
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Computational Notebooks to Support Developers in Prototyping IoT Systems / Corno, Fulvio; De Russis, Luigi; Saenz,
Juan Pablo. - In: INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES. - ISSN 1071-5819. -
ELETTRONICO. - 165:(2022). [10.1016/j.ijhcs.2022.102850]

Original

Computational Notebooks to Support Developers in Prototyping IoT Systems

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.ijhcs.2022.102850

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.ijhcs.2022.102850

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2961694 since: 2022-05-11T14:22:19Z

Elsevier

Computational Notebooks to Support Developers in

Prototyping IoT Systems

Fulvio Cornoa, Luigi De Russisa, Juan Pablo Sáenza,∗

aDepartment of Control and Computer Engineering, Politecnico di Torino, Torino, 10129

Italy

Abstract

Computational notebooks create narratives that consolidate text, executable

code, and visualizations in a single document. They are widely used in data

science, enabling data scientists to accurately document and execute the steps

of their analyses in an exploratory and iterative manner. Prototyping Internet

of Things (IoT) systems is also complex because of IoT heterogeneous and inter-

connected nature. Indeed, IoT system prototyping spans multiple development

and execution environments, and developers, besides focusing on the code, are

required to con�gure various devices. To ascertain if and how computational

notebooks' capabilities might be useful in the IoT scenario, this work presents an

IoT-tailored notebook architecture aimed at helping developers build and share

a computational narrative around the prototyping of IoT systems. To that end,

we propose the concept of �IoT notebook�, for which we analyze the required

features and present its �rst implementation. We evaluate our proposal by con-

ducting an exploratory user study among non-expert IoT developers working in

a large IT company. Finally, we point out the potential of this approach.

Keywords: Internet of Things, Computational notebook, Software

development, Prototyping

∗Corresponding author
Email addresses: fulvio.corno@polito.it (Fulvio Corno), luigi.derussis@polito.it

(Luigi De Russis), juan.saenz@polito.it (Juan Pablo Sáenz)

Preprint submitted to International Journal of Human Computer Studies April 13, 2022

1. Introduction

The development of Internet of Things (IoT) systems is complex and poses

several challenges to developers [1]. It requires an unusually broad spectrum

of design and development technologies and skills [2] and spans across multiple

development and execution environments. Technically speaking, IoT systems5

can be characterized by four architectural elements, each with a precise set

of computing resources, technologies, and communication protocols. These four

architectural elements are de�ned by [3] as devices, gateways, cloud services, and

applications. Devices comprise hardware to collect sensor data (sensing devices)

or perform actions (acting devices). Gateways collect, preprocess, and forward10

the data coming from the sensing devices to the cloud, and vice-versa with the

requests sent from the cloud to the acting devices. The cloud services manage

the devices, acquire and store the data, and provide real-time and/or o�ine data

analytics. Applications range from web-based dashboards to domain-speci�c

web and mobile applications [2].15

The above implies that, besides focusing exclusively on the code, IoT de-

velopers are also required to deal with the hardware implementation and dis-

tributed computing concepts. Consequently, due to this inherent complexity, it

is common to prototype parts of the IoT system, to explore and validate possible

strategies useful to con�gure, develop, and integrate hardware and software arti-20

facts. However, this prototyping process comprises several steps along which the

IoT developer gradually overcomes a learning curve, while iteratively exploring

and assessing various alternatives.

In addition, IoT developers struggle with three challenges:

1. the programming tools for IoT development are largely the same ones used25

for mobile and web application development [3], and there is a shortage

of software development environments that would allow an IoT developer

to write a single IoT application capable of running on various type of

devices [4];

2. the absence of documentation written and shared by and for non-expert30

2

developers [5, 6];

3. among the currently available documentation, the lack of contextual in-

formation, such as a textual description of how the code works, crucial

for understanding how to con�gure or adapt this code to the developers'

speci�c needs [7].35

Against these three challenges, we envision that IoT developers would greatly

bene�t from an interactive computing tool. Our approach draws upon Compu-

tational notebooks characteristics to document, share, and execute the con�g-

uration and programming steps that non-experienced programmers complete

over diverse execution and development environments. In this sense, instead40

of framing our work exclusively on an End-User Development approach, rather

than hiding the code and providing visual abstractions to deal with it, our goal

is to enable novice programmers to become pro�cient in implementing these

kinds of systems. We consider that if the reasoning and the followed steps are

better documented into a Computational notebook and under a well-con�gured45

execution environment, the IoT systems prototyping can be more reproducible

and understandable to novice programmers.

In this regard, computational notebooks are interactive computing tools de-

signed to support the construction and sharing of computational narratives

by consolidating text, executable code, and visualizations in a single docu-50

ment [8, 9]. They are widely used in data science, enabling data scientists to

accurately document and execute the steps of their analyses in an exploratory

and iterative manner.

In our previous work [10], we preliminary assessed the suitability and limi-

tations of current computational notebooks to support the development of an55

IoT system. We suggested an initial set of features that an IoT notebook should

enable, such as (i) multiple programming languages in the same notebook; (ii)

the capability to execute code in the documents in external devices; (iii) keep

some code snippets on background execution; (iv) support the speci�cation and

installation of mandatory dependencies; (v) support the visualization of data60

3

coming from the sensing devices or external services and platforms. After explor-

ing the computational notebooks landscape, we developed an initial iteration

of the IoT notebook that partially satis�ed the suggested features. This �rst

approximation led us to envision the additional features and choose the Jupyter

notebook as the most suitable tool. However, the most remarkable conclusion65

was that a more in-depth assessment of the bene�ts and limitations of the ap-

proach was necessary. Indeed, this outcome was the motivation to deepen into a

more accurate de�nition of the features, the design of an architecture, a cleaner

implementation of all the proposed features, and an exploratory �rst-use study

addressed by the present work.70

In this paper, in the light of the architectural elements present in IoT sys-

tems and the features provided by current computational notebooks, we present

the design, development, and evaluation of the �rst implementation of an IoT-

tailored notebook that can represent a feasible environment to support IoT

systems prototyping.75

Speci�cally, the contributions of this paper are:

� The idea of relying on computational narratives to support non-expert

developers in the prototyping of IoT systems.

� The design and implementation of the IoT notebook, a custom-tailored

computational notebook with a set of features that, based on the archi-80

tectural elements present in IoT systems, are required to enable IoT pro-

totyping.

� A usability study demonstrates that the IoT notebook can potentially

support non-expert developers in two aspects: (i) following the documen-

tation and executing the code of various IoT components from a com-85

putational notebook; and (ii) documenting and sharing their prototyping

process with other developers in an IoT-tailored programming environ-

ments. Improvements and suggestions emerging from this study are then

discussed.

4

The remainder of the paper is structured as follows. Section 2 provides an90

overview of the current computational notebooks landscape and speci�es some

de�nitions, while Section 3 describes the related work. Section 4 presents a use

case of an IoT system prototype with the four IoT architectural elements pre-

viously mentioned (devices, gateways, cloud services, and applications). Stem-

ming from the use case and the literature, Section 5 describes the approach to95

using computational notebooks for prototyping IoT systems, enumerating the

set of features that, given the characteristics of these systems, an IoT notebook

should o�er. Additionally, we propose an architecture able to support such fea-

tures. The implementation of the IoT notebook is described in Section 6. An

exploratory usability study where our approach is evaluated in the context of100

an IT company is described in Section 7. Eventually, Section 8 concludes the

paper.

2. Background

This section brie�y introduces literate programming, a paradigm in which

the logic of a computer program is explained in natural language interspersed105

with snippets of macros and traditional source code, and mentions some of

its limitations. Furthermore, we provide de�nitions for some basic concepts

regarding computational notebooks.

Literate programming originates in 1984 from a paper by Donald Knuth. He

suggests software developers that �instead of imagining that our main task is to110

instruct a computer what to do, let us concentrate rather on explaining to human

beings what we want a computer to do� [11]. Inspired by this proposal, literate

computing tools, such as computational notebooks, have emerged as a way to

support the construction and sharing of computational narratives by enabling

data analysts to arrange code, visualizations, and text in a computational nar-115

rative [11, 8, 9]. These literate computing tools are based on cells containing

rich text or executable code that generates results or visualizations.

Computational notebooks commonly refer at the same time to the interactive

5

literate programming documents and to the software application to execute

them [12]. For the sake of clarity, throughout this article, we will refer to them120

as notebook documents and computational notebooks, respectively.

Notebook documents are based on cells, each of which contains rich text or

code that can be executed to compute results or generate visualizations. These

cells are linearly arranged but can be reorganized, reshu�ed, and executed

multiple times in any order. Moreover, programmers can choose which code125

cells they would like to edit and run [13], and their execution does not require

cleaning the outputs of previous executions. Thus, an executed document may

contain retrospective data of multiple executions.

Computational notebooks typically consists of a kernel that executes the

code cells in a particular programming language and returns the corresponding130

output to the user, and an interactive computing protocol that standardizes and

manages the communication between the notebook documents and the kernels. A

kernel for its part, is a �computational engine� that executes the code contained

in the code cells of a Notebook document. When the notebook document is

executed, the kernel performs the computation and produces the results [14].135

Each kernel executes a given programming language.

Concerning their collaborative nature, Computational Notebooks have three

main bene�ts: on the one hand, the programmers can exchange the Notebook

documents (accounting for the developer's reasoning, coding, and execution re-

sults, and written using a standard format), and execute them directly in the140

browser. Since the computational notebook runs in the web browser, it works

across platforms. Therefore, in contrast to setting up the project in a develop-

ment environment, the programmer has to open and execute the notebook in

the browser. On the other hand, in Computational notebooks, developers do

not devote time to setup tasks because they do not have to �nd out how to145

add libraries to their projects by downloading �les and adding them to their

projects. Indeed, for this reason, they are suitable for the educational set-

ting, making assignment correction easier instead of having to con�gure several

times the execution environment, which often leads to solutions not working

6

correctly. By using Computational notebooks, evaluators can support students150

more straightforwardly. Finally, unlike traditional IDEs, other than sharing just

the code, the Computational notebooks enable the developers to share all code

states, including the code execution results, which can be very indicative to

other programmers, especially novices, regarding the behavior of the code.

However, as stated by Borowski et al. [15], synchronous real-time collab-155

oration within Notebook documents is still in its infancy. According to the

authors, current computational notebooks should integrate real-time comment-

ing features, highlight tracked changes, and provide editing history. To this end,

features like remote cursors or pointers (where both developers can see through

the cursor what the other is working on) are essential. Finally, keeping track160

in real-time of the changes that other users performed could ease splitting up

work and putting results together.

3. Related Work

This work is intended to provide insights into the suitability of a computa-

tional narrative approach to document, execute, and share the steps involved in165

IoT prototyping, especially for non-expert programmers. In the following, we

addressed the related work from the perspective of (i) works aimed at exploring

and analyzing the characteristics of current notebooks and (ii) the use of the

notebooks in diverse domains and contexts. Additionally, based on the work by

Lau et al. [16], we present an overview of some of the most popular currently170

available notebooks.

3.1. Large-scale Computational notebooks analyses

Rule et al. [9] assessed the current use of computational notebooks through

quantitative analysis of over 1 million notebooks shared online, qualitative anal-

ysis of over 200 academic computational notebooks, and interviews with 15175

academic data analysts. These analyses demonstrated a tension between explo-

ration and explanation that complicates construction and sharing of computa-

tional notebooks. In the context of data analysis, the exploratory process tends

7

to produce messy notebooks. The authors determined that a key challenge con-

cerns the development of tools aimed at augmenting analysts' work�ows and180

facilitating organization and annotation without much additional e�ort. Fur-

thermore, they claim that a notebook �clean up� tool that moves the imports

to the beginning, as well as rewriting reusable code as functions, would improve

maintainability and legibility in the long run. In the same way, authors [17] have

also concluded that as notebooks grow, they are more challenging to navigate185

or understand, discouraging sharing and reuse. For this reason, and taking into

account that IoT prototyping might comprise much larger code fragments than

data science, we the possibility of splitting code across various cells as an

essential feature to include in our proposed IoT literate computing approach.

Pimentel et al. [12] present an analysis of the notebook characteristics that190

impact reproducibility. The authors propose a set of best practices that can

improve the rate of reproducibility and discuss open challenges that require

further research and development. Among these best practices, authors sug-

gest: to declare the dependencies in requirement �les and pin the versions of all

packages; use a clean environment for testing the dependencies to check if all of195

them are declared; put imports at the beginning of notebooks; use relative paths

for accessing data in a repository. More speci�cally, authors draw attention to

the fact that although current computational notebooks present the cells in a

linear-top-bottom narrative, a user might execute them in an arbitrary order.

In this way, notebooks' reproducibility is negatively a�ected by hidden states,200

out-of-order cells, and hardcoded paths. This situation, and the recommenda-

tion of the authors to manage the dependencies and guarantee linear execution,

led us to identify enabling the de�nition of execution order constraints

as a feature for our proposed IoT notebook. Naturally, we will describe these

two features in detail in Section 5.205

More recently, Pimentel et al. [18] conducted a further analysis in which,

among others, they separated a group of popular notebooks to check whether

notebooks that get more attention have more quality and reproducibility ca-

pabilities, isolated library dependencies, and tested di�erent execution orders.

8

Then, based on the results of these analyses and their proposed best practices,210

the authors developed Julynter, a tool in the form of a Jupyter Lab extension

that performs diverse checks on the quality and reproducibility of notebooks

in real-time and produces recommendations. Speci�cally, the recommended

changes concern four categories: invalid title, hidden state, confuse notebook,

and import. In this manner, the tool's graphical interface enables users to click215

on the recommendations to apply actions. Upon the analysis of the notebooks

and the evaluation of their proposed tool, the authors determined that most

notebooks do not test their code and that a large number of notebooks has

characteristics that hinder the reasoning and reproducibility, such as out-of-

order cells non-executed code cells.220

In the same line, Källén et al. [19] analyzed a corpus of 2.7 million Jupyter

notebooks hosted on GitHub to identify how recurrent code cloning is among

Jupyter Notebooks at the level of notebook cells. Findings indicated that more

than 70% of all code snippets are exact copies of other snippets, and around

50% of all notebooks do not have any unique snippet but consist solely of snip-225

pets that are also found elsewhere. Additionally, according to this analysis,

notebooks are, in general small (median 13 kB) and contain relatively few code

cells (median 9) and few lines of code (median 50).

Wang et al. [20] conducted a preliminary study to determine whether the

code written in a large set of Jupyter notebooks is implemented with good230

qualities. The analyzed dataset was composed of a presumably high-quality set

of 1982 Python-based notebooks curated by the Jupyter team. The outcomes

from the study demonstrated that even the notable notebooks were inundated

with low-quality code with poor respect to the Python style conventions and

code qualities in terms of including unused variables and accessing deprecated235

features of speci�c libraries. Based on their �ndings, the authors raise attention

to the need to propose approaches to improve the reliability and quality of

the code, apply best practices for software quality, and ensure a good balance

between text and code in Jupyter notebooks. What is more, in the authors'

opinion, this need is essential considering that Jupyter notebooks are often240

9

used as tutorials or documentation for non-experienced programmers to learn

practical programming skills.

Kery et al. [21, 13] have studied the exploratory programming nature of

Computational notebooks in the context of Data Science. In particular, the

authors provided a de�nition for exploratory programming and analyzed code245

behaviors in a literate programming environment and how data scientists keep

track of the variants they explore. Their de�nition suggests that the program-

mer writes code as a medium to prototype or experiment with di�erent ideas

and is pursuing an open-ended goal that might evolve through the process of

programming. Authors' analyses in the context of literate computing suggest250

the need for automated version control mechanisms capable of tracking the dif-

ferent values of a variable and storing code dependency information among cells.

Furthermore, they suggest providing several graphical visualization alternatives

to ease versioning, comparison, and debugging.

3.2. Computational notebooks uses in diverse domains255

Head et al. [22] present a collection of code gathering tools, extensions to

computational notebooks that help analysts �nd, clean, recover, and compare

versions of code in cluttered inconsistent notebooks. Additionally, the authors

conducted a qualitative usability study with 12 professional analysts and found

that this kind of tools was considered useful for cleaning notebooks and gener-260

ating personal documentation and light-weight versioning.

Yin et al. [23] describes CyberGIS-Jupyter, a framework for achieving data-

intensive, reproducible, and scalable geospatial analytics using the Jupyter Note-

book based on ROGER, the �rst CyberGIS supercomputer. With this proposal,

the authors aimed at achieving agility and reproducibility in the �eld of geospa-265

tial analytics. On one hand, agility concerns the use of a Jupyter notebook as

a GUI development platform for CyberGIS instead of developing customized

and web-based GUI interfaces that require professional skills that geospatial re-

searchers do not possess. To do so, they developed a set of utilities to support

common CyberGIS operations, using a Jupyter Interactive Widgets library. On270

10

other hand, concerning the reproducibility, the authors relied on container vir-

tualization technologies to record and reproduce computational environments

with the exact versions of all external libraries. Hence, CyberGIS-Jupyter is

deployed inside cloud infrastructure and, for each user instance, their Jupyter

notebooks are hosted inside one dedicated container. In this manner, the frame-275

work enables researchers to share and build on each other's work to innovate

large-scale geospatial analytics cumulatively in a collaborative fashion for team-

based development.

Merino et al. [24] developed a language parametric notebook generator for

domain-speci�c languages (DSL) in the context of the Jupyter framework. Au-280

thors aimed at enabling language engineers to easily implement Jupyter lan-

guage kernels for their domain-speci�c languages by reusing, as much as possible,

existing language components, such as parsers, code generators, and Read-Eval-

Print Loops (REPLs). Since developing a language kernel from scratch requires

a lot of e�ort and communication with Jupyter's low-level wire protocol, authors285

aimed at hiding the low-level complexity of Jupyter's wire protocol by provid-

ing generic hooks for registering language services. In this manner, obtaining a

notebook interface for a DSL becomes a matter of writing a few lines of code.

Azzara et al. [25] present PyoT, a macro-programming framework for the

IoT aimed at simplifying the development of IoT applications. PyoT manages290

IoT-based Wireless Sensor Networks (WSN), letting programmers focus on the

application goal. This framework allows developers to (i) automatically discover

available resources; (ii) monitor sensor data; (iii) handle its storage; (iv) con-

trol actuators; (v) de�ne events and the actions to be performed when they are

detected; and (vi) interact with resources using a scripting language (macro-295

programming). PyoT hides the complexity of the network by abstracting it as a

set of software objects, each of which represents a physical resource (actuators

or sensors), its available operations, and its location. Furthermore, since the

macro-programming uses Python, authors relied on the Jupyter computational

notebook as the web-based user interface through which users can interact with300

the resources executing basic operations such as resource listing, sensor moni-

11

toring, actuator control, event detection and reaction, and access to historical

data.

The CircuitPython website [26] shows the setup and use of a custom ker-

nel to run CircuitPython code directly from a Jupyter interactive notebook.305

CircuitPython is a programming language designed to simplify experimenting

and learning to code on low-cost microcontroller boards [27]. Speci�cally, like

the kernel introduced in this paper, the CircuitPython kernel is a wrapper that

allows CircuitPython's REPL to communicate with Jupyter's code cells. Using

this kernel enables the code to be developed and hosted in the web-browser and310

executed on the CircuitPython hardware through a serial USB link.

Among the currently available computational notebooks, Project Jupyter is

one of the most widely used platforms [9]. It is a popular open-source computa-

tional notebook that relies on open standards and enables users to combine code,

visualizations, and text in a single document (a .ipynb �le) whose underlying315

structure is JSON [9]. Jupyter Notebook originated from IPython [28] and, in

addition to Python, it natively supports a variety of programming languages,

such as Julia, R, Javascript, and C [12]. The popularity of Jupyter Notebooks

increased since 2015 when GitHub began to natively render them, presenting

the .ipynb �les as fully rendered notebook documents, rather than displaying320

the underlying JSON.

However, such notebooks have limitations [13]: (i) saving application states

is complex, limiting the ability to develop applications from within a notebook,

(ii) real-time collaboration is, at best, limited to text editing, and (iii) the be-

havior of a notebook cannot be reprogrammed or extended from within, limiting325

its expressive power. Given these limitations, particularly the last one regard-

ing modifying the notebook behavior, our proposed notebook has focused on

changing the default notebook behavior by adding a set of features to make it

viable in the IoT context. As we will describe in detail in Section 5.1, these fea-

tures regard simultaneously keeping in execution two code cells, distinguishing330

con�guration and business logic steps, splitting the code across various cells,

and de�ning execution order constraints.

12

Chattopadhyay et al. [29] conducted a systematic study using semi-structured

interviews and a survey with data scientists to identify and prioritize pain points

when working with notebooks (along the entire work�ow spectrum, ranging335

from setup to sharing). Among the �ndings, the authors determined that com-

pared to traditional integrated development environments, proper code assis-

tance within notebooks is almost non-existent. Features like autocompletion,

refactoring tools, and live templates are missing or do not function properly.

Additionally, notebooks provide little or no support for �nding, removing, up-340

dating, or identifying deprecated packages. In particular, discovering which

packages are installed isn't accessible from the notebook environment, forcing

data scientists to run over the command line the commands to manage their de-

velopment environment. Furthermore, it is impossible to follow the code �ow for

debugging purposes due to out-of-order execution. Breakpoints are not feasible345

in this scenario, where functions are split across separated cells. Consequently,

the only way to debug most notebooks is through print statements. The au-

thors concluded that addressing such pain points can substantially improve the

usefulness, productivity, and user experience for data scientists who work with

computational notebooks.350

3.3. Currently available computational notebooks

Lau et al. [16] performed a comprehensive design analysis of 60 notebooks

among industry products and academic and experimental projects and formu-

lated a design space with the variations in systems features. Speci�cally, the

authors built the design space around ten dimensions that considered importing355

data, editing code and prose, running code, and publishing notebook outputs.

While industry products tend to rely on the Jupyter notebook, given its popu-

larity and widespread adoption, academic and experimental projects can a�ord

to experiment more with di�erent kinds of cell execution orders, live program-

ming, and interactive outputs. Indeed, the authors adopted a broad de�nition360

of computational notebooks to determine which tools to include in their design

analysis: a system that supports literate programming using a text-based pro-

13

gramming language while interweaving expository text and program outputs

into a single document. As we have done in our research, the authors deter-

mined that a way to push notebooks beyond current designs is by focusing on365

user groups other than data scientists, such as educators, artists, or those in

low-resource computing environments. Similarly, Verano et al. [30] surveyed 12

notebooks and four other systems within a formative study to inform the design

of their Bacatá approach that generates notebook UIs for DSLs. Based on the

insights of these two works and the set of notebooks tools that they included370

in their analyses, in the following, we brie�y list and describe other available

literate computing approaches di�erent from Jupyter.

RStudio. is an open-source IDE for R that supports direct code execution from

the source editor and a notebook interface that allows developers to combine

text, scripts, and outputs into a single document. It supports syntax highlight-375

ing, code completion, indentation, and tools for plotting, history, debugging,

and workspace management.

Mathematica. was one of the �rst literate computing environments. The Wol-

fram Notebook Interface enables natural language queries and real-time graphs

manipulation with multiple parameters other than the usual capabilities of com-380

putational notebooks.

Matlab. provides a live editor to create scripts that combine code, output, and

formatted text in an executable notebook. It aims at supporting teaching by

dividing code into sections that can be executed independently and modifying

the code on the �y to demonstrate concepts.385

Spark Notebook. is an open-source notebook aimed at enterprise environments.

It consists of an interactive web-based editor that supports reproducible analysis

with Scala, Apache Spark, and the Big Data ecosystem by combining Scala code,

SQL queries, Markup, and JavaScript.

14

Observable. is a notebook that supports JavaScript execution in all of its cells.390

Consequently, the Observable code runs directly in the browser's JavaScript en-

gine, and the code within the cells can be de�ned asynchronously using promises.

Additionally, the notebook automatically re-evaluates the cells whenever the

code changes.

Streamlit. is an open-source app framework targeted at Machine Learning en-395

gineers and data scientists. It aims to enable them to create and share custom

data-driven web apps through Python scripts. It provides an immediate-mode

live coding environment that updates every time a Python source �le changes.

Codestrates. is a literate computing approach targeted at non-professional pro-

grammers and aimed at extending the functionality of computational note-400

books to support the development of reprogrammable applications collabora-

tively [31, 15]. Codestrates allows for real-time collaboration�not only for

editing code of computations, but also for reprogramming and extending the

notebook itself.

As can be observed from the above, although Jupyter is the most popu-405

lar and widespread adopted computer notebook system, several other alterna-

tives are publicly available and target di�erent application domains and needs.

From a broader research perspective, computational notebooks encompass var-

ious themes such as exploratory programming, live programming, and literate

computing. Speci�cally, in the data science context, they are end-user program-410

ming environments where coding aims to create data science insights or research

�ndings rather than implement artifacts for broader public use.

4. Use Case

This section describes a use case concerning a maker-level IoT system, to

provide a running example for better understanding the four architectural el-415

ements present in IoT systems (as de�ned in [2]), as well as to identify the

common characteristics of these systems. Such a use case stemmed from the an

15

Figure 1: IoT architectural elements in the Use Case

analysis of open-source IoT [32] projects and an exploration of publicly-shared

Arduino1 projects. This allowed us to keep the use case realistic and generaliz-

able, both for the involved technologies and for its overall goal.420

4.1. Controlling Philips Hue Lamps from an Arduino

The use case concerns an IoT system that warns the occupants of a room

when a harmful level of carbon dioxide (CO2) is reached by turning on a Philips

Hue lamp. As illustrated in Figure 1, this system comprises an air quality sensor,

an Arduino single-board microcontroller, a Back-end application, a Philips Hue425

bridge, and a Philips Hue lamp.

Speci�cally, the Arduino gathers and evaluates the readings from the air

quality sensor. If these measures exceed a certain threshold, meaning that the

level of CO2 has become harmful, the Arduino communicates it to the Back-

end application deployed on the cloud, through an HTTP request. For its part,430

the Back-end application communicates, through an HTTP request, with the

1https://create.arduino.cc/projecthub, last visited on September 2, 2021

16

https://create.arduino.cc/projecthub

Philips Hue Bridge, that sets the lighting color and intensity of the Philips Hue

Bulb to red. The communication between the sensing and acting devices with

the Application and cloud services is achieved through a set of RESTful web

services that the latter expose.435

From the perspective of the architectural elements involved in the system,

the air quality sensor is physically attached to the Arduino, and it represents

the sensing devices of the system. The application architectural element is

represented by the Back-End application, which mediates the communication

between the sensing and the acting device, that in this project is represented by440

the Philips Hue bulb, whose lighting color and intensity can be programmed.

Finally, the gateway architectural element corresponds to the Philips Hue bridge

that, through a Zigbee protocol, controls the bulb according to the requests

received from the Back-end application.

Regarding the programming and deployment of the system, two heteroge-445

neous software artifacts are present: (i) an Arduino sketch running on the mi-

crocontroller, and (ii) the Back-end application, written in Python and deployed

on the cloud. Furthermore, the integration between the Arduino and the Back-

end is achieved by invoking a set of RESTful web services exposed by the latter,

implemented using Flask, a Python web micro-framework.450

4.2. Characteristics of an IoT system prototype

Starting from the use case, we can easily highlight some characteristics of

the two software artifacts:

1. They remain in background execution. The Arduino script keeps

gathering and monitoring the readings from the air quality sensor, the455

Back-End application keeps mediating the communication and interacting

with the sensing and acting devices, while the RESTful web services keep

forwarding the requests sent from the Arduino.

2. They are deployed over heterogeneous run-time environments. Specif-

ically, while an Arduino script is executed on a computing-resource con-460

17

strained device without an operating system, the Back-End application

and its web services are deployed on the cloud.

3. They involve multiple devices: prototyping this system requires to man-

age the available devices, and for each one of them, con�gure the

proper run-time environment, and deploy the executable �les on it.465

5. IoT Notebook Design

Based on the characteristics speci�ed in Section 4.2 and in the literature

(see Section 3), this section presents the concept of an IoT-tailored notebook

(hereinafter, referred to as IoT notebook) as a dedicated tool to support IoT

systems prototyping. We �rst list the set of features that an IoT notebook470

should o�er (Section 5.1). Then, we introduce our IoT notebook proposal from

two perspectives: �rst, conceptually, outlining which concepts from the identi-

�ed features should be incorporated into the currently available computational

notebooks (Section 5.2); and lastly, technically, describing the architecture that

supports the implementation of the IoT notebook (Section 5.3).475

5.1. Features of an IoT notebook

We identi�ed a set of 6 features that emerge either from the previously

identi�ed characteristics (FT-1 through FT-3) or from the literature (FT-4

through FT-6). Features extracted from the literature concern the presentation

of the notebook documents, thus aiming at making notebook documents more480

understandable and consistent with the structure of IoT systems. These six

features are summarized in Table 1.

In particular, for what concerns the technical characterstics of IoT systems

prototyping:

� FT-1: Various code fragments within the code cells might be able485

to remain running in background simultaneously, without block-

ing the execution of other code cells (as occurs in the currently available

computational notebooks).

18

� FT-2: Additionally, in connection with the previous feature, the notebook

should be able to detect and identify the devices automatically, in490

a plug and play manner, once they are connected, physically or over a

network, to the terminal where the notebook is running.

� FT-3: In the context of IoT prototyping, software con�guration steps such

as the installation of packages, the setup of a given device or the de�nition

of the imported libraries are executed before the software programming495

steps that concern the development of the system's business logic. Ac-

cordingly, the IoT notebook must allow Identifying the con�guration

steps from the development ones. Besides clearly di�erentiating the

nature of these steps, it would provide consistency to the notebooks.

Instead, the literature informed the following three features:500

� FT-4: Since IoT systems are composed of several devices, back-end, and

end-user services and applications, they require a broad spectrum of de-

sign and development skills. They span across various development and

execution environments [33, 3, 2]. Therefore, to adequately structure and

support the heterogeneity of IoT systems, the IoT notebook should en-505

able the grouping of various notebook documents, depending on

the architectural element to which they belong. For instance, to clearly

de�ne and represent such architectural elements, a group of notebook doc-

uments concerning the setup and development of an Arduino should be

categorized as sensing devices documents. In contrast, the group of doc-510

uments regarding the setup and development of the Flask RESTful web

server should be categorized as cloud service documents.

� FT-5: As mentioned before, while current computational notebooks present

the cells in a linear top-bottom narrative, a user may choose to execute

the cells in a non-linear, arbitrary order [12]. This feature can be useful515

in the �eld of data science when checking if changes to a prior analytical

step impact later computations [9]. However, hidden states, out-of-order

19

cells, hardcoded paths, and other bad practices also prevent the reproduc-

tion of notebooks [12]. Furthermore, if cells appearing at the beginning

of notebooks depend on cells that appear later, it would cause several is-520

sues to users that try to execute them in the default order [34]. On the

contrary, managing the dependencies of notebooks and guaranteeing the

linear execution order could improve the reproducibility rate [12].

When prototyping IoT systems, several imports may be required to link

external dependencies. Unlike the iterative nature of data analysis, the525

IoT development process tends to be incremental. The execution of the

initial steps must satisfy the conditions that are required to guarantee the

successful completion of the later steps. Consequently, the IoT notebook

must enable the de�nition of execution order constraints among

the cells within a document, if needed.530

� FT-6: Notebooks evolve and grow and they often become di�cult to

navigate or understand, discouraging sharing and reuse [17]. Since the

prototyping of IoT systems might comprise large fragments of code in

speci�c architectural components, an IoT notebook should allow this code

to be split across various cells, so that small pieces or even single lines535

of code can be accurately documented while maintaining their execution

as a single block. This feature would enable the elaboration of accurate

and clear narratives, even in the presence of large fragments of code.

5.2. IoT notebook Conceptual Model

Figure 2 depicts the conceptual model of the IoT notebook. Concerning the540

concepts involved in the Jupyter notebook2, we introduce the concepts of Archi-

tectural element. It enables the classi�cation of Notebook documents depending

on whether they belong to the devices, gateways, cloud services, or applications.

2Given its wide adoption and open standards we take it as a reference upon which to build

our proposal.

20

Table 1: IoT notebook features

ID Features

FT-1 Keep executing code cells simultaneously

FT-2 Detect and identify the devices

FT-3 Identify con�guration and business logic steps

FT-4 Group several notebook documents

FT-5 Enable the de�nition of execution order constraints

FT-6 Split code across various cells

As will be described in detail in Subsection 7.2, in the context of the con-

ceptual model illustrated in Figure 2, the IoT notebook can be composed of545

various Notebook documents, each one of which belongs to a given Architectural

element (among devices, gateways, cloud services, or applications). In this man-

ner, a Notebook document might contain, for instance, the steps to complete the

implementation and deployment of an Arduino application. In that case, the

Notebook document belongs to the devices' Architectural element, and its asso-550

ciated Kernel would be the one that supports the interaction with the Arduino

board. Similarly, another Notebook document might concern implementing and

deploying a Python Back-end application. In this case, it would belong to the

applications Architectural element and be associated with a Python Kernel.

Figure 2: IoT notebook Conceptual Model

21

5.3. IoT notebook Architecture555

As stated before, we studied and inspired our architecture from the archi-

tecture of Jupyter. Figure 3 depicts our proposed architecture, the main idea

behind it is to integrate the components of a computational notebook with the

concept of IoT nodes, that aim at representing and supporting the architectural

elements that characterize IoT systems [3]. To that end, we structured our560

architecture around �ve blocks, listed below.

«device»

Gateway
«device»

Sensing
devices

«file»
Notebook document

«application»

Cloud
service

IoT nodes

 «execution environment»
Virtualized container

«component»

IoT notebook

 «execution environment»
Virtualized container

«component»

Kernel

ZeroMQ (JSON messages)

«device»

Acting
devices

 «execution environment»
Browser

«component»

Notebook
front-end

HTTP &
WebSockets

reads/writes

Figure 3: IoT notebook Architecture

Notebook documents

A Notebook document, technically speaking, consists of a JSON document

containing text, source code, rich media output, and metadata. As shown in

Listing 1, at the highest level, a notebook is a dictionary with a few keys: meta-565

22

data (dict), nbformat (int), nbformat_minor (int), and cells (list). There are

two types of cell types; markdown cells and code cells. The former ones contain

source code in the language of the document's associated kernel, and a list of out-

puts associated with executing that code. They also have an execution_count,

which must be an integer or null. In short, a Notebook document consists of a570

�le with descriptive text cells interleaved with executable code cells and their

corresponding outputs.

Aiming at satisfying our identi�ed features, the following modi�cations (high-

lighted with red text in Listing 1) are proposed over the current Notebook doc-

uments structure:575

� Add the architectural_element �eld (mandatory) to enable the group-

ing of the Notebook documents depending on the architectural element to

which they belong (FT-4). The four possible string values for this �eld

are: devices, gateways, cloud services or applications.

� Include the background_execution �eld (optional and false by default)580

to determine if the given cell must run in background or if the user should

execute it and wait for the output (FT-1). The values that this �eld may

take are true or false.

� Insert the is_prerequisite �eld (optional and false by default) to in-

dicate if the given cell must be executed whenever any other cell in the585

Notebook document is executed (FT-5). The values that this �eld may

take are true or false.

� Include the �eld is_linked_previous_cell on each cell to enable the

splitting of a large code fragment across various cells (FT-6). The values

that this �eld may take are true or false. When the value is true, before590

executing the code in the corresponding cell, the IoT notebook executes

the code in the previous cell. If that cell is also linked to its previous one,

the IoT notebook acts accordingly and executes the code of various linked

cells. In this manner, the code can be split across various cells linked to

23

another by setting this �eld to true.595

� Add the is_library_installation �eld to represent if a given code cell

has to be executed as a command-line instruction. This �eld is necessary

to enable the execution of con�guration steps, where libraries or modules

have to be installed, before proceeding with the business logic steps (FT-

3). The values that this �eld may take are true or false.600

Notebook front-end

The Notebook document is visualized, edited, and executed through the Note-

book front-end, a web application that is accessed by the IoT developers over

a browser (see Figure 7 for an example). Apart from the features that the

Jupyter front-end currently provides, our IoT notebook front-end should in-605

clude new user interface elements aimed at: enabling users to edit and visualize

the new �elds of the Notebook document previously described; and displaying

the available devices identi�ed by the IoT-tailored kernels, enabling the users

to determine in which device they execute a given code cell (FT-2).

IoT notebook610

Our proposed architecture follows a client-server pattern [35] in which the

notebook back-end is deployed remotely in the server execution environment.

As shown in Figure 3, the IoT notebook component exchanges messages with

the notebook front-end. Besides satisfying the presentation client requests, the

function of the IoT notebook component is to receive the code execution requests615

and forward them to the corresponding kernel according to the programming

language of the given cell.

Kernel

In the proposed IoT notebook architecture, our IoT-tailored kernel is re-

quired to support the detection from the IoT notebook of the available sensing620

and acting devices on which the code cells may be executed (FT-2). The IoT-

24

{

"metadata ": {

"kernel_info ": {

"name": "the name of the kernel"

},

"language_info ": {

"name": "the programming language of the kernel",

"version ": "the version of the language",

"codemirror_mode ": "the name of the codemirror mode to use [optional]"

},

"architectural_element": "devices , gateways , cloud services or

applications"

},

"nbformat ": 4,

"nbformat_minor ": 0,

"cells": [

{

"cell_type ": "code",

"execution_count ": 1,

"metadata ": {

"background_execution": true or false ,

"is_prerequisite": true or false ,

"is_linked_previous_cell": true or false ,

"is_library_installation": true or false

},

"source ": "[some multi -line code]",

"outputs ": [

{}

]

}

]

}

Listing 1: Notebook document JSON top structure

25

tailored kernel is also required to read and execute accordingly the new �elds

added to the Notebook documents.

IoT nodes

IoT nodes correspond to three of the four architectural elements that we have625

previously mentioned (cloud services, gateways, sensing and acting devices).

6. Implementation

In this section, we describe the implementation of the IoT notebook features

reported in Section 5.1. To do so, we organized the presentation around each

feature and upon the architecture previously outlined.630

FT-1: Keep executing the code cells simultaneously

The adopted strategy to implement this functionality was to rely on the

lib.backgroundjobs IPython module that manages background (threaded)

jobs for each execution. In this way, a new job can be created for each code

cell so that the same kernel can run multiple code cells simultaneously, and the635

other cells can be run, if needed, without waiting for the other cells' execution

to end.

FT-2: Detect and identify the devices

The communication between the IoT notebook component and the IoT nodes

requires the implementation of custom Kernels, able to support the execution640

of the code cells, whether in Cloud services, Gateway devices, or Sensing and

Acting devices. In this version of the IoT notebook, we implemented a custom

IoT-tailored kernel to enable the communication of the IoT notebook compo-

nent with an Arduino single-board microcontroller (called Kernelino). Other

than supporting the execution of the code cells in the single-board microcon-645

troller, Kernelino allows the detection of the devices physically connected to the

computer where the IoT notebook executes.

26

The development of Kernelino required to integrate the messaging proto-

cols of Jupyter with the Arduino command-line interface [36]. However, since

the messaging protocols are complex, writing a new kernel from scratch is not650

straightforward [37]. Thereby, we used an interface provided by Jupyter to wrap

kernel languages in Python. We subclassed ipykernel.kernelbase.Kernel

and implemented the methods and attributes that forward the code from the

IoT notebook to the Arduino command-line interface and retrieve the corre-

sponding response [38]. In short, the interface provided by Jupyter handles all655

the ZeroMQ (a high-performance asynchronous messaging library [39]) sockets

and communication mechanisms, making sure that the messages are correctly

created and parsed for each type of request between the IoT notebook compo-

nent and the Kernelino. Additionally, wrapper kernels can implement optional

methods, notably for code completion and code inspection.660

As illustrated in Figure 4, the IoT notebook allows users to launch an Ar-

duino notebook document. That document runs all the code cells (written in

the Arduino programming language) directly from the notebook into the board

and retrieves their corresponding output. Such integration is possible thanks

to the Kernelino. It manages the execution of code cells into the board that is665

physically connected to the computer where the notebook is running.

Regarding the graphical user interface, we added a button in the right upper

corner of the document to allow users to choose which device to run the code

cells of such document. This selection is mandatory, and all the run buttons in

the code cells remain disabled until the user selects the device and the custom-670

tailored kernel achieves the connection. When successfully connected, the label

changes from �Board� to the board's model name (�Arduino MKR WiFi 1010�

in this case), as shown in Figure 5.

FT-3: Di�erentiate con�guration and business logic steps

As shown in Figure 6b, a checkbox was added below each cell with the label675

�Is library�. When it is checked, the code cell executes as a command-line in-

struction. For instance, in the screenshot in the Figure, the code arduino-cli

27

Figure 4: IoT notebook launcher

Figure 5: IoT notebook menu to choose the Arduino board

lib install MQTT is run as a command-line instruction. In this manner, users

can include and describe, within the notebook document, the libraries or mod-

ules that must be installed before implementing the business logic steps. Fur-680

thermore, since the con�guration steps should be executed individually, the

�Is prerequisite,� and the �Execute together with the previous cell� (FT-5 and

28

(a) Implementation of the is_prerequisite feature in the IoT notebook front-end

Figure 6: IoT notebook screenshots regarding the prerequisites and the con�guration steps

29

(b) Implementation of the con�guration steps in the IoT notebook front-end

Figure 6: IoT notebook screenshots regarding the prerequisites and the con�guration steps

30

FT-6, that are described below) options are automatically disabled when the

�Is library� option is checked. Additionally, to persist the changes and represent

the fact that a cell represents a con�guration step, the notebook document is685

modi�ed by adding a is_library_installation �eld in the cell's metadata

and setting it to true. Naturally, to integrate this feature, the default behavior

of the Jupyter notebook also was modi�ed so that when a cell is marked as

is_library_installation, the kernel executes it as a command-line instruc-

tion.690

FT-4: Group several notebook documents

The notebook documents are grouped according to the architectural element

they represent in the prototyped IoT system. In this manner, as described in

the previous section, the mandatory architectural_element �eld was added to

the notebook documents, and it can take four possible values: devices, gateway,695

cloud service, or application. In the notebook front-end, we implemented two

elements. On the one hand, as shown in Figure 7, we added a selection box

in the right upper corner of the document (next to the button to choose the

device). On the other hand, as also shown in Figure 7, we added a tab panel in

the left sidebar.700

FT-5: Enable the de�nition of execution order constraints

The development of this feature involves the Notebook document, the Note-

book front-end, and the IoT notebook component.

The Notebook document, as described in the previous section (Listing 1),

the �eld is_prerequisite was introduced to indicate if the current cell should705

be executed before all the subsequent cells. This way, every time a code cell is

to be executed, the IoT notebook component performs a search from the top of

the document until the given cell, looking for cells marked as is_prerequisite

that have not yet been executed, and executes them �rst.

Regarding the Notebook front-end, as can be seen in Figure 6, we developed710

a custom plugin that places a checkbox below each cell so that the users can

31

Figure 7: IoT notebook screenshot showing notebook documents grouped by architectural

element

indicate if this cell has to be compulsorily executed before the cells further

down in the Notebook document. The value �eld is_prerequisite is assigned

according to whether the checkbox was clicked or not. Additionally, when the

user checks the cell as a prerequisite, the run button disappears as it is not a715

piece of code intended to run independently.

FT-6: Split the code across various cells

Similar to the previous feature, splitting the code across various cells in-

volved changes on the Notebook document, the Notebook front-end, and the

IoT notebook component. Indeed, the implementation of this feature on the720

Notebook document and the Notebook front-end was almost the same. As

described in the previous feature, a new �eld was added to the Notebook doc-

ument to represent whether the last cell must be executed before the current

cell is_linked_previous_cell. In the notebook front-end, the custom plugin

that we developed also placed a checkbox below each cell to indicate if this725

cell has to be executed after its previous cell. In Figure 7, it can be observed

how, by checking the �Execute together with the previous cell� checkbox, the

32

Figure 8: Split the code across various cells through the is_linked_previous_cell property

cell containing the function main has to be executed along with the cells in

which the invoked functions are de�ned. In the particular example illustrated

in this Figure, at least three code cells will be executed when the user clicks the730

run button in the last cell. In Figure 7, the markdown cells with the textual

description of the code cells were removed during the screenshot to facilitate its

visualization.

33

7. Exploratory User Study

To understand the usability and usefulness of the IoT notebook, we con-735

ducted a �rst-use controlled lab study composed of two sessions. In the �rst

session, participants were given an implemented IoT project in the form of a

set of notebook documents. They were asked to explore the documents, get

familiar with the IoT notebook features, and execute the project. In the second

session, participants were given an IoT project description and were asked to740

implement it using the IoT notebook.

In both cases, the IoT projects comprised a device, a gateway, and a back-

end component. Accurately, the device corresponded to an Arduino board that

interacts through MQTT messages; the gateway corresponded to an MQTT

client that, once it received a message coming from the Arduino, invoked a745

back-end function; the back-end, for its part, corresponded to a RESTful API.

Coincidentally, both projects closely recall the use case described before, even

if with clear di�erences.

Each study session was time-boxed to one hour. At the end of the second

session, participants were asked to complete a brief post-session questionnaire on750

the perceived usability of the IoT notebook and their �rst impressions of using it.

This exploratory study aims to understand how usable the IoT notebook is for

novices and how useful they �nd the added features. We also wanted to assess if

a rich surrounding context in documentation interleaved with executable code

increases understanding during the prototyping process.755

7.1. Participants and treatments

Our participants comprised thirteen employees (10 male, 3 female, ages 25-

30, mean 27, SD 1.62) of a well-known large IT Italian company participating

in an IoT and physical computing course. As for the education of participants,

6 held a Bachelor's Degree (B) and 7 a Master's degree (M). Their background760

ranged across Computer Engineering, Management Engineering, Cinema and

Media Engineering, and Aerospace Engineering. Finally, as illustrated in Ta-

ble 2, no participant had signi�cant experience working with computational

34

notebooks, and just one of them was familiar with IoT systems at an architec-

tural level.765

Moreover, the participants were a class of newly-hired young engineers re-

cruited by an open call with the collaboration of the industry and the regional

authorities in the context of a regional program for supporting high-tech sectors

that invest in new skills and personnel. Such students were selected through

the public call, and for their �rst semester they were involved for 50% of their770

time in a training path, while for the rest of the time they were working their

regular jobs inside di�erent groups at the company. Both training and work

were conducted from home during most of this period due to the pandemic con-

ditions. The training path, in particular, covered a wide range of topics, such

as Computer Networks, Product Lifecycle Management, Legislation, Economy,775

Databases and Data Analysis, and Sensors and IoT.

The user study was conducted as the last class in the `Sensors and IoT' train-

ing module that was 28 hours long. In that module, they were introduced to

the main characteristics and challenges of IoT. Besides describing the enabling

technologies and protocols used in the IoT, the module outlined IoT-based sys-780

tems' potentiality and provided examples in the industry, commerce, and home

automation. The technical topics addressed by the course included IoT systems

architecture and design, Arduino, MQTT, and REST APIs. Each lesson was

four hours long, and most of the time, the �rst half was more theoretical. In the

second half, the participants could apply what they had just learned by complet-785

ing a practical exercise (individually or in groups), with commercially-available

tools.

Fortunately, towards the end of the `Sensors and IoT' training module, the

pandemic situation in Italy was improving, and we could yield the last 8 hours

in presence, including this user study.790

7.2. Study procedure

Before the �rst session, we obtained participants' consent, gathered their

demographic and previous experience information, and provided a walk-through

35

Table 2: Participants self-rated previous experience (in years)

ID Age Background P
r
o
g
r
a
m
m
in
g
(i
n
g
e
n
e
r
a
l)

Io
T
s
y
s
te
m
s
a
r
c
h
it
e
c
tu
r
e

P
h
y
s
ic
a
l
c
o
m
p
u
ti
n
g

C
o
m
p
u
ta
ti
o
n
a
l
n
o
te
b
o
o
k
s

M
Q
T
T

P
y
th
o
n

H
T
M
L
/
C
S
S

J
a
v
a
S
c
r
ip
t

J
a
v
a

C

P-1 27
Management

Engineering (B)
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

P-2 29
Management

Engineering (M)
1-3 < 1 < 1 < 1 < 1 1-3 < 1 < 1 < 1 < 1

P-3 30
Aerospace

Engineering (B)
1-3 < 1 < 1 < 1 < 1 1-3 < 1 < 1 < 1 1-3

P-4 25
Management

Engineering (M)
1-3 < 1 < 1 < 1 < 1 1-3 < 1 < 1 < 1 1-3

P-5 27 Physics (B) 1-3 < 1 < 1 < 1 < 1 1-3 < 1 < 1 < 1 1-3

P-6 26
Biomedical

Engineering (M)
4-5 1-3 4-5 1-3 1-3 4-5 4-5 4-5 < 1 4-5

P-7 25
Management

Engineering (M)
4-5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1-3 1-3

P-8 29
Aerospace

Engineering (M)
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1-3 < 1

P-9 26 Bioinformatics (M) 1-3 < 1 < 1 1-3 < 1 1-3 1-3 < 1 < 1 1-3

P-10 26
Management

Engineering (B)
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

P-11 28
Mechatronic

Engineering (M)
1-3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1-3

P-12 25
Computer

Engineering (B)
1-3 < 1 < 1 < 1 < 1 < 1 1-3 < 1 1-3 < 1

P-13 28
Aerospace

Engineering (B)
1-3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1-3

36

of the IoT notebook and the study protocol, illustrating its main goals and

motivations through a PowerPoint presentation. In the �rst session, we gave the795

participants the computational notebook documents corresponding to Project

1.

Project 1: we implemented an IoT project that periodically (every 5 sec-

onds) gathers and evaluates the reading from a sound sensor. Based on the

measures, a given number of light bulbs are turned on. In this manner, if the800

sound intensity is low, just one light bulb is turned on; on the contrary, three

bulbs are turned on if the intensity is high. As shown in Figure 9 (highlighted

in blue), our implementation has two notebook documents. The �rst document

outlines the implementation and deployment process of an Arduino application

that:805

� gathers the readings from a sensor physically connected to the board,

� connects and subscribes to an MQTT topic, and

� sends an MQTT message with the last reading value.

Figure 9: Project 1 architecture (with the implemented notebook documents indicated)

The second notebook document has the implementation and deployment

process of a Python Back-end application that:810

� connects and subscribes to the same MQTT topic as the Arduino, and

� interacts with the Phillips Hue API to turn on the light bulbs.

37

In the second session, we asked participants to implement Project 2 using the

IoT notebook platform we provided. They were instructed to work individually,

but we did not ban them from collaborating.815

Project 2: we asked participants to implement an IoT project that depend-

ing on whether (i) there are people in a room and (ii) it is raining outside, turns

on a light bulb. This implementation requires an occupation sensor commu-

nicating via MQTT, and the information about the weather must be gathered

from an API. They are free to create the notebook documents they deem nec-820

essary, and naturally, they can take inspiration from Project 1.

In both sessions, we wrote down the questions posed by the participants.

After the study tasks, participants were asked to complete a post-session ques-

tionnaire. The questionnaire included 14 questions with Likert-scale ratings of

the tool's perceived usability and utility in solving the assigned task (Table 3).825

We used questionnaire responses as the basis for our post-study debrie�ng inter-

view, conducted as a round table. In particular, by a video beam, we projected

the anonymous answers for each questionnaire item as frequency graph bars

encouraging the participants to provide qualitative justi�cations and speci�c

anecdotes to supplement their scores. In this way, we aimed to promote the830

participants' discussion by sharing and confronting their perceptions and expe-

riences.

Table 3: Summary of post-study questionnaire responses averaged over 13 subjects and sorted

by mean agreement level on a 5-point Likert scale from Strongly Disagree (1) to Strongly Agree

(5).

ID Questionnaire Item µ σ

0 1 2 3 4 5 6

IT-1 The documentation interleaved with

lines of code helped me to better un-

derstand the implementation strategy

and the reasoning behind the code

4.38 0.74

IT-2 I would use the IoT notebook as a

means to prototype an IoT system

4.31 0.91

38

Table 3: Summary of post-study questionnaire responses averaged over 13 subjects and sorted

by mean agreement level on a 5-point Likert scale from Strongly Disagree (1) to Strongly Agree

(5). (continued)

ID Questionnaire Item µ σ

0 1 2 3 4 5 6

IT-3 I would use the IoT notebook as a

means to document my prototyping

process

4.08 0.73

IT-4 I prefer the documentation in the IoT

notebook than the documentation in

the code

3.92 1.07

IT-5 It was easy to understand how did the

"Is prerequisite" and the "Execute to-

gether with the previous cell" options

work

3.92 1.07

IT-6 Working through the computational

notebook increased my con�dence that

I was doing each step correctly

3.85 1.10

IT-7 The use of the IoT notebook encour-

aged me to document my own proto-

typing process

3.85 0.77

IT-8 The grouping of the notebook docu-

ments in the left sidebar helped me to

better understand the architecture of

the IoT prototype

3.77 0.80

IT-9 The de�nition of prerrequisite cells

helped me to avoid missing con�gura-

tion requirements

3.69 1.14

IT-10 The use of the IoT notebook, other

than following instructions, helped me

to document my own prototyping pro-

cess

3.69 0.91

IT-11 The use of the IoT notebook helped

me to distinguish the con�guration and

implementation steps

3.62 1.00

IT-12 It was easy to execute the code 3.46 1.22

IT-13 The use of the IoT notebook helped me

gain a broader perspective of the inter-

action among diverse components

3.38 0.84

39

Table 3: Summary of post-study questionnaire responses averaged over 13 subjects and sorted

by mean agreement level on a 5-point Likert scale from Strongly Disagree (1) to Strongly Agree

(5). (continued)

ID Questionnaire Item µ σ

0 1 2 3 4 5 6

IT-14 Working throught the computational

notebook was frustrating

1.62 0.74

7.3. Results

The most notorious observation was that the participants highly appreciated

the approach of the computational notebooks, speci�cally having documentation835

interleaved with lines of code (�rst question, IT-1, Table 3). They perceived

that it e�ectively helped them better understand the implementation strategy

and the reasoning behind the code. Especially if considering that, besides tex-

tual explanations written in the notebook, the documentation might include

links to other websites, YouTube videos, and images. Furthermore, in some840

cases, the documentation concerned the expected outputs so that after running

the cell, the user had the chance to verify if the execution was successful. This

outcome is consistent with the fact that participants prefer the documentation

in the IoT notebook to the documentation in the code (IT-4). As one of them

commented during the post-study debrie�ng interview:845

�You understand better the cells of code because the initial comment

explains well what the lines of code should do, and seeing later the

execution makes it understand even better.�

Nevertheless, since participants were conscious that the consistency between

the code and the documentation and the completeness of the textual descrip-850

tions are fundamental to support non-expert IoT developers e�ectively, they

suggested that:

�It would be nice to do like GitHub, and every time you edit the code,

a pop-up comes up related to the text below and gives you the option

40

to edit the text (like doing a commit). In this manner, the tool would855

induce the user to update the textual descriptions constantly.�

Additionally, participants agreed in the questionnaire that they would use

the IoT notebook to prototype and document an IoT system (IT-2 and IT-3):

�With a closed environment like this, it is much faster to prototype

something. You don't have to worry about copying and pasting things860

from the web or from one development environment to another.�

However, concerning the documentation, there was also who expressed that:

�I'd rather document at the end. If it were some development from

scratch, I would do it with an IDE, and in case someone not very

technical wants to visualize steps, I would do a notebook.�865

From this discussion emerged that the notebook should not compete with

popular IDEs. Instead, a few participants envisioned the possibility to im-

plement a plugin that would enable the integration of an IDE with the IoT

notebook. In particular, they envisioned that within an IDE (such as Visual

Studio Code), the developer should have the opportunity to select a piece of870

code, right-click over it and select from a context menu an option to create a

code cell in the notebook, automatically. Additionally, after adding the code

cell, the plugin would open by default a text editor to enable the developer to

write the corresponding textual description. Naturally, that description would

be included in the notebook as a markup cell.875

Similarly, regarding IT-4, where most of the participants agreed that they

preferred the documentation in the IoT notebook rather than the documentation

in the code, the same improvement suggestion emerged. The participants who

choose the documentation in the code suggested enabling, through a plug-in, to

automatically export/transfer the comments on the code �les.880

Most of the participants understood how did the �Is prerequisite� and the

�Execute together with the previous cell� options work (IT-5) and how do they

41

di�erentiate. There were no additional comments or questions regarding such

questionnaire item. Regarding IT-6 and IT-7, all participants agreed in general

terms that the IoT notebook increased their con�dence that they were doing885

each step correctly and that the use of notebooks encouraged them to document

their prototyping process. Indeed, while working on the second project, we

observed that many participants were structuring their notebook documents by

adding titles, subtitles, and descriptions other than the code cells.

Due to a technical inconvenience with the browser where the participants890

opened the IoT notebook, the button to run the code cells when working with

the Kernelino got disabled. For this reason, participants disagreed on the ques-

tionnaire with the IT-12 (Executing the code was easy). Nevertheless, during

the debrie�ng interview, they were asked if, apart from that particular inconve-

nience, the running button and the mechanics of executing the cell were clear,895

and all of them answered positively. Indeed, they did not have any inconvenience

running the cells in the other notebook documents. However, a participant sug-

gested that the run button should be enlarged because it was not evident to

him how to run the code cell, at the beginning.

When asked if the use of the IoT notebook as frustrating (IT-14), partic-900

ipants disagreed: they found it helpful and they understood the implemented

features. Concerning the features provided by the IoT notebook, the partic-

ipants did not agree much that using the IoT notebook helped them gain a

broader perspective of the interaction among diverse components (IT-13). This

disagreement is also connected with question IT-8 since the left sidebar was the905

graphical interface component that we introduced to support the visualization

of the diverse architectural elements present in the IoT system prototype. In the

debrie�ng interview, two observations emerged. On the one hand, there is the

fact that the projects used during the study were not big enough to appreciate

the utility of this feature:910

�In this particular project, it was not so useful since there were only

two notebooks. Anyway, I understood the functionality.�

42

On the other hand, instead of representing the architectural elements into a

sidebar, the participants agreed that they would prefer a more graphical repre-

sentation. They suggested that:915

�An architectural graphical view of the system was somehow miss-

ing, to avoid reading the text and have an impact view right away.

It would be nice to integrate a special kind of notebook where the

components of the IoT system prototype are graphically represented

and clicked to open the corresponding notebook document where each920

one is implemented.�

In summary, the answers to the questionnaire items and the discussion in

the post-study debrie�ng interview enabled us to ascertain that the partici-

pants perceived the IoT notebook as a helpful and usable tool. It guided them

well through the development process of a prototype IoT system. They ac-925

knowledged that they would use this approach, particularly for learning and

teaching purposes, when getting started with IoT development. Additionally,

two main improvement suggestions emerged from the round table. Firstly, to

change the visualization of the architectural elements by introducing a special

kind of notebook in which the architecture of the prototype IoT system is dis-930

played graphically (as a diagram) to better provide a broader perspective of the

interaction among diverse components and enhance the understanding of the

architecture. Secondly, to implement a plug-in aimed at achieving a seamless

integration with currently available IDEs. Instead of using the IoT notebook

as an IDE, the participants suggested developing integration with a traditional935

IDE and giving the option to the users to export and document their code �les

to a literate computing scheme. In this regard, users seem to lean towards de-

veloping prototypes from scratch in their preferred IDE and then sharing their

process through a computational notebook. This way of working is consistent

with notebooks weaknesses that have been identi�ed in the literature [29, 16],940

mainly associated with poor code management a�ordances. Speci�cally, such

limitations concern lack of code assistance; the impossibility to explore the API

43

and functions of external libraries; the little-to-no support for �nding, remov-

ing, updating, or identifying deprecated packages; the di�culty in debugging

due to out-of-order execution and the consequent impossibility to add break-945

points to follow the code �ow. Consequently, if the integration suggested by

the participants is achieved, developers would bene�t from all the code manage-

ment features that traditional IDEs provide. Furthermore, the linking between

cells and the order constrained could be managed by the plug-in that, at this

point, would know how the complete code �le looks like and would automatically950

generate such constraints.

Further, at the end of the �rst session, we collected all the notebook doc-

uments that the participants implemented. In total, we collected 17 notebook

documents. Ten of them corresponded to the Arduino application. It gathers

readings from the occupation sensor, connects to an MQTT topic, and sends a955

message marking if there are people in the room. Seven of them corresponded

to the Python Back-end application. It subscribes to the same MQTT topic

as the Arduino application, determines if it is raining by invoking a weather

API, and, based on the data sent by the Arduino application, interacts with

the Philips Hue API to turn on the application. Four participants were able960

to work on both documents. Naturally, all the participants tended to structure

their implementation according to the notebook documents we gave them in

the �rst session. In this sense, for time constraint reasons, they were allowed

to start their development not from scratch but upon these notebooks. Simi-

larly, the participants were indicated which weather API they could use. This965

weather API was chosen by us because, instead of using complex authentication

protocols such as OAuth, it just required a key that the users could get after

registering.

Table 4 summarizes the characteristics of the collected notebook documents.

As the most outstanding observations, the participants were receptive to doc-970

umenting the code cells. However, just adding a header over a set of cells

was enough for some of them (5 notebook documents). On the contrary, some

other participants tried to add a descriptive text per code cell (7 notebook docu-

44

Table 4: Participant's notebook documents characteristics

Characteristics Notebook documents (out of 17)

Textual explanations 12

Just headers 5

Headers and descriptive texts 7

Architectural elements 14

Compilable 13

Functional 8

is_prerequisite 12

is_linked_previous_cell 12

background_execution 8

is_library_installation 10

ments). Almost all the notebooks had speci�ed the IoT architectural element to

which they belong (14 notebook documents). When trying to execute them, 13975

notebook documents were compilable. Three notebook documents had syntax

errors that did not enable their execution. Since notebooks do not provide the

same support as a traditional IDE, participants were probably not conscious

of these errors. The other notebook document was not complete. Eight out

of the seventeen notebook documents were correctly implemented. The back-980

ground_execution was less used among the new �elds we introduced in the IoT

notebook. From our point of view, we consider it is due to its low visibility and

the fact that it might be confused among the other options that we also repre-

sented graphically with a checkbox under the code cell. Indeed, this hypothesis

is consistent with the comments that emerged during the round table described985

above.

7.4. Study Limitations and Future Work

The main limitation of our study is that it was exploratory in nature, so we

cannot make any rigorous claims about the speci�c e�ects of the IoT notebook

45

on the IoT systems prototyping process. However, this study represented a �rst990

assessment of the utility and usability of a set of features that we retained neces-

sary for the IoT notebook. Consequently, more than conducting an exhaustive

large-scale study, the goal was to get feedback from non-expert developers.

In the same vein, time constraints forced us to design exercises with a dif-

�culty level to be realistically implemented in three hours. This limitation led995

us to propose projects involving just a few computational notebooks. To some

extent, it prevented the participants from �nding the utility of features like

grouping the documents. Indeed one of the participants stated that:

�Short time to get familiar with the tool, but I would like to use it

again in the future.�1000

Consequently, further validation with a more open-ended use of the tool

and fewer time restrictions would be necessary to dive into aspects that could

provide new insights. In particular, a workshop in which participants are asked

to prototype an IoT system of their ideation would be ideal.

Finally, we consider that the round table format that we used in the debrief-1005

ing interview was very enriching since the participants had the chance to discuss

among themselves their impressions, and most importantly, to �nd agreements

on how the improvement suggestions for the IoT notebook. However, that for-

mat might also � even if their attitude did not give us that impression � inhibit

the participation.1010

8. Conclusion

In this work, we propose a set of features that an IoT-tailored literate com-

puting approach should satisfy to support the prototyping of IoT systems. We

implemented a �rst version of what we called IoT notebook integrating such

features, and we validated its usefulness and usability by conducting an ex-1015

ploratory usability study among non-expert developers. The study enabled us

to ascertain that the participants perceived the IoT notebook as helpful and

46

usable, by guiding them through the development process of a prototype IoT

system. They acknowledged that they would use this approach, particularly for

learning and teaching purposes, when getting started with IoT development.1020

However, since the IoT landscape is vast and involves an enormous number

of artifacts, platforms, devices, applications, protocols, and domains, we recall

that our proposal frames in a speci�c context: prototyping relatively simple IoT

systems by non-expert developers. In this sense, by �IoT systems�, we consider

systems composed of the four interconnected architectural elements listed by1025

Taivalsaari et al. [3] (i.e., cloud services, applications, gateways, and devices).

Similarly, by �simple�, we refer to focusing on the data exchanged among the

di�erent components. Therefore, the prototype IoT systems users can develop

using the IoT notebook use contextual data to trigger some functionality. Nat-

urally, our proposal does not support prototyping all kinds of IoT applications1030

(supposing that such delimitation could be done), and the IoT notebook does

not represent a viable deployment platform. Indeed, we expect non-expert pro-

grammers to use the IoT notebook at an early development stage to: understand

the steps they must follow to con�gure and implement a prototype; verify how

the various components might interact (in what concerns data exchange); doc-1035

ument and share their prototyping. Finally, a more open-ended use of the tool

is required to evaluate our approach's suitability further.

References

[1] F. Corno, L. De Russis, J. P. Sáenz, Easing IoT development for novice pro-

grammers through code recipes, in: Proceedings of the 40th International1040

Conference on Software Engineering: Software Engineering Education and

Training, ICSE-SEET '18, ACM, New York, NY, USA, 2018, pp. 13�16.

doi:10.1145/3183377.3183385.

URL http://doi.acm.org/10.1145/3183377.3183385

[2] A. Taivalsaari, T. Mikkonen, On the development of iot systems, in:1045

47

http://doi.acm.org/10.1145/3183377.3183385
http://doi.acm.org/10.1145/3183377.3183385
http://doi.acm.org/10.1145/3183377.3183385
https://doi.org/10.1145/3183377.3183385
http://doi.acm.org/10.1145/3183377.3183385

2018 Third International Conference on Fog and Mobile Edge Computing

(FMEC), 2018, pp. 13�19. doi:10.1109/FMEC.2018.8364039.

[3] A. Taivalsaari, T. Mikkonen, A roadmap to the programmable world:

Software challenges in the iot era, IEEE Software 34 (1) (2017) 72�80.

doi:10.1109/MS.2017.26.1050

[4] P. Selonen, A. Taivalsaari, Kiuas � iot cloud environment for enabling the

programmable world, in: 2016 42th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2016, pp. 250�257. doi:

10.1109/SEAA.2016.10.

[5] F. Corno, L. De Russis, J. P. Sáenz, On the challenges novice programmers1055

experience in developing IoT systems: A survey, Journal of Systems and

Software 157 (2019) 110389. doi:10.1016/j.jss.2019.07.101.

[6] F. Corno, L. De Russis, J. P. Sáenz, Pain points for novice programmers of

ambient intelligence systems: An exploratory study, in: 2017 IEEE 41st

Annual Computer Software and Applications Conference (COMPSAC),1060

Vol. 1, 2017, pp. 250�255. doi:10.1109/COMPSAC.2017.186.

[7] S. Oney, J. Brandt, Codelets: Linking interactive documentation and ex-

ample code in the editor, in: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI '12, ACM, New York, NY,

USA, 2012, pp. 2697�2706. doi:10.1145/2207676.2208664.1065

URL http://doi.acm.org/10.1145/2207676.2208664

[8] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Fred-

eric, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Ab-

dalla, C. Willing, J. development team, Jupyter notebooks - a publish-

ing format for reproducible computational work�ows, in: Positioning and1070

Power in Academic Publishing: Players, Agents and Agendas, IOS Press,

2016, pp. 87�90.

URL https://eprints.soton.ac.uk/403913/

48

https://doi.org/10.1109/FMEC.2018.8364039
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1109/SEAA.2016.10
https://doi.org/10.1109/SEAA.2016.10
https://doi.org/10.1109/SEAA.2016.10
https://doi.org/10.1016/j.jss.2019.07.101
https://doi.org/10.1109/COMPSAC.2017.186
http://doi.acm.org/10.1145/2207676.2208664
http://doi.acm.org/10.1145/2207676.2208664
http://doi.acm.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
http://doi.acm.org/10.1145/2207676.2208664
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/

[9] A. Rule, A. Tabard, J. D. Hollan, Exploration and explanation in compu-

tational notebooks, in: Proceedings of the 2018 CHI Conference on Human1075

Factors in Computing Systems, CHI '18, ACM, New York, NY, USA, 2018,

pp. 32:1�32:12. doi:10.1145/3173574.3173606.

URL http://doi.acm.org/10.1145/3173574.3173606

[10] F. Corno, L. De Russis, J. P. Sáenz, Towards computational notebooks for

iot development, in: Extended Abstracts of the 2019 CHI Conference on1080

Human Factors in Computing Systems, CHI EA '19, ACM, New York,

NY, USA, 2019, pp. LBW0154:1�LBW0154:6. doi:10.1145/3290607.

3312963.

URL http://doi.acm.org/10.1145/3290607.3312963

[11] D. E. Knuth, Literate programming, Comput. J. 27 (2) (1984) 97�111.1085

doi:10.1093/comjnl/27.2.97.

URL http://dx.doi.org/10.1093/comjnl/27.2.97

[12] J. F. Pimentel, L. Murta, V. Braganholo, J. Freire, A large-scale study

about quality and reproducibility of jupyter notebooks, in: Proceedings of

the 16th International Conference on Mining Software Repositories, MSR1090

'19, IEEE Press, Piscataway, NJ, USA, 2019, pp. 507�517. doi:10.1109/

MSR.2019.00077.

[13] M. B. Kery, M. Radensky, M. Arya, B. E. John, B. A. Myers, The story

in the notebook: Exploratory data science using a literate programming

tool, in: Proceedings of the 2018 CHI Conference on Human Factors in1095

Computing Systems, CHI '18, ACM, New York, NY, USA, 2018, pp. 174:1�

174:11. doi:10.1145/3173574.3173748.

URL http://doi.acm.org/10.1145/3173574.3173748

[14] A. Ingargiola, 1. What is the Jupyter Notebook? - Jupyter/IPython

Notebook Quick Start Guide 0.1 documentation, https://1100

jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

49

http://doi.acm.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3290607.3312963
http://doi.acm.org/10.1145/3290607.3312963
http://doi.acm.org/10.1145/3290607.3312963
https://doi.org/10.1145/3290607.3312963
https://doi.org/10.1145/3290607.3312963
https://doi.org/10.1145/3290607.3312963
http://doi.acm.org/10.1145/3290607.3312963
http://dx.doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
http://doi.acm.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
http://doi.acm.org/10.1145/3173574.3173748
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel

what_is_jupyter.html#kernel, online; last accessed September 23, 2019

(2019).

[15] M. Borowski, J. Zagermann, C. N. Klokmose, H. Reiterer, R. Rädle, Ex-

ploring the Bene�ts and Barriers of Using Computational Notebooks for1105

Collaborative Programming Assignments, Association for Computing Ma-

chinery, New York, NY, USA, 2020, p. 468�474.

URL https://doi.org/10.1145/3328778.3366887

[16] S. Lau, I. Drosos, J. M. Markel, P. J. Guo, The design space of com-

putational notebooks: An analysis of 60 systems in academia and indus-1110

try, in: 2020 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2020, pp. 1�11. doi:10.1109/VL/HCC50065.2020.

9127201.

[17] A. Rule, I. Drosos, A. Tabard, J. D. Hollan, Aiding collaborative reuse of

computational notebooks with annotated cell folding, Proc. ACM Hum.-1115

Comput. Interact. 2 (CSCW) (2018) 150:1�150:12. doi:10.1145/3274419.

URL http://doi.acm.org/10.1145/3274419

[18] J. F. Pimentel, L. Murta, V. Braganholo, J. Freire, Understanding and

improving the quality and reproducibility of jupyter notebooks, Empirical

Software Engineering 26 (4) (2021) 65.1120

[19] M. Källén, T. Wrigstad, Jupyter notebooks on github: Characteristics and

code clones, The Art, Science, and Engineering of Programming 5 (3) (Feb

2021). doi:10.22152/programming-journal.org/2021/5/15.

URL http://dx.doi.org/10.22152/programming-journal.org/2021/

5/151125

[20] J. Wang, L. Li, A. Zeller, Better code, better sharing: On the need of

analyzing jupyter notebooks, in: Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engineering: New Ideas and Emerging

Results, ICSE-NIER '20, Association for Computing Machinery, New York,

50

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
http://doi.acm.org/10.1145/3274419
http://doi.acm.org/10.1145/3274419
http://doi.acm.org/10.1145/3274419
https://doi.org/10.1145/3274419
http://doi.acm.org/10.1145/3274419
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
https://doi.org/10.22152/programming-journal.org/2021/5/15
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
http://dx.doi.org/10.22152/programming-journal.org/2021/5/15
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724

NY, USA, 2020, p. 53�56. doi:10.1145/3377816.3381724.1130

URL https://doi.org/10.1145/3377816.3381724

[21] M. Beth Kery, B. A. Myers, Exploring exploratory programming, in: 2017

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2017, pp. 25�29. doi:10.1109/VLHCC.2017.8103446.

[22] A. Head, F. Hohman, T. Barik, S. M. Drucker, R. DeLine, Managing messes1135

in computational notebooks, in: Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems, CHI '19, ACM, New York, NY,

USA, 2019, pp. 270:1�270:12. doi:10.1145/3290605.3300500.

URL http://doi.acm.org/10.1145/3290605.3300500

[23] D. Yin, Y. Liu, A. Padmanabhan, J. Terstriep, J. Rush, S. Wang, A1140

cybergis-jupyter framework for geospatial analytics at scale, in: Proceed-

ings of the Practice and Experience in Advanced Research Computing 2017

on Sustainability, Success and Impact, PEARC17, ACM, New York, NY,

USA, 2017, pp. 18:1�18:8. doi:10.1145/3093338.3093378.

URL http://doi.acm.org/10.1145/3093338.30933781145

[24] M. V. Merino, J. Vinju, T. van der Storm, Bacatá: A language para-

metric notebook generator (tool demo), in: Proceedings of the 11th

ACM SIGPLAN International Conference on Software Language Engi-

neering, SLE 2018, ACM, New York, NY, USA, 2018, pp. 210�214.

doi:10.1145/3276604.3276981.1150

URL http://doi.acm.org/10.1145/3276604.3276981

[25] A. Azzarà, D. Alessandrelli, S. Bocchino, M. Petracca, P. Pagano, Pyot, a

macroprogramming framework for the internet of things, in: Proceedings of

the 9th IEEE International Symposium on Industrial Embedded Systems

(SIES 2014), 2014, pp. 96�103. doi:10.1109/SIES.2014.6871193.1155

[26] B. Rubell, Overview. CircuitPython with Jupyter Notebooks.

Adafruit Learning System, https://learn.adafruit.com/

51

https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1109/VLHCC.2017.8103446
http://doi.acm.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3290605.3300500
http://doi.acm.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3093338.3093378
https://doi.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3093338.3093378
http://doi.acm.org/10.1145/3276604.3276981
http://doi.acm.org/10.1145/3276604.3276981
http://doi.acm.org/10.1145/3276604.3276981
https://doi.org/10.1145/3276604.3276981
http://doi.acm.org/10.1145/3276604.3276981
https://doi.org/10.1109/SIES.2014.6871193
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks

circuitpython-with-jupyter-notebooks, online; last accessed Septem-

ber 23, 2019 (2018).

[27] CircuitPython, CircuitPython, https://circuitpython.org/, online;1160

last accessed September 23, 2019 (2019).

[28] F. Perez, B. E. Granger, Ipython: A system for interactive scienti�c

computing, Computing in Science Engineering 9 (3) (2007) 21�29. doi:

10.1109/MCSE.2007.53.

[29] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, T. Barik, What's1165

Wrong with Computational Notebooks? Pain Points, Needs, and De-

sign Opportunities, Association for Computing Machinery, New York, NY,

USA, 2020, p. 1�12.

URL https://doi.org/10.1145/3313831.3376729

[30] M. Verano Merino, J. Vinju, T. van der Storm, Bacatá: Notebooks for dsls,1170

almost for free, The Art, Science, and Engineering of Programming 4 (3)

(Feb 2020). doi:10.22152/programming-journal.org/2020/4/11.

[31] R. Rädle, M. Nouwens, K. Antonsen, J. R. Eagan, C. N. Klokmose, Code-

strates: Literate computing with webstrates, in: Proceedings of the 30th

Annual ACM Symposium on User Interface Software and Technology, UIST1175

'17, Association for Computing Machinery, New York, NY, USA, 2017, p.

715�725. doi:10.1145/3126594.3126642.

URL https://doi.org/10.1145/3126594.3126642

[32] F. Corno, L. De Russis, J. P. Sáenz, How is open source software develop-

ment di�erent in popular iot projects?, IEEE Access 8 (2020) 28337�28348.1180

doi:10.1109/ACCESS.2020.2972364.

[33] X. Larrucea, A. Combelles, J. Favaro, K. Taneja, Software engineering for

the internet of things, IEEE Software 34 (1) (2017) 24�28. doi:10.1109/

MS.2017.28.

52

https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://learn.adafruit.com/circuitpython-with-jupyter-notebooks
https://circuitpython.org/
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.22152/programming-journal.org/2020/4/11
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1109/ACCESS.2020.2972364
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/MS.2017.28

[34] D. Koop, J. Patel, Data�ow notebooks: Encoding and tracking dependen-1185

cies of cells, in: 9th USENIX Workshop on the Theory and Practice of

Provenance (TaPP 2017), USENIX Association, Seattle, WA, 2017.

[35] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd

Edition, Addison-Wesley Professional, 2012.

[36] Arduino, GitHub - arduino/arduino-cli: Arduino command line inter-1190

face, https://github.com/arduino/arduino-cli, online; last accessed

September 23, 2019 (2019).

[37] C. Rossant, IPython Interactive Computing and Visualization Cookbook,

Packt Publishing, 2014.

[38] Jupyter Development Team, Making simple Python wrapper1195

kernels, https://jupyter-client.readthedocs.io/en/stable/

wrapperkernels.html, online; last accessed September 23, 2019 (2015).

[39] The ZeroMQ authors, ZeroMQ, https://https://zeromq.org/, online;

last accessed September 23, 2019 (2019).

53

https://github.com/arduino/arduino-cli
https://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html
https://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html
https://jupyter-client.readthedocs.io/en/stable/wrapperkernels.html
https://https://zeromq.org/

	Introduction
	Background
	Related Work
	Large-scale Computational notebooks analyses
	Computational notebooks uses in diverse domains
	Currently available computational notebooks

	Use Case
	Controlling Philips Hue Lamps from an Arduino
	Characteristics of an IoT system prototype

	IoT Notebook Design
	Features of an IoT notebook
	IoT notebook Conceptual Model
	IoT notebook Architecture

	Implementation
	Exploratory User Study
	Participants and treatments
	Study procedure
	Results
	Study Limitations and Future Work

	Conclusion

