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New power-law tailed distributions emerging in κ-statistics

G. Kaniadakis∗

Department of Applied Science and Technology, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

(Dated: March 3, 2022)

Over the last two decades, it has been argued that the Lorentz transformation mechanism, which
imposes the generalization of Newton’s classical mechanics into Einstein’s special relativity, implies
a generalization, or deformation, of the ordinary statistical mechanics. The exponential function,
which defines the Boltzmann’s factor, emerges properly deformed within this formalism. Starting
from this, so-called κ-deformed exponential function, we introduce new classes of statistical distribu-
tions emerging as the κ-deformed version of already known distribution as the Generalized Gamma,
Weibull, Logistic which can be adopted in the analysis of statistical data that exhibit power-law
tails.

PACS numbers: 02.50.-r, 02.50.Cw, 12.40.Ee

I. INTRODUCTION

There is a vast phenomenology related to experimen-
tal statistical distributions with a bulk described by well
known theoretical exponential models, in the following
called classical models, like the Generalized Gamma dis-
tribution, the Weibull distribution, the Logistic distribu-
tion etc, while it seems that their tails are gradually sub-
stituted by fat, not exponential tails following Pareto’s
law p(x) = Ax−b, [1] (and references therein). This
anomaly regards not only physical systems but also other
natural or artificial systems.

Let us focus on a specific classical model as for instance
the Generalized Gamma distribution though discussion
can be extended also to Weibull and Logistic models. It
is important to emphasize that the Gamma model and
the Pareto model refer to two distinct spectral regions,
namely the lower and the upper region of the spectrum
respectively. This dichotomy gives rise to the question
about whether the two distributions are actually two ap-
proximations, in the low and in the high spectral regions
respectively, of a unique theoretical distribution, which
hold over in the whole spectrum. A further question that
arises spontaneously is whether there exists a simple and
transparent underlying mechanism, based on first princi-
ple, that generates this unique distribution.

With reference to physical systems, the metaphor of
relativistic physics is of great help in the search for the
mechanism that generates a statistical distribution hold-
ing at both low and high energies. It should be re-
called that the laws of relativistic physics and the in-
volved physical quantities emerge as generalizations of
the corresponding ones of classical physics. For instance,
the dimensionless relativistic kinetic energy is given by

Eκ =
(√

1 + κ2q2 − 1
)
/κ2, where q is the dimensionless

momentum and κ is the reciprocal of the light speed,
written in dimensionless form. This relativistic expres-
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sion of kinetic energy can be viewed as a generalization
or deformation of classical kinetic energy through the de-
formation parameter 0 < κ < 1. In the classical limit,
corresponding to q → 0, or alternatively to κ → 0, the
classical expression of kinetic energy E0 ≈ q2/2 is ob-
tained while in the ultra relativistic limit, corresponding
to q → +∞, Eκ ≈ q/κ is obtained. When one moves from
classical to relativistic physics, not only the expressions
of the various physical quantities (momentum, velocity,
total energy, force etc) but also all the mathematical
tools of the theory (relativistic additivity law of veloc-
ities, momenta additivity law, Lorentz invariant integral,
relativistic derivative etc) emerge properly generalized or
deformed. This κ-deformed mathematical formalism of
special relativity necessarily leads to a proper deforma-
tion of all the mathematical functions and in particular
of the exponential function which expression follows di-
rectly from the energy-momentum Lorentz transforma-
tions [2] and assumes the form

expκ(x) =
(√

1 + κ2x2 + κx
)1/κ

. (1.1)

This κ-deformed exponential, or simply κ−exponential
is defined over the whole real axis, and its most in-
teresting feature is undoubtedly given by its asymp-
totic behaviour. In the low energy limit, obtained
when q → 0 or equivalently when κ → 0, the κ-
exponential reduces to the Euler ordinary exponential i.e.
expκ(x) ≈

x→0
exp (x). On the other hand, in the high

energy limit, the κ-exponential exhibits power-law tails
described by Pareto’s law i.e. expκ(x) ≈

x→±∞
|2κx|±1/κ.

The κ-exponential represents a very useful and power-
ful tool to formulate a generalized statistical theory capa-
ble to treat systems described by distribution functions
exhibiting power-law tails [2–4]. Generalized statistical
mechanics, based on κ-exponential, preserves the main
features of the Boltzmann-Gibbs statistical mechanics
based on the ordinary exponential through the Boltz-
mann factor.

Over the last two decades, the κ-statistical theory has
attracted the interest of many researchers, who have
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studied its foundations [5–10], and the underlying ther-
modynamics [11–15], and at the same time, have consid-
ered specific applications of the theory to various fields
of science. A nonexhaustive list of applications includes,
among others, those in quantum statistics [16–18], in
quantum theory [19–21], in plasma physics [22–28], in
nuclear fission [29, 30], in particle physics [31], in as-
trophysics [32–36], in cosmology [37–43], in geomechan-
ics [44, 45], in genomics [46, 47], in complex networks
[48, 49], in waveform inversion algorithms [50], in image
processing [51], in machine learning [52], in seismology
[53], in economy [54–56] and in finance [57–60].

Main goal of the present effort is the proposal of five
classes of statistical distribution with support x > 0
(but easily generalized to the case x ∈ R) presenting
power-law tails, starting from the above mentioned κ-
exponential function. For all these distributions their
momenta of any order are obtained in closed forms so
that various properties like the mean, the variance, the
coefficient of variation, the skewness and the kurtosis can
be evaluated easily.

Table 1 shows the correspondence between the pro-
posed distributions and their already known ordinary
counterparts (if applicable), obtained in the classical
κ→ 0 limit.

TABLE I: Correspondence between the here proposed
distributions and their already known ordinary counterpart

Name Corresponding known distribution

Type I Generalized Gamma distribution

Type II Weibull distribution

Type III Generalized Logistic distribution

Type IV not defined

Type V Exponential distribution

The present approach can be easily extended in order
to include the κ-deformed versions of all the statistical
distributions, already known in the literature, involving
the ordinary exponential function.

II. DISTRIBUTION FUNCTIONS OF TYPE I

Let us consider the cdf Pκ(x) defined for x ≥ 0,
through

Pκ(x) =

∫ x
0
h(t) expκ[−f(t)] dt∫∞

0
h(t) expκ[−f(t)] dt

, (2.2)

where the functions g(x) and f(x) are given by

f(x) = βxα , (2.3)

h(x) = xαν−1 , (2.4)

with α > 0, β > 0 and 0 < ν < 1/κ. Pκ(x) is a
non-decreasing function of x taking values in the interval
[0, 1].

After performing the integration in the denominator
appearing in Eq. (2.2), the cdf assumes the form

Pκ(x) = Nκ

∫ x

0

zαν−1 expκ(−βzα) dz , (2.5)

where the normalization constant [61] is given by

Nκ = (1 + κ ν) (2κ)ν
Γ
(

1
2κ + ν

2

)
Γ
(

1
2κ −

ν
2

) αβ ν

Γ(ν)
. (2.6)

The pdf defined by means of pκ(x) = dPκ(x)
dx , i.e.

pκ (x) = Nκ x
αν−1 expκ(−βxα) , (2.7)

represents the κ-deformed version of the General-
ized Gamma pdf and in the κ → 0 limit reduces
to the ordinary Generalized Gamma pdf p(x) =
|α| β ν
Γ(ν) xαν−1 exp(−βxα).

Asymptotically the pdf pκ(x), behaves according to

pκ(x) ∼
x→0+

Nκ xαν−1 . (2.8)

pκ(x) ∼
x→+∞

(2κβ)−1/κ Nκ x
αν−1−α/κ . (2.9)

For 0 < ν < 1
α < 1

κ , pκ(x) decreases monotonically
from the pκ(0+) = +∞ value to the pκ(+∞) = 0+ value,
and therefore behaves qualitatively like the Pareto dis-
tribution. The main difference, with respect the Pareto
distribution, is that pκ(x) has a unitary norm over the

entire non-negative real axis i.e.
∫ +∞

0
p(x)dx = 1. For

0 < ν = 1
α <

1
κ , pκ(x) decreases monotonically from the

pκ(0+) = Nκ value to the pκ(+∞) = 0+ value. Finally,
for 0 < 1

α < ν < 1
κ , pκ(x) starts by the zero value and in

xmode = β−1/α

(
ν − 1

α

) 1
α

[
1− κ2

(
ν − 1

α

)2
]− 1

2α

,(2.10)

presents its maximum value and after decreases mono-
tonically to the pκ(+∞) = 0+ value.

The moment of order m of the pdf pκ(x), defined by

means of < xm >=
∫ +∞

0
xm pκ(x) dx, has a finite value

if 0 < ν + m/α < 1/κ, and can be expressed in closed
form, in terms of the Euler Γ(x) function [61], through

< xm >=β−m/α
(1 + κν) (2κ)−m/α

1 + κ
(
ν + m

α

) Γ
(
ν + m

α

)
Γ (ν)

×
Γ
(

1
2κ + ν

2

)
Γ
(

1
2κ −

ν
2

) Γ
(

1
2κ −

ν
2 −

m
2α

)
Γ
(

1
2κ + ν

2 + m
2α

) . (2.11)

In Table 2 are reported the correspondences of some
special cases of pdf defined in Eq. (8.87) with their clas-
sical counterpart.
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TABLE II: Special cases of the distribution of type I and
their correspondences with already known distributions
which recover in the κ→ 0 limit

Name Corresponding known distribution

Type I1 Exponential (α = 1, ν = 1)

Type I2 Erlang (α = 1, ν =integer)

Type I3 Gamma (α = 1)

Type I4 Chi-Squared (α = 1, ν = half integer)

Type I5 Nakagami (α = 2) ν > 0)

Type I6 Rayleigh (α = 2, ν = 1)

Type I7 Chi (α = 2, ν = half integer)

Type I8 Maxwell (α = 2, ν = 3/2)

Type I9 Half-Normal (α = 2, ν = 1/2)

Type I10 Weibull (α > 0, ν = 1)

Type I11 Stretched Exponential (α > 0, ν = 1/α)

A. The distribution of Type I1

The special case of the distribution of Type I corre-
sponding α = ν = 1 defines the distribution of Type I1.
In this case the integral in the expression of cdf can be
computed easily so that the pdf pκ(x) and the cdf Pκ(x)
assume the following simple form

pκ(x) = (1− κ2)β expκ(−β x) , (2.12)

Pκ(x) = 1−
(√

1 + κ2β2x2 + κ2βx
)

expκ(−βx) . (2.13)

and represent the κ-deformed version of the Exponential
distribution which recovers in the κ→ 0 limit.

The moment of order m of pκ(x) has a finite value if
0 < m+ 1 < 1/κ and is given by

< xm >=
1− κ2∏m+1

n=0 [1− (2n−m− 1)κ]

m!

βm
. (2.14)

The expectation value and variance of pκ(x) are given
by

< x >=
1

β

1− κ2

1− 4κ2
, (2.15)

σ2 =
1

β2

2(1− 4κ2)2 − (1− κ2)2(1− 9κ2)

(1− 4κ2)2(1− 9κ2)
. (2.16)

B. The distribution of Type I2

The most general subclass of distributions of Type I,
whose cdf can be obtaining in closed forms, in follow-
ing called distributions of Type I2, corresponds to the
choice α = 1 and ν = n =positive integer. These dis-
tributions emerges to be the κ-deformed version of the
ordinary Erlang distributions. The first element of the
family of distributions I2 is just the distribution I1. An

important property of distributions I2 is that the corre-
sponding survival functions Sκ(x) = 1 − Pκ(x) can be
expressed in closed form and therefore the rate equation
dSκ(x)/dx = −hκ(x)Sκ(x) permits to obtain in closed
form also the hazard functions hκ(x).

Hereafter we propose a procedure to compute Pκ(x) of
Type I2 starting from the related pκ(x) after posing, for
simplicity of the exposition, β = 1 i.e.

pκ(x) = Nκ x
n−1 expκ(−x) , (2.17)

n being a positive integer and

Nκ =
1

(n− 1)!

n∏
m=0

[1 + (2m− n)κ] . (2.18)

The Pκ(x) assumes the form

Pκ(x) = Nκ

∫ x

0

tn−1 expκ(−x) , (2.19)

and in order to perform the integral that appears in Eq.
(2.19), we introduce the ansatz

Pκ(x) = 1−
[
Rκ(x) +Qκ(x)

√
1 + κ2x2

]
expκ(−x) ,

(2.20)
where Rκ = Rκ(x) and Qκ = Qκ(x) are two unknown
functions that have to be determined. After substitution
of this ansatz in the left hand side of Eq. (2.19), and
after derivation of both sides of the equation, it obtains

A+B
√

1 + κ2x2 = 0 . (2.21)

with

A = (1 + κ2x2)
dQκ
dx

+ κ2xQκ −Rκ , (2.22)

B =
dRκ
dx
−Qκ +Nκx

n−1 . (2.23)

Eq. (2.21) holds for any value of the variable x, and
this is guaranteed if and only if A = 0 and B = 0. These
two conditions represent a system of two coupled first-
order differential equations for the unknown functions
Rκ and Qκ. After uncoupling this system it obtains that
the function Rκ obeys the following differential equation

(1 + κ2x2)
d2Rκ(x)

d x2
+ κ2x

dRκ(x)

d x
−Rκ(x)

+κ2 nNκ x
n + (n− 1)Nκ x

n−2 = 0 , (2.24)

while the function Qκ, follows from Rκ(x), through

Qκ(x) =
dRκ(x)

d x
+Nκ x

n−1 . (2.25)

Eq. (2.24) imposes that Rκ is a polynomial of degree n
i.e.

Rκ(x) = Nκ

n∑
m=0

cmx
m , (2.26)
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By direct substitution of the expression of Rκ, in Eq.
(2.24), it obtains that the coefficients cm = cm(κ), of
the three highest degree terms of the polynomial Rκ are
given by

cn =
nκ2

1− n2κ2
, (2.27)

cn−1 = 0 , (2.28)

cn−2 =
n− 1

(1− n2κ2) [1− (n− 2)2κ2]
, (2.29)

while the coefficients of order m with 0 ≤ m ≤ n− 3 can
be calculated by means of the recursive formula

cm =
(m+ 1)(m+ 2)

1−m2κ2
cm+2 . (2.30)

After taking into account Eqs. (2.25) and (2.26) it
follows that Qκ is a polynomial of degree n− 1, given by

Qκ(x) = Nκ

n−3∑
m=0

(m+ 1) cm+1 x
m +

Nκ
1− n2κ2

xn−1 .

(2.31)
The above described procedure can be used to deter-

mine the family of distributions cdf of Type I2 defined
through Eq. (2.20). The first member of the family as
previously mentioned is just the distribution of Type I1

already discussed. Hereafter are reported the pdf and cdf
related to the second and third member of the family:

Second member of the family (n = 2)

pκ(x)= (1− 4κ2)x expκ(−x), (2.32)

Pκ(x)= 1−
(
2κ2x2+1+x

√
1 + κ2x2

)
expκ(−x),(2.33)

Third member of the family (n = 3)

pκ(x)=
1

2
(1− κ2) (1− 9κ2)x2 expκ(−x), (2.34)

Pκ(x)= 1−
{

3

2
κ2(1− κ2)x3 + x

+

[
1+

1

2
(1−κ2)x2

]√
1 + κ2x2

}
expκ(−x).(2.35)

C. The distribution of Type I9

We recall that starting from a given cdf Pκ(x) with
support x ≥ 0, it is easy to introduce the corresponding
cdf Fκ(x) with support x ∈ R by means of Fκ(x) =
1
2 + 1

2
x
|x| Pκ(|x|).

Let us now consider the cdf Fκ(x) corresponding to
the cdf Pκ(x) of Type I9 i.e. the Half-Normal distri-
bution given by Eq. (2.5) with α = 2 and ν = 1/2).
Thi corrsponding cdf Fκ(x) with support x ∈ R called
κ-deformed Normal cdf, can be written in the form

Fκ (x) =
1

2
+

1

2
erfκ

(√
β x
)

, (2.36)

where

erfκ(x)=

(
1 +

1

2
κ

)√
2κ

Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ −

1
4

) 2√
π

∫ x

0

expκ(−t2) dt ,

(2.37)
is the κ-deformed Error function that represents a gen-
eralization of the ordinary Error function erf(x). The
related κ-deformed Normal pdf fκ (x) = dFκ (x)/dx is
an even function with support x ∈ R and is given by

fκ (x) =

√
2βκ

π

(
1 +

1

2
κ

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ −

1
4

) expκ(−β x2) .

(2.38)
The moments of fκ (x) of odd order are equal to zero.
The variance of fκ (x) has a finite value for κ < 2/3 and
assumes the form

σ2 =
1

β

2 + κ

2− κ
4κ

4− 9κ2

[
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ −

1
4

)]2

. (2.39)

III. DISTRIBUTION OF TYPE II

Let us consider the cdf Pκ(x) defined for x ≥ 0 and
given by Eq.(2.2). The positive function f(x) is given by
Eq.(2.3) while the positive function h(x) is postulated
now to have the following new form

h(x) =
f ′(x)√

1 + κ2 f(x)2
. (3.40)

Given the particular structure of the function h(x)
which explicit expression becomes

hκ(x) =
αβ xα−1√

1 + κ2β2x2α
, (3.41)

the two integrals in the formula defining the cdf Pκ(x),
can be performed easily so that Pκ(x) and the corre-
sponding pdf pκ(x), assume the simple forms

Pκ(x) = 1− expκ(−βxα) , (3.42)

pκ(x) = hκ(x) expκ(−β xα) . (3.43)

The latter distribution of Type II, represents the κ-
deformed version of the Weibull distribution, which re-
covers in the κ→ 0 limit.

Here after we focus on the expression of the survival or
reliability function Sκ(x) = 1−Pκ(x), of the present sta-
tistical model in order to better understand the meaning
of the function hκ(x). It follows that

Sκ(x) = expκ(−β xα), . (3.44)

and then

pκ(x) = hκ(x)Sκ(t). (3.45)

so that hκ(x) represents the hazard function of the model.
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The rate equation for the survival function assumes the
form of the first-order linear ordinary differential equa-
tion

dSκ(x)

dx
= −hκ(x)Sκ(x) , (3.46)

with Sκ(0) = 1. From the latter equation it follows that
Sκ(x) can be written in the form

Sκ(x) = e−Hκ(x) , (3.47)

where Hκ(x) is the cumulative hazard function Hκ(x),
defined by means of the integral Hκ(x) =

∫ x
0
hκ(u) du.

After performing the integration it obtain the following
explicit expression of the cumulative hazard function

Hκ(x) =
1

κ
arcsinh (κβ xα) , (3.48)

which in the κ→ 0 limits reduces to the standard Weibull
cumulative hazard function H(x) = β xα.

From Eqs. (3.44), (3.47) and (3.48) it follows the al-
ready known second representation of the κ-exponential
function i.e. expκ(x) = exp

(
1
κ (arcsinh(κx)

)
.

The moment of order m of pκ(x) [61], is given by

< xm >=
|2κβ|−m/α

1 + κmα

Γ
(

1
2κ −

m
2α

)
Γ
(

1
2κ + m

2α

) Γ
(

1 +
m

α

)
.(3.49)

Also Gκ = 1−
∫∞

0
[1−Pκ(x)]2dx/

∫∞
0

[1−Pκ(x)] dx i.e.
the Gini coefficient can be expressed in closed form

Gκ = 1− α+ κ

α+ 1
2κ

Γ
(

1
κ −

1
2α

)
Γ
(

1
κ + 1

2α

) Γ
(

1
2κ + 1

2α

)
Γ
(

1
2κ −

1
2α

) . (3.50)

The mode of the pdf is located at

xmode =β−1/α

(
α2 + 2κ2(α− 1)

2κ2(α2 − κ2)

)1/2α

×

(√
1 +

4κ2(α2 − κ2)(α− 1)2

[α2 + 2κ2(α− 1)]2
− 1

)1/2α

,(3.51)

if α > 1; for α = 1 the pdf is a monotonically decreasing
function pκ(0) = β; otherwise, the distribution is zero-
modal with a pole at the origin.

The quantile function, after inversion of the cdf given
by Eq. (3.42), is available in the following closed form

xκ(P ) = β−1/α

(
lnκ

1

1− P

)1/α

, (3.52)

with 0 ≤ P ≤ 1 and lnκ t = (tκ−t−κ)/2κ the κ-logarithm
function. Starting from the expression of the quantile
function and after posing P = 1/2, it obtains the median

of the distribution as xmed = β1/α (lnκ 2)
1/α

.
The asymptotic behavior of pκ(x), is defined by

pκ(x) ∼
x→+∞

α

κ
(2κβ)−1/κ x−1−α/κ , (3.53)

pκ(x) ∼
x→0+

αβ xα−1 . (3.54)

A. Distribution of Type II1

The cdf and the pdf given by Eqs. (3.42) and (3.43)
in the special case α = 1 represent a κ-deformation of
the ordinary exponential distribution. In this case the
moment of order m < 1/κ simplifies to

< xm >=
β−mm!∏m

n=0[1− (2n−m)κ]
. (3.55)

In particular the mean value and the variance of pκ(x)
assumes a very simple form and are given by

< x >=
1

β

1

1− κ2
; σ2 =

1

β2

1 + 2κ4

(1− 4κ2)(1− κ2)2
.(3.56)

The function Lκ(P ) =
∫ xκ(P )

0
t p(t) dt /

∫∞
0
t p(t) dt

defines the Lorenz curve which assumes the explicite form

Lκ(P ) = 1 +
1− κ

2κ
(1− P )1+κ − 1 + κ

2κ
(1− P )1−κ ,(3.57)

while the Gini coefficient simplifies to

Gκ =
2 + κ2

4− κ2
. (3.58)

B. Distribution of Type II2

Corresponds to α = 2 and defines the κ-deformed ver-
sion of Rayleigh distribution.

IV. DISTRIBUTION OF TYPE III

The cdf of the model of Type III is defined for x ≥ 0,
according to

Pκ(x)=

∫ x
0
h(t) expκ[−f(t)] dt∫ x

0
h(t) expκ[−f(t)] dt+λ

∫∞
x
h(t) expκ[−f(t)] dt

,

(4.59)
where λ > 0, while the functions f(x) and h(x) are the
same of the model of Type II and are given by Eq.(2.3)
and Eq. (3.41) respectively. It results that the model
of Type II, emerges to be a special case of the model of
Type III, corresponding to λ = 1 called also model of
Type III1 .

After performing the integrals in Eq. (4.59), the ob-
taining cdf and the corresponding pdf assume the forms

Pκ(x) =
1− expκ(−βxα)

1 + (λ− 1) expκ(−βxα)
, (4.60)

pκ(x) = λhκ(x)
expκ(−βxα)[

1 + (λ− 1) expκ(−βxα)
]2 ,(4.61)

while the survival function Sκ(x)=1−Pκ(x) is given by

Sκ(x) =
λ

expκ(βxα) + λ− 1
. (4.62)
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By direct comparison of Eq. (4.61) and Eq. (4.62) it
follows the relation linking pκ(x) and Sκ(x)

pκ(x) = hκ(x)Sκ(x)

(
1− λ− 1

λ
Sκ(x)

)
, (4.63)

and finally after recalling that pκ(x) = −dSκ(x)/dx the
evolution equation for the Sκ(x) assume the form

dSκ(x)

dx
= −hκ(x)Sκ(x)

(
1− λ− 1

λ
Sκ(x)

)
, (4.64)

with Sκ(0) = 1. The solution of this equation produces
just the expression of Sκ(x) as given by Eq. (4.62).

The cumulative hazard function Hκ(x) is the same of
the model of Type II and is given by Eq. (3.48). Af-
ter performing a variable change the rate equation (4.64)
semplifies to dSκ

dHκ
= −Sκ

(
1− λ−1

λ Sκ
)

with solution given

by Sκ = λ/
(
eHκ + λ− 1

)
. From this rate equation it

follows that also the κ-deformed model of Type III con-
tinuous to describe a population kinetics with a bosonic
(0 < λ < 1) or fermionic (λ > 1) character like in the
case of the ordinary undeformed model.

A. Distribution of Type III2

In the special case where λ = 2 and α = 1, the cdf
defined for x ≥ 0 reads

Pκ (x) =
1− expκ(−βx)

1 + expκ(−βx)
, (4.65)

and can be viewed as the κ-deformed version of the or-
dinary half-Logistic model which recover in the κ → 0
limit. The survival function as follows from Eq. (4.62),
is equal to two times the κ-deformed Fermi-Dirac func-
tion.

The κ-Logistic cdf defined for x ∈ R assume the form

Pκ (x) =
1

1 + expκ(−βx)
. (4.66)

V. DISTRIBUTIONS OF TYPE IV

After recalling the relationship expκ(−βxα) ≈
(2κβxα)−1/κ, with α > 0, holding for x → ∞, the fol-
lowing cdf of Type IV

Pκ(x) = (2κβ)1/κ xα/κ expκ(−βxα) , (5.67)

can be introduced. The related pdf assumes the form

pκ(x) =
α

κ
(2βκ)1/κ

(
1− κβ xα√

1 + κ2β2x2α

)
×x−1+α/κ expκ(−β xα) . (5.68)

It is noteworthy that the above distributions do not ad-
mit a classic counterpart because in the κ→ 0 limit, both
Pκ(x) and pκ(x) reduces to zero.

The asymptotic behavior of Pκ(x) is described by

Pκ(x) ∼
x→0+

(2κβ)1/κ xα/κ , (5.69)

Pκ(x) ∼
x→+∞

1− x−2α

4κ3β2
. (5.70)

The moment of order m < 2α, of pκ(x) [61], is given
by

< xm >=
(2κβ)−m/α

1 + κm/2α

Γ
(

1
κ + m

α

)
Γ
(
1− m

2α

)
Γ
(

1
κ + m

2α

) .(5.71)

VI. DISTRIBUTIONS OF TYPE V

Let us consider the derivative p(n)(x), of order n, of the
function p (x) = p(0)(x), in following called generatrix
function, and suppose that for 0 ≤ n ≤ N has the prop-
erties i) p(n)(0) is finite ii) the function p(n)(x)/p(n)(0)
is positive and monotonically decreasing in x > 0, iii)∫ +∞

0
p(n)(x) dx < +∞.

We postulate the following distributions of order n ≥ 1

P (n, x) = 1− p(n−1)(x)

p(n−1)(0)
; p (n, x) = − p(n)(x)

p(n−1)(0)
,(6.72)

where P (n, x) is the cdf and p (n, x) = dP (n,x)
dx the pdf.

The relationship∫ ∞
0

xm p (n, x) dx = −mp(n−2)(0)

p(n−1)(0)

∫ ∞
0

xm−1 p (n−1, x) dx ,

(6.73)
if iterated m times permits to obtain the moment of order
m of p (n, x), with 0 ≤ m ≤ n− 1, as follows∫ ∞

0

xm p (n, x) dx = (−1)mm!
p (n−1−m)(0)

p (n−1)(0)
. (6.74)

The procedure described here can be applied to any
distribution and can produce in some case new distribu-
tions. In the simplest case of the ordinary exponential
distribution this procedure does not produce new distri-
butions.

Here after, by applying this procedure, we introduce
the family of distributions of Type V, having as gener-
atrix function the pdf of Type I1. For x → ∞ the pdf
pκ(n, x) of Type V behave as pκ(n, x) ∝ x−n−

1
κ . In the

following we consider the fist three elements of the fam-
ily. The first element i.e. the distribution of order n = 1,
is just the already discussed distribution of Type II1.

The distributions of order n = 2 and n = 3, are new
and the related cumulative and probability density func-
tions are given by:

Pκ(2, x) = 1− expκ(−β x)√
1 + κ2β2x2

, (6.75)
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pκ(2, x) =

[
1

1 + κ2β2x2
+

κ2βx

(1 + κ2β2x2)3/2

]
×β expκ(−β x) , (6.76)

Pκ(3, x) = 1−
[

1

1 + κ2β2x2
+

κ2βx

(1 + κ2β2x2)3/2

]
× expκ(−β x) ,(6.77)

pκ(3, x) =

[
1− κ2

(1 + κ2β2x2)3/2
+

3κ2βx

(1 + κ2β2x2)2

+
3κ4β2x2

(1 + κ2β2x2)5/2

]
β expκ(−β x) . (6.78)

The mean value and the variance of the pdf of pκ(2, x)

are respectively < x >= 1
β and σ2 = 1

β2
1+κ2

1−κ2 . It

is remarkable that the mean value and the variance of
pκ(3, x) do not depend on the parameter κ and are the
same of the ordinary exponential function i.e. < x >=
1
β , σ2 = 1

β2 .

In the κ→ 0 limit it obtains P0(n, x) = 1− exp(−βx)
and p0(n, x) = β exp(−βx) holding for n ∈ N .

VII. DISTRIBUTIONS WITH α < 0

Let us consider the pdf of Type I, indicated here by
pκ(α, x), with α > 0. The related inverse pdf pinvκ (α, x),
is defined through pinvκ (α, x) |dx| = pκ(α, t) |dt|, where
t = 1/x and it is easy to verify that pinvκ (α, x) =
|pκ(−α, x)|. From this last relationship it follows that
the distribution of Type I can be considered also when
α < 0. Eqs. (2.5) and (8.87) continue to define the cdf
and the pdf respectively for any real not null α, as long
as the normalization constant Nκ given by Eq.(8.86) is
replaced by |Nκ|.

The same analysis can be applied also to the distri-
butions of Type II, III and IV. Alternatively it can be
observed that Eqs. (3.42), (4.60) and (5.67), defining
the three models respectively, in the case α < 0 define
the survival functions Sκ(x) of the models. The related
probability density functions− d

dxSκ(x), becomes | pκ(x) |
where the functions pκ(x) for the three models are given
by Eqs. (3.43), (4.61) and (5.68) respectively. The pa-
rameter α < 0 has the same meaning as in the case of
ordinary statistics.

[1] Kaniadakis G., European Physical J. B 70, 3-13 (2009)
[2] Kaniadakis G., Physical Review E 66, 056125 (2002).
[3] Kaniadakis G., Scarfone A.M., Sparavigna A., Wada T.,
[4] Kaniadakis G., Baldi M.M., Deisboeck T.S., et al., Sci

Rep 10, 19949 (2020).
[5] Silva R., Eur. Phys. J. B 54, 499 (2006).
[6] Naudts J., Physica A 316, 323 (2002).
[7] Topsoe F., Physica A 340, 11 (2004).
[8] Scarfone A.M., Entropy 15, 624 (2013).
[9] Souza N.T.C.M., Anselmo D.H.A.L., Silva R., et al,

Phys. Lett. A 378, 1691 (2014).
[10] da Silva J.L.E., da Silva G.B., Ramos R.V., Physics let-

ters A 384, 126175 (2020).
[11] Wada T., Physica A 2004, 340, 126 (2004).
[12] Scarfone A.M., Wada T., Progress of Theor. Phys. Suppl.

162, 45 (2006).
[13] Bento E.P., Viswanathan G.M., da Luz M.G.E., Silva R.,

Phys. Rev. E 91, 022105 (2015).
[14] Wada T., Matsuzoe H., Scarfone A.M., Entropy 17, 7213

(2015).
[15] Mehri-Dehnavi H., Mohammadzadeh H., Journal of

Physics A 53, 375009 (2020).
[16] Santos A.P. , Silva R., Alcaniz J.S., Anselmo D.H.A.L.,

Phys. Lett. A 375, 352 (2011).
[17] Ourabah K., Tribeche M., Phys. Rev. E 89, 062130

(2014).
[18] Lourek I., Tribeche M., Phys. Lett. A 381, 452 (2017).
[19] Ourabah K., Hamici-Bendimerad A.H., Tribeche M.,

Phys. Rev. E 92, 032114 (2015).
[20] Costa B.G., Gomez I.S., Portesi M., Journal of Mathe-

matical Physics 61, 082105 (2020).
[21] Andrade L.H.F., Vigelis R.F., Cavalcante C.C., Advances

in Mathematics of Commun. 14, 413-422 (2020).

[22] Lourek I., Tribeche M., Physica A 441, 215 (2016).
[23] Gougam L.A., Tribeche M., Physics of Plasmas 23,

014501, (2016).
[24] Chen H., Zhang S.X., Liu S.Q., Phys. Plasmas 24, 022125

(2017)
[25] Lopez R.A., Navarro R.E., Pons S.I., Araneda J.A.,

Physics of Plasmas 24, 102119 (2017).
[26] Saha A., Tamang J., Physics of Plasmas 24, 082101

(2017).
[27] Lourek I., Tribeche M., Physica A 517, 522-529 (2019).
[28] Khalid M., El-Tantawy S.A., Ata-ur-Rahman, Astro-

physics and Space Science 365, 75 (2020).
[29] Guedes G., Goncalves A.C., Palma D.A.P., Annals of

Nuclear Energy 110, 453 (2017).
[30] Guedesa G., Palma D.A.P., Annals of Nuclear Energy

151, 107914 (2021)
[31] Shen K.M., Journal of Physics G 46 105101 (2019).
[32] Carvalho J.C., Silva R., do Nascimento jr J.D., De

Medeiros J.R., Europhys. Lett. 84, 59001 (2008).
[33] Carvalho J.C., do Nascimento jr J.D., Silva R., De

Medeiros J.R., Astrophys. J. Lett. 696, L48 (2009).
[34] Carvalho J.C., Silva R., do Nascimento jr J.D., Soares

B.B., De Medeiros J.R., EPL 91, 69002 (2010).
[35] Cure M., Rial D.F., Christen A., Cassetti J., Astronomy

and Astrophysics 564, A85 (2014).
[36] Soares B.B., Barboza E.M., Abreu E.M.C., Neto J.A.,

Physica A 532 121590 (2019).
[37] Abreu E.M.C., Neto J.A., Barboza E.M., Nunes R.C.,

EPL 114, 55001 (2016).
[38] Abreu E.M.C., Neto J.A., Barboza E.M., Nunes R.C.,

Int. J. Mod. Phys. 32, 1750028 (2017).
[39] Chen H., Zhang S.X., Liu S.Q., Chinese Physics Letters

34, 075101 (2017).



8

[40] Abreu E.M.C., Neto J.A., et al, EPL 121, 45002 (2018).
[41] Abreu E.M.C., Neto J.A., Mendes A.C.R., de Paula

R.M., Chaos Solitons and Fractals 118, 307-310 (2019).
[42] Yang W.H., Xiong Y.Z., Chen H. Liu S.Q., Chinese

Physics B 29, 110401 (2020).
[43] Moradpour H., Ziaie A.H,, Zangeneh M.K., European

Physical Journal C 80, 732 (2020).
[44] Oreste P., Spagnoli G,, Geomechanics and Geoengineer-

ing 13, 139 (2018).
[45] Oreste P., Spagnoli G,, Geomechanics and Geoengineer-

ing 14, 148 (2019).
[46] Souza N.T.C.M., Anselmo D.H.A.L., Silva R., Vasconce-

los M.S., Mello V.D., EPL 108, 38004 (2014).
[47] Costa M.O., Silva R., Anselmo D.H.A.L., Silva J.R.P.,

Physical Review E 99, 022112 (2019).
[48] Macedo-Filho A., Moreira D.A., Silva R., da Silva L.R.,

Phys. Lett. A 377, 842 (2013).
[49] Stella M., Brede M., Physica A 407, 360-368 (2014).
[50] da Silva S.L.E.F., Carvalho P.T.C., de Araujo J.M.,

Corso G., Physical Review E 101, 053311 (2020).
[51] Lei B., Fan J.L., Soft Computing 24, 7305-7318 (2020)
[52] Passos L.A., Santana M.C., Moreira T., Papa J.P., IEEE

Int. Conf. on Neural Networks, Budapest, July 14-19
(2019).

[53] Hristopulos D.T., Petrakis M.P., Kaniadakis G., Phys.
Rev E 89, 052142 (2014)

[54] Clementi F., Gallegati M., Kaniadakis G., Empirical Eco-
nomics 39, 559-591 (2010).

[55] Modanese G., Phys. Lett. A 380, 29-32 (2016).
[56] Vallejos A., Ormazabal I., Borotto F.A., Astudillo H.F.,

Physica A 14, 819-829 (2019).
[57] Trivellato B. , Int. J. The. Appl. Fin. 15, 1250038 (2012).
[58] Trivellato B., Entropy 15, 3471 (2013).
[59] Tapiero O.J., Physica A 392, 3051 (2013).
[60] Moretto E., Pasquali S., Trivellato B., Eur. Phys. J. B

90, 179 (2017).
[61] See the appendix of the present paper.

VIII. APPENDIX

The present appendix contains the proofs of the formu-
las giving the Mellin transform of expκ(−x), the normal-
ization constant of the pdf of Type I, the moment of order
m of the pdf of Type I, the moment of order m of the
pdf of Type II and the moment of order m of the pdf of
Type IV. The present appendix appears as ”Supplemen-
tary Material” in the website of the journal Europhysics
Letters (EPL) together with the present paper.

A. Mellin transform of expκ(−x)

Here it is obtained the Mellin transform of the function
expκ(−x) = (

√
1 + κ2x2−κx)1/κ i.e. its moment of order

r − 1

Mκ(r) =

∫ ∞
0

xr−1 expκ(−x) dx . (8.79)

After performing a variable change through the trans-

formation w =
(√

1 + κ2x2 − κx
)2

from which it fol-

lows x = 1
2κw

− 1
2 (1 − w), dx = − 1

4κw
− 3

2 (1 + w) dw and

expκ(−x) = w
1
2κ .

The integration can be performed as follows

Mκ(r)=
1

4κ
(2κ)1−r

∫ 1

0

w
1
2κ−

r
2−1 (1− w)

r−1
(1 + w) dw

=
1

2
(2κ)−r

∫ 1

0

w
1
2κ−

r
2−1 (1− w)

r−1
dw

+
1

2
(2κ)−r

∫ 1

0

w
1
2κ−

r
2 (1− w)

r−1
dw

=
1

2
(2κ)−r B

(
1

2κ
− r

2
, r

)
+

1

2
(2κ)−r B

(
1

2κ
− r

2
+ 1 , r

)
=

1

2
(2κ)−r

Γ
(

1
2κ −

r
2

)
Γ (r)

Γ
(

1
2κ + r

2

)
+

1

2
(2κ)−r

Γ
(

1
2κ −

r
2 + 1

)
Γ (r)

Γ
(

1
2κ + r

2 + 1
)

=
1

2
(2κ)−r

(
1 +

1
2κ −

r
2

1
2κ + r

2

)
Γ
(

1
2κ −

r
2

)
Γ
(

1
2κ + r

2

) Γ (r) ,(8.80)

obtaining in this way the Mellin transform of expκ(−x)
in the form

Mκ(r) =
(2κ)−r

1 + κr

Γ
(

1
2κ −

r
2

)
Γ
(

1
2κ + r

2

) Γ (r) . (8.81)

holding for r < 1/κ. In the κ → 0 limit, after taking
into account the relationship Γ (z − c) /Γ (z + c) ≈ z−2c

holding in the Stirling approximation for z → ∞, it ob-
tains M0(r) = Γ(r).

B. Normalization constant of the the distribution
of Type I

The normalization constant Nκ appearing in the ex-
pression of the pdf

pκ (x) = Nκ x
αν−1 expκ(−βxα) , (8.82)

follows from the condition
∫∞

0
pκ(x) = 1 according to

1

Nκ
=

∫ ∞
0

xαν−1 expκ(−βxα) dx . (8.83)

After introducing the variable change through w =
βxα from which follows that x = β−

1
αw

1
α and dx =

α−1β−
1
αw

1
α−1 dw, the integral defining the normaliza-

tion constant becomes

1

Nκ
=

1

αβ ν

∫ ∞
0

wν−1 expκ(−w) dw (8.84)

=
1

αβ ν
Mκ(ν) . (8.85)
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After takining into account the expression of Mκ(ν) it
follows

Nκ = (1 + κ ν) (2κ)ν
Γ
(

1
2κ + ν

2

)
Γ
(

1
2κ −

ν
2

) αβ ν

Γ(ν)
, (8.86)

with ν < 1/κ.

C. Moment of the distribution of Type I

The moment of order m, < xm >=
∫∞

0
xm pκ(x) dx

for the pdf of Type I

pκ (x) = Nκ x
αν−1 expκ(−βxα) dx , (8.87)

is defined according to

< xm >= Nκ

∫ ∞
0

xm+αν−1 expκ(−βxα) . (8.88)

After introducing the variable change w = βxα, the mo-
ment assume form

< xm > = Nκ
1

αβ ν

∫ ∞
0

w
m
α +ν−1 expκ(−w) dw

= Nκ
1

αβ ν
Mκ

(
ν +

m

α

)
. (8.89)

Finally by taking into account the expressions of the
normalization constant Nκ and the Mellin transform
Mκ

(
ν + m

α

)
, obtained previously, the moment of order

m of pκ (x) assumes the form

< xm >= (2κβ)−
m
α

1 + κν

1 + κ
(
ν + m

α

) Γ
(

1
2κ + ν

2

)
Γ
(

1
2κ −

ν
2

)
×

Γ
(

1
2κ −

ν
2 −

m
2α

)
Γ
(

1
2κ + ν

2 + m
2α

) Γ
(
ν + m

α

)
Γ (ν)

, (8.90)

with ν +m/α < 1/κ.

D. Moment of the distribution of Type II

Let us observe that the pdf of Type II, can be written
as

pκ (x) = −dSκ (x)

d x
, (8.91)

where the survival function Sκ(x) dx has the expression

Sκ(x) = expκ(−β xα), . (8.92)

The moment of order m of pκ(x) dx can be written as

< xm > =

∫ ∞
0

xm pκ(x) dx

= −
∫ ∞

0

xm
dSκ(x)

dx
dx

= m

∫ ∞
0

xm−1 Sκ(x) dx , (8.93)

where in the last step an integration by part is performed.
After substitution of the expression of Sκ(x) dx in the

last integral and after making the variable change w =
βxα the moment of order m of the pdf pκ(x) dx becomes

< xm >=
m

αβm/α

∫ ∞
0

w
m
α −1 expκ(−w) dw (8.94)

=
m

αβm/α
Mκ

(m
α

)
. (8.95)

Finally by taking into account the expression of Mellin
transform of expκ(−x), the moment of pκ(x) assumes the
form

< xm >=
|2κβ|−mα
1 + κmα

Γ
(

1
2κ −

m
2α

)
Γ
(

1
2κ + m

2α

) Γ
(

1 +
m

α

)
,(8.96)

with m < α/κ.

E. Moment of the distribution of Type IV

Let us consider the moment of order m, defined
through the relationship < xm >=

∫∞
0
xm pκ(x) dx, of

the pdf

pκ(x) =
α

κ
(2βκ)

1
κ

(
1− κβ xα√

1 + κ2β2x2α

)
x
α
κ−1

× expκ(−β xα) .(8.97)

After substitution of the expression of pκ(x) in the
integral defining the moment and after performing the
variable change t = βxα it obtains

< xm >= 2
1
κ κ

1
κ−1 β−

m
α

∫ ∞
0

t
m
α + 1

κ−1

(
1− κ t√

1 + κ2t2

)
× expκ(−t) dt . (8.98)

A farther variable change is introduced at this point

through w =
(√

1 + κ2t2 − κt
)2

. From this transforma-

tion it obtains t = 1
2κw

− 1
2 (1 − w), dt = − 1

4κw
− 3

2 (1 +

w) dw,
√

1 + κ2t2 = 1
2w
− 1

2 (1 + w) and expκ(−t) = w
1
2κ .

Therefore the moment assumes the form

< xm >=
1

κ
(2κβ)−

m
α

∫ 1

0

w(1− m
2α )−1 (1− w)(

1
κ+m

α )−1
dw

=
1

κ
(2κβ)−

m
α B

(
1− m

2α
,

1

κ
+
m

α

)
=

1

κ
(2κβ)−

m
α

Γ
(

1
κ + m

α

)
Γ
(
1− m

2α

)
Γ
(
1 + 1

κ + m
2α

) . (8.99)

Taking into account the property Γ(1 + x) = xΓ(x),
the moment of pκ(x) can be written finally in the form

< xm >=
(2κβ)−

m
α

1 + κm
2α

Γ
(

1
κ + m

α

)
Γ
(
1− m

2α

)
Γ
(

1
κ + m

2α

) ,(8.100)

with m < 2α.


