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Abstract The Heisenberg-Pauli-Weyl (HPW) uncertainty inequality on Rn
says that

‖f‖2 ≤ Cα,β‖|x|αf‖
β

α+β
2 ‖(−∆)β/2f‖

α
α+β
2 .

Let H be a Hilbert space; we obtain inequalities of the form

‖f‖H ≤ Cα,β‖Tαf‖
β

α+β
H ‖Lβf‖

α
α+β
H

for a pair of positive self-adjoint operators T, L on H satisfying a “balance
condition” involving certain operator norms of their spectral projectors. This
extends a result of Ciatti, Ricci and Sundari [5] since our hypotheses allow
growth rates other than polynomial, e.g., exponential ones. As examples of
applications, we obtain HPW-type inequalities on Riemannian manifolds, Rie-
mannian symmetric spaces of non-compact type, homogeneous graphs and
unimodular Lie groups.

Keywords Uncertainty principle · Banach couples · Riemannian manifolds ·
Symmetric spaces · Graphs · Lie groups

1 Introduction

The uncertainty principle, which is a fundamental feature of quantum me-
chanical systems, can be considered from a mathematical point of view as a
“meta-theorem” in harmonic analysis, which can be summed up as: a non-zero
function and its Fourier transform cannot both be sharply localized.

This qualitative statement has large varieties of quantitative formulations,
extensions and generalizations (see [11] for a survey). Here we are interested
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in generalizations of one of the most common quantitative restatements of the
uncertainty principle, namely the Heisenberg-Pauli-Weyl (HPW) inequality:
for every α, β > 0 there exists Cα,β such that

‖f‖2 ≤ Cα,β‖|x|αf‖
β

α+β
2 ‖|ξ|β f̂‖

α
α+β
2

for all f ∈ L2(Rn). The inequality can also be rewritten as

‖f‖2 ≤ Cα,β‖|x|αf‖
β

α+β
2 ‖(−∆)β/2f‖

α
α+β
2

and in this form it is possible to discuss its validity in more general contexts
than Rn (e.g., in Riemannian manifolds, with |x| interpreted as the distance
from a fixed point and ∆ as the Laplace-Beltrami operator).

The work [5] goes in this direction, obtaining uncertainty inequalities in
“spaces with polynomial volume growth”: measure spaces (X,m) with a given
“distance-from-a-point” function ρ (which we can assume to be simply a non-
negative measurable function on X) such that the measure of the “balls”
(sublevel sets) Br = {ρ < r} is majorized by powers of the radius r:

m(Br) .

{
rq0 for r ≤ 1
rq∞ for r ≥ 1

for some q0, q∞ ∈ ]0,+∞[. In such a setting they obtain uncertainty inequali-
ties of the form

‖f‖2 ≤ Cα,β‖ραf‖
β

α+β
2 ‖Lβf‖

α
α+β
2

where L is any positive self-adjoint operator on L2(X,m) whose exponential
semigroup e−tL satisfies the following ultracontractivity condition:

‖e−tL‖1→∞ .

{
t−q0 for t ≤ 1
t−q∞ for t ≥ 1

(1)

(such a condition has been extensively studied; see, e.g., [6], [22] or [7]). The
proof in [5] gives also a “local uncertainty inequality” (from which the “global”
one is derived):

‖e−tLf‖2 ≤ Cαt−α‖ραf‖2 (2)

for t small and α < q0/2, or for t large and α < q/2 (where q = min{q0, q∞}).
A first question which arises from this work is if the “symmetry” of the

two factors in the HPW inequality, given in Rn by the Fourier transform, can
be recovered, at least partially, in this more general setting.

Another question is if the “polynomial growth” condition can be relaxed,
in order to include, e.g., spaces with exponential volume growth, and what
conditions must be satisfied in this case by the operator L.

The first problem is addressed specifically in [17], where a “companion”
inequality of (2) is proved, that is,

‖e−rρf‖2 ≤ Cαr−α‖Lαf‖2 (3)
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for r small and α < q∞/2, or for r large and α < q/2. In this estimate the
roles of the operator L and the operator “multiplication by ρ” are swapped.
The proof of (3) in [17] is formally different from that of (2), but the leading
ideas are the same.

This suggests that the operator “multiplication by ρ” can be substituted
with a generic positive self-adjoint operator T on L2(X,m) (it should also
be remarked that, by the spectral theorem, every self-adjoint operator can
in fact be thought as a multiplication operator on some L2 space). Let F
be the spectral measure associated to T and set Fr = F ([0, r[) for r ≥ 0.
Observing that, in the case of the multiplication operator Tf = ρf we have
m(Br) = ‖Fr‖∞→1, the volume growth condition can be rewritten as

‖Fr‖∞→1 .

{
rq0 for r ≤ 1
rq∞ for r ≥ 1,

(4)

and in this form it makes sense also for a generic T .
In fact, via the spectral theorem, also the condition (1) on the operator L

can be rephrased in terms of spectral projections:

‖Et‖1→∞ .

{
tq∞ for t ≤ 1
tq0 for t ≥ 1.

(5)

The same can be done for the conclusion, the local uncertainty inequality (and
its “companion”):

‖E1/tf‖2 ≤ Cαt−α‖Tαf‖2,
‖F1/rf‖2 ≤ Cαr−α‖Lαf‖2,

while the global inequality takes the form

‖f‖2 ≤ Cα,β‖Tαf‖
β

α+β
2 ‖Lβf‖

α
α+β
2 ,

which is undoubtedly more “symmetric”.
As they are written now, the uncertainty inequalities make sense not only

in L2 but also in a generic Hilbert space H. The problem is how to rephrase the
growth hypotheses on spectral measures, since they are in terms of L1 and L∞,
which are Banach spaces having a close relationship with each other (duality)
and with L2. A suitable generalization is given by the concept of Banach couple
(see [1]): a pair (X0, X1) of Banach spaces which are both (continuously)
contained in a (Hausdorff) topological vector space Z (so that we can also
consider the sum X0 + X1 and the intersection X0 ∩ X1 as subspaces of Z).
In fact, we will be interested in Banach couples which are regular (X0 ∩X1 is
dense in both Xi), reflexive (in a sense which will be specified later) and with
X0 = H. For instance, if we choose (L2, Lp) as Banach couple (for 1 ≤ p <∞),
then the growth hypotheses take the form of estimates on the norms ‖Et‖p→p′ ,
‖Fr‖p′→p (where 1/p + 1/p′ = 1), so that the original case is recovered for
p = 1. The case p =∞ can be considered too, by regularization of the couple
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(L2, L∞), i.e., by restricting to the couple (L2, L∞0 ), where L∞0 is the closure
of L2 ∩ L∞ in L∞.

We now come to the second question, about the possibility of relaxing the
growth conditions (4), (5) in order to include more general “volume growths”.
The first idea is that, as in the case of polynomial growth, the estimates on
spectral projections of L and T should “balance each other”, something like

‖E1/t‖V→V ∗‖Fηt‖V ∗→V . 1

for some η > 0 and all t (where V = X1 in the Banach couple). In fact, what
we require in the general case is that

‖Fr‖V ∗→V ≤ Φ(r) and ‖E1/t‖V→V ∗Φ(ηt) . 1

for some non-negative measurable function Φ on [0,+∞[ which satisfies the
admissibility hypothesis ∫ r

0

s−γΦ(s)
ds

s
. r−γΦ(r)

for some γ > 0 and all r > 0. This condition (which is similar to the “ho-
mogeneity property” considered in §VII.3 of [22]) is satisfied by polynomial
growth (Φ(r) = rd with d > γ) but also by faster growths (e.g., exponential).

In the following, local and global uncertainty inequalities are proved in this
general context. The result is then applied to Riemannian manifolds (with the
Riemannian distance and the Laplace-Beltrami operator), obtaining HPW in-
equalities on homogeneous simply connected manifolds with negative sectional
curvature, on Riemannian symmetric spaces of non-compact type and, by re-
stricting to the orthogonal complement of the kernel of the Laplacian, also on
compact manifolds. Finally, similar results are obtained in the context of ho-
mogeneous graphs (with the graph distance and the difference Laplacian) and
unimodular Lie groups (with Carnot-Carathéodory distances and left-invariant
sublaplacians).

2 Uncertainty inequalities

2.1 Preliminaries

From now on, all Banach spaces will be complex.
If V is a Banach space, let V ∗ denote the conjugate-dual of V , i.e., the

Banach space of continuous conjugate-linear functionals on V . If F : V →W is
a continuous linear map of Banach spaces, let F ∗ : W ∗ → V ∗ be the transpose
of F , defined by F ∗(φ) = φ◦F . It is easy to see that V ∗∗ is naturally isomorphic
to the linear bidual of V . Moreover, the Riesz representation theorem for
Hilbert spaces can be rephrased as follows: the map

H 3 v 7→ 〈v, ·〉H ∈ H∗
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is a natural isometric linear isomorphism between any Hilbert space H and
its conjugate-dual (where naturality means that the transpose F ∗ of a linear
map F between Hilbert spaces corresponds to the adjoint of F ).

A Banach couple1 is a pair (X0, X1) of Banach spaces which are both
continuously included in a (Hausdorff) topological vector space Z; in this case,
we can then form the intersection X0 ∩X1 and the sum X0 +X1 as subspaces
of Z, which are also Banach spaces with suitable norms2, so that the following
diagram of inclusions

X0 ∩X1
i0 //

i1

��

X0

j0

��
X1

j1 // X0 +X1

is both a pullback and a pushout (i.e., a so-called Doolittle diagram).
A Banach couple (X0, X1) is said to be regular if X0 ∩X1 is dense in both

X0, X1, or, equivalently, if both X0, X1 are dense in X0 +X1. In this case, all
the maps in the conjugate-dual Doolittle diagram

(X0 ∩X1)∗ oo i∗0

OO

i∗1

X∗0OO

j0

X∗1 oo j∗1 (X0 +X1)∗

are injective, so that, by identifying X∗0 , X
∗
1 with their images in (X0 ∩X1)∗,

we can think of (X∗0 , X
∗
1 ) as a Banach couple, with X∗0 + X∗1 = (X0 ∩ X1)∗,

X∗0 ∩X∗1 = (X0 +X1)∗.
The conjugate-dual (X∗0 , X

∗
1 ) of a regular Banach couple (X0, X1) need not

be regular: X∗0 ∩X∗1 is always weakly∗ dense in both X∗0 , X
∗
1 , but in general it

is not strongly dense (however, if Xi is reflexive, then X∗0∩X∗1 is strongly dense
in X∗i ). We can then consider the regularized conjugate-dual couple (X◦0 , X

◦
1 ),

where X◦i is the closure in Xi of X0 ∩X1.
By repeating this procedure, we obtain the regularized conjugate-bidual

couple (X◦◦0 , X◦◦1 ) and, as in the case of single Banach spaces, there are canon-
ical continuous immersions Ji : Xi → X◦◦i , defined by

Ji(x)(φ) = φ(x),

which together form a morphism of Banach couples (J0|X0∩X1 = J1|X0∩X1); if
this morphism is an isomorphism (i.e., if both Ji are isomorphisms) then the
couple (X0, X1) will be called reflexive.

1 For a reference about Banach couples and Doolittle diagrams see [1], [2].
2 A common choice is

‖x‖X0∩X1 = max{‖x‖X0 , ‖x‖X1},

‖x‖X0+X1 = inf{‖x0‖X0 + ‖x1‖X1 : xi ∈ Xi, x0 + x1 = x}.
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The notion of canonical immersion in the bidual for regular Banach couples
is not perfectly analogous to the corresponding notion for single Banach spaces.
The main differences are the following.

– In general the immersions Ji : Xi → X◦◦i are continuous and injective, but
not necessarily isometric, nor homeomorphisms with their images. In fact,
for x ∈ Xi, the norm of Ji(x) in X◦◦i is given by

pi(x) = sup
06=φ∈X◦i

|φ(x)|
‖φ‖X∗i

,

which is a norm on Xi, since X◦i is weakly∗ dense in X∗i , but is not neces-
sarily equivalent to the original norm ‖ · ‖Xi . Since

pi(x) = sup
t>0

Ki(t, x) for x ∈ Xi,

where Ki is the Peetre K-functional

Ki(t, x) = inf{‖xi‖Xi + t‖x1−i‖X1−i : xj ∈ Xj , x0 + x1 = x}

(for t > 0, x ∈ X0 +X1), this inequivalence of norms occurs exactly when
Xi is not relatively complete in X0 +X1, i.e., when the closed unit ball of
Xi is not closed in X0 +X1 (see §2.2 in [2]).

– If both Xi are reflexive, then the couple (X0, X1) is reflexive too. If one
of the Xi is reflexive, then (X0, X1) need not be reflexive, but (X◦0 , X

◦
1 ) is

certainly reflexive.

In the following, we will in fact be interested in reflexive regular Banach
couples of the form (H,V ), where H is a Hilbert space. In this case, modulo
identification by the Riesz representation theorem, (H,V ◦) is the regularized
conjugate-dual couple; moreover, by replacing the norm of V with the equiv-
alent norm on V ◦◦, we can always suppose that the immersion V → V ◦◦ is
an isometry, so that we can identify V ◦◦ with V . Under these hypotheses, it
is easy to prove:

Lemma 1 Let P : H → H be a continuous linear operator. The following are
equivalent:

– P is continuous V → H,
– P ∗ is continuous H → V ◦,
– P ∗P is continuous V → V ◦;

moreover

‖P‖2V→H = ‖P ∗‖2H→V ◦ = ‖P ∗P‖V→V ◦ .
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2.2 The main theorems

If H is a Hilbert space and T is an unbounded self-adjoint operator on H, for
every f ∈ H which does not belong to the domain of T we set ‖Tf‖H = +∞,
so that the equality

‖Tf‖H =

√∫
R
λ2 νf (dλ),

where νf = ‖F (·)f‖2H and F is the spectral measure associated to T , holds for
all f ∈ H.

In the following (H,V ) will be a reflexive regular Banach couple, where H is
a Hilbert space. Moreover L, T will denote (possibly unbounded) positive self-
adjoint operators on H, with associated spectral measures E,F respectively
and, for all λ ≥ 0,

Eλ = E([0, λ[), Fλ = F ([0, λ[).

Theorem 1 Let A = ]a, b[ ⊆ ]0,+∞[ be an open interval, η, δ > 0. Let Φ be
a non-negative measurable function on B = [0, ηbδ[ such that

‖Fr‖V ◦→V ≤ Φ(r) for all r ∈ B (6)

and that, for some K > 0,

‖E1/t‖V→V ◦ Φ(ηtδ) ≤ K2 for all t ∈ A. (7)

Moreover, suppose that, for some γ,M > 0,∫ r

0

s−2γΦ(s)
ds

s
≤Mr−2γ Φ(r) for all r ∈ ηAδ, (8)

where ηAδ =
]
ηaδ, ηbδ

[
.

Then, for all f ∈ H,

‖E1/tf‖H ≤ Ct−γδ‖T γf‖H for all t ∈ A,

where C = η−γ(1 +K
√

1 + 2γM).

Proof Let f ∈ H be in the domain of T γ , t, r > 0 and set fr = Frf , f = fr+fr,
so that

‖E1/tf‖H ≤ ‖E1/tf
r‖H + ‖E1/tfr‖H .

We immediately have

‖E1/tf
r‖H ≤ ‖fr‖H ≤ ‖(1− Fr)T−γ‖H→H‖T γf‖H ≤ r−γ‖T γf‖H .

Note that, if we set νg = ‖F (·)g‖2H for g ∈ H ∩ V ∗, then for every x ∈ B

νg([0, x[) = 〈g, Fxg〉 ≤ ‖Fx‖V ◦→V ‖g‖2V ∗ ≤ ‖g‖2V ∗Φ(x),
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by (6). Therefore, if r ∈ ηAδ, integrating by parts and applying (8),

‖FrT−γg‖2H =
∫

[0,r[

s−2γ νg(ds) = r−2γνg([0, r[) + 2γ
∫ r

0

s−2γνg([0, s[)
ds

s

≤ ‖g‖2V ∗Φ(r) + 2γ‖g‖2V ∗
∫ r

0

s−2γΦ(s)
ds

s
≤ (1 + 2γM)r−2γΦ(r)‖g‖2V ∗ .

Since T γf is in the domain of T−γ and Fr(H) ⊆ V by (6) and Lemma 1,
fr = FrT

−γT γf ∈ V ; moreover, for every g ∈ H ∩ V ∗,

|〈g, fr〉| = |〈FrT−γg, T γf〉| ≤ ‖FrT−γg‖H‖T γf‖H
≤M ′r−γ

√
Φ(r)‖g‖V ∗‖T γf‖H ,

where M ′ =
√

1 + 2γM . Thus

‖fr‖V ≤M ′r−γ
√
Φ(r)‖T γf‖H ,

therefore

‖E1/tfr‖H ≤ ‖E1/t‖V→H‖fr‖V ≤ r−γM ′
√∥∥E1/t

∥∥
V→V ◦ Φ(r)‖T γf‖H

by Lemma 1.
Putting all together,

‖E1/tf‖H ≤ r−γ
(

1 +M ′
√∥∥E1/t

∥∥
V→V ◦ Φ(r)

)
‖T γf‖H ,

so that, choosing r = ηtδ, t ∈ A, we get the result by (7).

Remark 1 The inequalities

e−1χ[0,t[(λ) ≤ e−λ/t ≤ (e− 1)
∞∑
j=1

e−jχ[0,jt[(λ),

true for all λ ≥ 0, imply that, for all f ∈ H,

e−1‖Etf‖H ≤ ‖e−L/tf‖H ≤ (e− 1)
∞∑
j=1

e−j‖Ejtf‖H .

In particular, by Lemma 1,

‖Et‖V→V ◦ = ‖Et‖2V→H ≤ e2‖e−L/t‖2V→H = e2‖e−2L/t‖2V→V ◦

and, analogously,
‖Ft‖V ◦→V ≤ e2‖e−2T/t‖V ◦→V .

Thus, under the hypotheses of the previous theorem, the estimates of the
operator norms of the spectral measures E,F can be replaced3 by analogous

3 Note that, in case of non-polynomial growth, the hypotheses on the spectral measures
are weaker than the corresponding hypotheses on the semigroups. Moreover, estimates on
spectral measures are easier to manage when the operator is somehow rescaled.
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estimates of the norms of the semigroups generated by L, T . Moreover, also
the thesis can be rewritten in terms of the semigroup generated by L, because
from

‖E1/tf‖H ≤ Ct−γδ‖T γf‖H
it follows that

‖e−tLf‖H ≤ C ′t−γδ‖T γf‖H ,
where

C ′ = C(e− 1)
∞∑
j=1

e−jjγδ < +∞.

Remark 2 If (8) holds for some γ > 0, then it holds also for every γ′ < γ,
since∫ r

0

s−2γ′Φ(s)
ds

s
≤ r2(γ−γ

′)

∫ r

0

s−2γΦ(s)
ds

s

≤ r2(γ−γ
′)Mr−2γΦ(r) = Mr−2γ′Φ(r).

Theorem 2 Suppose that, for some f ∈ H and γ, δ, C > 0,

‖E1/tf‖H ≤ Ct−γδ‖T γf‖H for all t > 0.

Then, for all α ≥ γ, β > 0,

‖f‖H ≤ Dα,β‖Tαf‖
β

α+β
H ‖Lβδf‖

α
α+β
H , (9)

where Dα,β > 0 depends only on C, γ, α, β.

Proof Suppose first α = γ. Then, for all t > 0, by the spectral theorem

‖f‖H ≤ ‖E1/tf‖H + ‖(1− E1/t)L−βδLβδf‖H
≤ (1 + C)

(
t−γδ‖T γf‖H + tβδ‖Lβδf‖H

)
,

from which, optimizing in t, we obtain (9) with Dγ,β = (1 + C)(γ/β)
β−γ
γ+β .

Let now α > γ. Then, for all f ∈ H, ε > 0, if ν = ‖F (·)f‖2H ,

ε−γ‖T γf‖H =

√∫
R+

(λ/ε)2γ dν(λ) ≤

√∫
R+

(1 + (λ/ε)α)2 dν(λ)

= ‖(1 + ε−αTα)f‖H ≤ ‖f‖H + ε−α‖Tαf‖H .

Optimizing in ε,
‖T γf‖H ≤ Kα,γ‖f‖

1− γα
H ‖Tαf‖

γ
α

H

(where Kα,γ = (α/γ − 1)
2γ−α
α ). Plugging this into (9) with α replaced by γ,

we obtain

‖f‖γ+βH ≤ Dγ+β
γ,β K

β
α,γ‖f‖

(1− γα )β
H ‖Tαf‖

γ
αβ

H ‖L
βδf‖γH ,

that is (9) with Dα,β = D
α
γ
γ+β
α+β

γ,β K
α
γ

β
α+β

α,γ .
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As it is formulated, Theorem 2 shows that global uncertainty inequalities
can be obtained directly from local ones, which must hold for all times t > 0
but can be limited only to a certain subset of H. This formulation can be
useful when local uncertainty inequalities are obtained by other means than
Theorem 1. However, we can certainly put together Theorems 1 and 2 to obtain

Corollary 1 Under the hypotheses of Theorem 1 with A = ]0,+∞[, for all
α, β > 0 and f ∈ H,

‖f‖H ≤ Dα,β‖Tαf‖
β

α+β
H ‖Lβδf‖

α
α+β
H ,

where Dα,β > 0 depends only on M,K, η, γ, α, β.

2.3 The hypothesis on the growth

The importance of (8) is in that it allows to separate the dependence on Φ
and the dependence on γ in two distinct factors (so that hypothesis (7) does
not depend on γ).

In order to simplify the form of the hypothesis, we set α = 2γ, I = ηAδ,
CI,α = M . The inequality then becomes∫ r

0

s−αΦ(s)
ds

s
≤ CI,α r−αΦ(r) for all r ∈ I. (10)

We are now going to discuss necessary or sufficient conditions for the existence
of CI,α > 0 such that (10) holds, where α > 0, I ⊆ ]0,+∞[ is a non-empty
interval, and Φ a finite non-null non-negative measurable function defined on
an interval B ⊆ [0,+∞[ containing I ∪ {0}.

In Remark 2 we have already pointed out that, if (10) holds for some α > 0,
then it also holds for all α′ > 0 smaller than α with CI,α′ = CI,α.

First of all, since Φ is finite, a necessary condition for (10) to hold is that∫ ε

0

Φ(s)
sα+1

ds < +∞ for some ε > 0. (11)

If sup I = +∞, then information on the behavior of Φ in a neighborhood
of +∞ can also be recovered. In fact, since Φ 6= 0, Φ ≥ 0, there exists r′ ∈ I
such that

CI,α r
−αΦ(r) ≥

∫ r′

0

s−αΦ(s)
ds

s
> 0 for all r ≥ r′,

by (10), that is, Φ(r) & rα for r large, but then, again by (10),

lim
r→+∞

r−αΦ(r) = +∞
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Suppose now that (11) holds, and moreover that Φ is absolutely continuous,
so that it admits a distributional derivative Φ′ = f which is L1

loc(B). In this
case, (10) becomes ∫ r

0

f(s)s−α ds ≤ C ′I,α r−α
∫ r

0

f(s) ds

(where C ′I,α = 1 + 2αCI,α).
If f(s) = sd−1 for some d > 0 and for s small, then (10) holds for r → 0+

if and only if α < d.
If f(s) = sd−1 for some d > 0 and for s large, then (10) holds for r → +∞

if and only if α < d.
Another sufficient condition for (10) to hold for r → +∞ is that f(s)s−α is

definitely non-decreasing; in fact, if f(s)s−α is non-decreasing for s > r0 ≥ 0,
then ∫ r

r0

f(s)s−α ds =
∫ r/2

r0

+
∫ r

r/2

≤ 2
∫ r

r/2

≤ 2α+1r−α
∫ r

0

f(s) ds

for all r > 2r0. Moreover, note that, if f(s)s−α is non-decreasing in a neigh-
borhood of 0, then the same argument proves (10) for r → 0+.

A case not included in the previous ones in which (10) still holds for r →
+∞ is f(s) = (log s)δ for s large, δ > 0, 0 < α < 1, since integrating by parts
it is easily obtained that∫ r

1

s−α(log s)δ ds . r1−α(log r)δ � r−α
∫ r

1

(log s)δ ds for r → +∞.

2.4 Hilbert-Banach couples of Lebesgue spaces

From what we said in §2.1, it is clear that the hypotheses of §2.2 on the regular
Banach couple (H,V ) are satisfied if H is Hilbert and V is reflexive (and in
this case V ◦ = V ∗). In particular, having fixed a measure space (X,m), those
hypotheses are certainly satisfied by the couple of Lebesgue spaces (L2, Lp) on
(X,m) for 1 < p <∞.

Let us consider now the case p = 1, that is, the couple (L2, L1). This is
certainly a regular Banach couple. Moreover, if

L∞σ = {f ∈ L∞ : f is null off a σ-finite subset of X}

(we are not supposing that m is σ-finite), then L∞σ is a closed subspace of L∞,
(L1)∗ contains isometrically L∞σ as a subspace and L2 ∩ (L1)∗ ⊆ L∞σ . Let L∞0
be the closure in (L1)∗ of this intersection, which is the closure in L∞ of the
space of simple measurable functions of (X,m) which are null off a set of finite
measure. Then (L2, L∞0 ) is the regularized conjugate-dual of (L2, L1).

Now, it is easy to see that L1 is isometrically embedded in (L∞0 )∗ (since
every f ∈ L1 is null off a σ-finite subset of X) and that L2 ∩ (L∞0 )∗ ⊆ L1; on
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the other hand, L2∩L1 is dense in L1, therefore L1 is the closure of L2∩(L∞0 )∗

in (L∞0 )∗, so that (L2, L1) is the regularized conjugate-dual of (L2, L∞0 ). By
a careful examination of the implicit identifications, it is then not difficult to
see that (L2, L1) is reflexive.

We have thus proved that (L2, L1), (L2, L∞0 ) are both reflexive regular
Banach couples (H,V ). Moreover, V ◦ = L∞0 in the former case, whereas in
the latter V ◦ = L1. This shows an interesting mutual duality between L1 and
L∞0 , which holds in spite of non-reflexivity of the single Banach spaces and
without any hypotheses of σ-finiteness of the measure.

3 Applications

3.1 Uncertainty inequalities on Riemannian manifolds

As we said in the introduction, Riemannian manifolds are a suitable setting
for generalizing uncertainty inequalities, since the notions of “Laplacian” and
“distance from a given point” are meaningful there.

Let M be a (connected) Riemannian manifold, d the Riemannian metric,
m the Riemannian measure, ∆ the Laplace-Beltrami operator. Having chosen
a point x0 ∈ M , let ρ = d(x0, ·) and let T be the operator “multiplication by
ρ”. Then T is a positive self-adjoint operator on L2(M) and

‖Fr‖∞→1 = ‖χ{ρ<r}‖1 = m(B(x0, r)).

IfM is a complete Riemannian n-manifold, then L = −∆, as an operator on
L2(M), is (essentially) self-adjoint and positive; denoting by ht the associated
heat kernel (see [10] for a reference), we have (cf. Remark 1)

‖E1/t‖1→∞ . ‖e−2tL‖1→∞ = ‖h2t‖∞ = sup
x∈M

h2t(x, x).

It is then interesting to see if the quantities m(B(x0, r)) and ‖ht‖∞ are
related in some way. In fact, there are several results (see, e.g., [12]) about the
validity of the estimate

ht(x, x)m(B(x,
√
t)) . 1. (12)

First of all, (12) always holds for small times t > 0 locally in x ∈M . This
means that, if M is, e.g., compact or homogeneous, then (12) holds uniformly
on M for small times. Under this hypothesis, since m(B(x0, r)) � rn for
r → 0+, it is sufficient to put Φ(r) = crn for a suitable c > 0 to get

‖Fr‖∞→1 ≤ Φ(r), ‖E1/t‖1→∞Φ(t1/2) . 1 for r, t small,

and analogously, choosing Φ(r) = crn/2, we get

‖Er‖∞→1 ≤ Φ(r), ‖F1/t‖1→∞Φ(t2) . 1 for r, t large.
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Therefore, by Theorem 1 and §2.3 we obtain local uncertainty inequalities for
small times: for 0 < γ < n/2 and f ∈ L2(M),

‖E1/tf‖2
‖et∆f‖2

}
≤ Cγt−γ/2‖ργf‖2 for t small; (13)

‖χ{ρ<t}f‖2
‖e−ρ/tf‖2

}
≤ Cγtγ‖(−∆)γ/2f‖2 for t small.

To get global uncertainty inequalities via Theorem 2, we need to extend
at least one of the local inequalities also to large times. If (12) (or something
similar) holds uniformly and for all times (see [12] for sufficient conditions), if
the rate of growth of the measure of the balls is independent of the center and
moreover satisfies (8), then we can apply Theorem 1 also for large times.

A particularly simple case to be considered is when the Laplacian has a
spectral gap, i.e., the spectrum of L has an infimum b > 0. This holds, e.g.,
when M is simply connected and all sectional curvatures are bounded from
above by a negative constant, by a result of McKean (see [18]). In this cases,
local inequalities for large times,

‖χ{ρ<t}f‖2
‖e−ρ/tf‖2

}
≤ Cγ,δ tδ‖(−∆)γf‖2 for t large,

‖E1/tf‖2
‖et∆f‖2

}
≤ Cγ,δ t−δ‖ργf‖2 for t large,

are trivially true for all γ, δ > 0 (the former because (−∆)γ has a bounded
inverse, the latter since E1/t = 0 for t large). Putting together the results for
t small and t large and applying Theorem 2, we obtain the following result,
perfectly analogous to the Euclidean case:

Corollary 2 If the Laplacian on the Riemannian manifold M has a spectral
gap, then, for all α, β > 0 and f ∈ L2(M),

‖f‖2 ≤ Cα,β‖ραf‖
β

α+β
2 ‖(−∆)β/2f‖

α
α+β
2 .

A different way to deal with a spectral gap is to replace L with the operator
L̃ = L− b. In order to obtain results in this case we need precise information
on the behavior of the norms of spectral projections Et of L in a neighborhood
of b, or at least on the decay of the heat kernel. Let us consider, for instance,
a Riemannian symmetric space of non-compact type M of dimension n and
rank k; having chosen a system of positive roots, let l be the norm of the
sum of positive roots, counted with multiplicities, s be the number of positive
indivisible roots. Then it is known that b = l2/4 > 0 and (see [8], Theorem 3.2)

‖e−tL̃‖1→∞ �

{
t−

n
2 for t→ 0+

t−
k+2s

2 for t→ +∞,
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whereas (cf. [14], Theorem 6.2)

m(B(x0, r)) �

{
rn for t→ 0+

r
k−1
2 elr for t→ +∞.

To obtain uncertainty inequalities for L̃ we can then replace the distance func-
tion ρ with

ρ̃ = (1 + ρ)
k−1

2(k+2s) e
l

k+2sρ − 1,

so that

m({ρ̃ < r}) .

{
rn for r → 0+

rk+2s for t→ +∞.

Therefore local inequalities for all times and then global inequalities can be
obtained for ρ̃, L̃ by applying Theorems 1, 2:

Corollary 3 If M is a Riemannian symmetric space of non-compact type,
then, for all α, β > 0 and f ∈ L2(M),

‖f‖2 ≤ Cα,β‖((1 + ρ)
k−1

2(k+2s) e
l

k+2sρ − 1)αf‖
β

α+β
2 ‖(L− b)β/2f‖

α
α+β
2 .

Note that, instead of “exponentiating” the distance function ρ, we could
have “taken the logarithm” of the Laplacian L̃, thus getting another set of
inequalities.

Another particular case is when M is compact. Here, local inequalities for
ρ, L cannot be extended to large times, and global inequalities cannot hold,
since the Laplacian has a non-null kernel, the space of constant functions on
M (which are in L2(M) if M is compact). However, we can restrict to the
orthogonal complement H0 of kerL, i.e., the space of functions with null mean
value. Since M is compact, the spectrum of L is discrete (see [12]), so that
E1/t|H0 = 0 for 1/t smaller than the first positive eigenvalue of M . Therefore
(13) also holds for t large if f ∈ H0; then, by Theorem 2 we obtain:

Corollary 4 If M is a compact Riemannian manifold, for all α, β > 0 and
f ∈ L2(M) with null mean value,

‖f‖2 ≤ Cα,β‖ραf‖
β

α+β
2 ‖(−∆)β/2f‖

α
α+β
2 .

Notice that, in the case of a compact Lie group with a bi-invariant Lapla-
cian, the local inequalities (13) follow also from the results of [16].



15

3.2 Uncertainty inequalities on graphs

A considerably studied subject is the spectral theory of graphs (see, e.g., [15]
for a survey). On a (unoriented multi)graph G = (V,E) there are a canonical
distance function d on vertices (given by the minimum length of a path joining
two vertices), a canonical measure m (the counting measure, which is a Borel
measure with respect to the discrete topology induced by d on V ) and, if G
is locally finite (that is, deg(u) < ∞ for all vertices u, where deg(u) is the
number of edges emanating from u), two difference Laplacians:

∆A = A−D, ∆P = P − I,

where A = (auv)u,v∈V is the adjacency matrix of G (auv is the number of
edges between u and v), D = (δuv deg(u))u,v∈V , P = (auv/ deg(u))u,v∈V is
the transition matrix of G and I = (δuv)u,v∈V is the identity matrix.

Supposing G homogeneous (so that deg(u) is independent of u and denoted
by deg(G)) and locally finite, then

∆A = deg(G)∆P , D = deg(G)I,

so that A is a bounded self-adjoint operator on L2(G), with norm at most
deg(G), and spectral information on A carries over to ∆A, P,∆P .

With these hypotheses, let x0 ∈ V , ρ = d(x0, ·), T be the operator “multi-
plication by ρ”, L = −∆A. Then T has a non-null kernel, the space of functions
V → C which are null off {x0}. Let H0 = (kerT )⊥, i.e., the space of functions
which vanish in x0, so that Fr|H0 = 0 for r ≤ 1. Then

‖χ{ρ<t}f‖2
‖e−ρ/tf‖2

}
≤ Cγ,δ tδ‖(−∆A)γf‖2 for t small

trivially holds for f ∈ H0.
We consider now two particular cases. The first one is the n-dimensional

square lattice, with V = Zn and edges only between vertices (x1, . . . , xn),
(y1, . . . , yn) such that

∑n
j=1 |xj−yj | = 1. By direct calculation through Fourier

series, one obtains

‖Er‖1→∞ �

{
rn/2 for r → 0+

1 for r → +∞,

whereas

‖Fr‖∞→1 = m(B(x0, r)) �

{
1 for r → 0+

rn for r → +∞.

Therefore Theorem 1 can be applied with L, T swapped, Φ(r) = crn/2 on the
interval ]0, 1[ to obtain: for 0 < γ < n/2 and f ∈ L2(G),

‖χ{ρ<t}f‖2
‖e−ρ/tf‖2

}
≤ Cγtγ‖(−∆A)γ/2f‖2 for t large.

From this and Theorem 2, restricted global inequalities follow:
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Corollary 5 If G is the n-dimensional square lattice, then, for α, β > 0 and
f ∈ L2(G) with f(0) = 0,

‖f‖2 ≤ Cα,β‖ραf‖
β

α+β
2 ‖(−∆A)β/2f‖

α
α+β
2 .

Note that these inequalities can also be obtained from the corresponding
inequalities for tori Tn, which are a particular case of compact Riemannian
manifolds. In fact, through the Fourier transform, H0 on Zn corresponds to the
space of functions with null mean value on Tn, multiplication by −ρ2 on Zn
corresponds to the Laplacian on Tn, −∆A on Zn corresponds to multiplication
by

2
n∑
i=1

(1− cos(2πxi)) �
n∑
i=1

x2
i

on Tn.
The second case which we consider is the homogeneous tree of degree n,

with n > 2 (note that the tree with n = 2 coincides with the 1-dimensional
square lattice). In this case, the spectrum of the adjacency matrix A is known
to be

[
−2
√
n− 1, 2

√
n− 1

]
, so that (since n > 2) L has a spectral gap (Er = 0

for r < b = n − 2
√
n− 1) and, as in the case of Riemannian manifolds, local

inequalities for large times, but also restricted global inequalities become trivial
(since L, T |H0 have bounded inverses). A more interesting result is obtained
by replacing L with L̃ = L− b. In fact, it is known that

‖e−tL‖1→∞ � t−3/2e−bt for t large

(these asymptotics can be recovered, as in §VII.2 of [22], from the analogous
ones for discrete-time random walks on homogeneous trees, contained in [3]
or [23]; see also [9], Theorem 2.2 for an explicit statement about the heat
semigroup), whereas

m(B(x0, r)) � (n− 1)r = eκr for r large

(where κ = log(n− 1)), so that

‖Ẽ1/t‖1→∞ . ‖e2tL̃‖1→∞ � t−3/2 for t large

and, putting ρ̃ = e
κ
3 ρ,

m({ρ̃ < r}) . r3 for r large.

Therefore Theorem 1 can be applied to ρ̃, L̃, obtaining

‖χ{ρ̃<t}f‖2
‖e−ρ̃/tf‖2

}
≤ Cγtγ‖L̃γ/2f‖2 for t large,

for γ < 3/2 and f ∈ L2(G). Since this inequality trivially holds for t small, by
Theorem 2 we get uncertainty inequalities for ρ̃, L̃:

Corollary 6 If G is the homogeneous tree of degree n, then, for all α, β > 0
and f ∈ L2(G),

‖f‖2 ≤ Cα,β‖eα
log(n−1)

3 ρf‖
β

α+β
2 ‖(L− b)β/2f‖

α
α+β
2 .
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3.3 Unimodular Lie groups and sublaplacians

Results about the Laplace-Beltrami operator can be generalized to sublapla-
cians. In order to obtain uniform estimates, we restrict here to the case of
left-invariant sublaplacians on connected unimodular Lie groups (see [19], [22]
for a reference).

Let G be a connected unimodular Lie group, m a Haar measure, H =
{X1, . . . , Xk} a system of left-invariant vector fields on G which satisfy the
Hörmander condition, L = −

∑k
i=1X

2
i the associated sublaplacian. Then L is

(essentially) self-adjoint and positive on L2(G); as in the Riemannian case, we
denote by ht the associated heat kernel.

Let d, δ be respectively the Carnot-Carathéodory distance and the local
dimension associated to H. Having fixed x0 ∈ G, let ρ = d(x0, ·) and T be the
operator “multiplication by ρ”. Then, for r, t > 0 small,

‖Fr‖∞→1 = m(B(x0, r)) � rδ, ‖E1/t‖1→∞ � ‖h2t‖∞ � t−δ/2,

so that local uncertainty inequalities can be obtained as in the Riemannian
case.

In order to extend such inequalities to large times, it is useful to recall
a result of Guivarc’h [13], which states that the volume growth of G can be
either strictly polynomial:

m(B(x0, r)) � ra for some a ∈ N and for r → +∞,

or exponential:

eβr . m(B(x0, r)) . eκr for some β, κ > 0 and for r → +∞.

In the polynomial case, it is known that

‖ht‖∞ � t−a/2 for t→ +∞.

Therefore, exactly as in the Riemannian case, global uncertainty inequalities
can be obtained (this is one of the results of [5]):

Corollary 7 If G is a connected unimodular Lie group with polynomial vol-
ume growth, then, for all α, β > 0 and f ∈ L2(G),

‖f‖2 ≤ Cα,β‖ραf‖
β

α+β
2 ‖Lβ/2f‖

α
α+β
2

(except for the compact case, in which we have to restrict to the functions f
with null mean value).

In the exponential case, instead,

‖E1/t‖1→∞ . ‖h2t‖∞ . e−ct
1/3

for t→ +∞ (14)
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for some c > 0. Putting

Φ(r) =

{
rδ if r ≤ 1
eκ(r−1) if r ≥ 1,

we have that Φ satisfies (8) for γ < n/2 and moreover

‖Fr‖∞→1 . Φ(r), ‖E1/t‖1→∞ Φ(cκ−1t1/3) . 1

for all r > 0 and for t large. Therefore, by Theorem 1, for γ < δ/2 and
f ∈ L2(G),

‖E1/tf‖2
‖e−tLf‖2

}
≤ Cγt−γ/3‖ργf‖2 for t large.

Unfortunately, this local inequality cannot be combined with the one for small
times, since t−γ/3 < t−γ/2 for t small and t−γ/2 < t−γ/3 for t large.

To obtain a global inequality, we can slightly modify the operators T, L.
For instance, if we replace the distance function ρ with

ρ̃ = ρ(1 + ρ)1/2

then we easily get

m({ρ̃ < r}) .

{
rδ for r small
eκr

2/3
for r large,

so that, by Theorem 1, the inequality

‖E1/tf‖2
‖e−tLf‖2

}
≤ Cγt−γ/2‖ρ̃γf‖2

holds for all times (and γ < δ/2); therefore we obtain the following global
inequality:

Corollary 8 If G is a connected unimodular Lie group with exponential vol-
ume growth, then, for all α, β > 0 and f ∈ L2(G),

‖f‖2 ≤ Cα,β‖ρα(1 + ρ)α/2f‖
β

α+β
2 ‖Lβ/2f‖

α
α+β
2 .

It should be remarked that the estimate (14) is not always optimal: if L has
a spectral gap (i.e., if G is not amenable, cf. [20]), then we have E1/t = 0 for t
large and we can proceed as in the Riemannian case. However, there do exist
unimodular Lie groups with exponential volume growth and without spectral
gap (for an example, see [4]).

The work of Varopoulos [20] (cf. also [21]) allows us to obtain more precise
results in the case of non-amenable groups. Let b be the spectral gap of L (so
that ‖e−tL‖2→2 = e−tb) and Q be the radical of G; then, if Q has polynomial
growth,

‖ht‖∞ . t−ν/2e−bt for t ≥ 1
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for some ν ≥ 0, whereas, if Q has exponential growth,

‖ht‖∞ . e−bt−ct
1/3

for t ≥ 1

for some c > 0. This means that, putting L̃ = L− b, we have

‖e−tL̃‖1→∞ .


t−δ/2 (t small)
t−ν/2 (Q polynomial, t large)
e−ct

1/3
(Q exponential, t large),

and, replacing L with L̃, we can proceed as before.
If Q has exponential growth, then we get

Corollary 9 If G is a non-amenable connected unimodular Lie group whose
radical has exponential growth, then, for all α, β > 0 and f ∈ L2(G),

‖f‖2 ≤ Cα,β‖ρα(1 + ρ)α/2f‖
β

α+β
2 ‖(L− b)β/2f‖

α
α+β
2 .

If on the contrary Q has polynomial growth and ν > 0, then we can replace
the distance function ρ with

ρ̃ = e
κ
ν ρ − 1,

so that

m({ρ̃ < r}) .

{
rδ for r small
rν for r large,

and finally we have

Corollary 10 If G is a non-amenable connected unimodular Lie group whose
radical is non-compact and has polynomial growth, then, for all α, β > 0 and
f ∈ L2(G),

‖f‖2 ≤ Cα,β‖(e
κ
ν ρ − 1)αf‖

β
α+β
2 ‖(L− b)β/2f‖

α
α+β
2 .
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