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Abstract: Articulated tracked vehicles have been traditionally studied and appreciated for the
extreme maneuverability and mobility flexibility in terms of grade and side slope capabilities. The
articulation joint represents an attractive and advantageous solution, if compared to the traditional
skid steering operation, by avoiding any trust adjustment between the outside and inside tracks. This
paper focuses on the analysis and control of an articulated tracked vehicle characterized by two units
connected through a mechanical multiaxial joint that is hydraulically actuated to allow the articulated
steering operation. A realistic eight degrees of freedom mathematical model is introduced to include
the main nonlinearities involved in the articulated steering behavior. A linearized vehicle model is
further proposed to analytically characterize the cornering steady-state and transient behaviors for
small lateral accelerations. Finally, a hitch angle controller is designed by proposing a torque-based
and a speed-based Proportional Integral Derivative (PID) logics. The controller is also verified by
simulating maneuvers typically adopted for handling analysis.

Keywords: articulated steering; hitch angle controller; articulated tracked vehicle

1. Introduction

The cornering behavior of tracked vehicles has peculiar characteristics that are differ-
ent from wheeled vehicles. The steering operation of these vehicles can be accomplished
through different mechanisms: skid-steering and steering by articulation. In skid steering, a
turning yaw moment is obtained by applying a different longitudinal thrust force between
left and right track sides [1,2]. For tracked vehicles with two or more units, the steering
operation may be achieved by a relative yaw rotation between units through a specific
mechanism on the connecting joint [3,4]. This solution is also preferred to the skid steering
since it does not require a thrusts adjustment between the outside and inside tracks so that
the resultant forward thrust can be maintained during a turning maneuver, as shown in [5].
Nowadays, articulated tracked vehicles have been widely adopted in several engineering
fields, e.g., planetary exploration, military [6], agriculture [7] and construction [8].

The articulated steering is usually accomplished by installing a hydraulic steering
system able to provide the power required to overcome vehicle lateral resistances arising
during the relative rotation between the two units [8]. The kineto-dynamic behavior of the
hydraulic steering mechanism on articulated vehicles was analyzed in [9,10], thus showing
a correlation between the hydraulic steering dynamics with the oscillatory articulation
response and weaving motion of the vehicle. Moreover, the increasing research focus on
autonomous driving has encouraged the development of an automatic steering controller
for path tracking or path following applications. Conventional hydraulic steering systems
can be replaced or adapted to allow an automatic control: in [11–13] a pressure following
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control is obtained by exploiting the current onboard vehicle hydraulic systems, meanwhile
an automatic steering was proposed by [14] through the design of a multifunctional
hydraulic steering circuit; an autonomous guidance strategy was also presented in [15] for
a load haul dump vehicle where the relationship between vehicle stability and speed is
obtained to improve the vehicle dynamic response.

However, these research activities are limited to articulated wheeled vehicles and they
cannot be directly extended to articulated tracked vehicles (ATVs) due to the continuous
track–terrain contact distribution. Indeed, only few similar studies are available in literature
about tracked articulated vehicles. A mathematical model for plane motion to predict the
steerability and mobility of an ATV was developed in [5] through numerical simulations.
More recently, an improved ATV dynamics model was proposed in [16] by considering the
shear stress–shear displacement relation of the soil at the track–terrain interface. The soil
deformation on track–soil interaction was also developed in [17], where the side bulldozing
effect was also included for improving the model accuracy in simulating the ATV steering
operation. A non-linear mathematical model of an ATV was also described by [18,19] where
the effect of a hitch angle, i.e., the relative yaw angle between the ATV units, feedback
controller was analyzed through steady-state cornering maneuvers. The control of the ATV
hitch angle was also adapted for autonomous applications as described in [20], where a
path tracking control was designed based on the distance deviation and the heading angle
deviation between the ATV and the desired path.

To the best knowledge of the authors, there is a general lack of comprehensive ana-
lytical investigation of the ATV transient and steady-state behaviors. Most of the results
available in literature are numerically obtained through detailed mathematical models but
without any analytical correlation to ATV parameters and operative conditions, e.g., vehicle
speed. The activity presented in this paper aims at bridging the gap by providing an analyt-
ical approach for analyzing and controlling the ATV cornering response. The paper content
represents an extension of the preliminary work introduced in [19] by providing further de-
tails related to the non-linear ATV model and by introducing a simplified linearized model,
valid for small lateral accelerations. Moreover, the concept of the understeer characteristics,
typical of wheeled passenger cars, is also extended to ATV categories. Although the main
paper contribution focuses on the methodology for an analytical evaluation of the ATV
lateral dynamics behavior, a hitch angle controller is presented to explore the influence
of a hydraulic actuation system for the steering operation. The hitch angle controller is
designed and calibrated on the non-linear model through an optimization procedure.

The paper structure is organized as follows: a non-linear mathematical model of the
ATV is presented in Section 2 by including the effect of rigid bodies planar dynamics, hy-
draulic steering dynamics, and angular tracks dynamics. The ATV model is then linearized
and an analytical solution for the transient and steady-state responses is provided for small
lateral accelerations in Section 3. A hitch angle controller is then designed in Section 4 to
achieve the desired performance. The controller is then validated through simulations with
the non-linear model. Finally, some conclusions are drawn in Section 5.

2. ATV Non-Linear Mathematical Model

A simplified schematic of the ATV considered within the rest of the paper is reported
in Figure 1.

The vehicle architecture is characterized by two units connected through a multi
degrees of freedom steering joint. The front unit hosts the driveline components so that the
second unit may fulfill the payload functionalities of goods and personnel transportation.
The weight of each ATV unit is supported by four or five couples of road wheels. Each
road wheel is connected to the hull through a torsion bar suspension system that, together
with the set of bushing, represents the elastic-damping components of the ATV. The road
wheels are driven by the two sprocket wheels of each unit through a track mechanism. The
engine torque is assumed to be equally distributed between the two units and further split
in equal parts between the two sprocket wheels of each unit. The ATV steering operation
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is entrusted to a hydraulic system mounted on the steering joint that provides a steering
torque to each unit through the regulation of a flow rate proportional valve.
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Figure 1. Simplified schematic of the articulated tracked vehicle (ATV).

The ATV dynamics was analyzed through a non-linear mathematical model with
eight degrees of freedom (8-DOF) by including the longitudinal, lateral and yaw motion of
the front unit, the yaw motion of the rear unit and the angular motion of the four sprocket
wheels. The main assumptions for the ATV non-linear model are:

• the two units are considered as rigid bodies with mass m1 and m2 and moment of
inertia around the vertical axis through the center of gravity (CoG) IG1 and IG2;

• the road is considered rigid and flat (the effect of terrain slopes or sinkage is neglected);
• the continuous track–terrain contact force distribution is discretized with four contact

points for each track;
• the steering joint is considered as an ideal yaw rotational hinge placed at a distance of

xG1 from the front CoG and xG2 from the rear CoG;
• the front and rear tracks width is equal to T;
• the number of road wheels is Nw = 4 for each track;
• flexible deformation of the tracks is not considered.

2.1. Rigid Bodies Dynamics

The free body diagram for the ATV planar motion modelling is shown in Figure 2
where a moving reference coordinate system R1(x1, y1, z1) is centered in the front unit
CoG and a second moving reference coordinate system R2(x2, y2, z2) is placed in the rear
unit CoG.
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The ATV longitudinal and lateral equilibrium equations are described by (see also [18]):
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where ax1 and ay1 are the front unit longitudinal and lateral acceleration components; ax2
and ay2 are the rear unit longitudinal and lateral acceleration components; u1 and v1 are
the front unit longitudinal and lateral velocity components; u2 and v2 are the rear unit
longitudinal and lateral velocity components. Front and rear velocity vectors, V1 and V2, are
inclined by an angle of β1 and β2 with respect to the corresponding longitudinal direction.
ψ1 and ψ2 are the yaw angles of the front and rear units, respectively. α = ψ1−ψ2 represents
the hitch angle between the two ATV units. FI

x,ji and FI I
x,ji represent the longitudinal force

components between the jth = L, R track and the terrain in the ith road wheel contact
point for the front and rear units, respectively. FI

y,ji and FI I
y,ji represent the lateral force

components between the jth = L, R track and the terrain in the ith road wheel contact
point for the front and rear units, respectively; Faero is the longitudinal component of the
aerodynamics force.

The front and rear yaw moment balance equations are described by:
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where MI
z and MI I

z are the front and rear yaw moments generated by the track–terrain
forces for the front and rear units, respectively. dI

i and dI I
i are the distances between the

ith axle to the front and rear CoG, respectively, and they are assumed positive if placed in
front of their respective CoG; Cs is the steering torque applied by the hydraulic system.

2.2. Track Angular Dynamics

Each track rotational dynamics is described by the free body diagram in Figure 3.
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where ωk
sj is the angular speed of the sprocket wheel and ωk

Wj = ωk
sjRs/RW is the road

wheel angular speed on the left/right (j = L/R) side of the kth = I, I I unit. Rs and RW
are the sprocket wheels and road wheels radius, respectively. CM is the engine torque,
η is the overall transmission efficiency, τ is the transmission ratio between engine shaft
and each sprocket wheel. Fk

z,ji is the dynamic vertical force on each road wheel. Is is
the equivalent moment of inertia around each sprocket wheel axis and includes all main
inertial contributions of the whole powertrain system. Each track rolling resistance Ck

Roll,j
is described with a hyperbolic tangent function by introducing the constant coefficient f0
and the track speed (Vk

j = ωk
sjRs) dependent coefficient f2. Finally, ωth is a pre-defined

threshold for the hyperbolic tangent shape factor.

2.3. Track–Terrain Contact Model

The track–terrain contact distribution is modeled by an equivalent finite number
of contact patches equal to the number of road wheels [21]. Both contact patch force
components Fk

x,ji and Fk
y,ji are modeled as hyperbolic tangent functions, depending on their

longitudinal slip ratios σk
ji and slip angles βk

ji:

Fk
x,ji = kβ

(
a1xFk

z,ji + a2x

)
Fk

z,jitanh
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Fk
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a1yFk
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(6)

where the coefficients a1x, a2x and a1y, a2y are introduced to consider the saturation of
the available adhesion to the vertical load. The peak longitudinal and lateral forces occur
at σmax and at βmax, respectively. kβ and kσ coefficients enable the longitudinal/lateral
combined slips influence.
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Each road wheel slip ratio and slip angle is defined as:

σk
ji =


1−

uk
ji

Vk
j

Traction

Vk
j

uk
ji
− 1 Braking

βk
ji = atan

vk
ji

uk
ji

(7)

where uk
ji and vk

ji are, respectively, the longitudinal and lateral components of the ith road
wheel in the jth = L/R side of the kth unit.

2.4. Dynamic Vertical Forces

The vertical forces on each road wheel are calculated as the sum of the static and the
dynamic load contributions. The static load contribution Fk

zST,ji is evaluated by considering
the mass distribution among the four axles of each unit. Due to the statically indeterminate
nature of the problem, i.e., cantilever beam supported by a redundant number of constraints,
the mass distribution is correlated to the suspension system between the sprung (ATV hull)
and the unsprung (track mechanisms) masses. Indeed, each road wheel is connected to the
ATV hull by a torsion bar, as shown in Figure 4.
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Each torsion bar reacts to the relative motion between the road wheel and the ATV hull,
thus behaving as an equivalent vertical spring. The following assumptions are considered
for the ATV suspension system:

• Each suspension torsion bar is modeled with a linear characteristic of the equivalent
spring deflection.

• Each equivalent spring has no static preload.
• The static deflection is equal for each spring of the same unit (no static pitch and/or

roll).
• The corresponding right and left springs of each unit’s axle share the same stiffness

value.

Under these assumptions, the static load contribution is then calculated as:

FI
zST,Li = FI

zST,Ri
∼= qI

i g
2 =

KI
Sim1g

2 ∑Nw
i=1 KI

Si
FI I

zST,Li = FI I
zST,Ri

∼= qI I
i g
2 =

KI I
Si m2g

2 ∑Nw
i=1 KI I

Si
(8)

where K I
Si and K I I

Si are the ith equivalent vertical spring stiffness for the front and rear
units, respectively; qI

i and qI I
i represent the mass distribution on the ith axle for the front



Machines 2021, 9, 38 7 of 23

and rear units, respectively. It is remarkable to note that the assumptions made for the
ATV suspension system imply that the static mass distribution corresponds to the spring
stiffness distribution among each unit’s axle.

During cornering maneuvers, the lateral acceleration implies a load transfer between
the inside and outside tracks for the front unit, ∆FI

z = m1ay1hG1/T, and for the rear unit,
∆FI I

z = m2ay2hG2/T. Even if the roll dynamics is not included in the model, the steady-
state roll angle represents an internal variable required to evaluate the spring deflection
on each unit’s track. The steady-state roll angle is calculated through the moment balance
equation of each unit sprung mass around the correspondent roll axis, assumed in a fixed
position from the ground.

By assuming small roll angles, i.e., neglecting the distance between CoG and CoG’ in
Figure 5, the moment balance equation of each unit sprung mass around its respective roll
axis is expressed by:

φ1 =
m1ay1(hG1−hroll1)

∑Nw
i=1 KI

roll i
φ2 =

m2ay2(hG2−hroll2)

∑Nw
i=1 KI I

roll i
(9)

where φ1 and φ2 are the roll angles for the front and rear units, respectively; hroll1 and
hroll2 are the roll axis height for the front and rear units, respectively; K I

roll i = K I
SiT

2/2 and
K I I

roll i = K I I
Si T

2/2 represent the equivalent roll stiffness produced by the two side springs
of each ith axle for the front and rear units, respectively.
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The moment balance equation of each unsprung mass around the roll axis provides
the lateral load transfer on each axle for the front (∆FI

zi) and rear (∆FI I
zi ) units, as shown in

the free body diagram of Figure 5:

∆FI
zi =

(
FI

y,Li+FI
y,Ri

)
hroll1+KI

roll iφ1

T =

(
FI

y,Li+FI
y,Ri

)
hroll1+m1ay1(hG1−hroll1)

KI
roll i

∑Nw
i=1 KI

roll i
T

∆FI I
zi =

(
FI I

y,Li+FI I
y,Ri

)
hroll2+KI I

roll iφ2

T =

(
FI I

y,Li+FI I
y,Ri

)
hroll2+m2ay2(hG2−hroll2)

KII
roll i

∑Nw
i=1 KII

roll i
T

. (10)
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By assuming hroll1 � hG1 and hroll2 � hG2 the load transfer on each axle for the front
and rear units is finally defined as:

∆FI
zi =

m1ay1hG1
KI

roll i
∑Nw

i=1 KI
roll i

T = qI
i

(
ay1hG1

T

)
∆FI I

zi =
m2ay2hG2

KII
roll i

∑Nw
i=1 KII

roll i
T = qI I

i

(
ay2hG2

T

) . (11)

Equation (11) states the load transfer due to lateral acceleration is distributed as the
mass distribution among each unit’s axles. Finally, the total vertical force on each track
road wheel for the front and rear units is expressed by:

FI
z,ji = FI

zST,ji ± ∆FI
zi = qI

i

(
g
2 ±

ay1hG1
T

)
FI I

z,ji = FI I
zST,ji ± ∆FI I

zi = qI I
i

(
g
2 ±

ay2hG2
T

) (12)

where the sign of the lateral load transfers ∆FI
zi and ∆FI I

zi is referred to the left (j = L) or to
the right (j = R) side of the front and rear units, respectively, as shown in Figure 5.

2.5. Hydraulic Steering System

An example of the hydraulic steering circuit is represented in Figure 6.
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Two hydraulic cylinders are linked to the front unit through C and D hinges and
their piston rods are linked to the rear unit through A and B hinges. The fluid pressure
p1 and p2 between the cylinder chambers depends on flow rates Q1 and Q2 controlled
by a flow rate proportional valve VP2 through the regulation of the Xv command. A
constant displacement pump provides the flow rate Qp to cope with the VP2 valve request,
QVP2,in. The excessive flow rate, QVP1, is absorbed by a second flow rate proportional
valve VP1 that receives the complimentary command 1− Xv. This solution also prevents
the pump delivery pressure pP from growing excessively. For safety reasons, all pressures
are saturated by pressure relief valves.

The steering torque Cs is generated by the two hydraulic piston forces as results of
pressure p1 and p2 by:

Cs = FR fR + FL fL (13)
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where fR and fL are, respectively, the minimum distance of the right and the left piston rods
from the hinge O (see Appendix A for their analytical expression). FR and FL represent the
right and left forces, respectively, applied by the corresponding piston rod to ATV bodies:

FR = p1 Ap − p2
(

Ap − As
)
− coilvR

FL = p1
(

Ap − As
)
− p2 Ap − coilvL

(14)

where Ap is the cylinder bore area and As is the piston rod area. coil is the damping
coefficient due to the hydraulic fluid. vR and vL are the right and left piston rod exten-
sion/compression speeds, respectively (see Appendix A for their analytical expression).

Pressure p1, p2 and pP dynamics are defined by the following expressions:

dpP
dt = βoil

Vpipes
(QP −QVP2.in −QVP1)

dp1
dt = βoil

V1

(
Q1 −

.
V1

)
dp2
dt = βoil

V2

(
Q2 −

.
V2

) (15)

where βoil is the fluid bulk modulus. V1 and V2 are the equivalent cylinder chambers
corresponding to p1, p2, respectively. Their variation is kinematically imposed on the
ATV bodies’ dynamics (see Appendix A for their analytical expression). Vpipes is the
equivalent pipes volume used for the pump pressure, pP, dynamics. Q1 and Q2 are the
flow rates delivered to chambers V1 and V2. Q1 = QVP2.in and Q2 = QVP2.out when Xv > 0,
otherwise Q1 = QVP2.out and Q2 = QVP2.in. QVP2.in and QVP2.out are the flow rates through
the valve VP2 pump-connected and tank-connected ports, respectively. QVP1 is the flow
rate delivered through the VP1 valve. QVP2.in, QVP2.out and QVP1 are calculated by:

QVP2,in = |Xv|cq Amax

√
2

ρoil

√∣∣∣∆p VP2,in

∣∣∣ sign
(

∆p VP2,in

)
QVP2,out = |Xv|cq Amax

√
2

ρoil

√∣∣∣∆p VP2,out

∣∣∣ sign
(

∆p VP2,out

)
QVP1 = (1− |Xv|)cq Amax

√
2

ρoil

√∣∣∆p VP1

∣∣
(16)

where cq is the coefficient of discharge; Amax is VP1 and VP2 maximum opening valve
area. VP2 pressure drops are ∆p VP2,in = pP − p1 and ∆p VP2,out = p2 − patm when
Xv < 0, otherwise ∆p VP2,in = pP − p2 and ∆p VP2,out = p1 − patm. VP1 pressure drop is
∆p VP1 = pP − patm.

2.6. Stable Equilibrium Points

The ATV non-linear model was implemented in MATLAB® and Simulink® environ-
ments. The ATV equilibrium conditions were then obtained and represented as characteris-
tic plots between the desired quantities versus the hitch angle, as shown in Figure 7.

Each subplot marker in Figure 7 (square markers refer to the front unit quantities and
circle markers to the rear unit) represents an ATV equilibrium condition. Sideslip angles,
yaw rates, curvatures, lateral accelerations, and yaw moments characteristics show a linear
dependence at least for a limited range of the hitch angle. On the other hand, the relation
between the steering torque Cs and the hitch angle α is strongly non-linear. The presence
of a peak, occurring at 10 deg for u1 = 20 km/h, represents a critical point for the relation
between the hitch angle and the steering torque: before the peak, the steering torque
monotonically increases with the hitch angle, meanwhile, after that peak, an increment of
the hitch angle will cause a reduction of the steering torque. This trend leads to an inversion
of the steering torque sign that can cause an ATV jackknifing effect for higher hitch angles
(see also [18]). Based on these simulation results, a linearized model of the ATV in different
equilibrium points may simplify the analysis of the vehicle lateral dynamics.
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3. Linearized ATV Lateral Dynamics Model

This section aims to present a linearized version of the ATV non-linear model for
lateral dynamics analysis. Since the paper focus is on lateral dynamics, the following
hypothesis are considered within the rest of the paper:

1. Decoupled lateral and longitudinal dynamics: only Equations (2)–(4) are considered
for the linearized ATV model and kβ = kσ = 1;

2. Neglected longitudinal acceleration (ax1 = 0) and rear unit longitudinal force(
Nw
∑

i=1

(
FI I

x,Li + FI I
x,Ri

)
= 0

)
;

3. The longitudinal speed of the front unit u1 is considered a time-independent quantity:
u1 is kept constant during each simulation/maneuver.

The effect of the hydraulic steering dynamics, introduced for the non-linear model in
Equation (15), was not included in the linearized ATV model: an ideal actuator is assumed
for the steering operation so that the actuator applies a desired steering torque with an
infinite torque bandwidth that is not influenced by the internal feedback between the
actuator and system dynamics. This represents a strong hypothesis since the actuation
system may influence the overall vehicle dynamics, but the main purpose of the ATV
linearized model is to analyze only the ATV rigid bodies dynamics. The effect of the
hydraulic steering dynamics is partially assessed through numerical simulations with the
non-linear model in Section 4, where the hydraulic pressure dynamics influences the design
of the hitch angle controller.

Equations (2)–(4) show that it is convenient to introduce the axle forces instead of
single road wheel contact forces. Given the ATV geometrical symmetry, the left and right
road wheels of each axle have almost the same slip angle value (βk

Li = βk
Ri
∼= βk

i ) so that the
ith axle lateral force for each kth unit is calculated as follows:

Fk
y,i

(
ay, βk

i

)
= Fk

y,Li + Fk
y,Ri = −

[
a1y

(
Fk

z,Li
2 + Fk

z,Ri
2
)
+ a2y

(
Fk

z,Li + Fk
z,Ri

)]
tanh

3βk
i

βmax
(17)

where βk
i is the equivalent slip angle of the ith axle for the kth = I, I I unit:

βI
i = β1 +

dI
i

.
ψ1

u1
≈ v1

u1
+

dI
i

.
ψ1

u1

βI I
i = β2 +

dI I
i

.
ψ2

u2
≈ v2

u2
+

dI I
i

.
ψ2

u2

. (18)
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Each axle characteristics Fk
y,i

(
ay, βk

i

)
, together with their cornering stiffness, are re-

ported in Figure 8 for the front unit (left subplot) and the rear unit (right subplot).
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The axle force characteristics shows a linear behavior for small slip angles, which
tends to saturate for higher values. Based on that, each axle lateral force in Equation (17) is
linearized around the linearization point identified by βk

i0:

Fk
y,ilin = Fk

y,i0 + Ck
i

(
βk

i − βk
i0

)
(19)

where Fk
y,i0, βk

i0 and Ck
i represent the value of the ith axle lateral force, slip angle and

cornering stiffness, respectively, calculated at the linearization point. The cornering stiffness
Ck

i is expressed as:

Ck
i =

∂Fk
y,i

∂βk
i

∣∣∣∣∣
βk

i =βk
i0

= − 3
βmax

[
a1y

(
Fk

z,Li 0
2 + Fk

z,Ri 0
2
)
+ a2y

(
Fk

z,Li 0 + Fk
z,Ri 0

)]
sech2 3βk

i0
βmax

(20)

where Fk
z,Li 0 and Fk

z,Ri 0 represent the left and right vertical loads, respectively, on each ith
road wheel calculated at the linearization point. By introducing the track–terrain lateral
forces linearization and by considering that α = ψ1−ψ2, the ATV lateral and yaw dynamics
is given by:

(m1 + m2)
( .

v1 + u1
.
ψ1

)
u1u2 = u2v1

Nw
∑

i=1
CI

i + u2
.
ψ1

Nw
∑

i=1
CI

i dI
i + u1u2m2xG2

.
ψ

2
2 sin(α)

+u1v2
Nw
∑

i=1
CI I

i + u1
.
ψ2

Nw
∑

i=1
CI

i dI
i cos(α) + u1u2m2xG2

..
ψ2 cos(α) + u1u2m2xG1

..
ψ1 + u1u2g1,

(21)

IG1
..
ψ1u1u2 = u2v1

Nw
∑

i=1
CI

i
(
xG1 + dI

i
)
+ u2

.
ψ1

Nw
∑

i=1
CI

i dI
i
(

xG1 + dI
i
)

+ u1u2

[
Cs −m1

( .
v1 + u1

.
ψ1

)
xG1

]
+ u1u2g2,

(22)

(
IG1 + m2x2

G2
) ..
ψ2u1u2 = −u1v2

Nw
∑

i=1
CI I

i
(
xG2 − dI I

i
)
− u1

.
ψ2

Nw
∑

i=1
CI I

i dI I
i
(
xG2 − dI I

i
)
− u1u2Cs

+u1u2xG1
.
ψ

2
1m2xG2 sin(α) +

[
u1u2

( .
v1 + u1

.
ψ1

)
m2xG2 + u1u2xG1

..
ψ1m2xG2

]
cos(α) + u1u2g3,

(23)

.
α =

.
ψ1 −

.
ψ2 (24)
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where the vector g
(

Fk
y,i0, βk

i0, Ck
i

)
= [g1, g2, g3]′ collects all the terms related to the lin-

earization point in Equation (20). The rear unit vehicle speed components, u2 and v2, are
kinematically related to the front unit vehicle speed by the following relations:

u2 = u1 cos(ψ1 − ψ2)−
(

v1 −
.
ψ1xG1

)
sin(ψ1 − ψ2)

v2 = u1 sin(ψ1 − ψ2) +
(

v1 −
.
ψ1xG1

)
cos(ψ1 − ψ2)−

.
ψ2xG2

. (25)

By substituting Equation (25) into Equations (21)–(23), the following non-linear system
of four equations is obtained:

.
x = f(x, w) (26)

where x =
[
v1,

.
ψ1,

.
ψ2, α

]
′ is the states vector and w = Cs is the input from the hydraulic

steering system.
The ATV dynamics with linear track–terrain lateral forces described in Equation (26)

is still non-linear due to the presence of trigonometric functions and states/input products.
These non-linearities are then simplified by introducing the first order Taylor expansion
around the point P0 = (x0, w0):

.
x = f(x0, w0) +

∂f
∂x

∣∣∣∣
P0

(x− x0) +
∂f
∂w

∣∣∣∣
P0

(w− w0) =
∂f
∂x

∣∣∣∣
P0︸ ︷︷ ︸

A

x +
∂f
∂w

∣∣∣∣
P0︸ ︷︷ ︸

B

w + f(x0, w0)−
∂f
∂x

∣∣∣∣
P0

x0 −
∂f
∂w

∣∣∣∣
P0

w0︸ ︷︷ ︸
E

. (27)

The matrices A, B and E represent the state, the input and the linearization matrices
and contain vehicle geometrical and inertial parameters, axles cornering stiffness and the
front unit longitudinal speed u1.

The first step for analyzing the system dynamics is the identification of the steady-
state equilibrium condition so that

.
x = 0. A stable ATV steady-state cornering behavior

is characterized by a constant hitch angle, i.e.,
.
α =

.
ψ1 −

.
ψ2 = 0, meaning that the ATV is

behaving as a single solid unit with a steering joint locked at a constant hitch angle α. The
ATV steady-state equilibrium is then obtained from Equation (27) by:

xss =
[
v1,ss,

.
ψ1,ss,

.
ψ2,ss, αss

]′
= −A−1Bw−A−1E (28)

where v1,ss,
.
ψ1,ss =

.
ψ2,ss ,

.
ψss and αss represent the steady-state front unit lateral speed,

vehicle yaw rate and hitch angle, respectively.

Analytical Solution for Small Lateral Accelaratons

The analysis of the linearized system described by Equation (27), and its steady-state
solution in Equation (28), is carried out by considering a null linearization point P0, i.e.,
x0 =

[
v1,0,

.
ψ1,0,

.
ψ2,0, α0

]
′ = 0 and w0 = 0. This hypothesis is well representative for small

ATV front unit lateral accelerations (ay1 < 1 m/s2). The general expression of Equation (27)
can be linked to the characteristic matrices of the dynamic system under investigation:

.
x = L−1M︸ ︷︷ ︸

A

x + L−1N︸ ︷︷ ︸
B

w (29)

where matrices L, M and N are defined by:

L =


u2

1(m1 + m2) −m2u2
1xG1 −m2u2

1xG2 0
m1u2

1xG1 IG1u2
1 0 0

−m2u2
1xG2 m2u2

1xG1xG2 u2
1
(

IG2 + m2x2
G2
)

0
0 0 0 1

, (30)
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M =



u1
Nw
∑

i=1

(
CI

i + CI I
i
)

−u1

(
u2

1(m1 + m2)−
Nw
∑

i=1
CI

i dI
i + xG1

Nw
∑

i=1
CI I

i

)
u1

(
Nw
∑

i=1
CI I

i dI I
i − xG2

Nw
∑

i=1
CI I

i

)
u2

1

Nw
∑

i=1
CI I

i

u1
Nw
∑

i=1
CI

i
(
xG1 + dI

i
)

−u1

(
u2

1m1xG1 −
Nw
∑

i=1
CI

i dI
i
(

xG1 + dI
i
))

0 0

−u1
Nw
∑

i=1
CI I

i
(

xG2 − dI I
i
)

u1

(
u2

1m2xG2 + xG1
Nw
∑

i=1
CI I

i
(
xG2 − dI I

i
))

u1

(
−

Nw
∑

i=1
CI I

i dI I
i
(
xG2 − dI I

i
)
+ xG2

Nw
∑

i=1
CI I

i
(

xG2 − dI I
i
))

−u2
1

Nw
∑

i=1
CI I

i
(
xG2 − dI I

i
)

0 1 −1 0


(31)

N =


0
u2

1
−u2

1
0

. (32)

Equation (28) provides the steady-state relation from the input steering torque Cs
to the front lateral speed v1,ss (or, equivalently, the front sideslip angle β1,ss), the ATV
yaw rate

.
ψss (

.
ψ1,ss =

.
ψ2,ss =

.
ψss) and the hitch angle αss. Nevertheless, the steady-state

characteristics β1,ss vs. αss and
.
ψss vs. αss represent a more attractive solution from the

steering controller point of view. The explicit dependence of Cs is removed by subtracting
the third equation to the second one in Equation (29), thus obtaining the relation among
the three states β1,ss,

.
ψss and αss:{

a11β1,ss + a12
.
ψss = b1αss

a21β1,ss + a22
.
ψss = b2αss

(33)

where a11, a12, a21, a22, b1 and b2 are the speed-dependent coefficients defined by:

a11 =
Nw
∑

i=1

(
CI

i + CI I
i
)

a12 = −u1(m1 + m2) +
1

u1

Nw
∑

i=1

(
CI

i dI
i + CI I

i dI I
i − (xG1 + xG2)CI I

i
)

a21 =
Nw
∑

i=1

(
CI

i
(
xG1 + dI

i
)
− CI I

i
(
xG2 − dI I

i
))

a22 = −u1(m1xG1 −m2xG2) +
1

u1

Nw
∑

i=1

(
CI

i dI
i
(

xG1 + dI
i
)
− CI I

i dI I
i
(
xG2 − dI I

i
)
+ (xG1 + xG2)CI I

i
(
xG2 − dI I

i
))

b1 = −
Nw
∑

i=1

(
CI I

i
)

b1 =
Nw
∑

i=1

(
CI I

i
(
xG2 − dI I

i
)) . (34)

The steady-state response is then computed by solving the algebraic system of equa-
tions in Equation (33): 

β1,ss =
b1a22 − b2a12

a11a22 − a12a21︸ ︷︷ ︸
Gβ1

αss

.
ψss =

b2a11 − b1a21

a11a22 − a12a21︸ ︷︷ ︸
G .

ψ

αss

(35)

where Gβ1 and G .
ψ

represent the steady-state sideslip angle and yaw rate gains, respectively.
The steady-state gains of rear sideslip angle Gβ2, front lateral acceleration Gay1, front

curvature Gρ, front axle slip angles GβI
i

and rear axle slip angles GβI I
i

are calculated from
Gβ1 and G .

ψ
:

Gβ2 = Gβ1 + 1−
G .

ψ

u1
(xG1 + xG2)

Gay1 = u1G .
ψ

Gρ =
G .

ψ

u1

GβI
i
= Gβ1 +

dI
i G .

ψ

u1

GβI I
i
= Gβ1 + 1−

G .
ψ

u1
(xG1 + xG2) +

dI I
i G .

ψ

u1

. (36)

The ATV linearized model for small lateral accelerations, through Equations (29), (35)
and (36), is then analyzed by providing a realistic parametrization in Table 1.
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Table 1. ATV linearized model parameters.

Quantity Value Description

m1 3440 kg Front unit mass
m2 2440 kg Rear unit mass
IG1 4472 kg m2 Front unit moment of inertia around z1
IG2 3172 kg m2 Rear unit moment of inertia around z1
xG1 2.09 m Front CoG distance from the steering joint
xG2 2.18 m Rear CoG distance from the steering joint
dI

1 0.79 m Front axle 1 distance from the front CoG
dI

2 0.29 m Front axle 2 distance from the front CoG
dI

3 −0.21 m Front axle 3 distance from the front CoG
dI

4 −0.90 m Front axle 4 distance from the front CoG
dI I

1 0.79 m Rear axle 1 distance from the rear CoG
dI I

2 0.29 m Rear axle 2 distance from the rear CoG
dI I

3 −0.21 m Rear axle 3 distance from the rear CoG
dI I

4 −0.90 m Rear axle 4 distance from the rear CoG
CI

1 −0.81 × 105 N/rad Front axle 1 cornering stiffness 1
CI

2 −1.21 × 105 N/rad Front axle 2 cornering stiffness 1
CI

3 −1.28 × 105 N/rad Front axle 3 cornering stiffness 1
CI

4 −0.81 × 105 N/rad Front axle 4 cornering stiffness 1
CI I

1 −0.61 × 105 N/rad Rear axle 1 cornering stiffness 1
CI I

2 −0.98 × 105 N/rad Rear axle 2 cornering stiffness 1
CI I

3 −1.06 × 105 N/rad Rear axle 3 cornering stiffness 1
CI I

4 −0.61 × 105 N/rad Rear axle 4 cornering stiffness 1
1 The cornering stiffness is calculated for ay1 = ay2 = 0 (FI

z,ji = FI
zST,ji and FI I

z,ji = FI I
zST,ji).

It is worth noting that each axle cornering stiffness is evaluated for a constant vertical
force equal to the static contribution, which represents a realistic assumption if small lateral
accelerations are considered.

Matrices A and B in Equation (29) are still influenced by the ATV front longitudinal
speed u1. Despite the assumption of constant speed for the linearized mode, u1 plays an
important role for ATV lateral stability and dynamics. The linear model dynamics was
then investigated by using the modal analysis, as shown in Figure 9, where the poles, the
natural frequencies and the damping ratios are reported as functions of vehicle speed.

Machines 2021, 9, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 9. Natural frequencies 𝜔,, damping ratio 𝜁 and poles of the ATV linear model as functions of vehicle longitudi-
nal speed 𝑢ଵ. 

 
Figure 10. Non-linear (NL) and Linear (L) models response in terms of front (𝛽ଵ) and rear (𝛽ଶ) sideslip angles, hitch angle 
(𝛼), front (𝜓ሶଵ) and rear (𝜓ሶ ଶ) yaw rates for three steering input torques 𝐶௦ at a constant longitudinal speed 𝑢1 =  20 km/h. 

The steering input torques were selected to reach three stable operative points from 
the steady-state characteristics between steering torque and hitch angle in Figure 7: a step 
steering torque of 59 Nm (a), a step steering torque of 343 Nm (b), and a smoothed step 
steering torque of 343 Nm where an overshoot of 432 Nm is imposed during the initial 
phase. The perfect match between the non-linear and linear responses to the steering 
torque (a) shows that the assumptions behind the linearization procedure are verified for 
an ATV operative range characterized by low speed and hitch angle values. When a 
higher steering torque is applied, e.g., input (b), the starting phase of transient response is 
still well described by the linear model, but its steady-state response is not aligned with 
the non-linear model. This result is justified by the selection of the linearization point in 
the origin of the state space: the more the state deviation from the state space origin, the 
lower the accuracy level of the linear model in approximating the ATV non-linearities. 
The non-linear characteristics between the steering torque and the hitch angle is well em-
phasized by the different response between the linear and the non-linear models to the 

Figure 9. Natural frequencies ωn,i, damping ratio ζi and poles of the ATV linear model as functions of vehicle longitudinal
speed u1.



Machines 2021, 9, 38 15 of 23

All damping ratios are positive, hence the ATV linear model is stable in the whole
speed range. The lower natural frequency ωn,1 increases with ATV longitudinal speed up
to 65 km/h, where a peak value of 1 rad/s is reached, after which it tends to slightly reduce
for higher speed values. The first two poles are real and negative in the whole operative
speed range; meanwhile, the third and the fourth eigenvalues are real and distinct for
low vehicle speed, while they form a couple of complex conjugate eigenvalues for speeds
greater than 33 km/h.

To evaluate the validation range of the linearized ATV model, a step steering torque
was applied to both linear and non-linear models to compare their transient and steady-
state responses. Simulation results are shown in Figure 10 for three different steering
torque histories.
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Figure 10. Non-linear (NL) and Linear (L) models response in terms of front (β1) and rear (β2) sideslip angles, hitch angle
(α), front (

.
ψ1) and rear (

.
ψ2) yaw rates for three steering input torques Cs at a constant longitudinal speed u1 = 20 km/h.

The steering input torques were selected to reach three stable operative points from
the steady-state characteristics between steering torque and hitch angle in Figure 7: a step
steering torque of 59 Nm (a), a step steering torque of 343 Nm (b), and a smoothed step
steering torque of 343 Nm where an overshoot of 432 Nm is imposed during the initial
phase. The perfect match between the non-linear and linear responses to the steering
torque (a) shows that the assumptions behind the linearization procedure are verified for
an ATV operative range characterized by low speed and hitch angle values. When a higher
steering torque is applied, e.g., input (b), the starting phase of transient response is still
well described by the linear model, but its steady-state response is not aligned with the
non-linear model. This result is justified by the selection of the linearization point in the
origin of the state space: the more the state deviation from the state space origin, the lower
the accuracy level of the linear model in approximating the ATV non-linearities. The non-
linear characteristics between the steering torque and the hitch angle is well emphasized by
the different response between the linear and the non-linear models to the steering input
(c). Indeed, the steering input (c) is designed to reach the same final value of the steering
step (b) but with a different time history that aims at moving from the left to the right side
of the maximum peak in the Cs vs. α characteristics shown in Figure 7. Even if the final
value of the steering torque (c) is the same as (b), the steady-state hitch angle from the
non-linear model is higher; meanwhile, the linear model approaches the same hitch angle.

The steady-state response of the linear model was further analyzed by comparing
the yaw rate and sideslip angles characteristics with respect to the non-linear model, as
reported in Figure 11:
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Figure 11. Steady–state yaw rate, front and rear sideslip angles characteristics for a constant longitu-
dinal speed u1 = 20 km/h.

Even if the yaw rate response of the non-linear model is well described by the ATV
linearized model for a wider range, the sideslip angles of the front and rear units are only
validated for hitch angles lower than 10 deg at a constant speed of 20 km/h. By considering
the yaw rate values limited within this range, the liner approximation in Equation (29) is
representative of the steady state ATV cornering behavior only for lateral accelerations
lower than 1 m/s2.

By focusing the analysis within the linear ATV cornering behavior, the influence of the
front vehicle speed on steady-state gains, defined in Equation (36), is shown in Figure 12.
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angles (down right) for different front longitudinal speeds.

The gains evaluated at zero longitudinal speeds represent the “kinematic” ATV steady-
state behavior where the effect of inertial forces, due to lateral accelerations, are negligible.
The non-null kinematic front and rear slip angle gains show that all the four axles slip on
the terrain even at low or zero speed conditions. Moreover, from the curvature gain plot,
the ATV shows an evident steady-state understeer behavior: the same value of hitch angle
produces a larger curvature radius (inverse of the curvature) and higher front and rear
sideslip angles (in module) for higher speeds.

The ATV cornering behavior is also well described by the equivalent understeer
characteristics, typical of passenger vehicles. For the ATV, the understeer characteristics
represents the dynamic hitch angle correction, with respect to the kinematic condition,
required to keep a desired curvature radius for different lateral accelerations. The kinematic
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hitch angle, αkin = ρ
Gρ,kin

, that must be set to follow a desired trajectory at lower speeds (or
lateral accelerations) is calculated by considering the kinematic curvature gain Gρ, kin:

Gρ,kin = lim
u1→0

Gρ(u1)=
∑Nw

i=1(CI
i )∑Nw

i=1(CI I
i (xG2−dI I

i ))+∑Nw
i=1(CI I

i )∑Nw
i=1(CI

i (xG1+dI
i ))

Nw
∑

i=1
(CI

i +CI I
i )

Nw
∑

i=1
(CI

i dI
i (xG1+dI

i )−CI I
i dI I

i (xG2−dI I
i )+(xG1+xG2)CI I

i (xG2−dI I
i ))−

Nw
∑

i=1
(CI

i dI
i +CI I

i dI I
i −(xG1+xG2)CI I

i )
Nw
∑

i=1
(CI

i (xG1+dI
i )−CI I

i (xG2−dI I
i ))

. (37)

It must be noted that the single-track model assumptions commonly used for the
handling analysis of passenger cars lead to a kinematic gain Gρ, kin equal to the inverse of
the vehicle wheelbase. On the other hand, the ATV kinematic curvature gain depends on
front and rear axle cornering stiffness as well as on vehicle geometrical parameters.

The dynamic hitch angle αdyn is then calculated as the difference between the current
and the kinematic hitch angles:

αdyn = αss − αkin =
ay1

Gay1
− ρ

Gρ,kin
=

(
1

Gay1
− 1

u2
1Gρ,kin

)
︸ ︷︷ ︸ ay1

KUS

. (38)

The understeer gradient, KUS, is positive for understeering and negative for oversteer-
ing ATV behaviors. It can be analytically proved that the understeer gradient of Equation
(38) is speed-independent for the linearized model, but the understeering behavior of the
non-linear model is strongly influenced by the vehicle speed, especially at higher lateral
accelerations, as shown in Figure 13.
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and for the linear model (black solid line).

In the range of low lateral accelerations (ay1 ≤ 1 m/s2), the understeer gradient of the
non-linear model is also speed-independent and aligned with the linear model. For higher
lateral accelerations (ay1 > 1 m/s2), the non-linear model shows a more understeering
behavior at 40 km/h and an oversteering behavior at 20 km/h if compared to the linear
model. However, the magnitude of the dynamic hitch angle obtained with the non-linear
model at high lateral accelerations is not so significant if compared to the absolute hitch
angle αss. For example, at ay1 = 3.5 m/s2 the absolute hitch angle obtained with the
non-linear model (at u1 = 20 km/h) is αNL

ss = 30 deg.

4. Hitch Angle Controller
4.1. Controller Design

While the previous section analyzed the ATV dynamic behavior through the linearized
model, the present section evaluates the influence of the hydraulic actuation system by
introducing a hitch angle controller. The hitch angle controller was designed based on the
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non-linear model, due to the presence of strong nonlinearities that characterize the ATV
and the hydraulic pressure dynamics. Two alternatives logics are proposed for controlling
the ATV hitch angle, as shown in Figure 14.
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applied to the ATV non-linear model.

Both hitch angle controllers use the error eα = αre f − α as input for a Proportional
Integral Derivative (PID) control logic, where αre f represents the desired hitch angle. One
PID logic is designed to elaborate a steering torque Cs, named “Torque-Based Logic” (TBL),
and the second PID calculates a hydraulic command valve Xv, named as “Speed-Based
Logic” (SBL). In the first case, the hydraulic steering dynamics is excluded by considering
an ideal actuator that directly provides the desired steering torque, as assumed for the
ATV linearized model and in [22], where an electric motor is directly mounted on the
steering joint. For the SBL, the steering torque applied to the ATV depends on the pressure
dynamics within the hydraulic circuit of the steering system. The reason behind the
selection of these two logics aims at analyzing the impact of a direct steering torque on the
ATV lateral dynamics if compared to the steering action applied by the hydraulic circuit,
which is influenced by the internal feedback between the actuator and system dynamics.
A speed controller is also included in Figure 14 to reduce the speed error eu = ure f − u1
by regulating the gas pedal position Xg (not described in this paper). Furthermore, all
the feedback signals shown in Figure 14 are assumed to be fully available but feasible
estimators are required for practical implementations, as also described in [23]. The two
alternative logics are expressed by:

Cs = KP,TBLeα + KD,TBL
.
eα + KI,TBL

∫
eα dt

Xv = KP,SBLeα + KD,SBL
.
eα + KI,SBL

∫
eα dt

. (39)

The PID’s gains KP,TBL, KD,TBL, KI,TBL, KP,SBL, and KI,SBL were obtained through
the Simulink® “Response Optimization” toolbox. The optimizations process is designed
to achieve the desired response to a step input on αre f at a desired ATV speed u1, kept
constant by the speed controller shown in Figure 14, based on the requirements reported
in Table 2.
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Table 2. Desired ATV step response requirements.

Property Requirement Description

Rise Time ≤ 5 s Time for the hitch angle to reach the 80%
of the step final value

Settling Time ≤ 7 s Time for the hitch angle to settle within a
range of ±1% around the step final value

Overshoot ≤ 10% The amount by which the hitch angle can
exceed the step final value before settling

Undershoot ≤ 1% The amount by which the hitch angle can
undershoot the step initial value

Optimal solution for the set of PID gains depends on the boundary conditions for the
optimization problem, such as the ATV speed u1 and the final hitch angle value αre f , f inal .
An example for optimal PID gains selection is provided in Table 3.

Table 3. Optimal Proportional Integral Derivative (PID) set of gains for different final hitch angles at
u1 = 20 km/h.

αref,final
deg

KP,TBL
Nm/rad

KI,TBL
Nm/(rad s)

KD,TBL
Nm/(rad/s)

KP,SBL
1/rad

KI,SBL
1/(rad s)

KD,SBL
1/(rad/s)

1 29093 5176 −1223.5 2.0418 0.0121 −0.09323
10 21178 2591.5 1036.2 2.2987 0.0131 −0.1525
20 6345.1 −265.3351 2315.5 2.1310 0.0119 −0.1759

The comparison between the two logics shows that the TBL requires an extreme PID
adaptation, in terms of gains magnitude and sign variation, to the maneuver operative
conditions. This is mainly due to the strong non-linear characteristics between the steering
torque and the hitch angle. On the other hand, the SBL does not require such a drastic
PID gains variation since the hydraulic steering circuit automatically adapts the fluid
pressure to provide the needed steering torque. This result implies that the SBL structure is
more stable than the TBL. A further verification of this concept is represented by the ATV
non-linear model response to a step input when a fixed set of PID gains, e.g., the first row
in Table 3, is applied for each final hitch angle values. Results are shown in Figure 15.
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Even if the PID gains are not adapted for the three operative conditions, the SBL
provides a clearly better response if compared to the TBL, which does not respect all the
desired performance requirements reported in Table 2, especially in terms of maximum
settling time and overshoot. Although the stability of both logics was not assessed through
an analytical formulation, the time domain responses described in Figure 15 represent a
numerical verification of the controller performance and stability. The SBL shows a more
stable response to the reference hitch angle variation with respect to the TBL, which tends
to reduce the ATV stability when the amplitude of the reference signal rises, as can be seen
by the increase of hitch angle oscillations.

4.2. Controller Validation

The hitch angle controller with SBL design for αre f , f inal = 1 deg (first row in Table 3)
is then validated through a more realistic multiple turn maneuver. Figure 16 reports the
time histories of the main lateral dynamics’ quantities during a multiple turn maneuver at
a constant speed of 20 km/h. The simulated maneuver consists of a first swift turn with a
curvature radius of 40 m counterclockwise, a second one that brings the ATV on a straight
line, a third one with a curvature radius of 20 m clockwise, and a final one that brings back
the ATV on a straight line.
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Figure 16. Sideslip angles, yaw rates, hitch angle, lateral accelerations, curvatures, steering torque, and hydraulic command
valve during a multiple turn maneuver, with the hitch angle controller with SBL and fixed PID gains applied to the
non-linear model at constant ATV speed u1 = 20 km/h. Reprinted with permission from ref. [19]. Copyright 2020 Springer
Nature Switzerland AG.

The ATV well follows the variable hitch angle required even if a fixed PID gains is
adopted for the SBL. It is also remarkable to see that, given the strong non-linear relation
between the steering torque and the hitch angle shown in Figure 7, the steering torque
required to track the reference hitch angle during a multiple turn maneuver is extremely
variable despite the maneuver not being considered as aggressive as proven by the low
lateral acceleration condition.

5. Conclusions

The activity presented in this paper describes a non-linear model for a typical ATV
and a methodology to linearize the model for the lateral dynamics analysis. The following
conclusions are drawn from simulation results:

• The linearized ATV model represents a promising tool for ATV dynamics analysis
only in the range of small lateral accelerations (ay1 < 1 m/s2).
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• The linearized ATV model shows a stable behavior over the whole speed operative
range, and it is characterized by a “slow” open-loop dynamics due to the presence of
relatively small natural frequencies.

• The steady-state ATV cornering behavior for small lateral accelerations is understeer-
ing with the proposed set of vehicle parameters. This is also proven by extending
to the ATV the concept behind the understeer characteristics commonly adopted for
passenger cars.

• At higher lateral accelerations, the ATV steady-state understeering attitude obtained
with the non-linear model is strongly influenced by the vehicle speed. An undesteering
behavior is observed for 40 km/h and an oversteering attitude is obtained for 20 km/h.

• The hitch angle controller with SBL represents a better solution if compared to the
TBL, since the hydraulic steering circuit automatically adapts the pressure dynamics
to the ATV load conditions without any direct steering torque regulation.

Future investigations are necessary to propose a similar methodology to design the
hitch angle controller for higher lateral accelerations and in the presence of ATV parameters
variation, e.g., the axles’ cornering stiffness. The enhancement of the linearized model
represents a fundamental requirement for extending the analytical approach to the hitch
angle controller design and its stability and performance assessment as well as its robust-
ness level against uncertain parameters and external disturbances. Moreover, other future
developments of this work aim at improving the analytical methodology by including (a)
the hydraulic actuation dynamics for enhancing the ATV linearized model accuracy in
predicting the ATV lateral behavior, (b) the effect of the ATV track tension on slip angles
generation and (c) the modification of the track–terrain contact forces when a soft-soil
interaction is required with a non-negligible track sinkage.
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Appendix A

The aim of this appendix is to provide the non-linear kinematic relation imposed by
the steering joint geometry as shown in Figure A1.

The right and left rod displacement, ∆XR = BC′ − BC and ∆XL = AD − AD′ are
evaluated by considering the triangles ˆBOC and ˆAOD:

∆XR =

√
OB2

+ OC2 − 2OBOC cos(γ + α)−
√

OB2
+ OC2 − 2OBOC cos(γ)

∆XL =

√
OA2

+ OD2 − 2OAOD cos(γ)−
√

OA2
+ OD2 − 2OAOD cos(γ− α)

(A1)

where OA = OB, OC = OD and angle γ are constant geometric parameters. The speeds of
right and left pistons vR and vL are obtained by deriving the previous equation:

vR = OBOC sin(γ+α)√
OB2

+OC2−2OBOC cos(γ+α)

.
α

vL = OAOD sin(γ−α)√
OA2

+OD2−2OAOD cos(γ−α)

.
α

. (A2)
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The hydraulic chamber volumes V1, V2 and their time derivatives
.

V1,
.

V2 are then
calculated as:

V1 = V0 + ∆XR Ap + ∆XL
(

Ap − As
)

V2 = V0 − ∆XR
(

Ap − As
)
− ∆XL Ap.

V1 = vR Ap + vL
(

Ap − As
)

.
V2 = −vR

(
Ap − As

)
− vL Ap

(A3)

where V0 is the total volume when the ATV is moving in a straight line (α = 0).
Finally, the right and left piston force arms fR and fL with respect to the steering hinge

are calculated by:

fR = OBOC sin(γ+α)√
OB2

+OC2−2OBOC cos(γ+α)

fL = OAOD sin(γ−α)√
OA2

+OD2−2OAOD cos(γ−α)

. (A4)
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calculated as: 𝑉ଵ = 𝑉 + ΔXோ𝐴 + ΔX(𝐴 − 𝐴௦)𝑉ଶ = 𝑉 − ΔXோ(𝐴 − 𝐴௦) − ΔX𝐴𝑉ሶଵ = 𝑣ோ𝐴 + 𝑣(𝐴 − 𝐴௦)𝑉ሶଶ = −𝑣ோ(𝐴 − 𝐴௦) − 𝑣𝐴

 (A3)

where 𝑉 is the total volume when the ATV is moving in a straight line (α = 0). 
Finally, the right and left piston force arms 𝑓ோ and 𝑓 with respect to the steering 

hinge are calculated by: 𝑓ோ = 𝑂𝐵തതതത𝑂𝐶തതതത sin(𝛾 + 𝛼)ඥ𝑂𝐵തതതതଶ + 𝑂𝐶തതതതଶ − 2𝑂𝐵തതതത𝑂𝐶തതതത cos(𝛾 + 𝛼)𝑓 = 𝑂𝐴തതതത𝑂𝐷തതതത sin(𝛾 − 𝛼)ඥ𝑂𝐴തതതതଶ + 𝑂𝐷തതതതଶ − 2𝑂𝐴തതതത𝑂𝐷തതതത cos(𝛾 − 𝛼). (A4)

 
Figure A1. Steering joint kinematics: straight line (blue), turning (red). 
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