
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating low-level software-based hardening techniques for configurable GPU architectures / Goncalves, Marcio M.;
Rodriguez Condia, Josie Esteban; Sonza Reorda, Matteo; Sterpone, Luca; Azambuja, Jose Rodrigo. - In: THE
JOURNAL OF SUPERCOMPUTING. - ISSN 0920-8542. - ELETTRONICO. - 78:6(2022), pp. 8081-8105.
[10.1007/s11227-021-04154-z]

Original

Evaluating low-level software-based hardening techniques for configurable GPU architectures

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s11227-021-04154-z

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11227-021-04154-z

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2961684 since: 2022-04-26T14:09:35Z

Kluwer Academic Publishers

Noname manuscript No.
(will be inserted by the editor)

Evaluating Low-level Software-based Hardening
Techniques for Configurable GPU Architectures

Marcio M. Goncalves1 ·
Josie E. Rodriguez Condia2 ·
Matteo Sonza Reorda2 ·
Luca Sterpone2 ·
Jose Rodrigo Azambuja1

Received: date / Accepted: date

Abstract The high processing power of GPUs makes them attractive for
safety-critical applications, where transient effects are a major concern, and
resilience must be enforced without compromising performance. Configurable
softcore GPUs are a recent technology that allows detailed reliability assess-
ment capable of bringing directions to the design of reliable GPU applications.
This work investigates the reliability of the register files and the pipeline of a
softcore GPU under radiation-induced faults. It proposes software-based fault
tolerance techniques to mitigate errors. Faults are simulated at the register
transfer level in four case-study algorithms, and the Architectural Vulnerabil-
ity Factor (AVF) and Mean Workload to Failure (MWTF) are checked over
different GPU configurations. Results indicate that software-based techniques
efficiently reduce AVF. In terms of MWTF, results show that the best cases
depend on an optimized balance between GPU configuration, application run-
time, and AVF.

Keywords Fault tolerance, Graphics processing units, Single event upsets,
Software-based hardening techniques.

Marcio M. Goncalves
E-mail: mmgoncalves@inf.ufrgs.br

Josie E. Rodriguez Condia
E-mail: josie.rodriguez@polito.it

Matteo Sonza Reorda
E-mail: matteo.sonzareorda@polito.it

Luca Sterpone
E-mail: luca.sterpone@polito.it

Jose Rodrigo Azambuja
E-mail: jose.azambuja@inf.ufrgs.br

1 Federal University of Rio Grande do Sul (UFRGS), Brazil
2 Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Italy

2 Marcio M. Goncalves1 et al.

1 Introduction

Graphics Processing Units (GPUs) have been originally designed for graphics
applications but soon evolved into general-purpose applications due to their
high computing power and the advent of programming support for parallel ap-
plications. Over the last decade, the rapid proliferation of GPUs has reached
safety-critical applications, such as automotive and aerospace [1], and High-
Performance Computing (HPC) applications, such as cloud, radars, and oth-
ers [2, 3]. NVIDIA GPUs, for instance, are used as accelerators in several
top500 supercomputers as well as self-driving cars [4].

Modern GPU architectures are designed with a Reduced Instruction Set
Computing (RISC) architecture in a Single Instruction Multiple Data (SIMD)
paradigm for exploiting data parallelism. The architecture relies on a single
execution pipeline that computes a single instruction flow on all computing
units in parallel. To do so, it operates over large blocks of data in parallel.
In this sense, most instructions in a kernel work directly on these registers,
communicating as little as possible with global and shared memories, thus
hardening techniques must act locally to stop kernel faults from spreading to
shared and global memories. From a reliability point of view, storage elements
allocated in the register file and the pipeline are critical resources, causing
permanent or temporary effects on digital systems. Knowing the probability
of an error in a register to propagate to the outputs may be sufficient to
characterize an application’s vulnerability.

Faults on electronic components are mainly caused by energized particles
from cosmic rays and high energy protons as transient pulses in logic or support
circuitry and can cause permanent or temporary effects over the system [5].
Among the most common non-destructive effects is the Single Event Upset
(SEU), also known as a bit-flip. SEU effects play a major role in GPU ar-
chitectures because they require register files to be large and extremely fast,
which inherently makes them more susceptible to the effects of transient faults.
The use of Error Correction Codes (ECCs) can mitigate transient faults. Still,
the presence of ECC in GPU register files is not mandatory, and its availability
varies from device to device. Also, ECCs present drawbacks in reliability, large
overheads in area, and even performance degradation [6, 7].

SEU effects tend to increase in cutting-edge semiconductor technologies,
where operating frequencies and transistor density are higher and voltage sup-
plies are lower. They grow to the point where the newest GPUs are prone
to experience radiation-induced errors [8, 9], even on applications running at
ground level, where neutrons are the primary source of soft errors [10]. Also,
the clustering of GPUs in large-scale HPC systems increases the fault occur-
rence frequency down to an order of minutes [11], that value being far higher
in aerospace environments. The reliability of GPUs is such an open issue that
the increased number of errors are starting to outweigh their performance
benefits [12].

In safety-critical and HPC application domains, fault tolerance techniques
are mandatory to detect or correct faults. Safety-critical applications cannot

Title Suppressed Due to Excessive Length 3

result in erroneous output data, as they can directly impact human lives. Still,
they can crash in many cases, as long as we can detect this faulty situation
through a watchdog timer. On the other hand, HPC applications can result in
erroneous data, but crashing means breaking timing constraints, which is not
acceptable. Therefore, both application classes must work adequately despite
the existence of faults. However, the reliability of GPUs is still an open issue.

Software-implemented fault tolerance techniques are an alternative to hard-
ening GPU hardware against transient effects. They have been proposed and
applied for GPUs in the past years, targeting registers in the registers files and
the pipeline [13, 14], with high detection rates and high costs in performance
degradation [15]. Unlike hardware-based techniques, software-implemented ones
can use Commercial-Off-The-Shelf (COTS) hardware, modifying the software
compilation flow to harden applications against SEU effects. The downside
is that software modifications require more execution time, therefore decreas-
ing performance. Software transformation tools can automatically apply these
techniques to the source code of a program, thus simplifying the task for soft-
ware developers: by protecting the system by acting on the software, they
can reduce development costs significantly [16]. With the recent advent of
configurable GPUs [17, 18], engineers became able to design effective fault tol-
erance techniques better. Still, the literature does not present an experimental
analysis on the design space exploration of software-based solutions for GPU
architectures, especially for configurable open-source ones.

This paper is an extension of Gonçalves et al. [19] and presents a compre-
hensive analysis of low-level software-based hardening techniques developed to
harden a General Purpose GPU (GPGPU) architecture against SEUs. This
work targets an open-source configurable GPU based on the NVIDIA G80
architecture. However, one could extend our proposed analysis and implemen-
tation to other GPU architectures, including commercial ones. We also propose
three optimizations to reduce execution time while maintaining fault detection
capabilities. A fault injection campaign is performed at the Register-Transfer
Level (RTL) using FlexGripPlus, a GPGPU based on the NVIDIA G80 ar-
chitecture, targeting registers in the register file and the pipeline. Techniques
and their optimizations are evaluated for three GPU configurations in terms
of execution time, Architectural Vulnerability Factor (AVF), and Mean Work
to Failure (MWTF). Results show that an analysis is required to navigate
the hardened GPU application design space effectively because even though
execution time, AVF, and error detection are important factors, they are not
enough.

The main contributions of this work are:

– The adaptation of state-of-the-art software-based hardening techniques at
the assembly-level to the GPU architecture, and their evaluation on an
open-source model;

– Three optimizations for the software-based hardening techniques targeting
GPU architectures for more effective fault detection;

4 Marcio M. Goncalves1 et al.

– An analysis of how different GPU configurations absorb the execution time
overhead imposed by software-based hardening techniques when increasing
the number of cores;

– A fault injection campaign at RTL with over 1.4 million faults for the
target GPU running four applications on three GPU configurations;

– A comprehensive design space exploration for hardened applications run-
ning in multiple GPU configurations considering execution time, AVF, and
MWTF.

The remainder of this paper is organized as follows. In Section 2, we discuss
related work on software-based transformation techniques and their applica-
tion to GPU architectures. Section 3 describes the chosen target GPU architec-
ture and its vulnerabilities. Sections 4 and 5 describe the proposed software-
based hardening techniques and discuss their implementation, respectively.
In Section 6, we present results from the fault injection campaign, assessing
the detection capabilities of the proposed techniques. Section 7 introduces the
MWTF as an additional reliability metric and presents the reliability design
space exploration for multiple configurations. Finally, we close this work in
Section 8 with concluding remarks and directions for future research.

2 Related Work

Over the last years, authors have proposed software-based fault tolerance tech-
niques for GPUs in the literature. They have been implemented in a wide range
of abstraction levels, from the high-level (i.e., CUDA for NVIDIA GPUs),
where threads and variables are replicated, to low-level (i.e., assembly), where
instructions and registers are replicated, exploiting naive and partial dupli-
cation [20, 21]. The strategies also include Algorithm-Based Fault Tolerance
(ABFT) techniques, which can achieve high detection rates at low execution
time overheads but are limited to a specific group of applications [22, 23, 24].
More recently, the use of hybrid software-hardware-based techniques and ap-
proximate computing has been explored towards the design of resilient GPU
applications [15, 25, 26, 27].

At the application level, Dimitrov et al. [20] proposed three techniques
that leverage Thread-Level Parallelism (TLP) and Instruction-Level Paral-
lelism (ILP) to replicate the application code, thus mitigating the effects of
transient faults in the GPU. Their techniques resulted in performance over-
heads of up to 100%. Similarly, authors in [6] proposed DWC strategies that
explore spatial and temporal redundancy by duplicating blocks and perform-
ing a redundant thread execution after the original one. They were able to
achieve up to 100% error reduction at the cost of increasing execution time to
2.5 times the original one. Wadden et al. [21] proposed a compiler-based ap-
proach for GPUs that converts kernels into redundantly threaded versions and
observed high overheads for inter-thread communication and synchronization.
The results demonstrated that performance costs depend on the application’s
workload, reaching more than 100% in some cases. Gupta et al. [28] extended

Title Suppressed Due to Excessive Length 5

the work done in [21] by proposing compiler optimizations to reduce the high
synchronization overhead of redundant multi-threading on GPUs. Software-
based instruction-level duplication does not incur high synchronization over-
heads because instruction duplication and consistency checking are performed
inside each thread.

At the assembly level, authors in [13] proposed fault tolerance techniques to
detect faults in the register files of GPUs by replicating assembly instructions
in an intertwined fashion. They were able to achieve a 99% error reduction at
an increase in execution time of 78%. Authors in [15] introduced a group of
software-based fault tolerance techniques to optimize instruction-level dupli-
cation for GPUs. The optimizations improved resilience by up to 87%, with an
average execution time increase of 36%. More recently, hybrid approaches, in-
cluding software and hardware modifications, have been proposed to improve
software-based techniques. Authors in [25] proposed a cooperative hardware-
software mechanism to detect errors in a GPU’s pipeline with low instruction-
duplication overhead. The authors in [15] proposed ISA extensions to eliminate
consistency checks and notification instructions. The authors in [26] proposed
reliable atomic memory access and predicate setting instructions to improve
performance and fault detection capabilities of software-based fault tolerance
techniques. These techniques could lower runtime overhead significantly at low
costs in area overhead.

Partial hardening techniques can be adopted at all abstraction levels. They
usually decrease performance cost in exchange for less fault coverage by se-
lectively duplicating structures (instructions, threads, registers, etc.) based
on their criticalities [27, 29]. Authors in [30] employed heuristics to identify
and protect critical instructions and achieved an average reduction of 100%
of DUEs and 98% of SDCs by covering 90% of the dynamic instructions. Au-
thors in [31] were able to evaluate register criticality on a commercial GPU,
apply selective fault tolerance techniques through software modifications and
correlate results with hardware-implemented fault tolerance techniques. This
work showed that selective hardening presents better efficiency in terms of
fault coverage per overhead than applying random or full register file harden-
ing. For instance, results showed up to 65% SDC coverage by only protecting
30% of the registers. Partial hardening can be further improved by combining
approximate computing. In this sense, authors in [27] used approximate com-
puting to rank the application’s most critical registers based on the magnitude
of the output error that they provoked when a fault corrupted them. When
compared to selective hardening techniques, they reduced replicated registers
by 41% on average while maintaining SDC fault coverage. Authors in [32] pro-
posed to leverage the concept of approximate computing and mixed-precision
architectures to improve DWC’s runtime at the cost of less fault coverage by
replicating the original execution in a lower precision. Results showed an av-
erage fault coverage of 73% at the average cost of 16% in runtime overhead
when considering two applications from the HPC domain.

In this work, we propose the adoption of software-based fault-tolerance
techniques through low-level assembly code transformations. By operating at

6 Marcio M. Goncalves1 et al.

the assembly code, the proposed transformations are independent of the com-
piler and the high-level programming language. Therefore, they can be ap-
plied in tandem with previous works proposed in the literature. Then, we
propose three optimizations targeting GPU architectures to either improve
or trade-off performance for fault detection. These novel technique optimiza-
tions, called Traceback, Move, and Delayed Notification, are used to selectively
protect memory access and predicate setting instructions. Moreover, we inves-
tigate the sensitivity of register files and pipeline registers to radiation-induced
faults. To do so, we use an open-source GPU RTL model [17] to perform a
simulation-based fault injection campaign with over 1.4 million faults at RTL
with different GPU core configurations. Finally, we perform a comprehensive
analysis and exploration of the design space for hardened GPU applications,
investigating the impact of the proposed hardening techniques in execution
time, AVF, and MWTF.

3 FlexGripPlus Architecture

FlexGripPlus [17] is an open-source configurable GPU softcore model de-
scribed in VHDL that implements the NVIDIA G80 micro-architecture [33].
This model can be programmed using the CUDA programming environment,
with the support of up to 52 assembly instructions (SASS). The GPU model
structure is composed of an array of Streaming Multiprocessors (SMs) that
execute threads in parallel. Fig. 1 depicts the general organization of one SM
core in the FlexGripPlus architecture.

BLOCK

SCHEDULER
SCHEDULER

CONTROLLER

WRITEBACK

EXECUTION

…

…

… …

FETCH DECODE
READ/

ISSUE

SYSTEM

MEMORY

SHARED

mem

L_mem

C_mem

GPRF

ARF

PRF

GLOBAL

mem

P

R

2

P

R

3

P

R

4

P

R

5

P

R

6

P

R

1

SP SP

SP

SP SP

Fig. 1 The general scheme of an SM core in the FlexGripPlus model

Each SM executes instructions in a parallel manner following the Single-
Instruction Multiple-Thread (SIMT) paradigm [34]. The SMs are managed
by a Block Scheduler Controller, which distributes the workload into each
available SM in the system. Internally, the SM is divided into a five-stage

Title Suppressed Due to Excessive Length 7

pipeline and includes one Warp Scheduler Controller managing and monitoring
the concurrent execution of a group of 32 parallel threads (also known as warp).

Inside the SM, a set of pipeline registers (PRx) are located between two
consecutive stages storing data path and control path signals to exploit the
ILP. Similarly, the high-performance parallel execution is achieved through a
supporting memory hierarchy in the GPU. The memory system is composed
of a General-Purpose Register File (GPRF), an Address Register File (ARF),
a Predicate Register File (PRF), a local memory (L mem), a constant mem-
ory(C mem), a shared memory, and the global memory.

On the one hand, some external memory resources, such as the local mem-
ory, are mainly employed to store arrays. Furthermore, the constant memory is
utilized to store constant values for all threads during a program’s execution.
The shared memory stores data operands that can be used among threads be-
longing to the same block. Finally, the global memory stores the initial inputs
and the final results of a program kernel. The host computer then retrieves
these values.

On the other hand, the GPRF, ARF, and PRF are located inside the SM.
A 16KB-size GPRF is the leading and fastest memory resource in the SM. This
GPRF is commonly used for every thread to store data operands, addresses,
and results during the program execution. The PRF stores predicates as a
result of logic-arithmetic or comparison instructions, with up to four predicate
registers per thread. These resources (GPRF, ARF, and PRF) are statically
organized in banks as the available number of cores (also known as Streaming
Processor or (SP)) and can only be accessed by the associated SP. The number
of registers per thread in the GPRF directly depends on the application and
the total number of active threads, attaining a maximum of 64 registers per
thread on each bank.

FlexGripPlus can be configured to operate with 8, 16, or 32 cores inside
each SM. This allows to flexibly modify the length of the data path propor-
tionally in the pipeline registers and the register size per core in each bank of
the GPRF to 2KB, 1KB, and 512B for the previously specified core configura-
tion, respectively. The fixed size of the whole GPRF implies that the register
bank size is defined when selecting the number of execution cores per SM.

4 Software-based Hardening Techniques

This Section discusses the main program code transformations for applying
software-based hardening techniques based on instruction and data duplication
and the three proposed optimizations to improve performance at different costs
in reliability, fault effects, and fault notification time.

The software-based hardening techniques discussed in this paper are im-
plemented through program code transformations at the assembly level. Thus,
they insert/remove assembly instructions into/from the program code, access
registers and memory addresses, and use the datapath and the controlpath
through assembly instructions. The main benefit of applying software-based

8 Marcio M. Goncalves1 et al.

techniques at the assembly level is that they are compiler-independent. There-
fore, all compiler optimizations can be performed without removing the added
redundancies, and we have better control over the code transformation. Also,
one can directly target specific registers instead of variables, directly protect-
ing the register files. The main drawback is that the pipeline is not directly
accessible. Therefore, its hardening becomes a byproduct of the register file
hardening.

To achieve the desired software-based hardening, we present three code
transformations at the assembly level based on the literature [35] and propose
three optimizations to decrease the performance degradation (i.e., increase
their performance) of the given transformations. In the following, we discuss
the program code transformations and the proposed optimizations in detail.

4.1 Program Code Transformations

The three program code transformations discussed in this work are based on
the original work of Oh et al. [35] for CPUs and focus on duplicating the
datapath operations, checking the results for consistency, and notifying the
host computer in case of divergence. To duplicate the datapath operations, we
first have to duplicate the registers used by the datapath. In order to do so,
we first perform static code analysis to find which registers are being used by
the target application and which are not (spare registers). We then create a
hash table, assigning a spare register to each used register as a copy register.
In case there are not enough spare registers to fully duplicate the datapath,
one must either select a group of registers and perform selective hardening,
thus decreasing reliability, or perform register spilling into the memory, thus
decreasing the application’s performance. All our case-study applications had
enough spare registers for full datapath duplication. Once static registers as-
signment is completed, we perform the following three transformations: (1)
datapath duplication, (2) consistency checking, and (3) host notification.

Datapath duplication (transformation 1 - T1) is responsible for duplicat-
ing all datapath instructions. It is the main software-based transformation. It
forces the hardware to execute twice the datapath operation in an intertwined
fashion, exploiting Instruction Level Parallelism (ILP) from the GPU architec-
ture more effectively than running the code twice. The replicated instructions
also perform operations on the copy registers, completely separating the orig-
inal and duplicated datapath operations. As we consider the memory to be
hardened by other means (e.g., ECC), we do not duplicate store instructions,
thus also not duplicating memory addresses.

Consistency checking (transformation 2 - T2) is responsible for checking
the consistency of registers and their copies. It uses a comparison instruction
followed by a conditional branch instruction to an error subroutine. The main
issue with checking register consistency is that it creates a dependency between
both data flows, unifying them for the comparison instruction, thus decreasing
ILP gain. This work evaluates the insertion of consistency checking after two

Title Suppressed Due to Excessive Length 9

classes of instructions: memory access and predicate setting. The first affects
the data being processed (i.e., data flow), while the latter affects the program’s
execution (i.e., control flow).

Host notification (transformation 3 - T3) notifies the host of an error. It is
usually a trap instruction (exception signal to the host usually seen in GPU
ISAs, such as in CUDA) but could also be a memory write instruction signaling
the host through the global memory. These instructions are not executed on
correct application execution and should be executed a single time when a
fault is detected. On the other hand, their execution is conditional to T2, so a
predicate register must be checked every time a host notification is added to
the program code.

Fig. 2 exemplifies the three transformations in column Non-optimized Hard-
ened Code. Datapath duplication (T1) is depicted in green, replicating lines
1, 3, and 5 with lines 2, 4, and 6. As one can notice, the instructions are the
same, but they operate over replicated registers (e.g., R3’ instead of R3). Note
that the store instruction in line 15 is not duplicated. Consistency checking
(T2) is highlighted in blue through instructions 7, 16, and 18, which check
consistency for memory access instructions, and instructions 10 and 12, which
perform consistency checks for predicate setting instructions. Finally, host no-
tification transformation (T3) is shown in red and inserted after each consis-
tency checking instruction in lines 8, 11, 13, 18, and 19.

Unhardened Code
Non-optimized

Hardened Code

Optimized Hardened Code

Move Traceback MEM Traceback PRED Delayed Notification

1: MOV R3, 4 MOV R3, 4 MOV R3, 4 MOV R3, 4 MOV R3, 4 MOV R3, 4

2: MOV R3', 4; MOV R3', 4; MOV R3', 4; MOV R3', 4;

3: ADD R1, R1, 1; ADD R1, R1, 1; ADD R1, R1, 1; ADD R1, R1, 1; ADD R1, R1, 1; ADD R1, R1, 1;

4: ADD R1', R1', 1; ADD R1', R1', 1; ADD R1', R1', 1; ADD R1', R1', 1;

5: LOAD R2, [R1]; LOAD R2, [R1]; LOAD R2, [R1]; LOAD R2, [R1]; LOAD R2, [R1]; LOAD R2, [R1];

6: LOAD R2', [R1']; MOV R2', R2; LOAD R2', [R1']; LOAD R2', [R1'];

7: SETP.NE PE, R1, R1'; SETP.NE PE, R1, R1'; SETP.NE PE, R1, R1'; @!PE SETP.NE PE, R1, R1';

8: @PE ERROR; @PE ERROR; @PE ERROR;

9: SETP.NE P0, R3, R0; SETP.NE P0, R3, R0; SETP.NE P0, R3, R0; SETP.NE P0, R3, R0; SETP.NE P0, R3, R0; SETP.NE P0, R3, R0;

10: SETP.NE PE, R3, R3'; SETP.NE PE, R3, R3'; SETP.NE PE, R3, R3'; @!PE SETP.NE PE, R2, R2';

11: @PE ERROR; @PE ERROR; @PE ERROR;

12: SETP.NE PE, R0, R0'; SETP.NE PE, R0, R0'; SETP.NE PE, R0, R0'; @!PE SETP.NE PE, R3, R3';

13: @PE ERROR; @PE ERROR; @PE ERROR;

14: @P0 BRA 1; @P0 BRA 1; @P0 BRA 1; @P0 BRA 1; @P0 BRA 1; @P0 BRA 1;

15: STORE [R4], R1; STORE [R4], R1; STORE [R4], R1; STORE [R4], R1; STORE [R4], R1; STORE [R4], R1;

16: SETP.NE PE, R1, R1'; SETP.NE PE, R1, R1'; SETP.NE PE, R1, R1'; @!PE SETP.NE PE, R1, R1';

17: @PE ERROR; @PE ERROR; @PE ERROR;

18: SETP.NE PE, R4, R4'; SETP.NE PE, R4, R4'; SETP.NE PE, R4, R4'; @!PE SETP.NE PE, R4, R4';

19: @PE ERROR; @PE ERROR; @PE ERROR;

20: @PE ERROR;

Fig. 2 Software-based hardening technique transformation examples.

4.2 Proposed Optimizations

The presented program code transformations take advantage of ILP but still
duplicate the whole datapath (except for store instructions) and insert con-
sistency checks and host notifications. Therefore, we expect them to incur
high execution time overheads, even considering ILP gains. To reduce perfor-
mance degradation (i.e., increase the performance of software-based hardening

10 Marcio M. Goncalves1 et al.

techniques), we propose three optimizations targeting the program code trans-
formations: Move optimization, Traceback optimization, and Delayed Notifi-
cation optimization. These optimizations aim at improving performance by
trading-off reliability, detection of specific effects, and host notification delay.

4.2.1 Move optimization

Memory access instructions (i.e., load and store) are the instructions that re-
quire the most clock cycles to be executed in FlexGripPlus (e.g., a load instruc-
tion requires around four times more clock cycles than a move instruction).
In this sense, we propose the Move optimization. This optimization replaces
replicated load instructions with move instructions that copy the loaded data
to the copy register. Thus, instead of adding a replicated load instruction, it
adds a faster move instruction. By doing so, it directly affects the datapath
duplication (T1) by reducing the performance overhead and adding a point of
failure to the hardened code.

Fig. 2 shows an example of this optimization in column Move opt. When
compared to the non-optimized hardened version (Hardened code), the only
difference is line 6, where Hardened code replicates the original load instruction
in line 5 (LOAD R2, [R1]) with a second load instruction (LOAD R2’, [R1’]),
and the Move optimization uses a move instruction instead (MOV R2’, R2).

While replicating a load instruction with a move instruction is able to re-
duce execution time, it inserts a point of failure on the software-based harden-
ing technique, thus trading-off on reliability. Suppose a fault affects the register
written by the load instruction before the move instruction can copy its value
to the replicated registers. In that case, the corrupted value will propagate
to the replicated register, both value and its replica will be corrupted, and
the consistency checking will not signal a fault. It is important to notice that,
even though the load instruction takes an increased amount of clock cycles to
execute, only a fault that hits the instruction in its late write-to-register stage
would actually upset the destination register. Therefore, this point of failure
is not as large as the fetch-to-fetch time.

4.2.2 Traceback optimization

Datapath duplication and consistency checking are the leading performance
degradation causes in software-based hardening techniques, even when consid-
ering ILP. One alternative is to selectively apply selective hardening techniques
by targeting only the most critical parts of the program code. However, related
works still cannot pinpoint the most critical parts of a program code. Some
related works target subroutines and functions at the program level [REF],
while others target variables, registers, and memory addresses. Instead, we
propose the Traceback optimization to target instructions and their data in a
more fine-grained approach. It targets specific instructions and all data used
during their execution. To do so, we choose a group of target instructions with
a high probability of causing an error to the application if affected by a fault

Title Suppressed Due to Excessive Length 11

(i.e., memory access instructions for data-flow errors and predicate setting in-
structions for control-flow errors) and evaluate all previous instructions that
lead to the execution of these target instructions (i.e., all instructions that
computed the data read by a given target instruction).

To implement the Traceback optimization, we start by defining a group
of instructions as target instructions (e.g., memory access or predicate setting
instructions). Then, we analyze the static program code and draw its control
flow. Next, for each target instruction i, we evaluate which instructions have
written its registers and add them to the group of target instructions. We
run this procedure recursively until there are no new instructions to be added
to the target instruction group. Finally, we apply the previously discussed
program code transformations selectively to this group of instructions.

The choice of which instructions to add to the target instruction group is
a complex task that depends on in-depth code analysis, fault injection cam-
paigns, and design space exploration. As this analysis is out of the scope of this
work, we took a simplified approach and selected two instruction groups: mem-
ory access instructions (Traceback MEM) and predicate setting instructions
(Traceback PRED). By doing so, we expect to target data-flow and control-
flow errors, respectively. Even though this is a simplification of the problem,
we expect it to provide us results good enough for a proof-of-concept.

Fig. 2 shows the Traceback optimization applied for memory access instruc-
tions on the Traceback MEM column and for predicate setting instructions on
the Traceback PRED column. The original code has two memory access in-
structions in lines 5 and 15, which have their registers R1 written by instruc-
tion 3, and one predicate setting instruction in line 9, which has its register R3
written by instruction 1. Thus, the Traceback optimization selectively hardens
lines 3, 5, and 15 for the memory access instructions and lines 1 and 9 for the
predicate setting one.

The Traceback optimization targets specific instructions to increase the
effectiveness of the program code transformation. In doing so, it leaves parts
of the program code unhardened. However, it allows designers to target specific
fault effects such as data-flow or control-flow errors. For an application with
separated logics for processing its control flow and its data flow (e.g., a constant
loop that computes a given value), this optimization can target control-flow
and data-flow effects very effectively. However, hardening an application with
an entangled logic for computing its control and data flow (e.g., a computation
that defines a loop iteration based on inputs) has a higher chance of resulting
in the same hardened code as without this optimization.

4.2.3 Delayed Notification optimization

The host notification program code transformation informs the user that a
fault has been detected in a previous consistency check. When applying the
non-optimized program hardening, the consistency check compares two values
and overwrites a predicate register with a flag indicating if a fault was detected.
As every consistency check overwrites the previous value of the flag, the host

12 Marcio M. Goncalves1 et al.

notification has to be done before the next consistency check. The proposed
Delayed Notification optimization changes how consistency checks write to
predicate registers and thus provides the designer with options to perform
host notifications less frequently. To do so, it employs conditional instructions
(usually implemented but not restricted to GPU ISAs, such as in CUDA) to
replace the comparison instruction with a conditional comparison instruction.
By doing so, the predicate register is only written once when changing state
to ”fault detected,” thus never being reset. Therefore, multiple consistency
checks can be paired with a single host notification, up to using a single host
notification instruction for the complete program code.

Fig. 2 shows the Delayed Notification optimization in the Delayed Noti-
fication opt. column. Compared to the non-optimized program hardening, it
replaces all consistency checks (SETP.NE) in lines 7, 10, 12, 16, and 18 with
conditional consistency checks (@!PE SETP.NE). By doing so, it removes all
host notification instructions in lines 8, 11, 13, 17, and 18 and inserts a new
host notification instruction in line 20.

The Delayed Notification optimization provides designers with the option
to decrease host notification frequency. In doing so, it improves performance
at the cost of a larger fault notification period. Therefore, it does not decrease
reliability in terms of fault detection. However, a latent fault in the system
might increase the chance of fault causing an error. Also, the longer the system
takes to inform the host of a fault, the longer the user will take to correct the
fault.

5 Application Hardening

The chosen case-study applications are simple but representative when consid-
ering resource usage and execution flow orientation: vector sum (VectorSum),
matrix multiplication (Matrix), Fast Fourier Transform (FFT), and bitonic
sort (Sort). The VectorSum is the shortest application because it only sums
two vectors in the memory, therefore being a pure data flow-oriented applica-
tion. The Matrix is mostly a data flow-oriented application. Still, it has a small
fixed loop that iterates over the matrices. The FFT is a mix of control-flow
and data-flow orientation. It has a more complex control than the Matrix but
still performs heavy multiplications and additions. Finally, the Sort is mostly
control-flow oriented, as it moves data according to data comparisons. Even
though micro-benchmarks, these applications make the building blocks of ma-
jor HPC and safety-critical applications [1, 2, 3]. Table 1 shows the resource
usage for the four case-study applications running on the 8-, 16-, and 32- core
configurations.

The case-study algorithms were implemented in CUDA and compiled with
the NVIDIA NVCC compiler. The compilation process generates the CUDA
binary file (cubin) containing the assembly code that the NVIDIA GPU mod-
eled by FlexGripPlus effectively executes. This assembly code is called Shader
Assembly (SASS) and can be extracted from the cubin file with the cuobjdump

Title Suppressed Due to Excessive Length 13

Table 1 Program memory and runtime requirements for all FlexGripPlus configurations

Application Program Memory (bytes)

Runtime (µs)

8 cores 16 cores 32 cores

FFT 1,344 964 588 406

Matrix 264 320 224 177

Sort 288 824 610 502

VectorSum 563 141 103 85

Average 615 562 381 292

tool provided by NVIDIA’s CUDA toolkit. We used a tool called HPCT [36],
which we upgraded to support the FlexGripPlus ISA and the proposed tech-
niques, to apply the software-implemented techniques to the case-study ap-
plications automatically. We input the SASS code to HPCT, automatically
applying the code transformations and generating a hardened SASS file.

Table 2 shows the percentage execution time overhead over Table 1, indi-
vidually, for the datapath duplication (T1) - DD - and the consistency checking
(T2) with host notification (T3) - CC. Data have been calculated by measur-
ing datapath duplication alone (T1) and its difference to all transformations
combined (T1, T2, and T3), thus considering ILP and architectural charac-
teristics of the GPU configuration. Therefore, to effectively harden a program
code (and assess execution time overhead), one must combine the datapath
duplication column with the consistency checking and host notification col-
umn, adding their respective percentage overheads. The datapath duplication
column considers data for memory access and predicate setting instruction
duplication (DD), Traceback optimization for memory access (DD [MEM])
and predicate setting (DD [PRED]), and the Move optimization ([M]). The
consistency checking and host notification column considers data for the Trace-
back optimization for memory access (CC [MEM]) and predicate setting (CC
[PRED]) and the Delayed Notification optimization ([D]). Data for checking
both memory access and host notification requires adding columns MEM and
PRED (optionally with [D]).

Fig. 3 draws and discusses data from Table 2, considering the execution
time overhead for all transformations running on 8-, 16-, and 32-core GPU con-
figurations. Fig. 3(a) depicts isolated overheads for datapath duplication (DD).
It shows the following datapath duplication versions: DD, non-optimized; DD
[M], optimized with Move; DD [PRED], optimized with Traceback PRED;
DD [PRED+M], optimized with Traceback PRED and Move; DD [MEM], op-
timized with Traceback MEM; and DD [MEM+M], optimized with Traceback
MEM and Move. Fig. 3(b) shows the same hardening versions, but for consis-
tency checking and host notification (CC). Finally, Figs. 3(c) and 3(d) shows
hardening versions for all transformations (DD+CC) without and with the
Delayed Notification optimization, respectively.

Fig. 3(a) shows that the Move optimization produces a significant reduc-
tion in the datapath duplication overhead for all applications. This result was

14 Marcio M. Goncalves1 et al.

Table 2 Execution time overhead for datapath duplication, consistency checking, and host
notification (%)

Datapath duplication (DD) Consistency checking and host notification (CC)

Application Cores Full Full [M] MEM MEM [M] PRED PRED [M] MEM MEM [D] PRED PRED [D]

FFT

8 79 67 71 60 24 24 29 14 20 10

16 76 59 70 53 21 21 26 13 18 9

32 72 49 67 43 17 17 22 11 14 7

Matrix

8 78 51 75 48 8 8 36 18 18 9

16 75 39 73 36 6 6 27 13 14 7

32 72 28 70 26 4 4 20 10 10 5

Sort

8 58 38 54 34 54 34 51 25 43 21

16 57 32 54 29 54 29 42 21 35 18

32 57 27 54 25 54 25 35 18 30 15

VectorSum

8 85 56 85 56 9 9 40 20 - -

16 77 40 77 40 7 7 29 15 - -

32 71 27 71 27 5 5 19 10 - -

Average

8 75 53 71 50 24 19 39 19 27 13

16 71 43 69 40 22 16 31 16 22 11

32 68 33 66 30 20 13 24 12 18 9

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

8 16 32 8 16 32 8 16 32 8 16 32

 FFT Matrix VectorSum Sort

R
u

n
ti

m
e

O
v

er
h

ea
d

 (
%

)

DD DD [M] DD [PRED] DD [PRED+M] DD [MEM] DD [MEM+M]

1

(a) Datapath duplication

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

8 16 32 8 16 32 8 16 32 8 16 32

 FFT Matrix VectorSum Sort

R
u

n
ti

m
e

O
v

er
h

ea
d

 (
%

)

CC CC [D] CC [PRED] CC [PRED+D] CC [MEM] CC [MEM+D]

1

(b) Consistency checking and host notification

.00

.30

.60

.90

1.20

1.50

8 16 32 8 16 32 8 16 32 8 16 32

 FFT Matrix VectorSum Sort

R
u

n
ti

m
e

O
v

er
h

ea
d

 (
%

)

DD+CC DD+CC[M] DD+CC [PRED] DD+CC [PRED+M] DD+CC[MEM] DD+CC [MEM+M]

11

1

1

(c) Transformations without Delayed Notifica-
tion

.00

.30

.60

.90

1.20

1.50

8 16 32 8 16 32 8 16 32 8 16 32

 FFT Matrix VectorSum Sort

R
u

n
ti

m
e

O
v

er
h

ea
d

 (
%

)

DD+CC DD+CC[M] DD+CC [PRED] DD+CC [PRED+M] DD+CC[MEM] DD+CC [MEM+M]

1

1

1

11

(d) Transformations with Delayed Notification

Fig. 3 Transformations’ runtime overhead for 8-, 16-, and 32-core configurations.

expected, as we designed this optimization to reduce execution time at a cost in
reliability, later evaluated in Section 6. On the other hand, the Move optimiza-
tion also produces an increased reduction for configurations with more cores.
This effect can be explained by the fact that an arrangement with more par-
allel cores increases the number of concurrent global memory accesses. Thus,
by replacing load instructions with move instructions, we could alleviate the
global memory pressure, which is then able to reduce performance degradation
more efficiently in configurations with more cores. These data indicate that
the Move optimization can perform even better in COTS GPUs due to their
configuration with many cores.

Title Suppressed Due to Excessive Length 15

Fig. 3(a) also shows the Traceback optimization applied to the case-study
applications. To evaluate this optimization, we have to consider its application
to the memory access and predicate setting instructions individually. When the
Traceback optimization is applied to the memory access instructions, the per-
formance gain is minimal. This result happens due to two main factors: most of
the program code instructions are used for accessing memory data (i.e., data-
flow), thus cannot be removed from the hardening; or the data-flow also uses
most of the instructions used for calculating conditional branches, conditional
executions, and loops (i.e., control-flow). With a small control-flow, data-flow-
oriented applications FFT, Matrix, and VectorSum showed little performance
improvement. The VectorSum presented no improvement due to not having
control-flow instructions. With a complex control flow, the Sort application
also showed little performance improvement because of its entangled data-
and control-flows. Unlike the Move optimization, the Traceback optimization
is not a trade-off between performance and reliability. Therefore, even with
small performance gains, there are no drawbacks to applying it.

When considering the Traceback optimization applied to the predicate set-
ting instructions, the performance gain is much higher than when applied to
the memory access instructions. For the same reasons discussed previously,
applications with a heavy data flow can be more aggressively optimized as
long as the data and control flow are not entangled. Therefore, one can notice
a significant performance gain for the FFT and Matrix applications. Because
the VectorSum has no control flow, its optimization would equal the original
unhardened application. On the other hand, the Sort application showed the
smallest performance gain because its instructions are mostly used for both
control- and data-flow. The optimizations in runtime observed when protect-
ing the FFT and Matrix applications show that the Traceback optimization
can harden instructions selectively with significant performance gains.

Fig. 3(b) shows that, for all applications, the Delayed Notification optimiza-
tion reduces the runtime overhead by half. This reduction happens because it
uses a single notification instruction for a group of checking instructions in-
stead of one notification for each checking instruction. The highest reduction
is achieved with a single notification instruction for the complete program
code. The main drawback is that this optimization increases the average delay
between identifying a fault and notifying the host. However, it should not de-
crease reliability. The selective protection improves performance significantly,
especially when associated with the Delayed Notification. The number of cores
demonstrates an impact similar to that observed in the datapath replication
with the Move optimization (Fig. 3(a)).

The total costs for the proposed fault tolerance techniques are presented in
Figs. 3(c) and 3(d), without and with the Delayed Notification optimization,
respectively. They add the datapath duplication costs presented in Fig. 3(a)
with the consistency checking and host notification costs presented in 3(b). Re-
sults without the optimization show that the Move and Delay optimizations
together reduce the average performance cost from 134%, 119%, and 105% to
83%, 66%, and 51% for 8, 16, and 32 cores, respectively. When selective mem-

16 Marcio M. Goncalves1 et al.

ory protection is implemented, the average cost drops to 69%, 55%, and 42%
for 8, 16, and 32 cores. When selective predicate instruction is implemented,
the average cost is 35%, 30%, and 24% for 8, 16, and 32 cores, respectively.
Such results indicate that, when performance is important, selective protec-
tion should be applied whenever possible. In addition, the results show that
the amount of cores not only speeds up the execution time of applications but
also absorbs the cost of performance of fault tolerance techniques.

6 Fault injection results

We performed extensive fault injection campaigns through simulation at RTL
to measure the impact of software-based hardening techniques on reliability.
We measured reliability by evaluating the probability of a low-level corruption
corresponding to a bit-flip in the register files and the pipeline registers to
propagate to the output vector and cause an error. This metric is also known as
the AVF [37] and is computed by dividing the number of errors by the number
of injected faults. We did not inject faults in the memories, as we assumed
them to be protected by design (e.g., ECC), but we intend to evaluate them in
the future. To evaluate the system’s reliability, we classified the injected faults
according to their effect on the system [37]: Masked, when the result is correct;
Detected Unrecoverable Error (DUE), when the application crashes or hangs;
Silent Data Corruption (SDC), when the program finishes with an incorrect
result; and Detected, when our software-based hardening techniques detected
a fault.

Faults were injected in the original and hardened case-study applications.
For each application, we considered three hardened versions: (1) SDC Hard,
with consistency checking for memory access instructions and the Traceback
MEM optimization, (2) DUE Hard, with consistency checking for predicate set-
ting instructions and the Traceback PRED optimization, and (3) Full Hard,
with consistency checking for memory access and predicate setting instruc-
tions. We considered the delayed branch optimization for all versions because
previous works showed statistically the same fault reduction for both versions.
Table 3 summarizes the name of the final fault tolerance techniques and the
shows each tested version and optimizations applied.

Table 3 Implemented hardened versions

Label Application hardening Move Traceback MEM Traceback PRED Delayed Notification

Unhardened

SDC Hard X X X

SDC Hard [M] X X X X

DUE Hard X X X

DUE Hard [M] X X X X

Full Hard X X

Full Hard [M] X X X

Title Suppressed Due to Excessive Length 17

We injected 10,000 faults for each combination of (1) case-study application
(FFT, Matrix, VectorSum, and Sort), (2) software version (original, SDC Hard,
SDC Hard [M], DUE Hard, DUE Hard [M], Full Hard, and Full Hard [M]), (3)
GPU configuration (8-, 16-, 32-core), and (4) fault injection location (register
file and pipeline registers), reaching 1,440,000 injected faults (VectorSum has
only 3 software versions). Each of the 1,44 million faults was injected as a single
fault per program execution, meaning that we ran the case-study applications
a total of 1,44 million times, each with a single upset. By doing so, our analysis
ensures a statistical significance of a 1% error margin with a 99% confidence
level [38]. The experiments were performed on Mentor ModelSim running in a
workstation with an Intel Xeon CPU @2.5 GHz, equipped with 12 cores and
256 GB of RAM memory, and required about a month.

In the following, we discuss in detail the results for faults injected into the
register files and into the pipeline registers.

6.1 Register File

Fig. 4 averages data for the 8-, 16-, and 32-core configurations for the fault
injection in the register files, as they presented similar results. It shows, for
all four case-study applications and all hardening versions (because the Vec-
torSum does not have control-flow instructions, it does not have a DUE Hard
version, and the SDC Hard is the same as the Full Hard), faults classified
according to their effects (DUE, SDC, Detected, and Masked).

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90
1.00

 FFT Matrix VectorSum Sort

DUE SDC Detected
1

Fig. 4 Fault effects distribution for faults injected into the register files.

When considering SDC effects, SDC Hard and SDC Hard [M] techniques
effectively reduced DUE and SDC cases in all applications, showing an average
error reduction rate of 88% and 82%, respectively. SDC Hard was able to detect
faults more effectively for the data-flow-oriented applications (FFT, Matrix,
and VectorSum), followed closely by SDC Hard [M]. On the other hand, both
techniques could not detect all SDCs for the FFT application because its con-
trol part is larger than in the other two applications. Also, when considering
the Sort application, the SDC Hard and SDC Hard [M] showed poor results,
being able to reduce SDCs by 61% and 55%, respectively. They could not effec-
tively detect SDCs mainly because the Sort’s control-flow includes conditional

18 Marcio M. Goncalves1 et al.

instructions in its main loop. Therefore, protecting the memory access instruc-
tions alone leaves most of its dynamic instructions unprotected and prone to
SDCs. An option to improve the SDC Hard techniques would be not simply
targeting memory access instructions. Instead, evaluating all instructions more
aggressively, considering their impact in causing SDC effects.

Unlike the memory access techniques, the DUE Hard and DUE hard [M]
techniques eliminated all DUEs. Note that DUE Hard and DUE Hard [M] are
the same for the data-flow applications because there are no memory access
instructions in their control flows. They differ only for the Sort application.
Still, for all applications, they detected all DUE effects. Also, note that both
techniques were also able to reduce SDC effects for the FFT and the Sort
application. Especially when considering the Sort, they achieved better detec-
tion capabilities for SDC effects than the SDC Hard techniques. As mentioned
previously, the Sort has a conditional comparison instruction that belongs to
its control-flow, which can only be hardened by targeting predicate setting
instructions. For this application, a predicate setting instruction is far more
relevant for SDC effects than the remaining memory access ones.

Finally, when targeting both SDC and DUE effects, one must use the Full
Hard technique, followed closely by the Full Hard [M] (with increased SDC
effects). As seen for the SDC and DUE Hard techniques, the SDC ones cannot
detect DUE effects whatsoever, while the DUE ones cannot detect most SDC
effects (except for the Sort, where it reaches 86%). These results show that
solely targeting either memory access or predicate setting instructions is not
the best option. One should more aggressively select, for each application,
which instructions to harden.

6.2 Pipeline Registers

Fig. 5 averages data of the four case-study applications for the fault injection
in the pipeline registers, as they produced similar results. It presents faults
classified according to their effects (DUE, SDC, and Detected) for all hard-
ening techniques and configurations. Masked effects have been removed for
clarity because they represent over 98% of the effects. Although only a small
percentage of errors is observed, we can draw tendencies on the fault effects
and the software-based hardening techniques detection capabilities.

Considering the original unprotected application, one can notice that SDC
effects happen more than DUE ones, up to 2.6 times for the 8-core configu-
ration. As we increase the number of cores, the SDC rate decreases while the
DUE effects show a small reduction when moving from the 16- to 32-core con-
figuration. Still, the 32-core configuration shows 1.6 SDCs for each DUE. This
reduction happens because the 8- and 16-core configurations put increased
pressure on the warp scheduler, resulting in more DUE effects. When we ap-
ply the hardening techniques, we achieve a reduction in SDC effects for all
techniques, from a 28% reduction for the SDC Hard [M] (32-core) to a 77%
reduction for the Full Hard [M] (32-core). Note that the DUE Hard techniques

Title Suppressed Due to Excessive Length 19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

 Original SDC Hard SDC Hard [M] DUE Hard DUE Hard [M] Full Hard Full Hard [M]

A
V

F
 (

%
)

DUE SDC Detected

Unhardened

Fig. 5 Fault effects distribution for faults injected into the pipeline registers.

can also detect SDC effects, showing that memory access instructions are not
fully correlated with SDC effects. On the other hand, the same cannot be
achieved for DUE effects, to the point that, on average, they increase DUEs
by 34%. To better understand this behavior’s cause, we classified the fault
injection location as in the pipeline’s datapath or controlpath.

Fig. 6 distributes data from Fig. 5 according the the fault injection loca-
tion. It shows that fault effects are more common in the controlpath than in
the datapath. In the datapath, faults are more easily masked due to a large
percentage of unused bits during instruction execution. On the other hand, the
controlpath has control bits responsible for the general GPU operation. When
affected by a fault, they can more easily propagate the fault while executing
any instruction. As these registers are not visible to the user through assembly
instructions, our proposed hardening techniques cannot directly target them.
Also, by inserting additional instructions, our proposed techniques increase
the chance of a DUE effect in the pipeline. To solve this issue, one should
consider hardware-based techniques to target specific registers in the pipeline
selectively.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

Datap. Controlp. Datap. Controlp. Datap. Controlp. Datap. Controlp. Datap. Controlp. Datap. Controlp. Datap. Controlp.

 Original SDC Hard SDC Hard [M] DUE Hard DUE Hard [M] Full Hard Full Hard [M]

A
V

F
 (

%
)

DUE SDC Detected

Unhardened

Fig. 6 Fault effects distribution for faults injected into the pipeline registers and classified
as datapath (Datap.) or controlpath (Controlp.).

All hardening techniques positively affect the reduction of SDCs in the
datapath and controlpath, especially the techniques aimed at reducing SDCs
and Full Hard. In the datapath, SDCs occur when a fault propagates to data
registers. In the controlpath, SDCs occur mainly when a fault alters the in-
struction’s operation, producing an incorrect value that propagates in the pro-

20 Marcio M. Goncalves1 et al.

gram code. In these cases, the faults are detected by our proposed hardening
techniques.

7 Design Space Exploration

We used the AVF metric to measure and discuss the fault detection capabili-
ties of the proposed software-based hardening techniques in the registers from
the pipeline and the register files. The AVF is a useful metric for estimating
the probability of failures in the presence of faults for each GPU configura-
tion and the impact of our proposed techniques in reducing this value. On the
other hand, the AVF metric fails to account for other essential metrics, such
as performance and the number of sensitive bits (i.e., area). Therefore, it is
difficult to measure the reliability impact of using different GPU configura-
tions since it directly affects the GPU’s performance and area. For example,
a 32-core configuration executes the generic application faster than an 8-core
configuration, thus increasing reliability but also having more sensitive bits,
thus reducing reliability. On top of that, our proposed hardening techniques
impact different core configuration performances in different ways.

To account for AVF, performance, and area, we herein adopt a second
reliability metric called Mean Workload to Failure (MWTF) [39], defined in
Eq. 1. A larger MWTF means that more workload can be completed before the
system fails. MWTF considers the AVF to a given effect (SDC, DUE, or both),
workload execution time (i.e., application’s runtime), and the raw error rate
(i.e., GPU configuration’s raw number of sensitive bits). Because the raw error
rate also depends on the circuit technology and environmental conditions, we
normalize MWTF over the 8-core configuration running original applications.
The normalization process is performed by dividing, for each application, the
MWTF of all implemented versions by the MWTF of the unhardened original
version running on the 8-core GPU configuration. By doing so, we consider
that all configurations are running on the same technology and environmental
conditions. Therefore, we remove these factors from the equation, reducing the
raw error rate to the number of available registers in each GPU configuration.

MWTF = (error rate× AVF × runtime)−1 (1)

Fig. 7 shows the normalized MWTF, where Figs. 7(a), 7(b), and 7(c) con-
sider as AVF the SDC, DUE, and both effects, respectively. Note that the
VectorSum application does not have a Traceback optimization version be-
cause it has no control-flow instructions. Thus, it only has a Full Hard and
Full Hard [M] hardened versions, which are equivalent to the SDC Hard and
SDC Hard [M] versions, respectively.

The Mean Workload to SDC Failure results (Fig. 7(a)) show that the use of
hardening techniques improves MWTF in all applications, especially the tech-
niques optimized for reducing SDCs. The main reason for this improvement
is that techniques can reduce SDC effects in both the register files and the
pipeline, thus drastically reducing AVF and improving the MWTF up to 348

Title Suppressed Due to Excessive Length 21

 FFT Matrix VectorSum Sort

M
W

T
F

8 cores 16 cores 32 cores

101

100

102

103

(a) Mean Work to SDC Failure

 FFT Matrix VectorSum Sort

M
W

T
F

8 cores 16 cores 32 cores

101

102

103

100

10-1

(b) Mean Work to DUE Failure

 FFT Matrix VectorSum Sort

M
W

T
F

8 cores 16 cores 32 cores

101

102

103

100

(c) Mean Work to Failure

Fig. 7 MWTF normalized over original 8-core configuration. (a) Mean Work to SDC Fail-
ure. (b) Mean Work to DUE Failure. (c) Mean Work to Failure.

times. In most cases, the increase in the number of cores improves the MWTF,
indicating that the execution time is quite relevant. This trend can also be seen
in the FFT application running on the 32-core configuration, where the Full
Hard [M] presented a better MWTF than the Full Hard, even though it is
less effective in reducing errors. In other cases (Matrix with Full Hard and
VectorSum with SDC Hard), reducing sensitive bits by reducing cores is the
best option.

The Mean Workload to DUE Failure results (Fig. 7(b)) show that the pro-
posed techniques for reducing DUEs improve MWTF by 140 times, on average.
On the other hand, SDC Hard and SDC Hard [M] make the applications more
sensitive to DUE errors. This trend happens mainly because these hardening
techniques do not target DUE effects, and thus their additional instructions
increase execution time and sensitivity to DUE effects without helping de-
tect them. An increased execution time makes the pipeline more sensitive to
DUE effects due to the additional assembly instructions executed by the GPU.
When analyzing the impact of implemented techniques, we can see that the

22 Marcio M. Goncalves1 et al.

results vary from application to application. For example, for the FFT, the
DUE Hard with the 32-core configuration is the best option. In contrast, for
the Matrix, the DUE Hard application running on the 8-core configuration
provided better improvement in MWTF. Note that, for all applications, DUE
Hard is even more efficient than the Full Hard. This result shows that increas-
ing the number of assembly instructions also increases DUE effects, indicating
the high potential advantages of selective protection.

The Mean Workload to Failure results (Fig. 7(c)) show that software-based
hardening techniques improve MWTF, achieving up to 106 times improvement
for the 8-core configuration on the Matrix application. As with selective pro-
tection of DUEs or SDCs, the ideal core configuration setting depends on the
application. These results show that MWTF is an interesting metric, espe-
cially for applications that need to calculate large workloads and take a long
time to complete their tasks. For these cases, the results show that the best
fault tolerance technique should consider an optimized balance between its ef-
fectiveness in reducing errors, execution time, sensitive bits, and AVF. In this
scenario, configurable GPUs can be a good option.

8 Conclusions and Future Work

This work evaluated low-level software-based fault tolerance techniques de-
signed to detect SEU effects in configurable GPU architectures. We adapted
and implemented state-of-the-art software-based fault tolerance techniques
through low-level assembly code transformations and proposed three optimiza-
tions to improve the performance of the hardened case-study applications at
costs in reliability, fault detection for specific effects, and host notification time.
These novel technique optimizations, called Traceback, Move, and Delayed No-
tification, were automatically applied to selectively protect three groups of
instructions: memory access instructions, predicate setting instructions, and
all instructions. To measure the impact of the techniques and optimizations
on the configurable GPU, we ran four case-study applications on three GPU
configurations. Moreover, we investigated the sensitivity of register files and
pipeline registers to radiation-induced faults. A fault injection campaign was
performed through simulation at RTL with over 1.4 million faults injected to
evaluate the GPGPU’s susceptibility to SEUs.

We measured error rate, AVF, and runtime for 216 scenarios, varying hard-
ening techniques, optimizations, core configurations, and case-study applica-
tions to explore the design space for hardening the FlexGripPlus configurable
GPU architecture. We then presented these data with the MWTF metric,
which factors measured data and normalizes them over each original unhard-
ened application running on the 8-core GPU configuration. Our comprehensive
design space exploration shows that when equality factoring error rate, AVF,
and runtime, the most reliable GPU architecture configuration is not intu-
itive. Instead, a balance between error reduction, execution time, raw error
rate, and AVF must be considered to optimize the GPU architecture to a

Title Suppressed Due to Excessive Length 23

given application, environment, or device. Finally, we conclude that navigat-
ing the reliability design space is mandatory to improve hardened application
efficiency, as simply applying the most expensive software-based technique to
the largest available hardware does not guarantee the best reliability.

In the near future, we will address the Traceback optimization and how to
create an algorithm for choosing the most effective instructions to harden for
a given fault effect. We also intend to develop hardware-based fault tolerance
techniques and add them to our design space exploration. Besides, we will
consider other reliability metrics. Even though we believe that MWTF is an
interesting metric, some designers might favor a variable (e.g., AVF over run-
time), thus changing the design space. Finally, we will extend our evaluation
to larger more complex applications.

Acknowledgments

This work has been partially supported by the European Commission through
the Horizon 2020 RESCUE-ETN project under grant 722325, Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) - Finance Code 001,
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), and
Fundação de Amparo à pesquisa do Estado do RS (FAPERGS).

References

1. Chernikova A, Oprea A, Nita-Rotaru C, Kim B (2019) Are self-driving cars
secure? evasion attacks against deep neural networks for steering angle
prediction. In: 2019 IEEE Security and Privacy Workshops (SPW), pp
132–137, DOI 10.1109/SPW.2019.00033

2. Hassani R, Aiatullah M, Luksch P (2014) Improving HPC applica-
tion performance in public cloud. IERI Procedia 10:169–176, DOI
https://doi.org/10.1016/j.ieri.2014.09.072

3. Hakobyan G, Yang B (2019) High-performance automotive radar: A re-
view of signal processing algorithms and modulation schemes. IEEE Signal
Processing Magazine 36(5):32–44, DOI 10.1109/MSP.2019.2911722

4. Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P,
Jackel LD, Monfort M, Muller U, Zhang J, et al. (2016) End to end learning
for self-driving cars. arXiv preprint arXiv:160407316

5. JEDEC (2006) Measurement and reporting of alpha particle and
terrestrial cosmic ray induced soft errors in semiconductor de-
vices. https://www.jedec.org/standards-documents/docs/jesd-89a, ac-
cessed: 2021-09-19

6. Oliveira DA, Rech P, Quinn HM, Fairbanks TD, Monroe L, Michalak SE,
Anderson-Cook C, Navaux PO, Carro L (2014) Modern GPUs radiation
sensitivity evaluation and mitigation through duplication with compari-
son. IEEE Transactions on Nuclear Science 61(6):3115–3122

24 Marcio M. Goncalves1 et al.

7. Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Reorda MS, Carro
L (2014) Software-based hardening strategies for neutron sensitive FFT
algorithms on GPUs. IEEE Transactions on Nuclear Science 61(4):1874–
1880

8. Slayman C (2010) Soft errors—past history and recent discoveries. In:
IEEE International Integrated Reliability Workshop Final Report, pp 25–
30

9. Dixit A, Wood A (2011) The impact of new technology on soft error rates.
In: International Reliability Physics Symposium, pp 1–7

10. Azambuja JR, Nazar G, Rech P, Carro L, Kastensmidt FL, Fairbanks
T, Quinn H (2013) Evaluating neutron induced see in SRAM-based
FPGA protected by hardware- and software-based fault tolerant tech-
niques. IEEE Transactions on Nuclear Science 60(6):4243–4250, DOI
10.1109/TNS.2013.2288305

11. Tiwari D, Gupta S, Rogers J, Maxwell D, Rech P, Vazhkudai S, Oliveira
D, Londo D, DeBardeleben N, Navaux P, Carro L, Bland A (2015) Un-
derstanding GPU errors on large-scale HPC systems and the implications
for system design and operation. In: 2015 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp 331–342, DOI
10.1109/HPCA.2015.7056044

12. Hari SKS, Tsai T, Stephenson M, Keckler SW, Emer J (2017) SASSIFI: An
architecture-level fault injection tool for GPU application resilience eval-
uation. In: 2017 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp 249–258

13. Gonçalves M, Saquetti M, Kastensmidt F, Azambuja JR (2017) A low-
level software-based fault tolerance approach to detect SEUs in GPUs’
register files. Microelectronics Reliability 76:665–669

14. Gonçalves M, Saquetti M, Azambuja JR (2018) Evaluating the reliabil-
ity of a GPU pipeline to SEU and the impacts of software-based and
hardware-based fault tolerance techniques. Microelectronics Reliability
88:931–935

15. Mahmoud A, Hari SKS, Sullivan MB, Tsai T, Keckler SW (2018) Op-
timizing software-directed instruction replication for gpu error detection.
In: SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis, IEEE, pp 842–853

16. Rhod EL, Lisbôa CAL, Carro L, Sonza Reorda M, Violante M (2008)
Hardware and software transparency in the protection of programs against
SEUs and SETs. Journal of Electronic Testing 24(1-3):45–56

17. Condia JER, Du B, Sonza Reorda M, Sterpone L (2020) Flexgripplus: An
improved GPGPU model to support reliability analysis. Microelectronics
Reliability 109:113660, DOI 10.1016/j.microrel.2020.113660

18. Kadi MA, Janssen B, Yudi J, Huebner M (2018) General-purpose com-
puting with soft GPUs on FPGAs. ACM Transactions on Reconfigurable
Technology and Systems 11(1), DOI 10.1145/3173548

19. Goncalves MM, Azambuja JR, Condia JER, Sonza Reorda M, Sterpone
L (2020) Evaluating software-based hardening techniques for general-

Title Suppressed Due to Excessive Length 25

purpose registers on a GPGPU. In: 2020 IEEE Latin-American Test Sym-
posium (LATS), IEEE, pp 1–6

20. Dimitrov M, Mantor M, Zhou H (2009) Understanding software ap-
proaches for GPGPU reliability. In: Proceedings of 2Nd Workshop on
General Purpose Processing on Graphics Processing Units, ACM, New
York, NY, USA, GPGPU-2, pp 94–104, DOI 10.1145/1513895.1513907

21. Wadden J, Lyashevsky A, Gurumurthi S, Sridharan V, Skadron K
(2014) Real-world design and evaluation of compiler-managed GPU
redundant multithreading. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pp 73–84, DOI
10.1109/ISCA.2014.6853227

22. Rech P, Aguiar C, Frost C, Carro L (2013) An efficient and experimen-
tally tuned software-based hardening strategy for matrix multiplication
on GPUs. IEEE Transactions on Nuclear Science 60(4):2797–2804

23. Braun C, Halder S, Wunderlich HJ (2014) A-abft: Autonomous algorithm-
based fault tolerance for matrix multiplications on graphics processing
units. In: 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, IEEE, pp 443–454

24. Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Reorda MS, Carro
L (2014) Software-based hardening strategies for neutron sensitive FFT
algorithms on GPUs. IEEE Transactions on Nuclear Science 61(4):1874–
1880

25. Sullivan MB, Hari SKS, Zimmer B, Tsai T, Keckler SW (2018) Swap-
codes: Error codes for hardware-software cooperative gpu pipeline error
detection. In: 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), IEEE, pp 762–774

26. Gonçalves M, Condia JR, Reorda MS, Sterpone L, Azambuja J
(2020) Improving GPU register file reliability with a comprehen-
sive ISA extension. Microelectronics Reliability 114:113768, DOI
10.1016/j.microrel.2020.113768

27. Goncalves MM, Lamb IP, Rech P, Brum RM, Azambuja JR (2020) Im-
proving selective fault tolerance in gpu register files by relaxing application
accuracy. IEEE Transactions on Nuclear Science 67(7):1573–1580, DOI
10.1109/TNS.2020.2982162

28. Gupta M, Lowell D, Kalamatianos J, Raasch S, Sridharan V, Tullsen D,
Gupta R (2017) Compiler techniques to reduce the synchronization over-
head of gpu redundant multithreading. In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), IEEE, pp 1–6

29. Sundaram A, Aakel A, Lockhart D, Thaker D, Franklin D (2008) Efficient
fault tolerance in multi-media applications through selective instruction
replication. In: Proceedings of the 2008 workshop on Radiation effects
and fault tolerance in nanometer technologies, pp 339–346

30. Kalra C, Previlon F, Rubin N, Kaeli D (2020) Armorall: Compiler-based
resilience targeting gpu applications. ACM Transactions on Architecture
and Code Optimization (TACO) 17(2):1–24

26 Marcio M. Goncalves1 et al.

31. Goncalves M, Fernandes F, Lamb I, Rech P, Azambuja JR (2019) Selec-
tive fault tolerance for register files of graphics processing units. IEEE
Transactions on Nuclear Science 66(7):1449–1456

32. dos Santos FF, Brandalero M, Basso PM, Hubner M, Carro L, Rech P
(2020) Reduced-precision dwc for mixed-precision GPUs. In: 2020 IEEE
26th International Symposium on On-Line Testing and Robust System
Design (IOLTS), IEEE, pp 1–6

33. Andryc K, Merchant M, Tessier R (2013) Flexgrip: A soft GPGPU for
FPGAs. In: 2013 International Conference on Field-Programmable Tech-
nology (FPT), pp 230–237, DOI 10.1109/FPT.2013.6718358

34. Lindholm E, Nickolls J, Oberman S, Montrym J (2008) Nvidia tesla: A
unified graphics and computing architecture. IEEE Micro 28(2):39–55

35. Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by duplicated
instructions in super-scalar processors. IEEE Transactions on Reliability
51(1):63–75

36. Azambuja JR, Lapolli A, Rosa L, Kastensmidt FL (2011) Detecting sees
in microprocessors through a non-intrusive hybrid technique. IEEE Trans-
actions on Nuclear Science 58(3):993–1000

37. Mukherjee SS, Weaver C, Emer J, Reinhardt SK, Austin T (2003) A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor. In: Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., pp 29–40, DOI 10.1109/MICRO.2003.1253181

38. Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statistical fault
injection: Quantified error and confidence. In: 2009 Design, Automation
and Test in Europe, IEEE, pp 502–506, DOI 10.1109/DATE.2009.5090716

39. Reis GA, Chang J, Vachharajani N, Mukherjee SS, Rangan R, August
DI (2005) Design and evaluation of hybrid fault-detection systems. In:
32nd International Symposium on Computer Architecture (ISCA’05), pp
148–159, DOI 10.1109/ISCA.2005.21

