
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GA optimization of variable angle tow composites in buckling and free vibration analysis through layerwise theory /
Fallahi, N.. - In: AEROSPACE. - ISSN 2226-4310. - 8:12(2021), p. 376. [10.3390/aerospace8120376]

Original

GA optimization of variable angle tow composites in buckling and free vibration analysis through
layerwise theory

Publisher:

Published
DOI:10.3390/aerospace8120376

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2962202 since: 2022-04-28T18:31:17Z

MDPI



aerospace

Article

GA Optimization of Variable Angle Tow Composites in
Buckling and Free Vibration Analysis through
Layerwise Theory

Nasim Fallahi

����������
�������

Citation: Fallahi, N. GA

Optimization of Variable Angle Tow

Composites in Buckling and Free

Vibration Analysis through

Layerwise Theory. Aerospace 2021, 8,

376. https://doi.org/10.3390/

aerospace8120376

Academic Editor: Stefano Valvano

Received: 2 November 2021

Accepted: 1 December 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Turin, Italy; nasim.fallahi@polito.it

Abstract: In the current research, variable angle tow composites are used to improve the buckling
and free vibration behavior of a structure. A one-dimensional (1D) Carrera Unified Formulation
(CUF) is employed to determine the buckling loads and natural frequencies in Variable Angle Tow
(VAT) square plates by taking advantage of the layerwise theory (LW). Subsequently, the Genetic
Algorithm (GA) optimization method is applied to maximize the first critical buckling load and first
natural frequency using the definition of linear fiber orientation angles. To show the power of the
genetic algorithm for the VAT structure, a surrogate model using Response Surface (RS) method was
used to demonstrate the convergence of the GA approach. The results showed the cost reduction for
optimized VAT performance through GA optimization in combination with the 1D CUF procedure.
Additionally, a Latin hypercube sampling (LHS) method with RS was used for buckling analysis.
The capability of LHS sampling confirmed that it could be employed for the next stages of research
along with GA.

Keywords: variable angle tow; layerwise theory; genetic algorithm optimization; buckling; free
vibration; surrogate model; response surface

1. Introduction

Fiber-reinforced composites are known as anisotropic materials and are widely used
in the engineering field due to their high stiffness and strength-to-weight ratios, which
result in lightweight composite structures. Recently, a new class of composite materials
was introduced called Variable Angle Tow (VAT) composites (see [1–3]). VAT allows the
designer to tailor a structure’s desired static and frequency responses under specific loads.
In recent years, the use of VAT panels in aerospace applications has increased. The continu-
ous variation of the stiffness properties, obtained by the curvilinear fiber path, provides
considerable advantages in comparison with the conventional composite laminates. As the
number of design variables increases, the tailoring ability of VAT structures significantly
improves for buckling and dynamic properties [4–6].

The Classical Laminate Theory (CLT) was originally used for the first investigation of
composite laminates. Leissa and Martin [4], for example, employed the Ritz method and
thin plate theory to validate a 38% increase in buckling load and a 21% rise in fundamental
frequency, respectively. VAT composite buckling loads improved by 80% [7]. As a typical
finite element model, Tatting and Gürdal [8] used the highly efficient Reighley–Ritz theory.
VAT was applied to increase the plate buckling load in Raju et al. [9]. The CLT and the
Differential Quadrature Method (DQM) were used to arrive at this solution. A number
of studies on the buckling behavior of VAT panels used numerical, semi-analytical, and
analytical approaches that largely utilize CLT [10–13]. Furthermore, CLT was employed
by Hachemi et al. and Khaledi et al. [14] for the dynamic study of panels with varying
stiffness qualities. For the free vibrations and linear transient analysis of variable stiffness
doubly curved shell structures, Sciascia et al. [15] employed an efficient and adaptable Ritz
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technique. The most frequent numerical method for the comprehensive study of composite
structures is the Finite Element Method (FEM). Although this method is precise enough,
3D FEM is tedious and expensive for the design of such structures due to the necessity
of a mesh and high processing expenses. It is possible to lower processing costs without
sacrificing accuracy by using refined finite element techniques.

Carrera Unified Formulation (CUF) is a general approach that may be used to obtain
refined finite element models [16]. Beyond classical theories, there are one-dimensional
(beam) and two-dimensional (plate and shell) CUF theories. In Carrera et al.’s [16] book,
CUF is presented with condensed notation, expressing the displacement fields over the
cross-section in the beam case, as well as the thickness (plate and shell cases), in terms
of base functions whose shapes and orders are arbitrary. The displacement field can
be on a hierarchical expansion over the cross-section of structures, according to CUF.
Within the formulation, different expansion functions, such as polynomial, harmonic, and
exponential, can be used. The weak form of governing equations is produced using FEM
in this technique. CUF provides an investigation on the desired order for cross-sectional
deformation regardless of the problem’s attributes. In comparison to 3D solid finite element
models, Carrera et al. [17] introduced 1D CUF models with a considerable reduction in
computational cost. In other words, a 1D FEM may be used to analyze complicated 3D
structures using CUF. CUF models were used in various fields [18–22] and also in the form
of 1D beams [23–26].

In terms of the recent research work on the improvement of composite plates’ perfor-
mance on buckling and free vibrations, we would like to further enrich the literature review
with works related to the computational analysis and design of composites with different
reinforcements. In terms of the improvement of the performance of composite plates on
free vibration and buckling analysis, Georgantzinos et al. [27,28] used a computational
finite element procedure to evaluate the vibration in graphene composite materials and
the buckling behavior of carbon nanotube composite plates under different boundary
conditions, in order to show the ability of FEM to be in agreement with experimental
tests. Moreover, Uthale et al. [29] carried out a wide-ranging review on the processing
of hybrid nanocomposites and finite element modeling to show the recent advances of
characterization, simulation, manufacturing, and testing for the high performance of this
kind of composite.

Classical theories and the specification of laminate parameters offer a wide range of
optimization approaches in composite structures [30,31]. Fukunag and Vanderplaats [32]
presented an efficient stiffness approach using lamination parameters as design variables
for the orthotropic composites in the classical theory. For instance, Liu et al. [33] used
an optimization procedure with the flexural lamination parameters as continuous design
variables for 0◦, ±45◦, and 90◦ plies in the composite laminates. Bloomfield et al. [34]
expanded their research for a different set of ply orientations in a two-level optimization
approach in the buckling problem. They used lamination parameter and plate thickness to
minimize the mass in the first level and modified particle swarm to determine the stacking
sequences in the laminates. The conventional approach has the advantage of being able to
offer appropriate fiber angles for a multiple-ply laminate because the laminate parameters
are normally acquired by a set of fiber angles.

Tawfik et al. [35] presented a reliability analysis of the free vibration of composite lami-
nated plates to account for the uncertainty of the material and geometrical properties. They
utilized a combination of the second-order reliability method and an artificial neural net-
work to improve the efficiency of their simulation. Furthermore, to avoid time-consuming
optimization methods, a surrogate model can be used [36,37]. When the qualities of the
constituent materials and the applied loads are uncertain, a robust design optimization
algorithm for VAT composite structures can be proposed [38].

GA is the most well-known and frequently used meta-heuristic algorithm, first pre-
sented by John Holland in 1975 [39]. GA is a direct search optimization method that,
by removing the need for gradient knowledge, might be a useful model for composite
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problems. In practice, sensitivity is not used to discover structural behavior based on
design variables. A detailed analysis of composite structure optimization reveals that
algorithm performance predictions can be more difficult with random search issues, and
that convergence velocity is slower than a local search with a known starting point [40].
By contrast, better results are produced when potential patterns are followed, and the
probability of achieving a global optimum is increased. This feature allows the user to
assess the efficiency and computational cost based on their requirements, and it is ideally
suited to optimization and reliability challenges. Moreover, Esposito and Gherlone [41]
showed the power of the Monte Carlo simulation and Latin hypercube sampling (LHS) to
show the robustness of the inverse Finite Element Method, the Modal Method and Ko’s
Displacement theory for the inputs’ variability on the reconstruction of the displacement
field of a composite wing box.

Previous research [42–44] has successfully implemented the CUF technique to perform
free vibration analysis of VAT constructions. In this paper, a numerical model based on the
CUF and the layerwise theory is presented for the buckling and free vibration analysis of
VAT plates subject. A GA was applied to compute the optimal linear fiber angle distribution
of different layups for maximum buckling and free vibration under simply supported and
clamped boundary conditions. During the optimization phase, all GA sample points were
assessed to demonstrate the global optimization via a surrogate model approach: the
response surface (RS). Furthermore, the GA results on RS are compared to the RS results
from the Latin hypercube sampling method to demonstrate LHS’s capacity to acquire a
precise domain of optimal results.

2. Carrera Unified Formulation for Beams
Preliminaries

In the CUF framework, the cross-section of the beam is considered to be located on the
x–z-axis of a generic Cartesian reference system, as shown in Figure 1. Beam boundaries
along the y-axis can be defined in the range 0 ≤ y ≤ L, where L is the length of the beam,
see Figure 1. We next introduce the displacement vector

u(x, y, z) = {ux, uy, uz}T (1)

as well as the stress, σ, and strain, ε:

σ = {σxx, σyy, σzz, σxz, σyz, σxy}T (2)

ε = {εxx, εyy, εzz, εxz, εyz, εxy}T (3)

In composite materials, independently of the fiber orientation angle, the three-dimensional
behavior of a ply of composite made out of linear elastic material can be written in the
form of Hooke’s law:

σ = Cε (4)

where C stands for the material matrix of the elastic coefficients. The displacement field for
the beam structure in CUF can be expressed as the generic expansion of primary unknowns:

u(x, y, z) = Fτ(x, z)uτ(y), τ = 1, 2, . . . , M (5)

where Fτ is the expansion function of the cross-section over the x–z-plane, uτ is a gener-
alized displacement vector, M represents the expansion term, and the repeated subscript
τ stands for summation. The kinematics of the model can be modified according to the
function Fτ as a class of a 1D CUF beam model.
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x 
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y

nodes

1D model

Figure 1. The modeling of a beam structure using a 1D model where y is the along the beam axis,
and the cross-section lies on the x–z plane through thickness.

In this work, Lagrange polynomials are used as expansion functions and are denoted
as L9. In particular, the nine-node Lagrange element (L9) is adopted, and it ensures a
quadratic interpolation over its domain Lagrange polynomial expansions can formulate
the quadratic higher-order kinematics. The L9 polynomial expansion is defined as the
following kinematics proposed by [16,45,46]:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + ... + F9(x, z)ux9(y)

uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + ... + F9(x, z)uy9(y) (6)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + ... + F9(x, z)uz9(y)

where F1, F2, ..., F9 are the nine Lagrange polynomials on the cross-section coordinates,
and ux1, uy1, uz1, ..., uz9 are 27 unknown displacement variables of the y coordinate that
represent pure displacement components at each point of the L9 polynomial domain. The
Lagrangian expansion allows the laminate to be evaluated in the LW approach design,
which is considered by determining a specific model for each layer. As a result, the
description of the cross-sectional area is specified separately on the laminate sheet and
each layer. LW increases the accuracy of mechanical behavior differentiation, unlike the
classical ESL-based model [47]. In this way, the actual description of the laminates can be
achieved, as shown in Figure 2.

x, y

z

x, y

z

Figure 2. Linear and cubic ESL and LW cases.

In addition, the combination of the FEM and the CUF theory of structure approxima-
tions leads to:

u(x, y, z) = Fτ(x, z)Ni(y)qτi i = 1, 2 . . . , K (7)

where Ni stands for the shape function and i is the index for the number of nodes on the
beam element; qτi is the vector of the FE nodal parameters and K is the number of nodes
in the element.

Based on the Principal of Virtual Displacement (PVD), the virtual internal work can
be written as follows:

δLint =
∫

V
δεTσdV (8)
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where Lint stands for the strain energy, V is the volume of the element, σ is the stress vector,
and δε is the virtual variation of strain, which is presented as:

δε = bδu = b(Fs(x, z)Nj(y))δqsj (9)

where b is a differential operator of the strain–displacement relations; j and s represent the
shape function and expansion function indices, respectively; Fs are expansion functions
over the x–z coordinates of the cross-section; Nj stands for the j-th shape function; and δqsj
is the virtual variation of nodal unknowns. Equation (9) can then be written as follows:

δLint = δqT
sj

∫
V

bT Nj(y)Fs(x, z)CbFτ(x, z)Ni(y)dV︸ ︷︷ ︸
Fundamental Nucleus

qτi

= δqT
sjk

τsijqτi (10)

where kτsij is the CUF Fundamental Nucleus (FN) of the matrix k. The FN is a 3× 3 matrix
that represents the basic building block that can be expanded by using the indices to obtain
the element stiffness matrix of any arbitrary refined beam model [45].

Depending on the path function in VAT composites, each layer offers point-by-point
continuous angle variations with different values. In the case of VAT, FN components use
volume integrals. For the sake of brevity, only two terms of the FN are given below; others
can be achieved through permutations [16]:

kτsij
xx =

∫
V

C22Fτ,xFs,x Ni NjdV +
∫

V
C66Fτ,zFs,zNi NjdV

+
∫

V
C44Fτ FsNi,yNj,ydV;

kτsij
xy =

∫
V

C23Fτ Fs,x Ni,yNjdV +
∫

V
C44Fτ,xFsNi Nj,ydV (11)

In this case, the stiffness coefficients C of the elastic stiffness tensor can vary within
the computational domain. Therefore, they must remain in the FN integral. In the VAT
structure, each fiber path can be defined as an arbitrary function, and the fibers follow a
curvilinear pattern. Hence, in the plate domain, C is no longer constant. Thus, integrals can
be introduced in a unique form from a volume based on Equation (11). For VAT composites
in the buckling problem, the Tangent stiffness matrix is presented in terms of CUF and FEM
approximations [16]. In this case, the stable buckling problems can be written in linearized
form as virtual variation of the internal strain energy δ(δLint):

δ(δLint) ≈ δqT
τik

τsijδqsj + δqT
τik

τsij
σ0 δqsj

= δqT
τi(k

τsij + kτsij
σ0 )δqsj (12)

where δ(δLint) is the sum of linear stiffness and the virtual variation of work, which is
associated with the initial stress of σ0. Then, using Equations (5), (7), and (12), and Green–
Lagrange nonlinear strain-displacement relations, the following formulas can be obtained
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as in Equation (13) (see [45,48]), where kτsij
σ0 appears in the diagonal matrix form as the FN

of the geometrical stiffness matrix, which is expressed for the buckling as:

kτsij
σ0 = (

∫
V

σ0
xxFτ,xFs,x Ni NjdV +

∫
V

σ0
yyFτ FsNi,yNj,xdV

+
∫

V
σ0

zzFτ,zFs,zNi NjdV +
∫

V
σ0

xyFτ,xFsNi Nj,ydV

+
∫

V
σ0

xyFτ Fs,x Ni,yNjdV +
∫

V
σ0

xzFτ,xFs,zNi NjdV

+
∫

V
σ0

xzFτ,zFs,x Ni NjdV +
∫

V
σ0

yzFτ,zFsNi Nj,ydV

+
∫

V
σ0

yzFτ Fs,zNi,yNjdV)I

(13)

where the stress tensor is obtained by nine components related to 3× 3 as an identity matrix
I. Finally, global matrices are assembled in classical FEM. The critical buckling loads are
determined as those initial stress states σ0 that make the tangent stiffness matrix singular;
i.e., | K + K0

σ |= 0 (refer to [45]).
For free vibration in the framework of the 1D CUF beam model, the same approach

can be written based on Equations (7)–(10). After that, the work done by the inertial forces
provides the fundamental nucleus of the mass matrix [45]. The virtual variation of the
internal work can be written as follows:

δLine =
∫

V
ρüδuTdV (14)

where ρ stands for the material density and ü is the acceleration vector.

3. Constitutive Equations for VAT Laminates

The analysis of composite structures needs an accurate description of the laminate
level. In the current study, this aim is satisfied by layerwise capabilities ensured by LE
models, which provide an independent kinematic description for each layer of the laminate.
Depending on the dimension of the composite and applied loads, usually the results
obtained by layerwise models are more accurate than those obtained with an equivalent
single layer where a unique expansion is used for all layers in the composite structure.
With the CUF approach, a suitable cross-section description can be used to describe the
layers of the laminate separately. This procedure makes it suitable for the analysis of
new materials such as VAT laminate. The fiber angle in VAT composites is a spatial
variable where the matrix C is no longer constant in each ply, while it is a function of the
coordinates of the point that is considered (see Equation (11)). The first analysis concerns a
254× 254 mm square laminate with a thickness of 0.15 mm for each ply, designed in a
balanced symmetrical 16-layer square plate. The mechanical properties of the material are
given in Table 1.

Table 1. Mechanical properties of VAT material laminate.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12

Material 181 10.270 7.170 3.780 0.28

The linear variation of the fiber orientation angle has shown a suitable change in the
design, analysis, and manufacture construction of VAT composites [1,7,10,49]. As shown
in Figure 3, the fiber path can be designed for a curvilinear fiber path that linearly varies
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along an axis, which in the current paper is along the beam axis y on the plane and can be
set as follows [3,50]:

θ(y) = 2(T1 − T0)
|y|
a

+ T0 (15)

where T0 is the fiber orientation angle in the center of the plate, where x = 0, and T1 is
the fiber orientation angle at the edges, x =± a

2 . a is the width of the VAT panel. The fiber
orientation angle varies along the y-axis for manufacturing the entire ply; see Figure 3. In
this study, the fiber angle orientations are designed with [< T0|T1 >< −T0| − T1 > / <
−T0| − T1 >< T0|T1 >]s based on the reference study (see [44,51]).

Note that the present study uses an equal number of functions through both orthogo-
nal directions x and y for all cases.

a/2

a/2

a/2

a/2

T0

T1

T1

y

x

Figure 3. Variable angle tow plate.

4. Optimization for VAT Composite Studies
4.1. Direct Search Stochastic Methods

Recently, many optimization methods have been used to optimize engineering struc-
tures. GA, as one of the meta-heuristic evolutionary algorithms, can be employed to solve
many optimization problems. GA is frequently employed to find the optimal solution or
near-optimal solution for difficult problems. Despite most of the optimization algorithms
requiring having the exact solution for the objective function and respective design vari-
ables, the objective function value of the GA is enough to arrive at the optimal solution. GA
is initialized with several starting points and can consequently search in several different
directions of the searching domain of the problem. Therefore, GA is known as a large
search space and is suitable for complicated problems. In GA, the first fitness function is
defined, which the final optimization aims to minimize. Random changes are created in the
GA, examined for the solution, and compared with the fitness function for evaluation of
the required changes. GA is a population model that is generated stochastically. Then, the
fitness is evaluated and scored by the fitness function value. After that, the new generation
is created by providing the crossover/mutation operations on the eligible individuals,
which are chosen from the previous generation. Parents are chosen from the population of
these individuals. In this case, the parents who have a better fitness value can create the
children for the next generation [52]. Therefore, during the progressive step condition, the
fitness function shows an improvement.

4.2. Surrogate Model: Response Surface

The response surface is a surrogate model which is a powerful approach for analyzing
the systems. RS is a very effective technique to map the functional behavior in a system
relative to parameter values and behavioral variability. In this method, a set of parameter
values was defined which were used to map the response of the system [53]. In this study,
GA outcomes are mapped in the form of RS for both buckling and free vibration analyses.

4.3. Modeling of VAT Composite in Buckling Analysis

In the case of evaluation of the critical buckling load, the boundary condition (BC) is
set to be simply supported (SSSS, Figure 4). The compression load F = 1kN is applied to
the end edges of the plate along the y-direction, as shown in Figure 4.
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Figure 4. SSSS boundary condition of the VAT plate.

The VAT plate is introduced by two design variables, T0 and T1. The current goal
is to find the optimal fiber path with a maximum buckling load of Fcr. The problem of
the maximum buckling load is defined by the limitation of the constraints of the design
variables, see [54–56]:

Minimize :
1
F cr

,

subject to : 0◦ ≤ T0, T1 ≤ 90◦ (16)

where 1/Fcr stands for the objective function as the first critical buckling load. For VAT
properties, the entire structural set is done within the CUF framework as a numerical model.
The current CUF approach provides continuous and smooth fiber orientation angles with
a smaller number of elements (Fallahi et al. [44]) than the model built in ABAQUS by
Hao et al. [51].

4.4. Modeling of VAT Composite in Free Vibration Analysis

The boundary conditions are set on the fully clamped edges (CCCC) for the natural
frequency problem. Additionally, two different design variables, T0 and T1, are considered
as design variables. The aim is to obtain the optimal fiber path in which the first natural
frequency f1 is maximal. The optimization problem can be followed:

Minimize :
1
f 1

,

subject to : 0◦ ≤ T0, T1 ≤ 90◦ (17)

where 1/ f1 is the objective function and T0 and T1 are design variables within a certain
range of constraints.

The GA optimization in the MATLAB R2017b environment was linked to the 1D CUF
VAT model in Fortran to solve both problems, as shown in Figure 5.
The GA was continuously solved until the convergence requirement was satisfied. To
define symmetric and balanced laminates for buckling and free vibration assessments,
quasi-isotropic (QI) laminates having 0◦, ±45◦, and 90◦ plies were utilized as a baseline.
In addition, two constant stiffness (CS) laminates with [±45] and [0]16T layups were
determined for the VAT laminate reference design [44,51] which is named in the current
paper as VAT1, (see Table 2) and will be compared with the current study’s results.
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Figure 5. Flowchart of genetic algorithm procedure (MATLAB) in combination with CUF approach
(FORTRAN).

Table 2. Reference laminate lay-up design and the optimum VAT plate.

Laminated Scheme Layup Design

QI [45, 0,−45, 90]2S
CS1 [±45]4S
CS2 [0]16T

VAT1 [44,51] [< 60◦|15◦ >< −60◦|15◦ > / < −60◦|15◦ >< 60◦|15◦ >]4

5. Optimization Results and Discussion
5.1. Buckling Results of VAT Laminate

As mentioned before, VAT laminates were made with [< 60◦|15◦ >< −60◦| − 15◦ >
/ < −60◦| − 15 >< 60◦|15◦ >]s square and symmetrical laminates based on the reference
paper [44,51,57]. To begin, the VAT1 composite plate was built in a 1D CUF framework
with a diverse set of beams that are suitable and valid based on the design criteria and
specifications. The accuracy of the models improved as the number of L9 elements in the
cross-section (Figure 6a) and three-node beam element (B3) in the beam length (Figure 7a)
increased. The monolithic convergence properties of beam elements were demonstrated
by the refining of beam elements for buckling load investigation. Furthermore, the degree
of freedom (DOF) in FEM (ABAQUS) decreased greatly in comparison with CUF without
a significant error; see Figures 6b and 7b [44,51]. The first buckling load with the 10B3
element was picked as a sufficiently accurate result for further evaluation to save time
during the optimization procedure.



Aerospace 2021, 8, 376 10 of 19

(a)

(b)

Figure 6. 1D CUF cross-section refinement with 10B3 influence on buckling load in VAT1 in
terms of FEM and degrees of freedom. (a) Cross-section refinement. (b) DOF based on cross-
section refinement.

Through GA, an optimal distribution of the fiber angles of VAT (T0 and T1) was
obtained for the maximum buckling load subjected to a simply supported boundary
condition. The optimization procedure is based on the proposed linear equation of the
fiber orientation angle (Equation (15)) to design VAT plates for the maximum buckling
load. A sufficiently large population and generation were employed to avoid the local
optimization decisions. As mentioned in Table 3, the population size in the GA was set to
50, which means evaluating 50 functions per generation. In this study, the convergence of
optimum results was obtained after 20 iterations; thus, 20× 50 = 1000 function evaluations
were investigated.

The total number of cost functions in this problem could be 9116. Therefore, the
significant cost reduction from 9116 to 1000 shows the efficiency of the GA method for
stacking sequence optimization.

Table 3. Settings of genetic algorithm.

Description Maximum Number of Generation Population Size Crossover Percentage Mutation Rate

Value 20 50 0.8 0.04
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(a)

(b)

Figure 7. Refinement of a 1D CUF beam element with a 160L9 effect on the buckling load in VAT1 in
relation to the FEM and the number of degrees of freedom. (a) Beam refinement. (b) DOF based on
beam refinement.

The optimum results obtained VAT laminates (VATOPT) with the layup [< 9◦|51◦ ><
−9◦| − 51◦ > / < −9◦| − 51◦ >< 9◦|51◦ >]4, which indicated the maximum buckling
load among the optimization procedures with respect to the initial buckling load based
on VAT1 ([44,51]) and classical laminates. The optimal design shows a small fiber angle
(9◦) at the center of the laminates that extends to 51◦ at the edges. The VAT laminate with
an optimum fiber orientation angle is illustrated for various layup designs in Figure 8.
VATOPT improves its buckling load compared to classical composite laminates and VAT1.
The first modes of the buckling load as well as the amount of displacement range also are
shown in Figure 9, with different colors indicating different layouts. The first five buckling
loads are shown in Figure 10.
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Figure 8. Comparison of different layup designs with the optimum outcome.

(a) (b) (c)

(d) (e)

Figure 9. The first buckling modes in different laminates. (a) QI: 13.79 kN. (b) CS1: 16.51 kN. (c) CS2:
10.12 kN. (d) VAT1: 13.77 kN . (e) VATOPT : 17.38 kN.

(a) (b) (c)

(d) (e)

Figure 10. The first five buckling modes of optimum VAT laminates. (a) Mode 1: 17.38 kN. (b) Mode
2: 27.38 kN. (c) Mode 3: 49.77 kN. (d) Mode 4: 57.36 kN. (e) Mode 5: 71.72 kN.
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In addition, distribution plots are used to show the relationship and convergence
between the pair of variables and the results based on the GA sample points; see Figure 11.
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Figure 11. Distribution of variables and first critical buckling load, T0–T1; first buckling load—T0,
and first buckling load—T1.

Reduction of Search Domain by Latin Hypercube Method

To reduce the timing burden in finding the optimum, the Latin hypercube sampling
(LHS) method can be used to generate some samples uniformly distributed in the search
domain based on [54,58] and then to be compared with GA. After capturing the results
from these samples, a high-order polynomial was used as a response surface model over
the LHS samples. In parallel, a response surface also was used to show the GA events. The
input variable parameters in both methods were T0 and T1. Through GA, 798 samples were
recorded during the optimization procedure while in LHS, only 40 different samples were
generated in a randomly space-filling approach. By comparing the curve fitting obtained
from GA and LHS methods in Figure 12, it was concluded that the domain of the global
optimum, which is evident in the GA results, is well characterized by the LHS method
with a small number of samples (black dots indicate all sample points). Therefore, LHS
can be used to capture the specific domain of the optimum by a small computational effort.
Accordingly, the LHS method can reduce the computational cost of the optimization by
reducing the searching domain. As was suggested by Alinejad et al. [36,59], in the current
study as well, the LHS can be used as an efficient method in the first step of optimization
before using the GA or direct search methods in such problems. By this method, a large
part of the search domain is eliminated from the remainder of the process.

Consequently, it is highly suggested for the next research that in such optimization
problems, the Latin hypercube sampling method should be used first to reduce the search-
ing domain before using other optimization methods (such as GA, gradient base, direct
search, etc.) to reduce the computational costs.

5.2. Results of VAT Laminate in Free Vibration

Based on the previous research [44], the same fully clamped plate of laminated VAT in
free vibration analysis was chosen to study for the current evaluation: the optimization of
VAT laminates through natural frequency analysis. Additionally, QI, CS1, and CS2 (Table 2)
were used to demonstrate the ability of the optimization procedure and structural analysis
of CUF in the LW model. In this study, the mesh with 160L9 on the cross-section was
used. GA was applied to optimize the fiber orientation based on the highest first natural
frequency. Contrary to the optimal results, the first natural frequency of different laminates
is reported in Table 4. The first modal shape for different laminates is indicated in Figure 13.
The optimal laminate has [< 90◦|0◦ >< −90◦|0◦ > / < −90◦|0◦ >< 90◦|0◦ >]4. This
means that the start of T0 has been reduced from 90◦ at the center to 0◦ at the edges of
the VAT square plate. The five natural frequencies of the optimal laminates are shown in
Figure 14.
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Figure 12. Contour plots and response surfaces based on GA and LHS for T0 and T1 as the variables
and first critical buckling load as the response. (a) GA contour plot of variables’ sample points (Fcr is
represented by the colors). (b) LHS contour plot of variables’ sample points (Fcr is represented by
the colors).

Table 4. Frequency results for reference laminate lay-up designs in contrast to optimum VAT plate.

Laminated Scheme First Natural Frequency (Hz)

QI 438.385
CS1 433.064
CS2 446.235

VAT1 438.659
VATOPT 513.159

(a) (b) (c)

(d) (e)

Figure 13. First natural frequency modes in various layup designs. (a) QI. (b) CS1. (c) CS2. (d) VAT1.
(e) VATOPT .
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(a) (b) (c)

(d) (e)

Figure 14. The first five natural frequency modes. (a) Mode 1: 513.15 Hz (b) Mode 2: 809.30 Hz.
(c) Mode 3: 1135.00 Hz. (d) Mode 4: 1312.00 Hz (e) Mode 5: 1400.00 Hz.

Bar plots in Figure 15 show the relationships between variable pairs and the first
natural frequency. In Figure 15, plots show that both T0 and T1 are highly dependent on
the first natural frequency.
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Figure 15. Distribution of variables and first natural frequency; first natural frequency—T0, first
natural frequency—T1.

Figure 16 presents the result of the optimization obtained through GA, which was
achieved by the fourth-order polynomial function based on the RS. The black dots show
all of the sample points in the generation cycles. The colony of black dots is located in the
optimal area (red part), which displays the convergence of the optimal results.
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Figure 16. During implementation of the GA technique in a free vibration issue, the contour plot and
response surface reveal the impacts of variables (fiber orientation angles). (a) Colors represent the f1

in this contour plot of variables. (b) Response surface.

6. Conclusions

In this research, methodologies based on the Carrera unified formulation method
were presented for the buckling and free vibration analysis of variable angle tow plates.
The approaches are applicable to different boundary conditions and were found to be
computationally less expensive compared with FEM. The numerical results on VAT plates
with a linear variation of fiber angles demonstrated the accuracy and fast convergence of
that approach.

For the first time, a global optimization method (GA) was applied with a combination
of the layerwise theory, which was implemented through the CUF approach. The optimiza-
tion was performed for maximizing the buckling load, and the results showed a significant
improvement in comparison with results that were considered as reference VAT plates in
FEM. Consequently, the advantages of using this presentation for free vibration analysis
were demonstrated. The study of the optimization of the buckling load in SSSS and free
vibration analysis under the CCCC boundary condition of VAT highlighted the ability of
CUF methodologies to enhance the buckling and frequency response of VAT composite
laminates. Furthermore, a post-processing RS showed the ability of GA for the conver-
gence of results for VAT problems in different analyses. Moreover, LHS is proposed for its
advantage when used for the initial sampling methodologies of GA for future research to
minimize the computational cost of GA.
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