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Abstract— Objective: Myoelectric control requires fast and 

stable identification of a movement from data recorded from a 

comfortable and straightforward system. Methods: We consider a 

new real-time pre-processing method applied to a single 

differential surface electromyogram (EMG): deconvolution, 

providing an estimation of the cumulative firings of motor units. 

A 2 channel-10 class finger movement problem has been 

investigated on 10 healthy subjects. We have compared raw EMG 

and deconvolution signals, as sources of information for two 

specific classifiers (based on either Support Vector Machines or k-

Nearest Neighbours), with classical time-domain input features 

selected using Mutual Component Analysis. Results: Using the 

proposed pre-processing technique, classification performances 

statistically improve. For example, the true positive rates of the 

best-tested configurations were 80.9% and 86.3% when using the 

EMG and its deconvoluted signal, respectively. Conclusion: Even 

considering the limited dataset and range of classification 

approaches investigated, our preliminary results indicate the 

potential usefulness of the deconvolution pre-processing. 

Significance: Deconvolution of EMG is a fast pre-processing that 

could be easily embedded in different myoelectric control 

applications.   

 
Index Terms—Classification, Motor unit firing rate, 

Myoelectric control, Prostheses, Surface EMG 

I. INTRODUCTION 

LECTROMYOGRAM (EMG) has been widely used for 

prosthetic control since the 50’s [1]. If the first attempts were 

simple on/off prostheses [2], the latest years have seen more 

complex systems emerging, with multiple degrees of freedom 

being controlled [3]. Researchers have proposed many 

classification techniques to reach this goal [4]. However, most 

of them follow the same scheme (Fig. 1), which can be split into 

the following steps.  

1. Pre-processing raw EMG, e.g., filtering [5] and 

windowing time series [6].  

2. Estimation of features, which can be extracted from 

different domains, e.g., time [7] [8], frequency [9], or time-

frequency/time-scale [10]. 
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3. Selection/reduction of the features set to avoid the curse of 

dimensionality. Unsupervised methods, such as Principal 

Component Analysis [11], or supervised techniques, like 

Uncorrelated Linear Discriminant Analysis (U-LDA) [12], 

have been applied.  

4. Classification. Many different methods have been applied, 

for example, Support Vector Machines (SVM) [13], k Nearest 

Neighbours (kNN) [14], Neural Networks [15], Gaussian 

Mixtures Model (GMM) [16], Naïve Bayes (NB) [17].  

5. Post-processing, e.g., majority voting [6] or Bayesian 

fusion [18].  

This step flow can give great performances, with around 99% 

precision for some configurations [19]. The main axes of 

improvement are usually increasing the number of detection 

channels [19], finding new processing techniques instead of 

using more established ones [20], or optimizing one or several 

parameters [15]. However, increasing the number of surface 

electrodes could make the prosthesis expensive, cumbersome, 

and uncomfortable. Indeed, as the required performances of the 

prosthesis are constantly rising, many works are aimed at using 

few detection channels [21]. Moreover, optimizing the 

processing of the EMG could be prone to overfitting or the 

increase of the processing time, which should be kept low to 

allow for real-time control and be accepted by users. Indeed, the 

processing delay should be kept under 300 ms to ensure a good 

user’s experience [6].  
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Fig. 1.  Classical flowchart for the resolution of a classification problem for 

limb movements. Acronyms: TD - time domain, FD – frequency domain, TFR 
– time-frequency representations, PCA – principal components analysis, LDA 

– linear discriminant analysis, ICA – independent components analysis, MCA 

– mutual components analysis, SVM – support vector machine, kNN – k 

nearest neighbours, MV – majority voting.   
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An alternative is to get better information from the muscles. 

For example, intramuscular EMG provides selective 

information on motor unit (MU) recruitment of the target 

muscle and has provided good classification performances 

compared to surface EMG [22]. Indeed, surface EMG has a 

large detection volume and could present some problems, e.g., 

noise and crosstalk [23], that can degrade classification 

performances [5]. Classification based on other physical 

measures, such as force myography, are explored to overcome 

these problems, showing encouraging results [24]. 

Nevertheless, they usually require different hardware that is still 

less widespread than surface EMG amplifiers, which are instead 

available in most labs in the field of prosthetic control.  

Thus, an innovative pre-processing of surface EMG could 

provide a step forward in the field of myoelectric control. This 

would keep the value of surface EMG technology (which is 

non-invasive and widespread), possibly providing a better input 

(e.g., in terms of selectivity of information, stability to noise, or 

crosstalk) to the classification machine.  

Specifically, the timings of MU recruitment and discharges 

are related to muscle force [25] [26], velocity [27], and joint 

angle [28]. They have also been proposed for myoelectric 

control applications [29] [30]. Even if researchers have 

proposed solutions to get MUs discharge rates in real-time for 

prosthetic applications [31] [32], these approaches require a 

high-density recording system and intensive processing. As an 

alternative, a fast (real-time) and simple method has been 

proposed recently to estimate the cumulative activations of 

MUs from single differential (SD) recordings [33]. This paper 

is devoted to assessing if this pre-processing could help to 

increase the classification performances of a myoelectric 

prosthesis using a simple/low-density recording system. 

II. METHODS 

A. Data acquisition  

The data collected in a previous study [18] have been used. 

The data were retrieved from [34]. In brief, the dataset includes 

EMGs from 10 subjects (2 were excluded in [18]), aged 

between 20 and 35 years old. No subject suffers from limb 

disability nor any neurological or muscular disorder. They have 

been seated on an armchair, allowing to support and fix their 

arm. The subjects were asked to perform ten classes of 

movement, i.e., individual and combined flexions of fingers: 

Thumb (T); Index (I); Middle (M); Ring (R); Little (L); Thumb 

and Index (TI); Thumb and Middle (TM); Thumb and Ring 

(TR); Thumb and Little (TL); Hand Closed (HC). These 

motions are shown in Fig. 2. 

The subjects were instructed to contract their muscles from 

the rest position and hold the flexion for 5 seconds (the 

transition is included in the data, but not used here). Each 

movement was performed six times, with a resting time of 3-to-

5 seconds in-between.  

Four of these trials trained the classifier, whereas the other 

two formed the test set. Thus, the training set for each subject 

comprises 4 trials for 10 motor tasks (therefore 40 recordings 

of 5 s each), and the test set for each subject includes the 

remaining 20 recordings. 

Surface EMG was recorded using two bipolar channels 

(Delsys DE 2.x series EMG sensors) and processed by the 

Bagnoli Desktop EMG Systems from Delsys Inc. A reference 

electrode has been attached to each subject's wrist and the two 

channels were placed near the elbow (Fig. 3; some more details 

and a picture is shown in [18]). The EMG was then amplified 

by a Delsys-Bagnoli-8 amplifier (total gain equal to 1000), 

sampled at 4000 Hz by a 12-bit analog-to-digital converter 

(National Instruments, BNC-2090) and acquired using Delsys 

EMGWorks Acquisition software. Fig. 4 shows examples of 

surface EMG data. 

B. Deconvolution   

The method proposed in [33] was used as pre-processing for 

each EMG channel before classification as an alternative to 

using the raw data. In short, surface EMG was approximately 

modelled as the convolution of a kernel and a cumulative sum 

of MU discharges (actually weighted by the amplitudes of 

motor unit action potentials - MUAPs): 

𝑠(𝑡) = 𝑘(𝑡) ∗ 𝑥(𝑡) (1) 

where 𝑠(𝑡) is the EMG signal, 𝑘(𝑡) is the kernel and 𝑥(𝑡) 

represents the cumulative firings to compute. Estimating the 

MU firings requires first selecting the kernel and then solving a 

deconvolution problem. As SD EMGs were considered, the first 

derivative of a Gaussian function was used as a kernel since it 

resembles the shape of MUAPs recorded in SD configuration. 

The variance of the Gaussian function was chosen so as the 

power spectral density (PSD) of the kernel best approximates 

that of the EMG. Indeed, the medium-high frequency spectrum 

of surface EMG reflects the average shapes of MUAPs [35].     

The firing pattern convoluted with the kernel to fit the 

considered EMG was then estimated by deconvolution. This is 

an inverse problem whose solution is very unstable. Different 

methods have been proposed to get robust solutions to inverse 

problems, among which the Tikhonov approach was selected 

[36]. It consists in imposing (1) in a weak sense, i.e., reducing 

the mean squared error in fitting the model (right-hand side) to 

the data (left-hand side); moreover, the solution 𝑥(𝑡) is also 

constrained to have limited energy. The two requirements (of 

fitting data and restricting the energy of the solution) are 

linearly combined, writing an optimization problem, which 

requires reducing the following functional: 

𝐹(𝑥) = ‖𝑠(𝑡) − 𝑘(𝑡) ∗ 𝑥(𝑡)‖2
2 + 𝛼‖𝑥(𝑡)‖2

2 (2) 

Notice that the considered EMG is sampled so that the 

problem is discrete. Specifically, the convolution operation was 

written as the multiplication with a matrix 𝐴, collecting on its 

columns the kernel (discretized according to the sampling 

frequency) delayed by multiples of the sampling time. The 

penalty term 𝛼 was set to 1% of the maximum eigenvalue of 

𝐴𝑇𝐴, thus limiting adequately the condition number of the 

matrix to be inverted to solve the deconvolution problem.   

The energy functional is convenient, as it allows to get an 

analytical expression for the optimal solution. However, it is too 

affected by outliers and tolerant to small errors. 𝐿1optimization 

was introduced as a more robust alternative: it is less sensitive 

to significant errors and pushes small values to zero, providing 

sparse solutions [37], which better resemble MU firing patterns. 

However, there is no analytical solution for a least-𝐿1 problem. 

The Iterative Reweighted Least Squares (IRLS) method was 

applied to get an approximate solution [37]: the 𝐿1 problem was 
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iteratively approximated by a weighted least squares problem at 

each step, for which an analytical solution exists. The weights 

were defined as the reciprocal of the 𝐿1 error on each sample 

for the previous step. Thus, ideally, at convergence, the 

weighted squares problem becomes an 𝐿1 problem (as the 

squared error is divided by the modulus of the error). As a 

compromise between accuracy and time cost, 10 iterations of 

this method were considered.  

As an additional computation, before each iteration of the 

IRLS algorithm, the solution was set to zero when negative, 

since the firing pattern to be estimated must be non-negative. 

 Notice that the computational cost is quadratic with respect 

to the number of samples of the processed data, as matrix 𝐴 has 

a dimension depending on its duration. Thus, it is convenient to 

split the time series to be processed in short sub-epochs. 

Specifically, our EMGs were split into sub-epochs of 20 ms; 

5 ms of overlap was considered to avoid edge effects (see [33] 

for details). 

Fig. 5 provides examples of deconvolution signals obtained 

by processing the EMGs shown in Fig. 4. Notice the low-

frequency portion, which, according to the results shown in 

[33], should reflect the mean firing rate of MUs (weighted by 

MUAP amplitude). Some more examples are included in the 

Appendix. 

 

C. Classification 

The classical steps of EMG classification [4] are reminded in 

“Introduction” and Fig. 1. These steps were applied either to the 

raw EMG or to the signals obtained after deconvolution to 

understand if there is any advantage in using such a pre-

processing. The details of the classification are described 

below. 

 

1) Signal preparation 

The following signals have been considered.  

1. The raw EMG, notch filtered at 50 Hz and band-pass 

filtered between 20 Hz and 400 Hz. The attenuation is at 

least 30 dB in the stopband.  

2. The signal obtained by deconvolution of the EMG filtered 

by a notch at 50 Hz and band-pass filtered between 1 and 

400 Hz (referred to as “deconvolution signal” in the 

following). 

The EMG has traditionally been filtered these ways to cut the 

powerline interference (notch filter) and the noise [5]. Notice 

that, since we deconvoluted a previously filtered EMG, some 

noise is already excluded from the deconvolution we will use 

for the classification. No further filtering was added to the 

deconvolution since it would exclude important components 

(such as the low-frequency peak, which reflects the average 

firing rate [33]). 

 

2) Signal processing 

The signals were divided into several time windows of 

250 ms, shifted by 50 ms. Using sliding instead of disjoint 

windows leads to better performances but requires more 

computation time. The minimum window increment for 

windows of this size is 16 ms [6], so we chose an increment of 

50 ms to find a compromise between computation time and 

performance. We have extracted, for each window, some 

classical time-domain (TD) features from each channel [7] [8] 

[11] [38]: Mean Absolute Value (MAV), Root Mean Square 

(RMS), Zero Crossing (ZC), Slope Sign Change (SSC), 

Waveform Length (WL) and Integrated Absolute Value (IAV). 

The features set was then reduced using the Mutual Component 

Analysis (MCA) [3], which finds a compromise between the 

full information of the selected features and the minimum 

redundancy of the chosen set by optimizing the entropy of the 

features. It has been shown to offer good performance 

compared to other techniques [3]. Different reduced sets have 

been considered, containing respectively either 4, 6, or 8 

features.  

We have then applied two different classifiers among the 

most used in the literature: Support Vector Machine (SVM) 

[13] and k Nearest Neighbours (kNN) [14]. For the SVM, a 

linear kernel was considered (similar results were obtained 

using a Gaussian kernel). Being a binary classifier, a “one-

versus-one” strategy has been used to extend the algorithm to 

our multiclass problem. For K classes, K(K-1)/2 binary 

classifiers have been created, i.e., 45 in our study (K = 10 

 
 

Fig. 2.  Motions considered in this paper. 

 

  

 
Fig. 4.  Filtered EMG (top) and corresponding Power Spectral Density (PSD, 

bottom) recorded from subject 1 for the movement "Hand Closed". Six trials 
of five seconds each have been concatenated. The left column is the first 

channel (medial forearm), and the right column is the second (lateral forearm). 

A bandpass filter between 20 and 400 Hz and a notch at 50 Hz have been 
applied. The PSD is computed using the Welch method with Hamming 

windows of 0.5 s and an overlapping of 50%. 

 

  

 
Fig. 3.  Electrodes positions on the arm. The two acquisition channels are near 

the elbow, while the reference electrode is placed on the wrist. 
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motions), and the assigned class is the one with the maximum 

number of “wins” from all classifiers. Concerning the kNN, the 

parameter k was empirically set to 5 after tuning on a few 

preliminary tests. A few additional tests are shown in the 

Appendix, considering LDA and NB classifiers. 

Finally, a classical majority voter (MV) is applied as post-

processing. The majority voter takes the output of the classifier 

as an input, which is the assigned class for each time window. 

The MV aims to smoothen the decisions of the classifier by 

averaging it over a certain number of windows. For example, 

for the 𝑛𝑡ℎ window with 5 decisions, the MV takes the five 

decisions between the (𝑛 −  2)𝑡ℎ and the (𝑛 + 2)𝑡ℎ, and the 

output class for the 𝑛𝑡ℎ window is the one that appears the most 

in this span. By doing so, the MV eliminates spurious decisions. 

The controller delay must be kept under 300 ms for a real-time 

application [6]: here, we set the number of windows in the MV 

to 11, which is compatible with the maximum number of 

decisions (i.e., 13). Note that the maximum delay (which is 

related to the number of decisions) is not optimal for the 

average patient, which is in the 100-125 ms range [39]. 

However, we found after a preliminary check that sticking to 

this optimal delay (i.e., using only 5 decisions in the MV) would 

substantially increase the error rate with the selected 

classification scheme (some results indicating the effect of the 

number of windows included in the majority voting are shown 

in the Appendix).  

To allow further analysis of the results, we computed some 

statistical measures of the performances of the classifiers 

depending on the number of features and the signal used. These 

measures are specificity, sensitivity, precision, accuracy, and F-

score. Since they are defined for a binary classifier, we 

transformed the multiclass confusion matrix into one with only 

four outputs: True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). To do so, each class 

was successively considered as ‘1’ and the other classes as ‘0’ 

(one-vs-all approach). Thus, the TP scores indicate when the 

considered class is correctly classified; the FP scores are when 

another motion is classified as the considered class, and so on 

for the last two cases.  

Moreover, we used two statistical tests to explore if the changes 

in performances when using the deconvolution signal instead of 

the EMG are statistically significant or due to chance. The first 

is the Wilcoxon sign rank test applied on the error rates for each 

subject, the second is the McNemar test [40] carried from the 

results for each time window (the output is either ‘1’ for a well-

classified motion or ‘0’ for a misclassification). The tests were 

carried out with either the deconvolution signals or the EMGs, 

for both considered classifiers (i.e., SVM and kNN) and for 4, 

6, and 8 features extracted by MCA. 

III. RESULTS 

The error rate in classification with the SVM approach is 

displayed in Fig. 6 as a function of the number of features used 

(after MCA selection). Since the results for kNN follow the 

same trend as those obtained when using the SVM, but with 

lower average performances, they are not shown in Fig. 6 for 

the sake of simplicity (they are provided in the Appendix). The 

statistical measures of the performances are displayed in the 

Appendix (Table IV). 

 
Fig. 5. Deconvolution signal (top) and its PSD (middle - all spectrum; bottom 

- low-frequency) obtained processing the signals shown in Fig. 4. The DC 
value was removed before estimating the PSD, which was computed using 

Welch method with Hamming windows of 0.5 s and overlapping of 50%. 

 
  

 
Fig. 7.  Number of occurrences of every feature over 10 sets of features (one 
for each subject). These sets have been constructed by extracting the TD 

features introduced in the “Methods” section and by extracting 8 features by 

MCA for each subject. 
 

 
Fig. 6.  Boxplots and mean classification error rate for TD features, SVM and 

MV with 11 decisions, depending on the number of features (selected by 

MCA) and the signal used (EMG, deconvolution or deconvolution with 
reduced feature set, i.e., including only Slope Sign Change, Waveform Length 

and Root Mean Square of the two channels). The bars above indicate a 

statistically significant difference between the classification outputs obtained 
from two different signals. The p-values were computed with McNemar test 

[40]. A circle and an asterisk indicate a p-value < 0.05 and < 0.01, respectively. 
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Notice that our results are not comparable to those obtained 

in [18], since different features are used here, and two patients 

had been excluded from the previous study, whereas we used 

them all.   

We observe that, for every tested configuration, using the 

deconvolution leads to better average results than using the raw 

EMG filtered. Specifically, the mean error rate was reduced by 

4-6% (for example, using 8 features and the SVM, the mean 

error rate is 19.06% with the features extracted from the EMG, 

whereas it is 13.74% when using data pre-processed by 

deconvolution). 

The classification was run on Matlab 2019b, using some 

codes and toolboxes available on the internet [3] [38] [41] [42]. 

 As expected, most of the classification errors come from the 

misinterpretation of motions involving the same fingers. For 

example, most of the errors when the subject makes R are 

misclassified as TR. Using the deconvolution, these 

misclassifications were reduced (as the mean error diminishes). 

However, the same trend is observable (see the confusion 

matrixes in the Appendix, considering the EMG with 8 features 

in Table V and the deconvolution with 8 features in Table VI). 

Thus, the classification based on the deconvolution signal does 

not entirely solve the confusion between “similar motions”, 

even if it mitigates the problem in the average. 

The boxplots in Fig. 6 and the standard deviation of the error 

rates (Table I) suggest that using the deconvolution signal also 

provides more robust classification outputs than raw EMG. In 

fact, the standard deviation is smaller when using the 

deconvolution: this means that the error rate is less keen to 

deviate from the mean. Indeed, when using the EMG to classify 

the motion task of the subjects, some aberrant results can occur 

(subject 3 is by far the most relevant example, with an error rate 

higher than 35% for all configurations).  

We can further improve the classification algorithm by 

changing the feature set. When we look at the features selected 

mainly by the MCA algorithm (i.e., the most informative/lowest 

redundant) when classifying starting from the deconvolution 

signals (Fig. 7), we realize that the same ones are mostly used 

across all subjects. These features are the Slope Sign Change, 

the Waveform Length, and the Root Mean Square. On the 

contrary, the Zero Crossing features (estimated after removing 

the mean value), the Integrate Average Value, and the Mean 

Average Value are rarely used. A reduced set of features was 

then considered, including only these three features for the 

deconvolution signals (coming from the two channels), halving 

the number of features and decreasing the required 

computations. Such a distinction in the occurrences of the 

features was unclear when using the EMG, so this reduced 

feature set was considered only for the deconvolution signal. 

This new case is denoted as “reduced deconvolution”. 

The results are shown in Fig. 6: the performances are slightly 

better using only these 6 features (3 per channel) instead of the 

classical 12 (6 per channel). This solution seems to offer a good 

compromise between reduced computation and classification 

performances. Moreover, this choice could help reducing the 

risk of overfitting. 

The p-values obtained from the two statistical tests are shown 

in Table II and Table III, respectively. When considering each 

time window (McNemar test, in Table II), the differences in the 

results obtained from different signals are statistically 

significant at a 95% confidence level. Most of the comparisons 

are even significant if we consider a 99% level of confidence.  

Concerning the Wilcoxon test carried on the error rates 

(Table III), the size of the samples is relatively small, and 

outcomes are not that clear. For the SVM, the advantages of the 

deconvolution and the reduced deconvolution over the EMG 

can be statistically asserted at a 95% confidence level. 

Nevertheless, in the kNN case, the p-values obtained are too 

high to conclude statistical improvement in the performances 

when using the deconvolution instead of the EMG (even if 

median performances were better when pre-processing data by 

deconvolution). The comparison of the EMG and the reduced 

deconvolution, on the other hand, produces p-values below the 

chosen significance level of 𝛼 = 0.05. The p-values obtained 

TABLE I 

STANDARD DEVIATION OF THE ERROR RATE AMONG ALL PARTICIPANTS 

DEPENDING ON THE SIGNAL USED FOR CLASSIFICATION 

 NUMBER OF 

FEATURES 

EMG DECONVOLUTION 

SVM 4  5.91 5.38 

 6  7.17 5.81 

    
 8  7.36 4.93 

KNN 4 7.23 4.92 

 6  8.83 5.20 
 8  8.22 5.46 

 

TABLE III 

RESULTS OF WILCOXON SIGN RANK TEST FOR STATISTICAL SIGNIFICANT 

IMPROVEMENT IN CLASSIFICATION RESULTS FROM DIFFERENT SIGNALS 
Classifier Number 

of 

features 

EMG vs. 

Deconvolution 

EMG vs. 

Reduced 

Decon. 

Deconvolution 

vs. Reduced 

Decon. 

SVM 
 

4 p = 0.0371 p = 
0.0195 

p = 0.500 

6 p = 0.0371 p = 

0.0273 

p = 0.133 

8 p = 0.0098 /  / 

kNN 4 p = 0.106 p = 

0.0371 

p = 0.300 

6 p = 0.0840 p = 

0.0273 

p = 0.412 

8 p = 0.0645 /  / 

 

Test carried on error rates when using either EMG or deconvolution signal (with 

either complete or reduced feature set). Same classifiers, feature selection 

methods and notations as in Table II. 
 

TABLE II 

RESULTS OF MCNEMAR TEST FOR STATISTICAL SIGNIFICANT IMPROVEMENT  

IN CLASSIFICATION RESULTS FROM DIFFERENT SIGNALS 
Classifier Number 

of 

features 

EMG vs. 

Deconvolution 

EMG vs. 

Reduced 

Decon. 

Deconvolution 

vs. Reduced 

Decon. 

SVM 
 

4 p < 0.001 p < 0.001 p = 0.0405 
6 p < 0.001 p < 0.001 p = 0.00216 

8 p < 0.001 / / 

kNN 4 p < 0.001 p < 0.001 p < 0.001 
6 p < 0.001 p < 0.001 p < 0.001 

8 p < 0.001 / / 

 
Test carried on results for each time window (either ‘1’ when correctly 

classified or ‘0’ when misclassified) when using either EMG or deconvolution 

signal (with either complete or reduced feature set). Different classifiers, 
numbers of features selected by MCA and TD sets (either complete or reduced) 

are considered. Significant improvements of performance when using the 

deconvolution signal instead of the original EMG or the reduced deconvolution 
instead of the deconvolution (p-value lower than 0.05) are indicated in grey. 
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by comparing the deconvolution and the reduced deconvolution 

are above the chosen threshold in both SVM and kNN cases. 

IV. DISCUSSION 

Improving myoelectric control is crucial in prosthesis design. 

To that extent, reducing the classification error rate is the 

priority in most researches [6] [16] [18] [19]. The prosthesis 

users identify as primary needs having an extensive range of 

degrees of freedom and performing everyday life tasks [43]. 

This requires precise control. Moreover, the myoelectric control 

should be fast to reduce the latency that would prevent a 

comfortable use of the prosthesis [6]. 

 This paper introduces an innovative method for prosthesis 

control based on a pre-processing of surface EMG: the single-

channel deconvolution. This preliminary processing, which can 

be performed in real-time [33], leads to better classification 

results than raw data.  

The deconvolution provides an estimation of the MU 

cumulative firing rate. Thus, it allows to emphasize the 

information provided by MU firing patterns. An extension of 

this method has been recently introduced [44]: more 

convolution kernels are used, accommodating shape variations 

of MUAPs. This is very important in case of phase changes in 

the MUAPs (mainly found if there are multiple innervation 

zones or in case of fibre pinnation). However, this improved 

algorithm has a larger computational time, precluding the real-

time application needed for our application.  Deconvoluting the 

EMG gives access to more informative signals related to MU 

activities. Specifically, low-frequency contributions provide 

information on the average MU firing rate [33]. In contrast, 

high-frequency components allow the signal to be spiky, better 

reflecting MU firings, which could discriminate better the 

different motor tasks. Moreover, ideally compensating for 

MUAP shapes, the method could be stable to myoelectric 

manifestations of peripheral fatigue (reflected by slowing the 

velocity of propagation of the action potentials along muscle 

fibres [45]). A possible alternative to deconvolution is the 

decomposition by spike sorting approaches [46] [47]. A real 

time method has been proposed [46], but it does not resolve 

overlaps of different waveforms (which are so important in 

surface EMG); on the opposite side, methods resolving overlaps 

are available, but they are very intensive [47]. Other methods to 

get MU firings from surface EMG and to use them in a 

prosthesis control frame had been used in the literature [29] 

[30]. Nonetheless, these methods are based on high-density 

detection arrays and blind source separation techniques, 

requiring intensive processing. Instead, the deconvolution 

estimates the cumulative firing pattern from a single detection 

channel and in real-time. Thus, the controlling method 

introduced in this paper appears to be simpler, faster and 

cheaper than the pre-existing ones. 

Another advantage of this new technique compared to the 

raw EMG is the robustness toward the different subjects, as 

shown by a lower standard deviation on classification error 

rates. The high variation of the classification performances 

over the patients when using the raw EMG can be due to many 

factors, e.g., a displacement of an electrode, an unusual noise, 

or differences in the patients' anatomy, reflecting on different 

MUAP shapes. On the contrary, we have obtained more stable 

results across subjects when using the deconvolution (which 

ideally compensates for different MUAP shapes across 

subjects, preserving only information on firings). 

As shown in Tables II and III, statistically significant 

improvements of classification performance when including 

the proposed pre-processing are asserted in many cases. When 

using the reduced deconvolution instead of the EMG, the null 

hypothesis can be rejected with a 95% confidence level for both 

considered classifiers (SVM and kNN). That is also the case for 

the deconvolution compared to the EMG for the SVM. We can 

conclude that there are statistically significant improvements in 

these cases. On the other hand, when comparing the 

performances of kNN using either EMG or deconvolution 

signals, the p-values are too high to conclude at the chosen level 

of confidence. Nevertheless, lower median classification rates 

were still consistently obtained when using the deconvolution 

signal, independent of the included features. Note that no 

statistical improvement between the deconvolution and the 

reduced deconvolution can be asserted at the given confidence 

level. This is undoubtedly due to the closeness of the 

information extracted. Indeed, the set of reduced features 

appeared the most after the MCA was applied to the indexes 

extracted from the deconvoluted signal. Thus, most information 

sent to the classifier is the same for the deconvolution and the 

reduced deconvolution, and the differences in the results are not 

statistically different. Nevertheless, the reduction of the set has 

the advantages we explained earlier. 

Even considering these promising results, our study has 

many limitations. For example, as we mentioned in the 

“Results” section, some confusion between classes was found 

when the same fingers were in motion (e.g., between TL and L, 

or TR and R: see Table V in Appendix). Despite the reduction 

of the confusion, it is not entirely solved when using the 

proposed pre-processing. We can speculate that the cumulative 

firing rate in those motions, e.g., to bend the ring finger alone 

or together with the thumb, will be similar, thus inducing some 

misclassifications. Further information could be needed to 

improve the discrimination capability of our classifier. Some 

methods have also been introduced to discriminate 

simultaneous motions [48]: possibly, applying such approaches 

to the deconvolution signal could improve the classification 

performances.  

TABLE IV 

STATISTICAL MEASURES OF THE PERFORMANCES OF THE SVM FOR EACH SIGNAL, 

DEPENDING ON THE NUMBER OF FEATURES. 
N.feat Signal Sensitivity Specificity Precision Accuracy F-score 

4 EMG 0.775 0.975 0.775 0.955 0.775 

Deconv 0.833 0.981 0.833 0.967 0.833 
Red 

Decon. 

0.834 0.982 0.834 0.967 0.834 

6 EMG 0.801 0.978 0.801 0.960 0.801 
Deconv 0.854 0.984 0.854 0.971 0.854 

Red 

Decon. 

0.857 0.984 0.857 0.972 0.857 

8 EMG 0.809 0.979 0.810 0.962 0.809 

Deconv 0.863 0.985 0.863 0.973 0.863 

Performances of SVM calculated by micro-averaging: the confusion matrix of the 
multiclass problem was transformed in a simple confusion matrix of a binary classifier by 

successively considering each class as ‘1’ and all the others as ‘0’ (one-vs-all). 
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Moreover, we have focused on particular classification 

approaches, considering specific features, a selection method, 

and two classical classifiers (some tests considering other 

classifiers are shown in the Appendix). For example, only one 

domain of features (TD) has been considered. As we mentioned 

earlier, many other domains are used in the literature, and some 

studies showed excellent classification results [10] [19]. 

Moreover, different feature generation/selection approaches 

could be used, as well as different classifiers. Thus, there is 

room for improving the classification performances. However, 

here we are not concerned with the aim of getting the best 

possible performances with our data, but only with the 

assessment of the importance of using the EMG pre-processing 

by deconvolution. Even being aware that many different 

alternative classification approaches could be used, our tests 

clearly show the potential of our pre-processing, which allows 

us to get improved and more stable performances across 

subjects when considering classical features and classifiers 

often used in myoelectric control. 

 

We should also notice that the data we used here were 

recorded in laboratory conditions. Researchers have noted how 

different the results can be between these conditions and daily 

life [49]. The subjects' arms were on a support, in a given 

position that was the same for all trials. Thus, we cannot 

conclude the robustness toward an electrode misplacement or a 

different arm position. Moreover, the effect of fatigue was not 

investigated. Both central and peripheral myoelectric 

manifestations of fatigue have been documented [45]. As 

mentioned above, the deconvolution signal ideally reflects 

central control, compensating for MUAPs shapes (changing as 

a peripheral manifestation of fatigue); we can then speculate 

that it could be affected to a lesser extent with respect to the raw 

EMG (which is affected both by central and peripheral fatigue). 

These aspects should be explored in the future.  

Also, note that some researchers, especially from the 

industry, claim that other improvements beyond the 

classification rate should be sought, such as providing sensory 

feedback [50] or adapting to EMG changes (due to fatigue, 

sweat,…) and being more robust toward non-ideal conditions 

[50] [51]. These are other vital points to be addressed in the 

future, in addition to the need of reducing the execution time 

[6].  

Nevertheless, besides the limitations of our work, the 

proposed method is promising because it overcomes the EMG 

in the classification process without needing complex detection 

and keeping low the computational cost. It seems to be a path 

to follow in the future to improve prosthesis control. For 

example, the proposed pre-processing could be integrated into 

other advanced methods, such as those focused on force and 

pattern classification [52]. 

 
Fig. 8.  Portion of data (EMG and corresponding deconvolution signal) for 

each executed movement (acronyms defined in Fig. 2). 

 

 

 
Fig. 10. Error rate of different classifiers (SVM, kNN, LDA and NB) 

considering 6 features (selected by MCA) and different numbers of windows 
for the majority voting. Filtered EMG and deconvolution are considered, both 

showing single subjects and the average error rate across them. 

 
 

Fig 9. Error rates for the kNN classifier (same notation as for Fig. 6). 

TABLE V 

CONFUSION MATRIX OF THE MOVEMENT CLASSIFICATION BY SVM/DECONVOLUTION USING THE EMG WITH 8 FEATURES. 
 Estimated movement 

HC I L M R T TI TL TM TR 

E
x

ec
u
te

d
 m

o
v

em
en

t 

HC 1859/1895 0/3 0/0 5/0 52/7 3/0 0/0 1/0 0/0 0/15 
I 8/12 1323/1575 16/30 40/4 49/54 215/93 259/134 10/18 0/0 0/0 

L 0/11 26/3 1395/1600 2/7 1/3 109/20 34/28 324/166 17/19 12/63 

M 72/17 3/0 13/15 1689/1745 8/2 0/32 11/0 0/52 89/6 35/51 
R 6/19 0/5 0/10 4/9 1733/1676 54/2 0/0 0/17 0/7 123/175 

T 36/22 214/166 78/49 4/20 8/1 1558/1554 1/42 0/20 9/11 12/35 

TI 0/0 129/39 60/47 206/41 9/0 96/72 1365/1677 24/35 19/9 12/0 
TL 0/0 12/8 246/129 64/127 9/0 0/25 8/11 1392/1573 145/6 44/41 

TM 11/8 4/0 45/54 16/22 2/20 0/19 0/0 54/43 1780/1729 8/25 
TR 5/41 0/0 26/1 0/32 376/232 3/10 34/0 28/66 2/0 1446/1538 

 
All epochs from all subjects have been considered. The rows are the expected motions, and the columns are the output of the classification. 
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V. CONCLUSION 

Using the single-channel deconvolution instead of the raw 

EMG improves the myoelectric control. The error rate in 

motion task identification is significantly reduced (around a 5% 

cut through all subjects). The method is promising, as it does 

not require any complex detection system, and the processing 

can be performed in real-time. The performances are also more 

homogenous among the investigated subjects. Using this signal 

also reduces inputs when considering the usual time-domain 

features, decreasing the computational cost. Additional tests are 

needed to check the feasibility of this approach in realistic 

conditions.  

APPENDIX 

Figure 8 shows the EMG and deconvolution of an epoch for 

each gesture. Detailed results are provided in Tables IV-VI, 

showing, respectively, different performance indexes of SVM 

classifier (Table IV) and the confusion matrices when using 

either the EMGs or the deconvolution signals (Table V). 

Moreover, Figure 9 shows the error rate distribution of kNN 

classifier. The effect of the number of windows included in the 

majority voting is investigated in Figure 10, considering LDA 

and NB as classification approaches, in addition to SVM and 

kNN.  
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