
08 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Style-Aware Sketch-to-Code Conversion for the Web / Calò, Tommaso; De Russis, Luigi. - ELETTRONICO. - (2022), pp.
44-47. (Intervento presentato al convegno ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS '22) tenutosi a Sophia Antipolis (France) nel June 21-24, 2022) [10.1145/3531706.3536462].

Original

Style-Aware Sketch-to-Code Conversion for the Web

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3531706.3536462

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2962181 since: 2022-06-30T09:29:41Z

ACM

Style-Aware Sketch-to-Code Conversion for the Web

TOMMASO CALÒ, Politecnico di Torino, Italy

LUIGI DE RUSSIS, Politecnico di Torino, Italy

While sketching a graphical user interface (GUI) is a necessary step towards the creation of a Web application, its transformation
into a coded GUI, with the proper styles, is still a tedious and time-consuming task that a designer should perform. Recently, a set of
Machine Learning techniques has been applied to automatically generate code from sketches to ease this part of the design process.
These techniques effectively convert the sketches into a skeleton structure of the GUI but are not designed to consider the styles to
be applied to the generated HTML page. Moreover, having the possibility to explore different styles, starting from a sketch, might
further support the designer in their work. In this paper, we move the first steps to enable this opportunity by proposing a method
that allows the designer to input the sketch of the Web-based GUI and select a reference style to be applied. Our method automatically
injects the reference styles into the sketch components and then uses an automatic code generation technique to obtain the final code.
Preliminary experiments carried out with the navigation bar component show the effectiveness of the proposed method.

CCS Concepts: • Human-centered computing → Graphical user interfaces; Interface design prototyping; • Computing method-
ologies→ Machine learning; Computer vision.

Additional Key Words and Phrases: machine learning, web elements, user interface, convolutional neural network

ACM Reference Format:
Tommaso Calò and Luigi De Russis. 2022. Style-Aware Sketch-to-Code Conversion for the Web. In EICS 2022: ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, June 21–24, 2022, Sophia Antipolis, France. ACM, New York, NY, USA, 6 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

When designers first start thinking about a graphical user interface (GUI), they often sketch rough pictures of the screen
layouts. Their initial goal is to work on the overall layout and structure of the components, rather than to refine the
detailed look-and-feel. Designers use these sketches and other low-fidelity techniques to quickly consider design ideas,
later shifting to interface construction tools or handing off the design to a programmer. However, transitioning from
those sketches to a coded interface with a suitable look-and-feel is still a manual and time-consuming task [11, 12].

Supporting this transition is challenging due to the diversity of sketches and the complexity of coded GUIs. Therefore,
it is of high interest for the research community to find methods and tools able to support designers in the process
of translating between prototypes of the user interface. Several research projects, indeed, have tried to automate
this translation. For instance, Beltramelli [1] proposed Pix2code, an end-to-end approach based on Convolutional
and Recurrent Neural Networks that allows the generation of code from a mock-up screenshot taken as an input.
Robinson [8], instead, presented sketch2code, a system to automatically transform hand-drawn sketches into coded
GUIs. Both these works capture well the backbone structure of the GUI and translate it into code, but they are not
designed to consider the aesthetics (e.g., colors and shadows) to be applied to the generated interface, which remains a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EICS 2022, June 21–24, 2022, Sophia Antipolis, France Calò and De Russis

manual and expensive task. Indeed, having the chance to explore different styles, immediately after creating a sketch,
might further empower the designer in their creative work.

In this paper, we put forward a novel approach where we focus on translating a sketch of a Web interface to the
related code, letting the designer also choose the style of the generated elements from an arbitrarily chosen picture, such
as artwork or an infographic. To do so, we segment the input sketch to derive the single components of the web-based
interface and their positions. Then, for the derived components, the designer can choose a reference style image which
is used to guide the choice of the style of the input sketch. Given its complexity, the problem of style selection is split
into two sub-problems: a) the selection of colors, accomplished with a clustering-based technique that extracts the most
prominent colors in the reference image, and b) a feature distance-based metric technique for selecting the style of the
text. For the purpose of this paper, we experiment with this approach with a single component, the navigation bar,
widely present on many websites. Findings show that our method is able to select effectively the style of the reference
template for the sketched component, showing good results in the color and in the text style selection, which well
resembles the referenced style image.

2 BACKGROUND AND RELATEDWORKS

Although the generation of computer programs is an active research field, program generation from visual inputs
(like sketches) is still a relatively underexplored area. The problem of generating code from visual inputs is strictly
related to the problem of automatically reverse-engineering GUIs: reverse-engineering approaches are mainly applied
to generate code from GUI mock-ups or screenshots. Nguyen and Csallner [7], for example, developed a method to
reverse-engineering Android user interfaces from screenshots. However, their method heavily relies on heuristics and
expert knowledge to be implemented successfully, so its applicability is restricted to a limited domain of interfaces.

Similar approaches have been used to create tools able to generate code from hand-drawn wireframes. These
tools [5, 13] are useful to designers who wish to quickly sketch and prototype possible UI layouts. A more complex
version of this task is generating code from complete UI screenshots, as it requires that the system handle the stylistic
and structural variation present in real-world app screens. Pix2code [1] was one of the first works attempting to address
the problem of GUI code generation from visual inputs by leveraging machine learning to learn latent variables instead
of engineering complex heuristics. To exploit the graphical nature of the input, Pix2code approaches the problem of
converting screenshots to code as an image captioning problem; the author implemented first a Convolutional Neural
Network (CNN) [4] performing unsupervised feature learning, mapping the raw input image to a learned representation,
and then a Recurrent Neural Network (RNN) [9] performing language modeling on the textual description associated
with the input picture. In this latter step, at every iteration, the screenshot of the interface is concatenated to the latent
state variable of the RNN, and the final output is a set token that can be parsed into the final code of the interface.
The Pix2code model shows good generalization abilities even with out-of-domain samples. UI2Code [2] uses a similar
architecture to generate a GUI skeleton from a screenshot that describes the relative positioning of GUI elements.

Another work very close to ours is Sketch2Code [8]. Sketch2Code approaches the problem similarly to Pix2code,
with the difference that the author trains the model on a specially-prepared dataset of GUI sketch images. In addition,
the author does not implement a language model and, instead, uses only a CNN to identify the application components.
Sketch2Code, then, represents every component as a JavaScript Object Notation (JSON) structure, which is then parsed
by a GUI parser to create platform-specific code.

As depicted, none of these previous works focus their attention on the automatic style customization of graphical
elements. Our approach aims at filling this gap by introducing an approach that is similar to Sketch2Code in the fact

2

Style-Aware Sketch-to-Code Conversion for the Web EICS 2022, June 21–24, 2022, Sophia Antipolis, France

that we start from sketches, but differs from Pix2Code since we do not implement any language model to perform the
translation. Instead, we implement a CNN to infer the structural properties of the sketched Web component. We then
use an automatic procedure to select the stylistic properties from a freely chosen image and generate the final code
with the help of a parser.

3 METHODOLOGY

Fig. 1. Method overview. (1) Starting from the sketch of a webpage, we perform segmentation of its interface. (2) We infer the
structure and the textual elements of the selected component (Section 3.1). (3) Style properties of the reference image are extracted
and injected into the structural properties of the sketch. Finally, a parser generates the final code along with the rendering of the
component (Sections 3.2 and 3.3).

The task of generating the computer code of a styled interface from a sketch can be split into three sub-problems.
First, the problem of understanding the sketch and inferring which are the present elements and their positions. Second,
for every component recognized on the sketch, apply a specific style, given a reference style. Finally, the last challenge
is to generate the code of the resulting styled component. The presented approach has been implemented using Python
3.8. The neural network has been implemented using PyTorch, the images processing with PIL and OpenCV, while the
data processing has been conducted with Pandas and Numpy.

3.1 Sketch Understanding

The task of understanding the sketch is a computer vision task that, given the sketch of a Web-based GUI, consists of
the detection and identification of the included components (e.g., buttons, navbars, etc.) and their relative position. For
this task, we adopted the same method of Sketch2Code [8], which uses RetinaNet [6], a popular single-stage detector
that is accurate and runs fast. RetinaNet uses a feature pyramid network to efficiently detect objects at multiple scales
and introduces a new loss, the focal loss function, to alleviate the problem of the extreme foreground-background class
imbalance. RetinaNet can simultaneously predict both the class and the box position of the object under detection. For
performing this task, we use the same dataset presented in Sketch2Code. To recognize written words in the sketch, in
addition, we utilize an OCR technique.

3

EICS 2022, June 21–24, 2022, Sophia Antipolis, France Calò and De Russis

3.2 Automatic Style Transfer

Given that a Web component is a complex aggregation of multiple visual elements, we split the problem of extracting
the style from the selected reference image into two sub-problems, color extraction and text style selection.

Color Extraction. We extract the most dominant colors from the selected reference image by using a median cut
based clustering technique, which works by sorting data of an arbitrary number of dimensions into series of sets by
recursively cutting each set of data at the median point along the longest dimension, in our case the color dimensions
in the image (i.e., the RGB channels present in a colored picture).

Text Style Selection. To select that text style that mostly resembles the selected reference image we exploit the
feature extraction power of CNNs. In detail, given a list of preferred fonts, we pass both the image and a sample sentence
for each font through a pre-trained Visual Geometry Group (VGG) neural network. We then choose the font which
minimizes the cosine similarity between the two hidden representations. Mathematically, given the model 𝑆 , a reference
image 𝑖 ∈ 𝐼 and a set of fonts 𝐹 , we choose the j-th style 𝑓 ∈ 𝐹 such that

𝑗 = argmin
𝑗

𝑆 (𝑖) ∗ 𝑆 (𝑓𝑗) (1)

where 𝑆 (𝑖) and 𝑆 (𝑓𝑗) are the last layer activation values of the network. The formula above ensures that the selected
reference image and the font have some visual similarity in common, or at least that the similarity is maximal among
the chosen fonts.

3.3 Code Generation and UI Reconstruction

Given the customized component obtained by the previous step, we pass it again through a multi-headed VGG
Convolutional Neural Network [10] to infer its characteristics, both in structure and style. The resulting object is then
passed to an external parser, along with the relative box positions obtained from the sketch understanding phase
(Section 3.1) to produce the final code representation of the GUI. The external parser maps the feature inferred from the
CNN to both CSS attributes for style features and structural HTML attributes for content features. Finally, an algorithm
embeds them into a website template to generate the final interface.

4 PRELIMINARY RESULTS

Fig. 2. Results of the automatic style transfer algorithm and the UI reconstruction. The sketch above is converted into the corresponding
navbars having the styles of the images on the sides.

To validate our method, our experiments focus mainly on testing the correct prediction of the structure of the sketch
with both synthetic and real sketches, having correct visual feedback from the extraction of dominant colors from
the reference image, and validating the robustness of the choice of the text font that most resembles the style of the

4

Style-Aware Sketch-to-Code Conversion for the Web EICS 2022, June 21–24, 2022, Sophia Antipolis, France

reference image through various sentence samples. Since the segmentation and reconstruction methods were adopted
from an already validated by Sketch2Code [8] and UICode [2] we do not report the performance of those methods in
this paper. The experiments have been conducted with Google Colab.

Dataset. To test the effectiveness of the style transfer technique we built a synthetic dataset of 3,000 navigation bars
(navbars) sketches, the navbars can have at most five items floating left and three items floating right; the aim of the
structure prediction model is to infer the number of right and left items. In addition, we fine-tuned the resulting model
to 50 navbars sketches to evaluate the performances of the model in a real scenario.

Measures. The performance of the method we propose relies on two main objectives.

(1) The convolutional neural network must be able to classify correctly the structural features of the sketched
component in order to parse them into code.

(2) The color extraction algorithm must give correct visual feedback on the capabilities of extracting the right colors
and choosing the right font given the reference image.

For the former, we evaluate the classification performances of the CNN on the synthetic and on the real sketches
dataset. So that, given a sketch, the network must properly infer its content features. To evaluate its performance,
we use the accuracy of the prediction with respect to the ground truth, which represents the items positions in the
sketched component. The accuracy is calculated as the number of sketches for which the model correctly predicts all
the structural components of the sketch. For the second objective, we visually evaluate the performances of the color
extraction algorithm in the results we obtained, leaving for future works a more extended evaluation with designers.

Experiments. To evaluate the performance of the CNN for the sketch structure prediction, we split the synthetic sketch
dataset into 2,500 train samples and 500 test samples, we trained the network 20, 30, and 50 epochs with pre-trained
weights on ImageNet [3] and we then tested fine-tuned the network on 50 real sketches, and tested on 20.

Epochs Synthetic Sketches Real Sketches
20 0.898 0.678
30 0.909 0.685
50 0.912 0.691

Table 1. Accuracy in the predictions of the structural features of the synthetic and real sketches.

As reported in Table 1, the performances of the convolutional network in distinguishing the structural features of
the sketched component achieve very good results with a top 0.691 accuracy over the real sketches set after 50 epochs
training. Finally, the color extraction algorithm has been evaluated on 10 reference images, while the Text Style Selection
algorithm has been evaluated on 5 different fonts. The resulting visualization shows encouraging performance for the
proposed method to capture the style as well as the color of the reference image. In further work, we plan to conduct
an extensive user study to evaluate our results.

5 CONCLUSIONS AND FUTUREWORKS

This paper presents a method to support designers in generating web pages from a sketch with the addition of style.
Our approach consists of three main parts: a deep learning architecture for segmentation and classification, a style
extraction procedure from a reference image, and a parsing algorithm. Among its advantages, it is fully integrated and

5

EICS 2022, June 21–24, 2022, Sophia Antipolis, France Calò and De Russis

easily adaptable for different sketches of different domains. Then, to our knowledge, it is the first model that allows the
designer to personalize the style of the sketched component automatically from a selected template. Lastly, it is highly
modular, as changing a single module does not require changing the precedent components.

Our approach has some limitations that could eventually be addressed in future research. First of all, both the
style and content features of the components are handcrafted thus the model cannot generalize out of the sketching
specification. This is done to obtain good results due to the complexity of style specifications in web components. Future
work is to implement techniques that allow visual style transfer with language models instead of procedural methods
since language models can generalize out of handcrafted features in this specific task, e.g., as shown by Beltramelli [1].
Secondly, the automatic style transfer technique is limited to predefined stylistic properties, in our case, colors and
fonts. In a real web design scenario, there are many more stylistic properties to take into account, such as shadows,
borders, and dynamics of responsive elements. With such characteristics, it could become challenging to apply our
method extensively in real-world applications. Future research should focus on automatic models that could handle
such complexity in an integrated fashion. Finally, the proposed method needs to be tested with a diverse set of sketches
and web elements, as well as to be included in a tool for designers, where they can select different styles to be applied to
their own sketches. Such a tool will, then, be evaluated in user studies to assess the usefulness of the overall approach.

To conclude, sketch-to-code translation of user interfaces is closer to being implemented in real-world applications,
and our work is a first attempt to allow an automatic stylization of GUI elements leveraging machine learning techniques,
to deliver a more integrated approach, able to support designers in easing this time-consuming part of their work.

REFERENCES
[1] Tony Beltramelli. 2018. Pix2code: Generating Code from a Graphical User Interface Screenshot. In Proceedings of the ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (Paris, France) (EICS ’18). Association for Computing Machinery, New York, NY, USA, Article 3, 6 pages.
https://doi.org/10.1145/3220134.3220135

[2] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018. From UI Design Image to GUI Skeleton: A Neural Machine Translator
to Bootstrap Mobile GUI Implementation. In The 40th International Conference on Software Engineering, Gothenburg, Sweden. ACM.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 248–255.

[4] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. 2014. Large-scale Video Classification with
Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5] James A. Landay. 1996. SILK: Sketching Interfaces like Krazy. In Conference Companion on Human Factors in Computing Systems (Vancouver, British
Columbia, Canada) (CHI ’96). Association for Computing Machinery, New York, NY, USA, 398–399. https://doi.org/10.1145/257089.257396

[6] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollar. 2020. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern
Analysis & Machine Intelligence 42, 02 (feb 2020), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

[7] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile Application User Interfaces with REMAUI. In Proceedings of
the 30th IEEE/ACM International Conference on Automated Software Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 248–259. https:
//doi.org/10.1109/ASE.2015.32

[8] Alex Robinson. 2019. Sketch2code: Generating a website from a paper mockup. arXiv:1905.13750 [cs.CV]
[9] David E. Rumelhart and James L. McClelland. 1987. Learning Internal Representations by Error Propagation. 318–362.
[10] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]
[11] Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and Matthias Jarke. 2019. Eve: A Sketch-Based Software Prototyping

Workbench. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19).
Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312994

[12] Miriam Walker, Leila Takayama, and James A. Landay. 2002. High-Fidelity or Low-Fidelity, Paper or Computer? Choosing Attributes when
Testing Web Prototypes. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46, 5 (2002), 661–665. https://doi.org/10.1177/
154193120204600513

[13] Benjamin Wilkins. 2017. Airbnb Sketching Interfaces. https://airbnb.design/sketching-interfaces. Accessed: 2022-01-10.

6

https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1145/257089.257396
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3290607.3312994
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1177/154193120204600513
https://airbnb.design/sketching-interfaces

	Abstract
	1 Introduction
	2 Background and Related Works
	3 Methodology
	3.1 Sketch Understanding
	3.2 Automatic Style Transfer
	3.3 Code Generation and UI Reconstruction

	4 Preliminary Results
	5 Conclusions and Future Works
	References

