on the entire dataset DL [1].

Architecture
Training time

[s]

Simulation time
(DE)
[s]

Simulation time
(D̄E)
[s]

MLP1 16.88 0.40 1.08
MLP2 14.18 0.44 0.88

TDNN1 46.30 1.73 12.50
TDNN2 22.13 1.50 16.16
NARX1 125.52 2.66 25.23
NARX2 42.96 2.30 22.23
NARX3 19.91 2.91 27.98
NARX4 15.89 2.84 28.67

The first column of Tab. 3.8 shows all the models; the second column shows
the training times of the “networks trained on the dataset DL. The training time
represents the time needed for the execution of the function Train (line 5 in Alg. 1).
The third column contains the simulation time evaluated on the test dataset DE, at
the decimated sample rate of 250 S/s (Tab. 3.5), while the fourth column shows the
simulation time evaluated on the dataset D̄E) at full sample rate of 2.5 kS/s (Tab. 3.6).
The simulation time represents the time needed for the network prediction (see line
8 in Alg. 1)”. The results show how the required time of execution of the different
steps in Alg. 1 grows with the complexity of the model and the results nicely match
with the complexity measure in Tab. 3.3.

Conclusions

An incremental approach to select an optimal deep neural network to model the
magnetic field produced by a magnet powered by sequences of cyclic excitation
current was presented. The tests were carried out in conditions typical of those
characterizing “particle accelerators and other similar pulsed-mode machines”. The
magnet’s response is essentially linear and the work focuses on estimating its residual
nonlinear component, dominated by ferromagnetic hysteresis. The training and
testing performed on the raw datasets show that networks with feedback based on
both input and output delay buffers reach the required level of performance, that is an



3.2 Proposal 63

NRMSE better than 0.01 %. This level of performance is not reachable with simpler
networks with only input buffers, such as TDNN architectures, or without buffers, as
the MLP architectures. The NARX architectures’ performance is encouraging for
future applications in such field. Furthermore, it is worth noting “that the prediction
accuracy generally improves if the network is trained on a dataset characterized
by a low sample rate (250 S/s) but it is tested on a dataset at a higher sample rate
(2.5 kS/s). This result may be related to the fact that the dataset at a low sample rate
is less affected by noise, thus allowing the model to better focalize on apprehending
the underlying dynamics”. As a result, NARX architecture can be implemented
in hardware in the context of a revamping of real-time systems used for magnetic
measurements, currently taking place at CERN. This upgrade of the system will
provide continuous field prediction in addition to the measurement, allowing to
collect a large quantity of data regarding cycles sequences in thousands of different
variations. Therefore, it will be possible to cover all the relevant dynamic scenarios
and fine-tune the hyperparameters of the network, estimating their performance and
robustness with high statistical significance in the long term.



Chapter 4

Transfer Learning for Healthcare:
Fractures Detection in Patients with
Maxillofacial Trauma

4.1 Background

The second case study focuses on deep learning techniques in the healthcare context.
Over the past few years, the medical prescriptions for Magnetic Resonance Imaging
(MRI), CT scan and all the other radiology services have grown enormously [161].
In this context, AI can support radiologists in the challenging tasks of medical image
analysis. Even if the AI-based tools can not replace medical staff, they can confirm
or validate radiologists’ decisions and doubts, becoming a precious assistive tech-
nology. Deep learning has achieved a lot of results and made significant progress
in images analysis tasks resulting in a better understanding and representation of
complex data. Several work [162–166] deal with solutions based on deep learning
for orthopedic traumatology, however, the possibility to identify the presence of
maxillofacial fractures in CT scans (3D images) of harmed patients using artificial
neural networks based on a transfer learning approach has not been explored yet
[167–170].
In their work [171], Kim and MacKinnon focus on transfer learning to use pre-
trained CNNs on non-medical images in the radiological field. In particular, they
use inception V3 CNN [172] to detect the presence of fracture on wrist radiographs.
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By means of the transfer learning approach, they reach an Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) of 0.95, on the test dataset. The result
shows that a deep neural network pre-trained on a non-medical dataset can be used
for medical radiographs with high performances. On the other hand, Chung et al.
[173] employ a CNN to reveal and classify proximal humerus fractures by means of
plain anteroposterior shoulder radiographs. In this case, the network performs similar
to shoulder-specialized orthopedic surgeons but better than general physicians or
non-shoulder specialized orthopedic surgeons. So, the results show the possibility
to diagnose proximal humerus fractures accurately with CNN on plain radiographs.
Tomita et al. [174] carried out another study in this domain, focusing on the de-
tection of osteoporotic vertebral fractures in CT exams. The system includes two
blocks: a first block used to extract radiological features from the CT scans; a second
block consisting in a Recurrent Neural Network (RNN) unit (see Section A.2 in
Appendix A for more details about RNN) used to combine the previously extracted
features for the conclusive diagnosis. The results show that the system fits the radi-
ologist practitioners’ ability. Therefore, the system could be useful in the medical
context for screening the CT exams and determining priorities of potential fracture
cases.

4.2 Motivation and Proposal

The anatomical complexity of the maxillofacial region together with the uniqueness
of this kind of fracture make the diagnosis complex, with the risk of causing incon-
gruous hospitalizations. In this scenario, an automatic fracture detection system
would help medical staff to detect maxillofacial fractures and it would be a deci-
sion support tool in clinical practice, minimizing treatment costs and distress for
patients. At this aim, a Maxillofacial Fracture Detection System (MFDS), based on
CNNs and transfer learning (see Chapter 2 for more details), is proposed to identify
traumatic patients’ fractures. The architecture, pre-trained on non-medical images,
was re-trained and fine-tuned using CT images, that are used as input of the system.
The goal of the neural network is the classification of future CTs of injured patients
with maxillofacial trauma as either “fracture” or “noFracture”. In Fig. 4.1, the block
diagram of the system is proposed.
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Fig. 4.1 Block diagram of the fracture detection system for injured patients with possible
maxillofacial fractures. The system would be a useful tool in assisting radiologists in the CT
exam evaluation of an injured patient. The CT images of a harmed patient are the input of
the system, while the output of the system points out the presence or not of a fracture.

4.2.1 Case study

Experimental Setup

The dataset consists of anonymized CT exams (a CT exam for each patient) obtained
from the U.O.C. of Maxillofacial Surgery of the University Hospital “Federico II”
that gathers examinations performed from 2000 to 2020. The research was approved
by the Ethics Committee of “Federico II” University in Naples, Italy (Approval
number 81/20). The CT examinations of the facial mass were performed by using
different devices (CT 16-64 slices) with thickness volumetric acquisition variable in
the range of 0.5-2 mm and also variable in-plane resolution (0.5x0.5-1x1 mm). Only
the images obtained by means of the bone reconstruction algorithm were gathered
for the study. Two radiologists consensually explored, analyzed and classified the
CT images according to fracture presence/absence. The dataset also includes CT
examinations from patients with non-traumatic facial mass disorder. In particular,
the total dataset is made up of 208 patients: 170 patients (11 260 slices of CT
images) labeled as with “fracture” and 38 patients (49 762 slices of CT images)
labeled as “noFracture”. The dataset has been partitioned into training, validation
and test dataset. The training dataset is made up of 148 CT scans (120 patients
with fracture and 28 patients without fracture). The validation dataset, used for
statistical analysis, consists of 30 patients (25 with fracture and 5 without fracture),
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as well as the test dataset that is used for final testing. It should be noted that
the full dataset is unbalanced on patient-level considering the large majority of
patients with a fracture; however, on a slice-level the dataset is unbalanced in favor
of images without fracture. Therefore, the total dataset is unbalanced in favor of
images with or without fracture depending at which level the study is carried out.
The implementation of the system is schematized in Fig. 4.2 and was performed by
means of a predictive algorithm. Python v.3.7.6 (available for different Operating
Systems) [175] was used as programming language together with PyTorch v.1.4.0
[176] and Fastai v.1.0.60 [177]. Scikit-learn v.0.22.1 [178] was used for the neural
architecture, while Pydicom v.1.4.2 [179] was used to treat CT images in Dicom
format.

Fig. 4.2 Block diagram of the fracture detection system’s implementation. Three main steps
can be detected: the first step consists of the K-Fold Cross Validation, used to identify the
network’s hyperparameters; the second step consists of the fine-tuning of the network and
finally, the last step, is represented by the evaluation of the network’s performance.

Three main steps can be identified in the block diagram shown in Fig. 4.2:

1. Identification of the hyperparameters (learning rate, weight decay and drop
out) by means of the K-Fold Cross Validation. The hyperparameters set that
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guarantees the network to have the best performance in terms of accuracy is
chosen;

2. Fine-tuning of the neural network with the hyperparameters set chosen in the
previous step:

(a) Training only the last layer

(b) Unfreezing and training the full model

3. Estimate of the network’s performance.

The three main steps listed above are described in detail in the next paragraphs.

K-Fold Cross Validation

The starting point of the system’s implementation shown in Fig. 4.2 is the definition
of the training dataset to be used in the K-Fold Cross Validation process. In order
to keep the two classes (“fracture” and “noFracture”) balanced and reduce the
computational time, a subset of the whole dataset described in paragraph 4.2.1 was
selected. In particular, the dataset used during the K-Fold Cross Validation process
includes 359 slices labeled as “fracture” (belonging to 57 different patients) and
362 slices labeled as “noFracture” (belonging to 59 additional patients). It was
possible to have 59 patients for the class “noFracture”, by selecting only a subset of
the “noFracture” slices from some patients. Therefore, these patients will become
patients with “noFracture” in this phase.
During the K-Fold Cross Validation, the transfer learning technique was adopted to
minimize the training burden for the CNN; at this aim, ResNet50 was used as pre-
trained architecture. The K-Fold Cross Validation with K=5, described in Sec. 2.4,
was used to choose the most suitable hyperparameters set and the batch size was
set at 50. The relevant hyperparameters are learning rate, weight decay and dropout
and they were chosen in the following ranges [0.000001; 0.005], [0.0001; 0.0005],
[0.1; 0.5], respectively. Precisely, 20 different combinations (N=20 in Fig. 4.2) of
the hyperparameters were tested. A random search for hyperparameters optimization
was adopted with respect to a grid search. In the case of many hyperparameters, the
random search is more effective than the grid search from the computational times’
viewpoint and it is able to preserving good performance [180].
During the training process, the early stopping criteria can be adopted to allow the
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network generalization and, at the same time, contain the computational costs. In this
context, the following criterion was used as Early Stopping criterion: the training
process ends if after 3 attempts the accuracy metric does not increase by at least 0.01.
For each fold of the K-Fold Cross Validation process, the number of epochs was set
to 6, while all the images of the dataset were normalized in line with the ImageNet
format and rescaled from 512x512 to 224x224 pixels. A sample of Dicom images is
illustrated in Fig. 4.3.

Fig. 4.3 Dicom images samples (8x8 inches) for classes “fracture” and “noFracture”.

After performing tests for the twenty different combinations of the hyperparame-
ters, the set that allowed the model to reach the highest average accuracy (0.86) with
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the smallest standard deviation, index of low variability (0.05) has been selected.
The hyperparameters set mentioned above has the following characteristics: learning
rate of 0.005, drop out of 0.5 and weight decay of 0.0005.

K-Fold Cross Validation Performance Remarks

The choice of using K-Fold Cross Validation for the model selection process has been
done taking into account two main factors that characterize the prediction error: the
bias error and the variance error [181]. In fact, the prediction error can be expressed
as the contribution of three terms [182], as shown in Eq. 4.1:

Prediction Error = Bias Error+Variance Error+ Irreducible Error (4.1)

The irreducible error depends on the problem under study and can not be reduced,
regardless of the algorithm chosen, since it may be produced for example by unknown
variables during the mapping of input variables to the output variable. Conversely,
the bias and variance errors can be potentially reduced by the choice of the algorithm.
When a model uses simplified assumptions so that the target function is easier
to learn, these assumptions represent the bias. Therefore, algorithms with a low
bias make less simplifying assumptions on the target function, while algorithms
with a high bias make more simplifying assumptions. Consequently, algorithms
with a high bias are characterized by a lower predictive capability, especially with
complex problems where the simplifying assumptions are not verified. On the other
hand, variance specifies how much the estimate of the target function will change
when different training datasets are used. In principle, the results of training should
not change too much if the algorithm is trained on different training datasets of
the same type. In this case, the model is able to generalize well, capturing the
hidden underlying relationships between the inputs and the output variables. On
the contrary, algorithms with a high variance are highly influenced by the specific
training dataset it has been trained on and it is unable to generalize. Therefore, a
model with high variance indicates significant changes to the target function estimate
when the training dataset changes, while a model with low variance indicates small
changes to the target function estimate when the training dataset changes. The ideal
goal of a machine learning algorithm is to achieve low variance and low bias in order
to minimize the prediction error. However, decreasing the bias will increase the
variance and vice versa, leading to a bias-variance trade-off. The bias of a Cross
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Validation procedure tends to decrease when the size of the training set (nt) increases
[181]. The choice of K for the K-Fold Cross Validation does not only determine the
size of the training dataset, nt = n(K−1)/K where n is the number of total samples,
and the number of the splits, influencing the computational cost, but also affects
bias and variance. In fact, the bias of the K-Fold Cross Validation decrease with
K, since nt = n(1−1/K) samples constitute the training set. On the other side, the
variance of the K-Fold Cross Validation decrease with K for small values of K [181],
while Leave-One-Out procedure (where K = n) is characterized by a high variance.
Furthermore, it has been proved that the optimal choice for K is between 5 and 10
since the statistical performances do not improve so much for larger values of K
[183]. Based on these considerations and on the computational complexity, which is
roughly proportional to the number of the splits (K for the K-Fold Cross Validation),
the K-Fold Cross Validation with K = 5 has been chosen for the model selection
process.

Fine-Tuning of the Convolutional Neural Network

After having chosen the hyperparameters set, the network was fine-tuned. This
process allows pre-trained networks to be able to recognize classes the architecture
is not initially trained on. As described in Sec. 2.5, in a pre-trained network the
convolutional neural network already contains learned discriminative filters. During
the fine-tuning process, the final group of fully connected layers was replaced by a
new set of fully connected layers characterized by random weights. Since the new
set of fully connected layers acts entirely randomly, if the gradient propagates back
from these random values to the entire network, the powerful capabilities of the
pre-trained network risk being destroyed. In order to avoid this issue, the network
was retrained as shown in Fig. 4.4.
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Fig. 4.4 ResNet50 was loaded as pre-trained network; after loading the network, the first
step of the fine-tuning consists in freezing all the layers of the network apart from the fully
connected layers, responsible for extracting high-level features on the medical dataset. After
the fully connected layers have started to learn patterns from the medical dataset, all the
architecture layers were unfreezed, allowing all the layers to be fine-tuned. To do so, two
training processes, using differential learning rates, were performed.

The process consists of two main steps:

• Training only the last layer of the network (the fully connected set); all the
other layers are freezed and the pre-trained model’s weights, pre-trained on
ImageNet dataset, are used for these layers;

• The previous step allows the last layer to start learning patterns of the medical
dataset. So, at this point, all the weights are unfreezed (including the ones of
the convolutional layers that have learned discriminative filters) and the entire
model is trained with a small learning rate, in order to avoid overturning the
convolutional filters radically.

During the fine-tuning process, the total dataset, described in Sec. 4.2.1, was used.
Specifically, the training dataset consists of 8 023 slices belonging to the “fracture”
class and 34 962 belonging to the “noFracture” class, for a total of 148 patients.
Given that the two classes are no longer balanced, the CrossEntropyLoss was used
as loss function. Different weights were assigned to the “fracture” and “noFracture”
classes. The two weights, w f for the positive class and wn f for the negative class,
are defined as follows:

[w f ,wn f ] = [
|noFracture|
| f racture|

,
|noFracture|
| f racture|

] = [
34962
8023

,
34962
34962

] = [4.36,1.0] (4.2)

The validation dataset was used for the evaluation of the network’s performances
and consists of 1 660 slices for the “fracture” class and 7 910 for the “noFracture”
class, for a total of 30 patients.
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During this second step, the model was re-trained twice by varying the learning rate
to refine the model’s performance. Before performing the re-train of the network,
the model’s weights that returned the highest performance in terms of accuracy were
loaded. The value of the learning rate was chosen through the learning rate finder
of the Fastai library [184]. Furthermore, the differential learning rates approach,
implemented by the Fastai library, was adopted since some features are practically
always the same (for example, the image’s corners and edges learned in the initial
layers of the neural network). By means of this method, different learning rates are
assigned to the different network layers. Specifically, using the slice function within
the fit method, learning rate values are assigned as follows: the minimum learning
rate value of the selected range for the first layer; the maximum learning rate value of
the selected range for the last layer and all learning rate values between the minimum
and the maximum are distributed among all the other network’s layers in between.

Results and Discussions

The results exposed in this section are attained on the validation dataset, described
in the previous section, and on the test dataset, consisting of 1 577 slices belonging
to the “fracture” class and 6 890 slices belonging to the “noFracture” class, for a
total of 30 patients. The dataset partitioning into training, validation and test set
was performed randomly at level-patient; this means that all the slices of one patient
were assigned to one of the three datasets (training, validation or test). However,
the validation and test datasets are substantially different from each other. First
of all, the CT exams were performed on several devices, each one with different
characteristics from the others; additionally, the splanchnocranium includes a very
large and complex area, hence the fracture can interest any part of the region and,
consequently, the CT scans can be completely different from each other. The results
obtained from the validation and the test datasets are given in terms of confusion
matrix in Fig. 4.5.
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Fig. 4.5 Confusion Matrix for the validation (a) and test (b) datasets.

The results in terms of AUC-ROC for both validation and the test datasets are
given in Fig. 4.6 and Fig. 4.7, respectively.

Fig. 4.6 Results in terms of AUC-ROC for the validation dataset.
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Fig. 4.7 Results in terms of AUC-ROC for the test dataset.

The AUC values for the validation and test datasets are 0.83 (0.82,0.84) and 0.82
(0.81,0.83), respectively. For the AUC values, the 95 % confidence intervals were
calculated by means of the analytic method of Hanley and McNeil [185]. For the
evaluation of the network’s performance, the following metrics are considered:

Accuracy =
T P+T N

P+N
(4.3)

Recall (or sensitivity) =
T P

T P+FN
(4.4)

Precision (or positive predictive value) =
T P

T P+FP
(4.5)

where TP are the number of the true positives, TN the number of the true negatives,
P the number of the “positive” cases (it means the slice labeled as “fracture”), N
the number of the “negative” cases (it means the slice labeled as “noFracture”), FN
the number of false negatives and FP the number of false positives. In Tab. 4.1, the
metrics values are shown for both validation and test datasets.
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Table 4.1 Accuracy, Recall and Precision for the validation and test dataset with the Clopper-
Pearson 95 % confidence intervals.

Metric Validation Dataset Test Dataset
Accuracy 0.83 (0.82, 0.84) 0.81 (0.81, 0.82)
Recall 0.55 (0.52, 0.57) 0.51 (0.49, 0.54)
Precision 0.52 (0.49, 0.54) 0.50 (0.48, 0.53)

The results achieved using the validation and test datasets are very similar and
this is very promising for future CT scans, for which similar results in terms of
accuracy will occur.

Since the final goal of the system consists in the prediction at patient-level, the
performance evaluation is also performed in terms of patient’s injury rather than
slices. To this aim, all the slices were aggregated by patient with the following
assumption: if two consecutive slices of the same patient are classified as slices with
“fracture” by the neural network with a probability greater than 0.99, then the CNN
has to classify the patient as a patient with fracture. The confusion matrix showing
the results for the test dataset is presented in Fig. 4.8.

Fig. 4.8 Confusion Matrix in terms of patients for the test dataset.
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Table 4.2 Accuracy, Recall and Precision for the test dataset with the Clopper-Pearson 95 %
confidence intervals in terms of patients.

Metric Test Dataset
Accuracy 0.80 (0.61, 0.92)
Recall 0.76 (0.55, 0.91)
Precision 1.00 (0.82, 1.00)

The measures of diagnostic accuracy in terms of patients (Accuracy, Recall and
Precision) with 95 % confidence intervals for the test dataset are listed in Tab. 4.2.

The results in terms of patients show that the Neural Network ResNet50 can
distinguish between fractured and not fractured bone in CT scans of injured patients
with relatively high accuracy (80 %). This outcome is particularly encouraging, given
the anatomical complexity together with the thinness of bones in the splanchnocra-
nium, proving the effectiveness of transfer learning for medical images. Though
a computer-aided decision system with an accuracy of 80 % can not replace the
radiologist’s decision, it may be very useful in supporting radiologists with immedi-
ate diagnosis and treatment. An automated fracture detection system based on the
proposed model has the peculiarity of analyzing the CT scan’s entire area with equal
importance. Consequently, this facilitates the reduction of human errors in missed
readings of the full area of the 3D image. Moreover, the proposed detection system
may also be helpful to detect small fractures that are often scarcely visible on CT
scans, requiring several checks by radiologists. Furthermore, the assessment of CT
exams in trauma patients is essential to direct him towards highly specialized units
if necessary, reducing medical error risks and unnecessary hospitalization. In fact,
there are two main difficulties in the current clinical practice when a patient’s trauma
arises in an anatomically complex region such as the splanchnocranium. The first
issue is the possible failure to identify the existence of a bone fracture; the second
one is the erroneous classification of normal anatomical structures (for example
sutures, vascular and nerve channels) as traumatic injuries. The diagnostic diffi-
culties mentioned above often translate into higher costs for the healthcare system
and a burden for the patient due to unneeded hospitalizations in specialized clinical
units. For instance, if it is ascertained that there is no urgency for treatment in a
craniofacial area trauma, the patient is transferred from the emergency room to the
closest regional reference center that is specialized in maxillofacial trauma. The
reassessment of the clinical case in the specialist field many times (about 20 % of
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cases) points out not only the incongruity of hospitalization but often also the lack of
indications for surgical treatment. In such cases, patients only require home medical
therapy.

Conclusions

This research represents a proof of concept for using transfer learning starting from
Convolutional Neural Network, pre-trained on non-medical images, and using it
in a medical context for the detection of maxillofacial fracture in CT scans. Even
though in the literature there are several AI applications in the orthopedic field, the
possibility of using transfer learning applied to CT images to identify maxillofacial
fractures of trauma patients has not yet been examined. The system is able to predict
maxillofacial fractures in injured patients with 80 % of accuracy. The MFDS can
become a valuable radiological diagnosis system in assisting radiologists with prompt
diagnosis to guide therapeutic choices and treatments, thus minimizing medical error
risks and preventing patient stress and harm by reducing maxillofacial trauma’s
diagnostic delays. Furthermore, the AI-based support tool used in non-specialized
clinical wards may be useful to reduce the unnecessary hospitalization’s socio-
economic burden not only for the patient but also for society and the health system.
Nevertheless, it is important to remark that the AI-based system should not replace
the radiologist’s work but should represent an aid for the medical staff in identifying
facial fractures. It should be intended as a second opinion, not an independent
one, becoming a precious assistive technology for the medical team leading to a
reduction of medical error risks, unneeded patient transportation, hospitalization and
socio-economic load for the public health governance [186].



Conclusions

In this thesis, the investigation performed on new deep learning models capable
of providing valuable support in the industrial and healthcare context has been
presented. The research activity carried out at CERN for the first case study has
focused on the design, implementation and testing of new deep learning architectures
for the prediction of the magnetic field values. The raw dataset was composed of
ten sequences of field and excitation current waveforms. Each sequence consisted
“of seven trapezoidal cycles about 5 seconds long, starting from a zero excitation
current and reaching increasingly higher flat-top values, in order to scan the entire
area of the major hysteresis loop. The network selection process was carried out on
a dataset including 87 144 samples with a sample rate of 250 S/s”, half of which was
used for training and half for testing and statistical error evaluation.
By using an incremental approach, several deep neural networks have been chosen,
fine-tuned and tested. The first architecture under test was the simplest one (MLP),
a feed-forward network without feedback. For this type of architecture, the static
structure hyperparametes (i.e. “the number of layers and the number of neurons for
each layer”) have been evaluated and selected. However, the results have shown an
NRMSE of the order the percent that is not acceptable in this context (the required
NRMSE is typically 0.01 %). Starting from the selected hyperparametes of the
MLP, past observations of the input have been added to the network, which reduced
to a deep TDNN. Nevertheless, the results have shown that the TDNN performs
as the MLP architecture. Finally, using the selected hyperparametes of the MLP
and the one of the TDNN (number of past input values), past observations of the
output have been added to the network to reach the more complex structure of the
NARX network. Due to the ability to remember past outputs, this network has been
demonstrated to be able to represent the magnet’s dynamics very accurately with
an NRMSE of two orders of magnitude better, reaching an NRMSE of 0.01 %. All
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the further models based on a hybrid approach, where the magnetic field has been
reconstructed considering a first module, a linear regression, coupled with a neural
network that modeled the nonlinear part of the signal, did not achieve the required
level of performance. In conclusion, for the first case study the research activity has
shown that, by using networks with feedback based on both input and output delay
buffers, it is possible to catch the magnetic field dynamics and meet the required
level of performance.
For the second case of study, a maxillofacial fracture detection system, based on
convolutional neural networks and transfer learning, has been proposed to detect
traumatic fractures. In particular, a convolutional neural network, pre-trained on non-
medical images, has been re-trained and fine-tuned on CT images for the realization
of a model to classify future CT exams as either “fracture” or “noFracture”. The
training set consisted of 148 CT scans, one for each patient, split as follows: 120
patients labeled with “fracture” and 28 patients labeled with “noFracture”. The
validation set was characterized by 30 CT scans (5 with “noFracture” and 25 with
“fracture”), that have been used for statistical analysis. Finally, the test set, used for
final performance evaluations, was characterized by additional 30 CT scans, with
the same images partition of the validation set. The CT exams have been obtained
from the internal database of the U.O.C. of Maxillofacial Surgery of the University
Hospital “Federico II” and two radiologists consensually examined and classified
each CT image, assigning them the proper “fracture”/“noFracture” labels. Tests have
been performed both by considering the single slices separately and by grouping the
slices for patients, in order to make a prediction at patient-level. A patient has been
classified as fractured if two consecutive slices were assigned to the class “fracture”
with a probability higher than 0.99. The patients’ results have shown a model
accuracy in classifying the maxillofacial fractures of 80 %. Therefore, even if the
proposed system cannot replace the radiologists’ team, it can offer valuable support
in assisting radiologist’s work, minimizing the risk of human error, diagnostic delays
and incongruous hospitalization.
On the basis of these encouraging results, the two case studies show the feasibility
of using deep learning models with spectacular success even in fields unexplored so
far, such as the prediction of the magnetic field nonlinearities and the detection of
fractures in the maxillofacial region.
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[198] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory
based recurrent neural network architectures for large vocabulary speech
recognition. arXiv preprint arXiv:1402.1128, 2014.

[199] P. Bryant and K. Johnsen. The Principles of Circular Accelerators and Storage
Rings. Cambridge University Press, Cambridge, January 2005.

[200] Christian Grech, Marco Buzio, and Nicholas Sammut. A magnetic measure-
ment model for real-time control of synchrotrons. IEEE Transactions on
Instrumentation and Measurement, 69(2):393–400, 2019.

[201] R Assmann, M Giovannozzi, Y Papaphilippou, F Zimmermann, A Caldwell,
and G Xia. Generation of short proton bunches in the cern accelerator complex.
Proc. PAC09, page 4542, 2009.



98 References

[202] Vardan Khachatryan, Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam,
E Asilar, Thomas Bergauer, Johannes Brandstetter, Erica Brondolin, Marko
Dragicevic, Janos Erö, et al. Measurement of long-range near-side two-particle
angular correlations in p p collisions at s= 13 tev. Physical review letters,
116(17):172302, 2016.

[203] Michel Chanel. Leir: the low energy ion ring at cern. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 532(1-2):137–143, 2004.

[204] G Yu Drobychev, U Gendotti, I Boscolo, H Walters, M Büchner, André Rubbia,
MK Oberthaler, P Nédélec, S Zavatarelli, C Carraro, et al. Proposal for the
aegis experiment at the cern antiproton decelerator (antimatter experiment:
Gravity, interferometry, spectroscopy). Technical report, 2007.

[205] M Buzio, L Walckiers, A Beaumont, C Petrone, D Giloteaux, S Gilardoni,
P Galbraith, and G Golluccio. Development of upgraded magnetic instru-
mentation for cern real-time reference field measurement systems. Technical
report, 2010.

[206] Klaus Hanke, Julie Coupard, Heiko Damerau, Anne Funken, Brennan God-
dard, Alessandra Lombardi, Django Manglunki, Simon Mataguez, Malika
Meddahi, Bettina Mikulec, et al. The lhc injectors upgrade (liu) project at cern:
proton injector chain. In Proceedings, 8th International Particle Accelerator
Conference (IPAC 2017): Copenhagen, Denmark, May 14-19, 2017.

[207] G Franzini, O Coiro, D Pellegrini, M Serio, A Stella, M Pezzetta, and M Pullia.
Final design and features of the b-train system of cnao. Proc. IPAC, pages
1–3, 2010.

[208] Open Hardware Repository. Available online:. https://ohwr.org/, Accessed on
20 January 2022.

[209] Carles Kishimoto Bisbe and Tony Cass. Cern technical network upgrade.
Technical report, 2019.

[210] Igal Galili, Dov Kaplan, and Yaron Lehavi. Teaching faraday’s law of electro-
magnetic induction in an introductory physics course. American journal of
physics, 74(4):337–343, 2006.

[211] Anthony Beaumont, Marco Buzio, and Giovanni Boero. Ferrimagnetic reso-
nance field sensors for particle accelerators. Review of Scientific Instruments,
90(6):065005, 2019.

[212] Patrick Loschmidt, Georg Gaderer, Natasa Simanic, Arshad Hussain, and
Pedro Moreira. White rabbit-sensor/actuator protocol for the cern lhc particle
accelerator. In SENSORS, 2009 IEEE, pages 781–786. IEEE, 2009.



References 99

[213] PPM Jansweijer, HZ Peek, and E De Wolf. White rabbit: Sub-nanosecond
timing over ethernet. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
725:187–190, 2013.

[214] C Roderick and R Billen. The lsa database to drive the accelerator settings.
In 12th International Conference On Accelerator And Large Experimental
Physics Control Systems, Kobe, Japan, pages 12–16, 2009.

[215] About CentOS. Available online:. https://centos.org/about/, Accessed on 20
January 2022.

[216] Michel Arruat, Leandro Fernandez, Stephen Jackson, Frank Locci, Jean-Luc
Nougaret, Maciej Peryt, Anastasiya Radeva, Maciej Sobczak, and Marc Van-
den Eynden. Front-end software architecture. In ICALEPCS, volume 7, page
310. Citeseer, 2007.

[217] Julian Lewis, Pablo Alvarez, Jean-Claude Bau, Stephane Deghaye, Ioan
Kozsar, and Javier Serrano. The cern lhc central timing, a vertical slice.
ICALEPCS07, 2007.

[218] Julian Lewis, Jean-Claude Bau, Javier Serrano, David Dominguez, Pablo Al-
varez Sanchez, et al. The evolution of the cern sps timing system for the lhc
era. In Proceedings of ICALEPCS, pages 125–129, 2003.



Appendix A

Neural Network Architectures

Neural network architectures can be divided into two main groups: multi-layer
neural networks, wherein no cycle is created by the connections between nodes, and
recurrent neural networks, which on the contrary contain loops. In the following
paragraphs, the two different categories of neural networks are described in detail.

A.1 Multi-layer Neural Networks

A multi-layer neural network, also known as MLP, aims to approximate a function
f ∗ [91], defining a mapping y = f (x;θ) and learning the parameters θ that return the
best function estimation. For example, in case of classification problem, the mapping
y = f ∗(x) maps the input, x, to a certain category y. Multi-layer neural networks
represent the most widely used model of feed-forward neural networks [187].
They consist of N basic computing units, called neurons, that are organized in L > 1
ordered layers [188]. The first layer consists of m input variables, x1, ...,xm; the last
layer is the output layer, which provides the output of the model, while the layers
between the input and the output layer are called hidden layers. Each neuron of a
certain layer l (with 1≤ l ≤ L) receives connections from all the units, coinciding
with the input variables if l = 1, of the previous layer and sends its output to all the
neurons of the next layer, as shown in Fig. A.1.

The units in each layer are independent of each other, which means that there are
no connections between the neurons of a single layer. Each connection is associated
with a real value, called weight. The computation flow departs from the input layer
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Fig. A.1 Multi-layer neural network general architecture.

until the output layer without any feedback (forward propagation). When feedbacks
are present in the neural network, it becomes a recurrent neural network, as described
in Sec. A.2.
The neuron computation can be distinguished in two steps, as shown in Fig. A.2: the
computation of the neuron input and, subsequently, the computation of its output.

The input al
i of a generic neuron i belonging to a generic layer l is a weighted

linear combination of the incoming values, which represent the previous layer’s
output:

al
i = ∑

j
W l

i jz
l−1
j +bl

i (A.1)

where W l
i j corresponds to the weight of the connection from the j-th neuron of the

layer l−1 to the i-th neuron of the layer l; bl
i represents a parameter called bias and

zl−1
j is the output of the j-th neuron of the layer l−1 or the input variables in case of

l = 1. The index j varies over the indexes of the neurons belonging to the layer l−1
from which the connections to the i-th neuron depart. The corresponding matrix
notation of the neuron’s input is given by al

i = Wl
izl−1 +bi, with Wl

i representing
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Fig. A.2 Representation of a generic neuron computation with m input signals.

the weight column vector of the i-th neuron of the l-th layer, while zl−1 corresponds
to the output column vector of the neurons of the previous layer, l−1. In case of
l = 1, zl−1 represents the input variables. On the other side, the output zl

i of a generic
neuron i belonging to a generic layer l is usually calculated by a nonlinear function
φ(), called activation function, as zl

i = φ(al
i). In general, the activation function used

in the multi-layer neural networks belongs to the family of rectified functions, such
as ReLU [189], but they can be also classic functions such as logistic sigmoid or
tanh.
Multi-layer neural networks represent a broad class of different neural networks,
from the simplest ones, like the shallow or vanilla network with a single hidden
layer (Fig. A.3), to the deep and more complex ones, like the convolutional ones,
described in Sec. 2.3.1.

The mathematical expression of the generic output yk for a shallow neural network
is given by Eq. A.2:

yk = φ̃(
n

∑
j=0

Wk j φ(
m

∑
j=0

Wjixi)| {z }
z j

)
(A.2)
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Fig. A.3 Shallow or vanilla architecture characterized by a single hidden layer.
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In order to allow the convergence of the function f (x), implemented by the
network, to f ∗(x), the multi-layer neural network is trained with an update rule
generally based on the derivative calculation performed by the back-propagation
algorithm [190], as described in detail in Sec. 2.2. Starting with random weights,
in a multi-layer neural network, they are continually updated to minimize the loss
function. Depending on the problem type, a multi-layer neural network may use
different loss functions. For example, the loss function used for classification
problem is Cross-Entropy [191], while for regression problem multi-layer neural
network makes use of the Square Error loss function [192]. After computing the loss,
the latter is propagated back from the output layer to the previous layers through a
backward pass, which gives each weight parameter an update value to reduce the
loss.
The popularity of multi-layer neural network is due to the capability to learn non-
linear models and, in particular, to the capability to approximate arbitrarily well any
continuous functional mapping defined on a compact input domain, provided that
the number of hidden neurons is sufficiently large and the activation functions of
the hidden neurons satisfy some suitable properties [158]. In this sense, multi-layer
networks are universal approximators. On the other hand, it is important to note that
a multi-layer neural network is sensible to the input data scaling and non-convex loss
function may contain more than one local minimum. Therefore, it is possible to reach
a different validation accuracy starting from different random weight initializations.

A.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a category of neural networks used for han-
dling sequence of data x(1), ...,x(n) [91].
The idea that allowed to pass from feed-forward neural networks to RNNs arose
in machine learning research of the 1980 and deals with the sharing of parameters
among the several parts that constitute a model. By means of this mechanism, it
is possible to employ the model in different situations, such as different sequence
lengths, being capable to generalize. This would not be possible if the model used
different parameters for every value of the time index. Furthermore, parameters
sharing is also crucial when there is the possibility that certain information can
appear in different positions in the sequence. For instance, if there is the need to
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extract the year contained in a sentence, an RNN will be able to easily identify the
year regardless of its position within the sentence, thanks to the sharing of the same
weights through several time instances.
Convolution with a 1-D temporal sequence has similar aspects to an RNN, from the
parameters sharing point of view, and it represents the base for the time-delay neural
networks [108]. Parameters are shared in a convolutional operation in the sense that
it outputs a sequence where each element is a function of a certain number of input
neighboring elements. This is due to the application of the same convolutional filter
at every time instance. In the case of RNNs, parameters sharing occurs in a different
way. In fact, in this case, each element of the output is a function of the previous
output elements and is generated with the same update rule used for the previous
outputs.
The time index in a sequence of values does not necessarily have to be related
to the passing of time in the real environment, but often it is related only to the
position of the value in the sequence. A way to represent graphically an RNN is
through a computational graph including cycles. The latter indicates that the cur-
rent value of a variable affects the value of the same variable at a future time instance.

The expression that describes a dynamical system is shown by Eq. A.3:

st = g(st−1;θ) (A.3)

with st the state of the system. Eq. A.3 is recurrent since the state of the system, s,
at time t, depends on the state of the system at time t−1. In case of finite number (n)
of time steps, the computational graph can be “unfolded” employing the definition,
shown in Eq. A.3, n−1 times. For instance, unfolding Eq. A.3 with n=3, the state of
the system at time 3 is given by Eq. A.4:

s3 = g(s2;θ) = g(g(s1;θ);θ) (A.4)

The result of repeatedly employing the definition on a recurrent expression leads
to an equation without recurrence, that can be described by a directed computational
graph without cycles, as shown in Fig. A.4.
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Fig. A.4 Unfolded graph representation of a dynamical system, where the nodes contain the
state of the system at a certain time while the function g maps the system’s state at t time to
the system’s state at t +1. In all the time instances, the same parameters, θ , employed to
parametrize g, are used.

Fig. A.5 Computational graph representation of an RNN without output. The RNN receives
an external input, x, and integrates it into the state, h, that flows forward in time. On the right
of the figure, the unfolded version of the computational graph is presented. In this case, each
node is linked to a specific time step.

There are several variants of RNNs since basically any function including recur-
rence can be classified as an RNN. Eq. A.5 is typically used to define the hidden
units of the network:

ht = g(ht−1,xt ;θ) (A.5)

where xt is an external signal. The corresponding computational graph is shown
in Fig. A.5.

During the training of an RNN, that allows the network to predict future values
starting from past values, the state, h(t), represents a kind of summary of the most
relevant features of the past inputs values up to the time step t. Depending on the
network’s task and on the training process, h(t) may keep some characteristics of the
sequence of the past values with more precision with respect to other characteristics.
Starting from Eq. A.5, two different graphical representations can be obtained for
the RNN, as shown in Fig. A.5. The first approach is to introduce one node for each
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element that may be present in a physical implementation of the architecture, as
shown on the left side of Fig. A.5. In this case, the model represents a circuit working
in real-time, where the current state of the physical parts can affect their future state.
The second approach is to represent the RNN by means of an unfolded graph, where
each element is associated with different variables: one variable per time instance,
which describes the state of the element at that time instance. Therefore, the unfolded
graph consists of separate nodes for each variable, as shown on the right side of
Fig. A.5. Thus the unfolding can be seen as the process that maps a circuit diagram
(left of Fig. A.5) to a computational graph with parts that are repeated (right of
Fig. A.5). The size of an unfolded graph relies on the length of the sequence.
The unfolded recurrence after t time instances can be expressed by Eq. A.6:

ht = f t(xt ,xt−1, ...,x1) = g(ht−1,xt ;θ) (A.6)

Function f t considers the total past sequence (xt ,xt−1, ...,x1) as input, generating
the current state, ht . However, f t can also be factorized, applying the g function
repeatedly. In this case, the same input size characterizes the learned model, since
the latter is defined with regard to the passage from a certain state to another one
instead of defined with regard to the variable length history of the states. Moreover,
the same function g can be used with the same parameters for the transition between
the different states. These aspects allow a better generalization of the model that will
be able to analyze sequence lengths that are not included in the training set.
Finally, as anticipated before, there are a lot of variants of RNNs and some examples
are the following:

• RNNs that generate an output at every time instance and contain recurrent
connections among hidden units, as shown in Fig. A.6;

• RNNs that generate an output at every time instance and contain recurrent
connections from the output unit at a certain time instance to the hidden unit
at the next time instance, as shown in Fig. A.7;

• RNNs that contain recurrent connections among hidden units that scan the
whole sequence and after that it generates a single output, as shown in Fig. A.8.
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Fig. A.6 RNN architecture with recurrent connections among hidden units and an output at
every time instance.

Fig. A.7 RNN architecture with recurrent connections from the output unit at a certain time
instance to the hidden unit at the next time instance and an output at every time instance.
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Fig. A.8 RNN architecture with recurrent connections among hidden units and a single
output at the end of the sequence scan.

Particular interest is addressed to Long Short-Term Memory (LSTM) that is
another type of RNN architecture [193], used in deep learning field for handling
sequences of data. For example, LSTM has been used in weather prediction problems
[194], product recommendation [195], stock market forecasting problems [196], text
generation [197] or speech recognition problems [198].
The neurons of an LSTM architecture are called cells (there can be several layers
and several cells per layer) and contain gates and weights. The gate is the peculiarity
of the LSTM models. There are three types of gates: the input gate, the forget
gate and the output gate. The forget gate is responsible for eliminating unnecessary
information, similarly to the human behavior that does not consider information
or events that are not necessary or relevant to make a decision. On the other hand,
the input gate is responsible for adding new information to the cell, just as humans
consider new information in addition to the information already acquired. Finally,
the output gate chooses the useful information on the basis of the previous cell output,
the cell state and the new data, producing the cell output which feeds the next cell.



Appendix B

B-train: a Real-Time Magnetic
Measurement System for Synchrotron
Control

In this Appendix, an overview of the “B-train” systems is presented. Part of the work
described in this section was also previously published in [3].
The accurate knowledge of the magnetic field values generated by the dipole magnets
is crucial for the proper functioning of a synchrotron [199]. At this aim, the B-train
system has been realized and is currently in operation in six machines [200]: it
performs real-time magnetic field measurements, in iron-dominated electromagnets
characterized by strong non-linear effects, and provides them to various users, such
as radiofrequency cavities, beam control and diagnostics, power converter control.
The six machines that are using the Btrain system to determine the dipole field are
the LEIR, the Proton Synchrotron (PS), the Proton Synchrotron Booster (PSB), the
Super Proton Synchrotron (SPS), the Antiproton Decelerator (AD) and the Extra
Low ENergy Antiproton deceleration ring (ELENA). PSB, PS, SPS are part of the
chain of injectors delivering protons to the LHC, as shown in Fig. B.1.

In particular, each machine in the chain of particle accelerators complex increases
the energy of the particles by a factor typically about 20 to deliver them to the next
more powerful accelerator or to experiments. Four main experiments are present in
the LHC ring (CMS, ATLAS, LHCb and ALICE) and dozen of smaller experiments,
also known as fixed-target. PSB accelerates the protons to 1.4 GeV to inject the beam
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Fig. B.1 CERN’s Accelerator Complex. The LHC is the last ring of the particle accelerators
complex, along which the main four experiments are located (ALICE, CMS, LHCb and
ATLAS). The smaller machines in the chain increase the energy of particles and provide
beams not only to the LHC for the main experiments but also to a whole set of smaller
experiments, known as fixed-target. (Image: © 2018 CERN [2]).
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into the PS that accelerates the protons to the energy of 26 GeV. Finally, protons
are sent to the SPS with an energy of 450 GeV to reach finally the LHC, where
an energy of 6.5 TeV per beam is reached [201]. Here, the two beams circulate
in opposite directions and collide inside four detectors (CMS, ATLAS, LHCb and
ALICE), where a center-of-mass energy of 13 TeV at the collision point is reached
[202].
In addition to protons, it is also possible to accelerate ions. For this purpose, LEIR
has been introduced in the chain of the accelerators complex. It receives long bunches
of ions from LINAC 3 and, splitting them into four shorter bunches, accelerates these
bunches up to 72 MeV to deliver them to the PS [203]. Then, the pathway continues
as in the case of protons.
Finally, AD and ELENA are responsible for the production of low-energy antiprotons
to study antimatter [204].

The name “B-train” derives from the operating principle of the legacy systems
[205], developed since the 1950s, where the discrete positive and negative pulse
“trains” were used to propagate incrementally the measured magnetic field. The
actual “B-train” system is called FIRESTORM (Field In REal-time STreaming from
Online Reference Magnets), realized to replace the legacy systems in the context
of a long-term consolidation project. It has been developed to deal with the High-
Luminosity LHC upgrade, which requires higher beam intensity and an improved
beam control in the whole injector chain [206]. After a considerable and successful
test campaign, the deployment of the systems has been successfully completed for
all six machines and the new systems are expected to be fully operational for the
next physical run of LHC.
B-train systems are used not only for high energy physics research but are also present
in medical contexts as in the case of the Heidelberg Ion-Beam Therapy Centre (HIT)
[138] or the National Centre for Oncological Hadrontherapy (CNAO) [138] [207], a
hospital center specialized in the treatment of tumors by hadrontherapy.
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Fig. B.2 Block diagram representing the architectural layout of the new FIRESTORM system
[3].

B.1 Hardware and Software Architecture of the New
FIRESTORM system

In Fig. B.2 the architectural scheme of the new system is shown.

Unlike the legacy B-train, characterized by a large number of custom compo-
nents with few small differences, the new system is based on a modular architecture
consisting of parametric firmware and common hardware. This solution allows the
FIRESTORM system to adapt efficiently to the different setups that characterize the
six machines. In fact, each machine has different sensors configurations according to
the needs of each synchrotron. The simplest case is represented by the SPS, in which
the system is equipped with a long integral coil with one low-field marker that sends
input to a single integration channel. In ELENA instead, the system is equipped with
one integral coil but two field markers, each used according to the type of magnetic
cycle: the high-field marker is used with cycles where antiprotons are decelerated,
while the low-field marker is used for some special test cycles, where protons and
H− ions are accelerated. In the PS machine, there are particular magnets that consist
of two parts: half with a focusing gradient and the other half with a defocusing one.
The two halves must basically be handled as two independent magnets and, therefore,
each part needs an integration channel and a dedicated coil. For the time being,
there is only one low-field marker on each integration channel, but in the upcoming
operating scenarios a second pair of high-field markers will be added to reach higher
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accuracy both at the injection and extraction of the beam.
Therefore, a flexible architecture is required to effectively address these diverse re-
quirements. The modular approach adopted by the design, along with the diagnostic
capabilities and the possibility to configure the system remotely, made possible by
the software integration within the accelerator control system, should enhance both
longevity and maintenance of the system.
The main functionalities of the FIRESTORM B-train are implemented in a set of
modules based on standard PCIe FPGA carrier cards (Simple PCI Express Carrier
or SPEC card), contained in an industrial Front End Computer (FEC). The SPEC
card includes a custom-made FPGA Mezzanine Card (FMC), which implements
digital and analog I/O. The modular architecture allows separating various function-
alities with a good level of scalability, improving both the maintainability and the
adaptability of the system. The PCB layouts and firmware as well as all the other
design elements are released on the Open Hardware Repository (OHWR) [208],
a platform for electronics designers working at experimental physics facilities to
stimulate collaboration on open hardware designs and the commercialization of the
latter by industrial partners. The B-train crate acts as a central hub, allowing the link
between the cards and the magnetic sensors. The access to the FECs occurs through
the Technical Network [209], an isolated Ethernet network secured against malicious
attacks, that is used to monitor and control the accelerators complex.
The combination of the induction coils and the field markers, installed inside the
reference magnets of the specific machines, allows magnetic field measurements.
In particular, the induction coil measures the rate of change of the magnetic field
according to Faraday’s law [210], while the field marker provides the necessary
integration constant and its output passes through a conditioner before reaching
the crate. The field marker conditioner removes the DC component, allowing the
subsequent comparison with a known threshold, and then, if necessary, amplifies the
signal [211].
Finally, the White Rabbit (WR) is a fiber-optic Ethernet-based network [212], that
is used to propagate the measured magnetic field with noise immunity and high
speed [213]. The Ethernet frames allow not only the transmission of the measured
field but also other three versions of the magnetic field: the field provided by the
legacy system, if available; the simulated field, that is a copy of the nominal field
extracted from the magnetic cycle database (LHC Software Architecture (LSA)
database [214]) as shown in Fig. B.3; the predicted field, that is a model of the
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Fig. B.3 Schematic of the simulated Btrain. The FSBT_BTG FESA class (see Sec. B.1.1)
downloads the cycle data vectors from the LSA database onto the FPGA of the simulated
field module. A Bresenham line-drawing algorithm [4] generates the simulated field, thus
providing the interpolated magnetic cycle.

magnetic field based on the magnet excitation current by means of neural network
(see Chapter 3). The availability of these synchronized versions of the field facilitates
system diagnostics and the improvement of the operational flexibility in particular
situations (for example, when the measured field is not available).

B.1.1 Front End Computer and Real-Time Software

The FEC is the main element of the FIRESTORM system. It is an industrial diskless
rack-mounted PC that hosts the principal electronic components. At CERN there are
about two thousand FECs that interface with devices involved in synchrotron control
(e.g. beam diagnostics instrumentation, vacuum and radio frequency control systems
as well as B-train systems). The generation of FEC currently in use at CERN is the
Siemens SIMATIC IPC847E with up to eleven free PCIe slots with 64-bit CentOS7
Linux as operating system [215]. As shown in Fig. B.4, the FEC hosts Device Driver
and software based on a distributed and real-time framework named Front End
Software Architecture (FESA) , that is the main component of accelerators control
complex at CERN and GSI [216]. FESA is a framework dedicated to equipment
specialists for the design, development, deployment and testing of their equipment
software, called FESA class. The C++ FESA classes are deployed on the Btrain
FECs.
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Fig. B.4 FEC’s architecture, depicting the internal modules and the flow of data through the
FEC [3].

FESA acts as an interface between the high-level infrastructure for accelerator
control and the local hardware, accessed through user-written device drivers. FESA
classes are closely integrated with the timing system [217], through the Central
Timing Receiver (CTR) module, used for the synchronization of the accelerators and
their subsystems, within a few microseconds [218]. The timing system comprises a
network of coaxial cables that are independent for each accelerator and distribute
hundreds of trigger pulses, representing significant timing events for beam or for
the equipment control. In particular, a serial channel (the Machine Telegram) for
each accelerator propagates relevant information regarding the beam, such as the
magnetic cycle’s type being run, the beam’s destination and the type of the next cycle
that will be run.
FESA framework has recently been fully equipped with the so-called Pulse-to-Pulse
Modulation (PPM) properties, which enable/disable specific actions such as setting
properties’ items, based on the cycle type. PPM is a crucial new feature that allows
automatic adaptation of parameters for sensor calibration according to the cycle type.
This aspect is particularly important, for example, for the field marker level that for
the best accuracy must be calibrated separately for each cycle type. As a result, with
respect to the manual updating performed in the older B-train systems, by using this
mechanism, the configuration process becomes much more flexible and reliable.
During the research activity carried out at CERN, six different FESA classes, be-
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longed the FIRESTORM software, have been designed, developed, tested, deployed
and maintained:

• B-train FESA class: it is the main class that provides the measured magnetic
field to all the other subsystems;

• FSBT_BTG FESA class: it collects the nominal field from the LSA database
and distributes the simulated field to all the other subsystems;

• CosmosCheckWRS FESA class: it monitors the status of the White Rabbit
network;

• Comet_EVM FESA class: it is used for the environmental monitoring to
control, for example, environmental temperature and humidity;

• BtrainSelection FESA class: it controls the Btrain Operational/Spare commu-
tation (for each machine, there are two identical Btrains: one is the Operational
and is sent to the various subsystems; the other is the Spare and is used as a
backup system, replacing the Operational Btrain in case of malfunctions);

• BtrainDiagnostics FESA class: a supervisor class for Btrain diagnostics (for
example, it shows both the field values measured by the operating system and
the spare one to check for any inconsistencies).

The FIRESTORM FESA classes allow the tuning of more than two-hundred dif-
ferent configuration parameters, related to the B-train operation, as well as to access
to more than 100 acquisition parameters, inherent to internal registers and measure-
ment values. In Figs. B.5, B.6, B.7, B.9, B.13, B.15 and B.17, the FIRESTORM
FESA class interfaces are shown, while in Figs. B.8, B.10, B.14, B.16 and B.18 the
relationships existing between the properties for each class are shown. Finally, in
Fig. B.19 an example of a Btrain FESA class property for the SPS accelerator is
shown through the FESA Navigator, that is a graphical user interface to access to the
class properties of a certain instance. In particular, from the property Signals, it is
possible to plot the measured magnetic field through the item bCycle. In this case,
the MD1 magnetic cycle of the operational system is displayed.
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Fig. B.5 Btrain FESA class interface: Acquisition Properties.
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Fig. B.6 Btrain FESA class interface: Setting Properties - Part 1.
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Fig. B.7 Btrain FESA class interface: Setting Properties - Part 2.



B.1 Hardware and Software Architecture of the New FIRESTORM system 121

Fig. B.8 Btrain FESA class properties relationships.
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Fig. B.9 FSBT_BTG FESA class interface: Acquisition and Setting Properties.
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Fig. B.10 FSBT_BTG FESA class properties relationships.
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Fig. B.11 CosmosCheckWRS FESA class interface: Acquisition and Setting Properties.

Fig. B.12 CosmosCheckWRS FESA class properties relationships.
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Fig. B.13 Comet_EVM FESA class interface: Acquisition and Setting Properties.
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Fig. B.14 Comet_EVM FESA class properties relationships.
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Fig. B.15 BtrainSelection FESA class interface: Acquisition and Setting Properties.

Fig. B.16 BtrainSelection FESA class properties relationships.
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Fig. B.17 BtrainDiagnostics FESA class interface.

Fig. B.18 BtrainDiagnostics FESA class properties relationships.
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Fig. B.19 Example of Btrain FESA class property shown by means of the FESA Navigator.
In this particular case, the measured magnetic cycle for the SPS operational system is shown.
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