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Abstract: In recent years, the number and heterogeneity of large scientific datasets have been grow-
ing steadily. Moreover, the analysis of these data collections is not a trivial task. There are many
algorithms capable of analyzing large datasets, but parameters need to be set for each of them. More-
over, larger datasets also mean greater complexity. All this leads to the need to develop innovative,
scalable, and parameter-free solutions. The goal of this research activity is to design and develop an
automated data analysis engine that effectively and efficiently analyzes large collections of text data
with minimal user intervention. Both parameter-free algorithms and self-assessment strategies have
been proposed to suggest algorithms and specific parameter values for each step that characterizes
the analysis pipeline. The proposed solutions have been tailored to text corpora characterized by
variable term distributions and different document lengths. In particular, a new engine called ES-
CAPE (enhanced self-tuning characterization of document collections after parameter evaluation) has
been designed and developed. ESCAPE integrates two different solutions for document clustering
and topic modeling: the joint approach and the probabilistic approach. Both methods include ad
hoc self-optimization strategies to configure the specific algorithm parameters. Moreover, novel
visualization techniques and quality metrics have been integrated to analyze the performances of
both approaches and to help domain experts interpret the discovered knowledge. Both approaches
are able to correctly identify meaningful partitions of a given document corpus by grouping them
according to topics.

Keywords: textual data; unsupervised learning; self-tuning algorithms

1. Introduction

At present, modern applications, from social networks such as Facebook and Twitter,
to digital libraries such as Wikipedia, collect more and more textual data. Science is in a
data-intensive age, in which the creation and sharing of large scientific datasets is unheard
of. Indeed, the pace of data analysis has been surpassed by the pace of data generation.

The text mining field focuses on the study and development of algorithms capable
of finding meaningful, unknown, and hidden information from the growing collections
of textual documents. Text mining tools include: (i) grouping documents with similar
properties or similar content [1,2]; (ii) topic modeling [3,4]; (iii) classification models [5];
(iv) document summarization [6]; and text stream analysis [7].

Each data analytics activity on textual data is challenging, as it is a process with
multiple steps in which the analytics pipeline must be configured in order to discover and
exploit interesting knowledge from the textual data.

There is no single pipeline to analyze textual data. In the literature, there are several
algorithms that can solve a particular data mining task, but in most cases, no algorithm
is universally superior. Various aspects affect the performance of the algorithms, such as
the cardinality of the input data, its distribution, and the type of knowledge extracted (i.e.,
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the type of analysis to be performed). However, some steps are common to the different
pipelines, such as the collection of textual data (i.e., a set of documents of interest). Once the
documents are collected, appropriate preprocessing is performed. The latter involves many
steps and is an important and critical task that affects the quality of the text mining results.

To perform a particular phase of data analysis, there are a considerable number of
algorithms, but for each one, the specific parameters need to be manually set and the results
validated by a domain expert [8]. Moreover, real-text datasets are also characterized by
an inherent sparseness and variable distributions, and their complexity increases with
data volume. In the analytics process tailored to sparse data collections, it is necessary
to transform the data appropriately in order to extract hidden insights from them and to
reduce the sparseness of the problem. Furthermore, different weighting schemes (e.g., TF-
IDF, LogTF-Entropy) can be used to emphasize the relevance of the terms in the collection.
Nevertheless, there are several methods, and the choice depends on the experience of the
domain expert.

In the end, it is not trivial to obtain the best solution that, at the same time, has a
reasonable execution time and proper quality results. It is necessary to devise parameter-
free solutions that require less expertise in order to lighten the process of analyses of large
textual data.

This paper presents ESCAPE (Enhanced Self-tuning Characterization of document
collections After Parameter Evaluation), a new data analytics engine based on self-tuning
strategies that aims to replace the end-user in the selection of proper algorithm parameters
for the whole analytics process on textual data collections. ESCAPE includes two different
solutions to address document clustering and topic modeling. In each of the proposed
solutions, ad hoc self-tuning strategies have been integrated to automatically configure the
specific algorithm parameters, as well as the inclusion of novel visualization techniques
and quality metrics to analyze the performance of the methods and help domain experts
easily interpret the discovered knowledge. Specifically, ESCAPE exploits a data-reduction
phase computed through latent semantic analysis, before the exploitation of the parti-
tional K-means algorithm (named the joint-approach) and the probabilistic latent dirichlet
allocation (named the probabilistic approach). The former exploits the dimensionality re-
duction of the document–term matrix representing each corpus, while the latter is based
on learning a generative model of term distributions over topics. Both the joint-approach
and the probabilistic model permit finding a lower-dimensional representation for a set
of documents, compared to the simple document–term matrix. Moreover, the outputs
of the two methodologies are disjointed groups of documents with similar contents. In
order to compare the results, ESCAPE provides different visualization techniques to help
the analyst with interpreting the ESCAPE results. The proposed engine has been tested
through different real-text datasets characterized by a variable document length and a
different lexical richness. The experiments performed by ESCAPE underline its capabil-
ity to autonomously spot groups of documents on the same subject, avoiding the user
having to set the parameters of the various algorithms and to select the most appropriate
weighting scheme. This paper introduces a novel self-tuning methodology tailored to
textual data collection to democratize the data science on corpora. The main objective is
masking the complexity of data-driven methodologies by allowing non-expert users to
easily exploit complex algorithms in the proper way without knowing the technical details.
The innovative aspects of the proposed approach are the following:

1. The introduction of an automated data analytics pipeline that compares different
algorithms and solutions tailored to textual data collection without requiring techni-
cal knowledge;

2. The automation of the discovery of unsupervised and relevant topics processes,
together with their characterization in a given corpus of documents;

3. An integration of innovative and tailored self-tuning techniques to drive the au-
tomatated choice of optimal parameters for each algorithm;

4. A novel self-assessment approach of the obtained results seeks the best weighting schema;
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5. The implementation of different human-readable visualization techniques intended
to facilitate understanding of the results, even for non-expert users.

This paper is organized as follows. Section 2 discusses the state-of-the-art method-
ologies. Section 3 presents the ESCAPE engine, while Sections 4 and 5 show, in detail,
its main building components and the self-tuning algorithms used. Section 6 thoroughly
display the experiments performed on six real-text corpora, and also includes a comparison
with state-of-the-art methods. Considerations about the obtained results are presented
in Section 7. Finally, Section 8 draws conclusions and presents future developments of
this work.

2. Literature Review

Currently, several modern applications, such as e-learning platforms, social networks,
or digital libraries, are able to collect more and more textual data [1]. However, the ex-
ploitation of this data is rather limited. In particular, there are few approaches that are
able to perform the analysis automatically and without user involvement. Text mining
has been adopted in various sectors over the years, as illustrated in [9]. It is based on
algorithms capable of deriving high-quality information from a large collection of docu-
ments. Its activities include: (i) grouping documents with similar properties or similar
content [1,10,11], (ii) topic modeling [3,12–18] and detection [19–21], (iii) classification
models [22–24], (iv) opinion mining and sentiment analysis [25,26], and (vi) document
querying [27].

Computational cost is a non-negligible issue when applying the above techniques to a
large data collection. To address this issue, there have been several research efforts focused
on developing innovative algorithms and methods to support large-scale analytics based on
MapReduce [28]. Another improvement has been achieved with Apache Spark [29], which
surpassed Hadoop’s performance due to its distributed memory abstraction, a primary
aspect for data analytics algorithms.

In the scientific research, several approaches and solutions have been presented in
order to represent, mine, and retrieve information [30] from text sources. Depending on the
modeling of the text data and the used techniques, different models have been proposed in
the scientific literature: set-theoretic [31] (such as the Boolean models, representing docu-
ments as sets of words or phrases), algebraic [1,32,33] (representing documents as vectors
or matrices, such as the vector space models, the latent semantic analysis, the principal
components analysis (PCA) [34], or the sparse latent analysis [35]), and probabilistic [36,37]
(such as the latent Dirichlet allocation, which represents documents as probabilities of
words, or the probabilistic latent semantic analysis).

Figure 1 provides an overview of the state of the art in topic modeling and recognition
methods. Based on the proposed methodology, the studies can be divided into unsuper-
vised and (semi-) supervised approaches. The work proposed in [16,17,20,24,38] belongs
to the (semi-) supervised methods. In [20], the authors propose a framework to improve
topic detection based on text and image information. After applying image understanding
through deep learning techniques, they integrate the results with short textual information.
Instead, ref.

[24] shows a semi-supervised approach. They present two frameworks: the first mod-
els short texts, while the second embeds the first for short-text classification. In [16], the
authors address topic detection on tweets related to COVID-19 in English and Portuguese.
Additionally, in [38], the authors use COVID-19 tweets as data, but they rely on a naive
Bayes classifier and logistic regression. In [17], the authors combine a heterogeneous atten-
tion network with a DBSCAN algorithm and a pairwise popularity graph convolutional
network in order to detect social streaming events and study how they evolve in time.

Another research trend that has emerged in recent years is the integration of word
embedding and clustering techniques, as seen in [14,15]. The main idea is to extract word
embeddings from models such as BERT and to apply clustering techniques to them. A
variant of this strategy is proposed in [18]. Here, the authors modify the creation of the word
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embedding by constraints, and then apply a deep K-means algorithm. In [13], they combine
traditional topic models, such as LDA, with word embeddings. Other authors instead
rely on more traditional approaches and focus their research efforts on other aspects. For
example, in [11], the authors focus on the weighting schemes used, while in [12], the focus
is on more readable visualization techniques or the implementation of self-optimization
algorithms [1]. There are also those that implement topic-detection techniques and breaking
news detection. For example, in [21], the authors use document pivot and feature pivot
techniques in combination with online clustering to understand what happens during a
soccer match based on tweets.

Figure 1. Overview of related works [2,11–18,20,21,24,38].

Since text mining is a multi-step process that requires specific configurations and
parameters for each algorithm involved in the analysis, in most of the work cited above the
presence of experts and analysts is required to manage the retrieval process. To overcome
this problem, innovative solutions are needed to make the analysis of large data scalable
more effectively treatable, while allowing it to be unsupervised by human analysts and
data experts. While ESCAPE exploits some of the techniques seen so far, the features
that most of the methodologies mentioned are unable to address are the following: the
automatic choice of parameters for the algorithms used, the comparison between different
techniques through quality indexes, and the graphical visualization of the obtained results.
Some preliminary results of ESCAPE have been presented in [1,12,32]. While a preliminary
cluster analysis on a collection of documents has been discussed in [32], a step toward
a self-tuning joint-approach has been presented in [1], and a preliminary version of the
self-tuning probabilistic approach has been proposed in [12] to analyze a large set of
documents. However, the study presented here significantly improves on our previous
works, proposing a complete pipeline including different weighting schemes, different
reduction strategies, and topic-detection algorithms tailored to textual data collections
capable of automatically grouping documents that address similar topics. Moreover, these
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results can be displayed graphically using different visualization techniques, allowing the
expert to easily characterize and compare each topic.

3. Framework

ESCAPE is a distributed self-tuning engine with the purpose of automatically extract-
ing groups of correlated documents from a collection of textual documents, integrating
document clustering and topic modeling approaches. Discovered topics hidden in the
collection are shown to the end-users in a human-readable fashion to effectively support
their easy exploration.

ESCAPE relies on automatic strategies with the purpose of selecting proper values
for the overall textual data analytics process without user intervention. The ESCAPE
architecture, reported in Figure 2, includes four main components: (i) data processing
and characterization; (ii) data transformation; (iii) self-tuning exploratory data analytics; and
(iv) knowledge validation and visualization. Below, each component is described in detail.

Figure 2. The ESCAPE system architecture.

3.1. Data Processing and Characterization

In order to deal with the textual data analysis problem in a more efficient way, ESCAPE
includes two steps to transform and characterize the textual corpora: (i) document processing
and (ii) statistics definition and computation. These steps are performed automatically without
any user intervention.

Document processing. In this block, five steps are performed sequentially as interre-
lated tasks:

1. document splitting: documents can be split into sentences, sections, or analyzed in terms
of their entire content, according to the next analytic task. While short documents,
such as emails or tweets, are represented with a single vector, longer documents can
be decomposed into paragraphs or sentences; hence, multiple vectors are required.
Choosing the best procedure depends on the goals of the analysis: for the clustering
task (as in the scope of this paper), the entire document is analyzed in terms of its
entire content; for sentimental analysis, document summarization, or information
retrieval, smaller units of text such as paragraphs might be more appropriate;

2. tokenization: this is the process of segmenting a text or texts into tokens (i.e., words) by
the white space or punctuation marks within the same split;

3. case normalization: capitalization is very useful to humans in the reading phase. How-
ever, in many analytics tasks, a capital word at the beginning of a sentence should not
be treated differently from the same lower-case word that appears elsewhere in the
document. For this reason, this step converts each token to completely upper-case or
lower-case characters;

4. stemming: each token is mapped into its own root form. This includes the identification
and removal of prefixes, suffixes, and pluralization;
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5. stopwords removal: stopwords are grammatical words which are irrelevant to text contents
(e.g., articles, pronouns, prepositions), so they need to be removed for more efficiency.
These common words can be discarded before the feature-generation process.

The document’s main themes are depicted with the bag-of-words (BOW) represen-
tation, which shows the most meaningful frequent terms in terms of multiplicity without
caring about grammar rules and word order.

Information about the frequency of each word in a document can be useful to reduce
the size of the dictionary. For example, the most-frequently occurring words in a document
are often stop words and should be deleted. Terms that are very rare should also be deleted,
as they are often typos. The remaining most-common words are the most important and
significant. In general, the smaller the dictionary, the greater the intelligence to capture the
most- important words [39]. Tokenization and stemming are two steps that help us reduce
the size of the dictionary. After defining the set of words, the next step is to convert the
document collection into a matrix structure format.

Let D = {d1, d1, . . . , d|D|} be a corpus of documents, and V = {t1, t2, . . . , t|V|} be the
set of distinct terms used at least once in the textual collection. The corpus D is represented
as a matrix X, named the document–term matrix, in which each row corresponds to a
document in the collection, and each column, one for each tj ∈ V, corresponds to a term in
the vocabulary.

Statistics definition and computation. ESCAPE includes the computation of several
statistical indices [1,32,40] to characterize the document collection data distribution:

• # categories: the number of topics/clusters in the textual collection under analysis (if
known a priori);

• Avg frequency terms: the average frequency of token occurrence in the corpus;
• Max frequency terms: the maximum frequency of token occurrence in the corpus;
• Min frequency terms: the minimum frequency of token occurrence in the corpus;
• # documents: the number of textual documents in the corpus (i.e., total number of splits

defined by the analyst);
• # terms: number of terms in the corpus, with repetitions (i.e., all words of a textual

collection);
• Avg document length: the average length of documents in the corpus;
• Dictionary: the number of different terms in the corpus, without repetition (i.e., all

words that are different from each other in a textual collection);
• TTR: the ratio between the dictionary variety (Dictionary) and the total number of

tokens in a textual collection (# terms); in other words, it represents the lexical diversity
in a corpus;

• Hapax %: the percentage of Hapax, which is computed as the ratio between the number
terms with one occurrence in the whole corpus (Hapax) and the cardinality of the
Dictionary;

• Guiraud Index: the ratio between the cardinality of the Dictionary and the square root
of the number of tokens (# terms). It highlights the lexical richness of a textual collection.

The joint analysis of these statistical features is able to describe and characterize the
data distribution of each collection under analysis. ESCAPE includes also a Boolean feature,
named remove-hapax, which, if set to True, removes the Hapax words for the subsequent
analyses; otherwise, these words are included in the analysis. This step could lead to
different results for the different strategies included in ESCAPE. Indeed, algebraic models
are less influenced by the presence of Hapax, since, in the decomposition, their affection
is overridden by the most-frequent terms. Probabilistic models, on the other hand, are
influenced in a more negative way, as they introduce noise within the creation of the model.

3.2. Data Transformation

This component deals with the representation of weighted documents to emphasize
the relevance of a specific word within the document collection. The weight of each
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word represents its importance degree. Depending on the weighting scheme adopted, the
knowledge acquired from the collection might vary. Specifically, based on the document’s
statistical features and the desired granularity of the outcomes, one of the weighting
schemes might outperform the others.

To measure the relevance of the various terms in the document, each cell in the matrix
X contains a weight xij, that is, a positive real number indicating the importance of the
term tj appearing in the document di. Ref. [41] proposes different weighting functions,
combining a local term weight with a global term weight. By applying a weighting function
to a collection D, we obtain its weighted matrix X. In particular, each element xij in the
matrix represents the weight of the term tj in the document di and is calculated as the
product of a local term weight (lij) and a global term weight (gj) (xij = lij × gj). A local
weight lij refers to the relative frequency of a specific term j in a particular document i,
while the global weight gj represents the relative frequency of the specific term tj within
the whole corpus D.

Three local term weights and three global term weights are included in ESCAPE. The
local weights are term-frequency (TF), logarithmic term frequency (Log), and Boolean, while
the global ones are inverse document frequency (IDF), entropy (entropy) and term-frequency
(TFglob). Their definition is reported in Table 1. The TF weight (L1 in Table 1), defined as
t f ij, represents the frequency of term j in document i. A similar measure is also reported by
Log weight, which, however, evaluates the frequency of the term on a base-2 logarithmic
scale. Lastly, the Boolean weight function is equal to 1 if the frequency was non-zero, and
0 otherwise. Intuitively, L1 and L2 give increasing importance to more frequent words,
but L2 gives progressively smaller additional emphases to larger frequencies, while L3 is
sensitive only to whether the word is in the document.

After establishing the frequency of the different terms in the document, the resulting
count has to be altered according to the perceived importance of that term by integrating
the global importance of each word.

To this end, the global weighting schemes reduce the weight of those terms that have
a high frequency in a single document or that appear in many documents, which involves
interesting variations concerning the relative importance of document frequency, local
frequency, and global frequency. In particular, the global weight IDF (G1) measures how
rare a term is within the corpora (|D|). This weight is calculated as the logarithm of the
ratio between the total documents in (|D|) and the number of documents d f j containing
the term j. The more frequent a term is in the various documents, the lower its IDF will be.

Entropy (G3) represents the real entropy of the conditional distribution given that
the term i appeared. In documents, high-normalized entropy is considered good and
low-normalized entropy is considered bad. Entropy, as a weighting scheme, is the most
sophisticated one, and it is built on information theoretic ideas. If a term has the same distri-
bution over different documents, it is given the minimum weight (i.e., where pij = 1/ndocs),
while if a term is concentrated in a few documents, it is given the maximum weight. In other
words, entropy considers the distribution of terms over documents. Lastly, G3 represents
the number of times in which the corresponding word j appears in the entire textual corpus
D. It extends L1, considering the whole corpus.

ESCAPE integrates six different term-weighting schemes to measure term relevance.
We have obtained six of these schemes by combining one of the three local weights (TF,
LogTF, and Boolean) with either IDF or entropy, while the last one is the combination
between the local Boolean weight and the global TFglob weight. These weighting schemes
are the most used in the state of the art [41].

All these combinations are analyzed to show how the different schemes are able to
characterize the same dataset at a different granularity levels.
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Table 1. Local and global weight functions exploited in ESCAPE.

Weight WId Definition

Local

L1 TF = tfij

L2 LogTF = log2(tfij + 1)

L3 Boolean =

{
0 if tfij = 0
1 otherwise

Global

G1 IDF = log |D|dfj

G2 Entropy = 1 + ∑i
pij log pij

log |D|
G3 TFglob = gfj

4. Self-Tuning Exploratory Data Analytics

Topic modeling and document clustering are closely related, and they can mutually
benefit one from another [42]. As a matter of fact, topic modeling projects documents into
a topic space in order to try to facilitate an effective document clustering. On the other
hand, after document clustering, the discovered cluster labels can be incorporated into
topic models. In this way, specific topics within each cluster and global topics shared by all
clusters can be extracted.

Two well-known approaches for document clustering and topic modeling have been
integrated in ESCAPE. For each strategy, a brief description is reported, together with ad
hoc self-tuning strategies, to automatically configure each algorithm.

4.1. Joint-Approach

The joint-approach includes (i) a data-reduction phase computed through the latent
semantic analysis [33] based on the singular value decomposition, and (ii) the partitional
K-means algorithm [43]. Below, a brief description of the two algorithms is reported,
including their main drawbacks. Lastly, the Subsection ends with the two proposed self-
tuning algorithms for setting the input parameters automatically, respectively.

4.1.1. Latent Semantic Analysis

To make the cluster analysis problem more effectively tractable, ESCAPE includes
a natural language process named LSA (latent semantic analysis) [33]. LSA allows a
reduction in the dimensionality of the document–term matrix X, which captures the latent
semantic structure. Choosing the right dimensionality reduction, while avoiding the loss of
significant information, is an open research issue and a very complex task. If there are not
enough dimensions after the LSA process, the data representation will be poor, while if
there are too many dimensions, it will lead to more noisy data. LSA maps both words and
documents in a concept-space, wherein it is able to find the relationships between them. To
find the hidden concepts, LSA applies the singular value decomposition (SVD). SVD is a
matrix factorization method that decomposes the original matrix (document–term matrix)
X into three matrices (U; S; VT). To find the principal dimensions (KLSA) in X, ESCAPE
includes an innovative algorithm named ST-DaRe. Given KLSA, ESCAPE uses only the
highest singular KLSA values in S, setting the others to zero. The approximated matrix
of X, denoted as XKLSA = UKLSA SKLSA VT

KLSA
, is obtained through the reduction of all three

decomposed matrices (U, S, VT) to rank KLSA. In general, the low-rank approximation
of X by XKLSA can be viewed as a constrained optimization problem, with respect to
the constraint that XKLSA has a rank at most KLSA. When the document–term matrix is
tightened down to a k-dimensional space, terms with alike co-occurences should be brought
together by the SVD. This insight indicates that the dimensionality reduction could improve
the results.

Self-Tuning Data-Reduction Algorithm.
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The goal of the ST-DaRe (self-tuning data-reduction) algorithm in ESCAPE is to pick
out a proper number of dimensions to take into account in the successive analytics steps,
while avoiding the loss of relevant information, by identifying three reasonable values for
the LSA parameter. The correct choice of the number of dimensions to be considered is an
open research issue [41]. Selecting the maximum decrease point inside the singular-value
curve is an easy approach, but if a local minimum is hit, the resulting choice would be
inaccurate.

The original ST-DaRe algorithm [1] needs three parameters that have been experimen-
tally set. These parameters are the singular-value step and two thresholds. In this case, the
singular values are plotted in descending order and, from the obtained curve, the singular
values are analyzed in pairs, using the singular-value step set as a parameter. For each pair,
the marginal decrease of the curve is calculated. If this decrease is comparable to one of the
two parameters chosen as thresholds, or to their average, then the smallest singular value
of the analyzed pair is chosen as one of three values.

Different from this original approach, in ESCAPE, we propose a new strategy based
on a single parameter T, indicating the number of singular values to consider. In particular,
after having ordered the singular values in descending order, for our analysis, we consider
only the first T of them. We calculate the average and the standard deviation for each of
these singular values and we define a confidence interval. Then, the three values to choose
representing the number of dimensions to be considered are selected in this way: (i) the
first is the singular value corresponding to the mean position; (ii) the second is the singular
value corresponding to the mean plus the standard deviation position; and (iii) the third is
the singular value corresponding to the mean position of the previous ones. Through this
method, the problem of the local optimality choice is overcome. A pseudo-code that shows
how the enhanced version of ST-DaRe works is given in Algorithm 1.

Algorithm 1: The enhanced ST-DaRe pseudo-code
Input : X, T
Output : KLSA [3]

1 N = 0;
2 // compute the SVD decomposition of the truncated matrix X;
3 [U, S, V]← X.computeSvd(T);
4 s← normSingularValues(S);
5 // compute the mean of singular values;
6 mean = s.mean();
7 // compute the standard deviation of singular values;
8 stand_deviation = s.std();
9 // compute the three values;

10 val1 = s[mean];
11 val2 = s[mean + stand_deviation];
12 val3 = s[(val1 + val2)/2];
13 KLSA.push(val1, val2, val3])

T, at most, will be equal to the rank of the document–term matrix. Since the number of
documents for all the textual corpora analyzed is much smaller than the vocabulary used
in each collection, the value T is set by ESCAPE to 20% of the number of documents.

4.1.2. K-Means Algorithm

In the joint-approach, the singular value decomposition is applied to data to cut down
the dimensions of the data prior to the learning process. Since the different document–
concept vectors can be clustered, the learning process implements the K-means algorithm.
The difference between clustering and LSA is that clustering algorithms assign each doc-
ument to a specific cluster, while LSA assigns a set of topics to each document. Still, a
K-means algorithm applied after the singular-value decomposition improves the results, as
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shown in [1,32]. We have decided to implement the K-means clustering because it is an
easy algorithm to implement that has good performance and which converges quickly, all
while providing good results [44,45]. Moreover, the performance of the algorithm is still
being researched in order to obtain better and better results [46], which would allow us
easy adaptability in the case of new and better-performing techniques.

ESCAPE manages to discover groups of documents that share a similar topic by self-
assessing the quality of the found clusters. It uses an algorithm to automatically configure
the cluster analysis activity through an analysis of different quality metrics to evaluate
the obtained partitions. To this end, several configurations have been tested by ESCAPE,
modifying the specific-algorithm parameter (i.e., number of desired clusters).

Self-Ttuning Clustering Evaluation.
After the formation of the K clusters from the collection of textual documents, it is

necessary to corroborate the clustering results with three indicators obtained from the
computation of the silhouette [47]. The silhouette index gauges, from a qualitative point of
view, the similarity of an element with respect to its own cluster (cohesion), and compared
to other clusters (separation). The silhouette varies from −1 to +1. If the silhouette has
a high value, it means that the object is cohesive to its own cluster and well-separated
from the neighboring cluster. In order to estimate the cohesion and separation of each
cluster set, the solutions found are compared through the calculation of different silhouette-
based indices to measure t. Then, the best three configurations, which identify a proper
division of the original collection, are chosen. ESCAPE exploits three versions of the
standard silhouette index to assess the quality of the discovered cluster set: (i) the weighted
distribution of the silhouette index (WS) [1]; (ii) the average silhouette index (ASI) [48]; and
(iii) the global silhouette index (GSI) [48]. Specifically, the WS index indicates the amount of
documents in each positive bin that are properly weighted with an integer value w ∈ [1; 10]
(the highest weight is given to the first bin [1–0.9], and so on) and normalized within the
sum of all the weights. It is better to have distributions with a positive asymmetry (i.e.,
more documents have silhouette values belonging to the higher bins) instead of those
with a majority of lower silhouette values (negative skewness). ASI gives an overview of
the average silhouette of the entire cluster set, while GSI is able to take into account the
possible imbalance number of elements in each cluster. If these indicators have higher
values, it means that there is a better clustering validity. A detailed description of all the
computations of these metrics is reported in Section 5. We apply a rank function for each
quality index to estimate the cohesion and separation of each cluster set. The rank assigned
to each quality index may vary from 2 (assigned to the solution with the highest silhouette
index) to the Kmax (assigned to the solution with the lowest silhouette index). Then, a
global score function is defined as follows:

Score = (1− rankGSI/Kmax) + (1− rankASI/Kmax) + (1− rankWS/Kmax)),

where Kmax is the maximum value of clusters, while rankGSI , rankASI , and rankWS are
the ranks of the average silhouette index, the global silhouette index, and the weighted
silhouette, respectively. The score lies in the range [0, (3− 6

Kmax
)]. ESCAPE selects the best

value for each experiment. In ESCAPE, the analyst can choose how to set the value of
the number of clusters through the setting of a parameter. Nevertheless, our framework
proposes as the maximum value for analysis (a default configuration) the average document
length for each corpus. In fact, we hypothesize that every word in the document belongs,
at most, to a different topic. In this way, we set an upper bound for the value of the number
of clusters. Still, if the average document length is greater than the number of documents
in the corpus under analysis, then the value is set to the average frequency of the term.
However, these choices can be changed by each analyst, since the framework is distributed
such that it is able to analyze several solutions in parallel.

Therefore, if the user does not manually specify any parameters at the beginning of the
analysis, Kmax is set automatically on the basis of the average document length. Otherwise,



Appl. Sci. 2022, 12, 5125 11 of 41

the user can set the Kmax parameter according to his/her needs. In both cases, all solutions
in the considered range are explored in order to choose the three best ones.

4.2. Probabilistic Approach

ESCAPE includes also the probabilistic topics-modeling approach. This technique
represents textual documents as probabilities of words and aims to discover and annotate
large archives of texts with thematic information. In ESCAPE, the latent Dirichlet allocation
(LDA) is implemented. The intuition behind LDA is that documents are mixtures of
multiple topics [3]. Topics are defined as distributions over a fixed vocabulary. Documents,
instead, are seen as a distribution over the set of different topics, thus showing multiple
topics in different proportions. LDA requires the number of topics to be set a priori, which
is an open research issue [12].

4.2.1. Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) is a generative probabilistic model for collections
of discrete data such as text corpora [36].

Using Bayesian inference (posterior inference), LDA infers the hidden structure to
discover topics inside the collection under analysis. Documents are treated as mixtures
of topics and topics as mixtures of words. For each document in the collection, words are
generated through a two-stage process:

1. Firstly, a distribution over a topic is randomly chosen;
2. Then, for each word in the document:

(a) a topic is randomly chosen from the distribution defined at the previous step
(Step 1);

(b) a word is randomly chosen from the corresponding distribution over the dictio-
nary.

Each document shows topics in different proportions (Step 1); then, each word in each
document is drawn from one of the topics (Step 2b), where the selected topic is chosen from
the per-document distribution over topics (Step 2a).

In order to generate each document in the corpus, two steps are performed [3]:

1. The choice of the number of terms from a Poisson distribution;
2. After that, for each of the document’s words:

- The choice of a topic zn from multinomial (θ), where θ is a Dirichlet (α), repre-
senting the document–topics distribution;

- The choice of a word wn from multinomial (φzn ), where φ represents the topic–
words distribution (φ ∼ Dirichlet (β)), conditioned on the previously chosen
topic zn.

So, if we consider a collection of K topics z, a collection of N terms w, and a document–
topics distribution θ, the joint multivariate distribution can be defined as:

p(D|α, β) =
K

∏
d=1

∫
p(θd|α)

(
Nd

∏
n=1

∑
zdn

p(zn|θd)p(wdn|zdn, β)

)
dθd,

where

• α describes the concentration for the prior placed on documents’ distributions over
topics (θ). Low α values will create documents that likely contain a mixture of only
few topics;

• β represents the concentration for the prior placed on topics’ distributions over terms.
Low β values will likely produce topics that are well-described just by few words.

Generally, it is unfeasible to compute these distributions; thus, this posterior Bayesian
inferential problem cannot be solved exactly. In order to bypass such an issue, it is pos-
sible to exploit different approximate inference algorithms: the online variational Bayes
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algorithm [49] is the one that ESCAPE uses, while α and β are set to maximize the log
likelihood of the data under analysis.

4.2.2. Self-Tuning LDA

In the literature, different solutions have been explored and proposed in order to find
the most suitable K.

Our proposed approach is still iterative, as are all the approaches known so far in the
literature [50]. However, a trade-off between the computational costs and the goodness of
the results will be considered, even when applied to large data volumes.

The newly proposed approach, called ToPIC-Similarity [12], is described in detail in
the following paragraph.

4.2.3. ToPIC-Similarity

To find the appropriate number of topics into which to divide documents, ESCAPE
proposes an automatic methodology, called ToPIC-Similarity, whose steps are described by
pseudo-code in Algorithm 2. After setting a minimum threshold (Kmin) and a maximum
threshold (Kmax), a new LDA model is generated for each K within the range defined by
the thresholds. Each of these models is then evaluated through two main steps:

• topic characterization, to find the n most important words for each of the K topics
identified;

• similarity computation, to assess the similarity between the various topics found, ex-
pressed through an index.

Finally, a third step, called K Identification, allows us to select the best configuration of
the K parameter to use in the analyses.

Topic characterization. In this step, each topic identified is summarized with a list
of its most-significant n words. In order to automatically find the value of n, ESCAPE
considers the number of words that appear most frequently, and then filters this number by
dividing it by the average frequency of terms within the topic. In particular, the quantity of
the most-significant words, named Q, is defined as: Q := |V|·TTR

AvgFreq , where |V| is the variety
of the corpus dictionary and TTR is the type–token ratio (total number of unique words
divided by the total number of words). Given Q, the number n is then set as follows:

n =

{ Q
K , i f Q ≥ K · AvgFreq

AvgFreq , i f Q < K · AvgFreq
(1)

When the average frequency of terms in the corpus is higher than the amount of words
taken into account, the number n of words is set equal to the average frequency of terms in
the corpus. Finally, for each word in each topic, the word is associated with the probability
that the term has to be taken up in the topic (0 if it is not included in the list of n words).

Similarity computation. Here, all possible pairs of topics are considered, and for each
of them, their similarity is calculated. Cosine similarity is used to determine the similarity
between two topics. Considering two topics, t′ and t′′, belonging to the same partitioning K,

the similarity between the topics is computed as follows: similarity(t′, t′′) =
Nt′ ·Nt′′

‖Nt′‖2‖Nt′′‖2
,

where Nt′ is the set of the representative words of topic t′ and Nt′′ is the set of of the
representative words of topic t′′.



Appl. Sci. 2022, 12, 5125 13 of 41

Algorithm 2: ToPIC-similarity pseudo-code
Data: X, Kmin , Kmax
Result: kSol

1 // variable inisialization
2 topicS = [ ], NTerms = [ ];
3 for K ← Kmin to Kmax do
4 // build the LDA model;
5 LDAModel← lda.fit(X);
6 Q← (|V| · TTR)/AvgFreq;
7 // set the number of terms per topic;
8 if Q ≥ K · AvgFreq then
9 n← Q/K);

10 else
11 n← AvgFreq;
12 end
13 // collect together the terms of each topic;
14 for t← 0 to (K-1) do
15 NTerms.append(LDAModel.describeTopics()[t].sort().take(n));
16 end
17 N← NTerms.size();
18 topicsDescr = zeros(K, N);
19 simMatrix = zeros(K, K);
20 for t← 0 to (K-1) do
21 for word← 0 to N do
22 // take the probability that the term has to be drawn
23 // from the topic, given the LDAModel
24 topicsDescr[t][word]← LDAModel.describeTopics()[t, NTerms[word]];
25 end
26 end
27 for t← 0 to (K-1) do
28 for s← 0 to (K-1) do
29 simMatrix[t][s]← cosine(topicsDescr[t], topicsDescr[s]);
30 end
31 end
32 topicS.append(Frobenius-norm(simMatrix)*100/K);
33 if topicS[K] ≥ topicS[K-1] AND secondDerivative(topicS[K-1]) > 0 then
34 kSol.append(topicS[K-1]);
35 if kSol.size() > 3 then
36 return kSol.take(3);
37 end
38 end
39 end

At the end of this step, a symmetric matrix of dimension K is obtained. The generic
cell (i,j) contains the index of similarity between the topic of row i and the topic of column j.
The topic similarity index for the considered model is obtained by calculating the Frobenius
norm of the whole similarity matrix, and dividing the result by K. Finally, since the topic
similarity is a percentage, the index obtained is multiplied by 100.

K identification. Having calculated the topic similarity for each LDA model obtained
with a different K, this step illustrates the methodology adopted to identify the best config-
uration of K. As the value of topic similarity decreases when the number of topics increases,
two conditions have been set to find the best K:

• the chosen K must be a local minimum of the curve: topic similarity (Ki) < topic similarity
(Ki + 1);

• the selected value must belong to a decreasing segment of the curve (the second
derivative must be positive).

ESCAPE considers the first three values that satisfy these requirements as the best
K values to consider. The search ends when three values have been found, or when the
considered K is larger than the Kmax set at the beginning. For each experiment, three
well-known statistical quality metrics are reported to characterize the found partitions.
In ESCAPE, we have integrated three different measures to assess the quality of the
probabilistic model: (i) perplexity, (ii) entropy, and (iii) silhouette. The perplexity [3] indicates
how well the probabilistic model represents a sample. A lower perplexity value represents
a better model for the analyzed collection. The entropy [51] is defined as the amount of
information in a transmitted message. Hence, a message with high uncertainty indicates a
large amount of entropy. Lastly, the silhouette [47] takes into account both the cohesion
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and the separation of a document. The cohesion represents how similar a document is
with respect to its own clusters, while the separation represents how different a document
is from documents belonging to other clusters. The silhouette index can assume values
between [−1, 1], where a value close to 1 indicates that the document is correctly located in
the proper cluster.

5. Knowledge Validation and Visualization

Evaluating data models using unlabeled data is a complex and time-consuming task.
ESCAPE includes both quantitative indices and visualization techniques.

Quantitative metrics include, for the joint-approach, the silhouette-based indices,
while for the probabilistic model, they include (i) the perplexity and (ii) the entropy.

The silhouette-based indices could be summarized as follows:

• the weighted-silhouette (WS) [1] is an index that can take values between 0 and 1 and
represents the percentage of documents in each positive bin, suitably weighted with
an integer value w between 1 and 10 (the highest weight is associated with the first
bin [1–0.9], and so on) and normalized within the sum of all the weights. The higher
the silhouette index, the better the identified partition is;

• The average silhouette index (ASI) [48] is expressed as

ASI =
1
N

K

∑
k=1

∑
i∈Ck

si;

• The global silhouette index (GSI) [48] is expressed as

GSI =
1
K

K

∑
k=1

1
|Ck| ∑

i∈Ck

si.

On the other hand, for the probabilistic model, ESCAPE integrates (i) the perplexity
and (ii) the entropy.

• The perplexity is a measure of the quality of probabilistic models which describes how
well a model predicts a sample (i.e., how much it is perplexed by a sample from the
observed data). Perplexity is monotonic, decreasing in the likelihood of the data, and
is equivalent to the inverse of the per-word likelihood. It is defined as:

Perplexity(D) = exp
{
− ∑D

d=1 log p(wd)

∑D
d=1 Nd

}
Here, D is the number of documents (the corpus under analysis), wd represents
the words in document d, and Nd is the number of words in document d. Given a
calculated model, the lower the general perplexity, the better the model performance
and the probability estimate of the corpus [52];

• The entropy, when applied to the modeling context, measures how uncertain the
model is: the lower the entropy of the model, the more certain it is that the model is
describing the corpus under analysis. Specifically, for each d document in the corpus D,
we have calculated that entropy must belong to one of K’ s topics, and it is calculated
as follows:

H(d) = −
K

∑
k=1

p(d = k) log(p(d = k)),

where p(d = k) is the probability that the considered document will be assigned to
the topic k. To compute the entropy of the whole clustering model, we averaged the

entropy of each document on the whole corpus: H(model) = ∑D
d=1 H(d)

D .
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To compare the different solutions found by ESCAPE, the adjusted Rand index (ARI)
metric has been integrated in ESCAPE. The ARI is the corrected-for-chance version of the
Rand index [53–55]. The Rand index can assume values between 0 and 1. When there
is a perfect agreement between two partitions, the Rand index reaches the value 1 (its
maximum). A limitation of the Rand index is that its expected value in the comparison of
two randomly formed classifications is not always the same, as it should be. This problem
is solved using the adjusted Rand index [54], which assumes a generalized hyper-geometric
distribution as the model of randomness. The adjusted Rand index is ensured to have a
value close to 0 in the case of random labeling and, differently from the Rand index, it can
assume negative values if the index is less than the expected index. Even if the partitions
do not have the same number of clusters, it is recommendable to use the adjusted Rand
index.

To this end, ESCAPE reported the ARI between solutions using the same strategy
(i.e., joint-approach or probabilistic approach) in order to compare the different weighting
schemes’ impact. Such choice also enables us to determine and analyze the main differences
between the two approaches.

In addition to displaying only statistical values or technical diagrams, which are
often difficult to interpret, ESCAPE proposes several plots to explore and visualize the
knowledge extracted from textual corpora. Specifically, ESCAPE enriches the cluster set,
discovered through both approaches, to provide information that is more human-readable
and, therefore, more understandable: (i) document–topic distribution and (ii) topic–term
distribution.

Document–topic distribution characterizes the distribution of the various topics iden-
tified within the document. It exploits the (i) topic cohesion/separation and the (ii) coarse-
grained vs. fine-grained groups, analyzing how different weighting schemes can impact
the result. In particular, (i) is based on the t-distributed stochastic neighbor embedding (t-
SNE) [56], for the characterization of the document distribution. t-SNE allows representing
high-dimensional data into lower dimensional maps through a non-linear transformation,
suitable for human observation. Points assigned to different topics (i.e., clusters) are col-
ored differently. (ii) carries out the analysis of the weight impact in terms of the coarse vs.
fine-grained groups. To this aim, ESCAPE analyzes the correlation matrices to analyze
the possible correlation between different topics. At first, documents are selected by topic,
and then the dot products between all document pairs are computed. Thus, within the
same macro-category, documents will be more similar to one another compared to those
belonging to different categories.

Topic–term distribution characterizes the distribution of the words within each latent
topic. Specifically, ESCAPE includes the characterization of (i) the topic–term distribution,
identifying the most relevant k words in terms of probability and frequency, and (ii) the
topic cohesion/separation, in terms of relevant words. Task (i) extracts the most-probable
top-k terms for each topic and represents them graphically using word clouds [57], which
is a popular visualization of words typically associated with textual data. Lastly, for task
(ii), we propose to use the graph representation to analyze the topic–term distribution. We
have introduced two types of nodes: topic nodes and term nodes. The former, in green,
represent the distinct topics, while the latter, in pink, represent the distinct terms within
the collection under analysis. A topic is then connected through an edge with all the terms
that are linked to it. To avoid links with low probability, ESCAPE extracts only the top-k
most-relevant (i.e., with the high probabilities) words for each topic. This parameter could
be set by the analyst; however, the default value is 20. If a word is connected with more
than one topic, then the corresponding node is colored in red. By doing so, we are able
to compute the connectivity of the graph to analyze the results of the topic modeling. If
there is any topic that is only connected with words that are not connected with any other
topic, then this topic is separated from the rest of the graph. This means that the number of
clusters selected by ESCAPE can be separated into different topics. As a matter of fact, if all
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the words are connected to each other, all the terms have the same probability of belonging
to each cluster.

6. Experimental Results

The experimental results performed to assess effectiveness and performance of ES-
CAPE are discussed in this section. We tested ESCAPE through different real datasets
(dataset descriptions are reported in Subsection 6.1). The experimental settings are de-
scribed in Section 6.2.

Experiments have been designed to address three main issues: (i) the ability of ES-
CAPE to perform all the functions of the textual analytics pipeline to support the analyst
with setting the parameters; (ii) the effectiveness of ESCAPE in discovering good document
partitions; and (iii) a comparison with state-of-the-art techniques.

6.1. Experiment Datasets

The proposed framework has been tested over several datasets belonging to different
domains, ranging from social networks and digital libraries (e.g., Twitter, Wikipedia) to
scientific papers (e.g., PubMed collection). The corpora have been chosen to have different
characteristics, ranging from the number of documents to the length of each individual
document, and from lexical richness to the average frequency of terms. Moreover, in
the same corpus, the documents should be characterized by homogeneous lengths and
heterogeneous subjects, as well as be produced by different authors. In this way, these
features allow results to be comparable and generic, avoiding overfitting of datasets. We
have grouped the datasets based on their source and typology. In particular, datasets from
D1 to D3 are collected from English documents from the Wikipedia collection (https://en.
wikipedia.org/wiki/Wikipedia, accessed on 1 April 2022), which is the largest knowledge-
base ever known. The categories of each dataset have been chosen to be sufficiently separate
and, therefore, detectable by the clustering algorithms. For each category, the top-k articles
are extracted to form our corpus. From these categories, different datasets have been
generated, divergent to the number of documents extracted for each topic. To construct
the first dataset (i.e., D1), 200 articles were taken from the following 5 categories: cooking,
literature, mathematics, music, and sport. Instead, the following ten categories were chosen to
build datasets D2 and D3: astronomy, cooking, geography, history, literature, mathematics, music,
politics, religion, and sports. D2 and D3 consist of 2500 and 5000 documents, respectively,
chosen from these 10 categories. Table 2 shows the statistical features of the three Wikipedia
datasets used to test ESCAPE.

On the other hand, dataset D4 includes short messages extracted from Twitter. Twitter
can be crawled to extract subsets of tweets related to a specific topic. We corroborated
ESCAPE with experiments on a crisis tweet collection [58] that has 60,005 tweets with
16,345 distinguished words. Tweets were gathered from six large events in 2012 and 2013
(2012 Hurricane Sandy, 2013 Boston Bombings, 2013 Oklahoma Tornado, 2013 West Texas
Explosion, 2013 Alberta Floods, and 2013 Queensland Floods). Hence, the dataset contains
10,000 tweets for each natural disaster, and each tweet is labeled with relatedness (i.e.,
on-topic or off-topic). In our analysis, we remove the a priori knowledge of each label in
order to understand if ESCAPE is able to eliminate the noise present in the collection.
Dataset D5 involves 1000 papers extracted from the PubMed collection, which is an interface
to MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed/, accessed on 1 April 2022), the
largest biomedical literature database in the world. The number of expected categories
is not known a priori. Lastly, dataset D6 comprehends documents extracted from the
Reuters collection (http://www.daviddlewis.com/resources/testcollections/reuters21578,
accessed on 1 April 2022), which is a widely used test collection for research purposes. The
subset used for this study is the whole Apte’ split 90 categories, created by merging the test
and the training parts together for a total of 15,437 documents. The statistical features are
reported in Table 3.

https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Wikipedia
https://www.ncbi.nlm.nih.gov/pubmed/
http://www.daviddlewis.com/resources/testcollections/reuters21578
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Table 2. Statistical features for the Wikipedia collections.

Features Wikipedia

Dataset ID D1 D2 D3

# categories 5 10 10

# documents 990 2469 4939

Max frequency 5394 13,344 19,546

Features WH WoH WH WoH WH WoH

Min frequency 1.0 2.0 1.0 2.0 1.0 2.0

Avg. frequency 25 45 36 69 39 78

Avg. document length 852 836 970 957 705 697

# terms 843,967 828,372 2,395,721 2,363,958 3,486,016 3,442,508

Dictionary |V| 33,635 18,040 65,629 33,866 87,419 43,911

TTR 0.04 0.03 0.02 0.01 0.03 0.01

Hapax % 46.3 0.0 48.2 0.0 49.1 0.0

Guiraud Index 36.61 19.82 42.40 22.02 46.82 23.66

Table 3. Statistical features for datasets D4, D5, and D6.

Features Twitter PubMed Reuters

Dataset ID D4 D5 D6

# categories 6 - 90

# documents 60,005 1000 15,437

Max frequency 6936 775 42,886

Features WH WoH WH WoH WH WoH

Min frequency 1.0 2.0 1.0 2.0 1.0 2.0

Avg. frequency 19 36 15 18 55 76

Avg. document length 5 5 3600 3469 87 85

# terms 312,718 304,666 3,600,153 3,469,305 1,337,225 1,316,988

Dictionary |V| 16,345 12,136 227,210 96,362 24,239 17,153

TTR 0.05 0.03 0.06 0.05 0,02 0.01

Hapax % 49.26 0.0 57.02 0 29.2 0.0

Guiraud Index 29.23 15.02 119.75 51.73 20.96 14.95

Through the analysis of the proposed statistical features, we are able to categorize
the datasets into few groups according to their statistical indices. In fact, we can observe
that the datasets have different characteristics. The Wikipedia document,s together with
the category PubMed articles, are characterized by a greater length and a higher lexical
richness than the others; in fact, the Guiraud Index is higher for these datasets, reaching
the maximum value with the PubMed articles. The dictionary, even after Hapax removal,
is extremely high, and reflects the complexity of the datasets chosen to test ESCAPE.
Moreover, the PubMed collection presents a further complexity, i.e., the expected number
of topics is not known a priori.

On the other side, we have also included a dataset represented by smaller lexical
richness, i.e., the Twitter collection. The average document length decreases considerably,
as does the average frequency. Nevertheless, the Hapax rate is comparable with the other
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datasets, and the dictionary after the Hapax removal is smaller with respect to the other
datasets. Among the datasets we have also included the Reuters collection, as it presents
differences in data distributions with respect to the other datasets. The Reuters collection
is characterized by a medium length and a not-too-high lexical index, since the average
frequency of the terms is the highest (i.e., the documents are characterized by a medium
length with terms repeated several times). For this reason, the lexical richness is the lowest
of all corpora.

6.2. Experimental Settings

The ESCAPE framework has been developed to be distributed and has been imple-
mented in Python. All the experiments have been performed on the BigData@PoliTO
cluster (https://bigdata.polito.it/content/bigdata-cluster, accessed on 1 April 2022) run-
ning Apache Spark 2.3.0. The virtual nodes deployed for this research, the driver, and
the executors, have 7GB of main memory and a quad-core processor each. Below, we
reported the default configuration for the joint-approach and the default configuration for
the probabilistic approach.

Joint-Approach Configuration Setting. For the joint-approach, ESCAPE requires
two parameters, i.e., the number of dimensions to be considered during the data-reduction
phase (SVD), and the number of clusters (topics) in which to divide the collection under
analysis. During the singular-value decomposition-reduction phase, the reduction pa-
rameter analyzes the trend of singular values in terms of their significance. Important
dimensions are characterized by a large magnitude of the corresponding singular values,
while those associated with a low singular value should be ignored in the subsequent
phases. For this reason, we have decided to consider only the first T singular values for the
analysis. T, at most, will be equal to the rank of the document–term matrix. This parameter
should be set by the analyst; however, since the number of documents for all the textual
corpora analyzed is much smaller than the vocabulary used in each collection, the value T
is set by ESCAPE to 20% of the number of documents. Nevertheless, the analyst can decide
to change the proposed configuration, setting other values for T. The second parameter
that should be set is the number of topics. We have proposed a new self-tuning algorithm to
automatically determine the best configuration. In ESCAPE, the default configuration for
the maximum number of clusters is set to the average document length for each corpus. In
fact, we have hypothesized that every word in the document belongs to, at most, a different
topic. In this way, we set an upper bound for the value of the number of clusters. Still, if
the average document length is greater than the number of documents in the corpus under
analysis, then the value is set to the average frequency of the term. Even so, these choices
can be changed by every analyst, since the framework architecture is distributed such that
it is also able to analyze several solutions in parallel.

Probabilistic Model Configuration Setting. We recall that for the LDA probabilistic
algorithm, five parameters should be set, which are the maximum number of iterations, the
optimizer, the document concentration (α), the topic concentration (β), and the number of
topics (clusters) in which each corpora should be divided. Except for the last parameter, for
which we have integrated a self-configuring algorithm, the other four parameters have to
be set by the analyst. In ESCAPE, the maximum number of iterations that have to converge
within the model has been set to be equal to 100, and the optimizer (or inference algorithm
used to estimate the LDA model) has been set to be online variational Bayes. Furthermore,
α and β are set to maximize the log likelihood of the data under analysis. Since we have
selected the online optimizer, the α value and the β value should be greater than or equal
to 0. For this study, the default value for this parameter is α = 50/K, as proposed in the
literature by different articles [59–61], and the value set for β is β = 0.1, as proposed in [59].

ESCAPE offers an automatic methodology able to select the proper number of clusters
without involving the user in this decision. ESCAPE proposes a novel strategy to assess
how semantically different the topics are and choose proper values for the configurations
of the probabilistic modeling. As for the joint-approach, in ESCAPE, the default parameter

https://bigdata.polito.it/content/bigdata-cluster
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for the maximum number of topics is set to the average document length for each textual
collection. Indeed, each word in the document belongs to, at most, a different topic in our
hypothesis. Thus, the upper bound for the number of topic parameters is set to the average
length. However, if the average document length is greater than the number of documents
in the corpus under analysis, then the value is set to the average frequency of the term. As
always, these choices can be changed by the analyst.

6.3. ESCAPE Performances

Here we report a summary of the experiments conducted on the six datasets using
the joint-approach and the probabilistic approach. ESCAPE has been run several times,
once for each weighting strategy and dataset. Dataset D1 has been chosen as the running
example for a detailed comparison.

Joint-Approach. Table 4 reports the experimental results obtained for D1 and includes
the metrics computed for evaluating the document partitions identified by our framework.
For each weighting strategy, the top-three solutions (i.e., configurations) are reported to
the analyst. The best solution is reported in bold. We observe that ESCAPE tends to
select a partition with a low–medium number of dimensions as the optimal partition. The
variability of the data distribution and the complexity of the cluster activity are directly pro-
portional to the K-LSA value. So, the silhouette indices usually decrease when considering
a large number of terms with each document (columns of the dataset).

Table 4. Experimental results for D1 through the joint-approach.

Weight KLSA KClustering GSI ASI Weighted
Silhouette

Execution
Time

TF-IDF
26 7 0.383 0.358 0.408

22 m, 20 s41 10 0.419 0.339 0.391
67 10 0.361 0.297 0.352

TF-Entropy
29 11 0.334 0.350 0.401

26 m, 18 s42 10 0.368 0.331 0.382
62 8 0.364 0.274 0.326

LogTF-IDF
19 5 0.437 0.431 0.480

25 m, 23 s22 5 0.350 0.343 0.393
67 4 0.225 0.201 0.251

LogTF-Entropy
10 6 0.440 0.453 0.500

27 m, 12 s24 5 0.323 0.318 0.367
67 7 0.268 0.218 0.267

Bool-IDF
8 5 0.445 0.444 0.494

25 m, 3 3s22 6 0.293 0.312 0.365
65 6 0.226 0.233 0.286

Bool-Entropy
9 5 0.447 0.444 0.495

28 m, 3 8s23 5 0.354 0.348 0.400
65 4 0.280 0.234 0.285

For the weighting scheme TF-IDF, the 3 reduction factors for the SVD decomposition
(KLSA) are 26, 41, and 67. For each dimensionality-reduction parameter, ESCAPE selects
the best value for the clustering phase. Given these numbers of dimensions, ESCAPE
selects KClustering=10 as the optimal partition. Since the silhouette-based metrics are quite
stable, ESCAPE selects only the most-relevant terms in the building of the model, ignoring
the less-relevant terms (dimensions).

The TF local weight tends to differentiate the weighted terms, thus obtaining a larger
number of clusters than that discovered by LogTF (because now several clusters are as-
sociated with different topics of the same category). This is also confirmed by the weight
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definition. Indeed, the logarithmic function tends to decrease the very-high-frequency val-
ues. In fact, the more the frequency of the term increases, the more the function approaches
the asymptote of the logarithm. This means that, from a certain frequency, the value of
the local weight tends to flatten and the relevance of the most-frequent terms is reduced.
With respect to the global weight, instead, we can observe that the entropy tends to find in
average a large number of clusters.

The TF-IDF and the TF-Entropy find a large number of topics with respect to the other
solutions. The other weights instead are able to select the expected value of the category.
Moreover, the weights TF-IDF and TF-Entropy not only find the original major category,
but are also able to find the sub-topic related to the major categories. In this way, if the
analyst is interested in analyzing the dataset at a minor level of detail, he/she could use
these weights, and leave the others for a grain analysis. ESCAPE is able to analyze the
same dataset at different granularity levels.

Probabilistic Approach. Table 5 shows the results obtained using the probabilistic
approach for dataset D1. As for the joint-approach, each dataset is evaluated for every
single weighting scheme considered in ESCAPE, showing the top-three configurations.
For each dataset under analysis, we will sum up the considerations about the effectiveness
of ESCAPE in discovering good partitions, as the different weighting schemes vary.

Table 5. Experimental results for D1 through the probabilistic approach.

Weight K Perplexity Silhouette Entropy Execution Time

TF-IDF
3 8.812 0.772 0.256

40 m, 24 s6 8.597 0.693 0.363
10 8.482 0.682 0.395

TF-Entropy
5 9.072 0.762 0.282

30 m, 32 s8 9.248 0.632 0.338
9 9.267 0.631 0.339

LogTF-IDF
8 9.187 0.675 0.320

40 m, 17 s17 9.126 0.637 0.362

LogTF-Entropy
5 9.912 0.891 0.100

30 m, 54 s7 9.884 0.846 0.174
11 9.979 0.951 0.108

Boolean-TF
4 6.492 0.697 0.421

44 m, 43 s5 6.464 0.661 0.483
17 6.420 0.381 1.090

The main results obtained by ESCAPE for each textual corpus and weighting strategy
are reported in Tables 5–10. Specifically, Tables 5– 7 are related to the Wikipedia datasets,
and Table 8 to the Twitter crisis collection. The PubMed results are explored in Table 9.
Lastly, the Reuters collection is shown in Table 10.

Since the considered weighting schemes highlight the importance of terms within the
documents, it could be interesting for the analyst to understand how different weights
affect the probabilistic model generated by the LDA. Specifically, for each result table,
ESCAPE includes a row for each K obtained through the ToPIC-Similarity curve, together
with the three well-known state-of-the-art quality indices used to explore the goodness of
the statistical model generated.

Different trends can be pointed out and detected from the analysis of these tables.
Firstly, we can highlight a reverse linear trend between the entropy and silhouette metrics,
since better clustering partitions are characterized by a high silhouette value and a small
entropy one. Moreover, through the ToPIC-Similarity testing, the TF local weight usually
finds, on average, a smaller number of clusters, independently of the global weight used.
On the other hand, the LogTF local weight finds a large number of topics, which allows
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the same dataset to be analyzed in detail, since this weight can also find some interesting
subtopics within the macro-topic. From the exploitation of the global weights, several
comments can be made. In fact, the Global IDF results show a better value for the perplexity
index (e.g., at least 0.1 or greater) than those obtained using global entropy, even though
the other quality metrics are not in line.

Analyzing all the corpora using the Boolean-TF instead led to a comparison of very
different solutions. This weighting scheme is able to find, using our ToPIC-Similarity curve,
three numbers of topics with different values. Moreover, the first two datasets lead to
very-high silhouette score values, while these values tend to decrease in the other datasets.
In fact, the complexity of the PubMed collections or the Reuters one imply smaller values
of our quality metrics. However, with this methodology, the analyst is able to analyze the
same dataset at different granularity levels. For the four datasets for which we know the
number of categories (i.e., D1, D2,D3 and D4), the global weight entropy underestimates
the number of topics, finding, at least, the expected number of categories as the upper
bound, while the IDF weight tends to overestimate the number of topics. Moreover, the
Wikipedia datasets represent the experiments in which the performances found are the
highest ones. This behavior is also confirmed for the other datasets, for which we do not
know the number of categories.

Nevertheless, analyzing the goodness of the partitions found only through quantitative
metrics is not sufficient, as we limit the analysis to measure the distances (Euclidean and
probabilistic) between the groups of documents.

In order to effectively validate the probabilistic model, a deep and detailed knowledge
of human common sense should be provided to interpret the main argument of each cluster.
Furthermore, since ToPIC-Similarity proposes a maximum of three good values for the
topic analysis, the analyst can choose, among the various solutions proposed, the one that
best reflects the required granularity of the arguments (i.e., topics). With respect to LSA
(the joint-approach), the analysis of quality metrics only is not sufficient to analyze the
partitions. A more detailed analysis should be included to help the analyst in interpreting
the results. Moreover, the analysis of how each weighting strategy acts on the LDA model
should be analyzed to highlight interesting considerations.

Table 6. Experimental results for D2.

Joint-Approach LDA

Dataset Weight K-LSA K-clus GSI ASI Weig-Sil Dataset Weight K Perp Silh Entropy

D2

TF-IDF 57 13 0.280 0.236 0.288

D2

TF-IDF 10 8.943 0.553 0.611

TF-Entropy 63 13 0.271 0.209 0.265 TF-Entropy 7 9.455 0.700 0.355

LogTF-IDF 25 9 0.236 0.224 0.028 LogTF-IDF 11 9.410 0.601 0.489

LogTF-Entropy 26 7 0.270 0.233 0.281 LogTF-Entropy 7 10.203 0.875 0.125

Bool-IDF 25 9 0.221 0.213 0.263 Bool-TF 18 6.569 0.320 1.326

Bool-Entropy 26 9 0.238 0.227 0.278

Table 7. Experimental results for D3.

Joint-Approach LDA

Dataset Weight K-LSA K-clus GSI ASI Weig-Sil Dataset Weight K Perp Silh Entropy

D3

TF-IDF 51 9 0.233 0.221 0.274

D3

TF-IDF 10 8.708 0.339 2.456

TF-Entropy 51 11 0.246 0.221 0.272 TF-Entropy 7 9.050 0.214 1.852

LogTF-IDF 26 9 0.220 0.205 0.255 LogTF-IDF 16 8.917 0.198 1.819

LogTF-Entropy 26 10 0.246 0.221 0.272 LogTF-Entropy 5 9.444 0.096 2.293

Bool-IDF 22 7 0.225 0.191 0.241 Bool-TF 11 6.309 0.220 1.902

Bool-Entropy 23 6 0.257 0.196 0.247

Table 8. Experimental results for D4.

Joint-Approach LDA

Dataset Weight K-LSA K-clus GSI ASI Weig-Sil Dataset Weight K Perp Silh Entropy

D4
Bool-IDF 6 6 0.465 0.422 0.737 D4 Bool-TF 6 2.808 0.546 0.613

Bool-Entropy 13 7 0.342 0.320 0.532
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Table 9. Experimental results for D5.

Joint-Approach LDA

Dataset Weight K-LSA K-clus GSI ASI Weig-Sil Dataset Weight K Perp Silh Entropy

D5

TF-IDF 56 10 0.098 0.087 0.136

D5

TF-IDF 14 7.662 0.085 1.902

TF-Entropy 59 9 0.106 0.092 0.142 TF-Entropy 4 8.556 0.081 1.782

LogTF-IDF 33 5 0.100 0.092 0.144 LogTF-IDF 14 7.776 0.094 1.754

LogTF-Entropy 35 5 0.098 0.090 0.140 LogTF-Entropy 4 8.622 0.080 1.743

Bool-IDF 24 8 0.127 0.112 0.163 Bool-TF 10 5.220 0.101 1.318

Bool-Entropy 26 15 0.120 0.117 0.167

Table 10. Experimental results for D6.

Joint-Approach LDA

Dataset Weight K-LSA K-clus GSI ASI Weig-Sil Dataset Weight K Perp Silh Entropy

D6

TF-IDF 15 10 0.246 0.257 0.159

D6

TF-IDF 9 7.438 0.596 0.558

TF-Entropy 16 14 0.254 0.256 0.157 TF-Entropy 9 8.710 -0.081 2.169

LogTF-IDF 16 13 0.232 0.236 0.146 LogTF-IDF 13 7.561 0.598 0.639

LogTF-Entropy 16 10 0.229 0.238 0.150 LogTF-Entropy 5 8.788 0.077 1.609

Bool-IDF 13 9 0.229 0.235 0.147 Bool-TF 16 3.730 0.301 1.311

Bool-Entropy 13 10 0.220 0.223 0.143

6.4. Knowledge Exploration and Visualization

The complete set of results obtained for the representative dataset D1 will be presented.
Here, we reported two types of human-readable results able to provide interesting infor-
mation to the analysts at different granularity levels. Specifically, we reported extracted
knowledge, analyzing the statistical quality metrics used to analyze the different partitions
obtained running ESCAPE for each approach. However, analyzing a corpus considering
only quantitative measures is not sufficient. For this purpose, we have proposed several
graphs useful for exploring the space of the results with innovative and useful visualization
techniques. In this way, the analysts could analyze the different representations integrated
in ESCAPE.

Knowledge Validation. Here, we have displayed the main visualization techniques
integrated in ESCAPE. At first, we want to focus the reader’s attention on a deeper
comparison between the two methodologies. In Tables 4 and 5, we have reported the
results obtained for the dataset D1. Specifically, Table 4 reports the results obtained for the
joint-approach, while Table 5 reports the results obtained for the probabilistic approach, as
discussed in detail in the previous subsection.

Instead, in Table 11, the cardinalities of the different cluster sets found by ESCAPE for
dataset D1 are reported. We have compared the weighting schemes TF-IDF and LogTF-
Entropy for the two different methodologies.

Table 11. Cardinality of each cluster set found for dataset D1 for the probabilistic approach.

Cluster ID
Weight

Cluster0 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8 Cluster9
Total

LSA

TF-IDF 215 176 159 139 99 93 49 25 19 15

989

TF-Entropy 228 167 166 135 106 75 54 27 16 15

LogTF-IDF 225 212 191 183 178

LogTF-Entropy 223 191 184 183 105 103

Bool-IDF 236 223 191 181 158

Bool-Entropy 230 223 192 177 167

LDA

TF-IDF 205 193 187 180 144 21 19 14 13 13

989
TF-Entropy 464 406 91 8 7 5 5 3

LogTF-IDF 428 236 197 113 15

LogTF-Entropy 827 160 1 1 0

Bool-TF 230 215 194 188 162

Knowledge exploration. Since the results obtained in the previous sections are de-
scribed only using quantitative metrics, other graphical representations should be presented
to exploit the hidden knowledge.

To graphically represent the effect of both weighting functions for the joint- approach,
ESCAPE analyzes the correlation matrix maps reported in Figure 3 for D1. Five different
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colors were defined, based on the correlation range: black represents the highest range,
0.87–1.00; dark gray represents the range 0.75–0.87; gray is used for the range 0.62–0.75;
light gray is associated with the range 0.5–0.62; and white represents the lowest range, 0.0–
0.5. Documents are sorted according to their category, and then the dot products between all
document pairs are calculated. Figure 3 (left) shows how the different weighting functions
TF-IDF and LogTF-Entropy impact the document collection. In both functions, the five
macro-categories are depicted as five dark squares of similar size, showing the highest
similarity between documents. So, considering two documents belonging to the same
macro-category, they will tend to be more similar to each other than those belonging to
other macro-categories; LogTF-Entropy (Figure 3) (bottom-left) allows modeling the five
macro-categories better than TF-IDF (Figure 3) (top-left), and also characterizes some topics,
whereas TF-IDF shows possible correlations between the different categories.

Figure 3. Correlation matrix maps for dataset D1 for analyzing the weighting impact (left) and the
best partitions (right).

Figure 3 (on the right) shows the correlation matrix maps for the best partitions
identified by ESCAPE; LogTF-Entropy (Figure 3 bottom-right) correctly finds the dataset
categories, whereas TF-IDF (Figure 3 top-right) also highlights some relevant subtopics in
the same category.

The importance of words within documents is determined by the weights; therefore,
it is important to assess how the model is affected by different weighting schemes. For the
representative dataset D1, ESCAPE computes the histogram of the TF-IDF and LogTF-
Entropy weights. The LogTF-Entropy values are almost uniformly distributed in the
range [0,1] (Kurtosis index > 0 and standard deviation 0.5). A different scenario is instead
obtained with the IDF, where there is an asymmetrical bell distribution in which the average
values are in the range [2,5] (Kurtosis index > 0 and standard deviation 12.7). Moreover, in
this case, the maximum value of the distribution is 8, while in the LogTF-Entropy case, it is
1161. For the probabilistic approach, the IDF weight scheme better differentiates the weights
within the corpus, and for this reason, it is able to produce a more performant probabilistic
model. Figure 4 shows that when providing relevance to words in all datasets, the entropy
global weight performs incorrectly. This figure shows, for the LDA models, the probability
distribution that each document in the D1 corpus has of belonging to the K selected topics.
K is equal to six for TF-IDF (on the left), and is equal to seven for LogTF-Entropy (on the
right). For TF-IDF, we used the second-best solution, due to the limited number of clusters.
Analyzing the found results in more detail, we can see that the IDF-weighted documents
are more uniformly distributed among the various topics. On the other hand, as far as the
entropy weight is concerned, about 90% of the documents are assigned to the same cluster
(topic), and this is the consequence of the fact that the entropy weight fails to isolate the
most-significant terms within the collection of documents.



Appl. Sci. 2022, 12, 5125 24 of 41

We can conclude that some weighting strategies are useful for a particular analysis
with respect to the others. As a matter of fact, from the analysis of the histograms, and also
from the results analyzed previously, we can assess that the IDF weight scheme performs
the function of differentiating weights within the corpus better.

Figure 4. Document probability distributions in each topic for weighting TF-IDF (left) and LogTF-
Entropy (right).

When we are in the situation where unbalanced clusters are present, the usual evalu-
ation metrics are not sufficient to guarantee good performance. A high silhouette index
does not guarantee a good quality of the obtained clusters, because it is as if 90% of the
documents were all classified with the same label, generating many false negatives. To
overcome this situation, if the class label is available, we can use indices such as precision
and recall to attempt to identify incorrect assignments. Otherwise, if we do not have labels,
methods that consider semantics must be presented.

On the other hand, the joint-approach leads to better results from the point of view of
the partitions. In fact, the weights, in this case, analyze the same dataset at different levels
of detail, without creating unbalanced clusters. In fact, the K-means algorithm benefits
from the previous LSA reduction, and in this way, its performances are far superior.

6.5. Dealing with Large Datasets

In this section, we show the results of the proposed approach when used with large
datasets. As a case study, we tested ESCAPE with some datasets containing Amazon
user reviews. Data are retrieved from the Amazon Customer Reviews Database (https:
//s3.amazonaws.com/amazon-reviews-pds/readme.html, accessed on 1 April 2022), and
reviews have been collected between 1995 and 2015. Reviews that refer to different cate-
gories belong to different datasets. In particular, we have now focused on the following
data, described in Table 12:

• D7: Digital Music (349,933 documents);
• D8: Luggage (325,588 documents);
• D9: Video Games (409,551 documents).

The following subsections include results obtained for the joint-approach and the
probabilistic approach. Since the datasets are characterized by a very-sparse data distribu-
tion, we did not consider global weight entropy in these experiments. For the probabilistic
approach, we only consider D8 and D9, where documents have the highest average length.

For visualization results, we focus only on dataset D8, both for the joint-appraoch and
the probabilistic approach.

6.5.1. Joint-Approach

The three different weighting schemas (Boolean-IDF, TF-IDF, LogTF-IDF) are tested
with ESCAPE,̄ and the obtained results are shown in Table 13. In general, the average and
global silhouette values corresponding to the selected best configurations are, for all the
datasets, in the range between 0.2 and 0.5, suggesting that the partitions are good.

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
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From the results, we find that TF-IDF finds, in general, a larger number of topics
(number of clusters), meaning that it is able to detect not only the original categories but
also subtopics.

Table 12. Statistical characterization of datasets under analysis.

Features Digital Music Luggage Video Games

Dataset ID D7 D8 D9

# documents 349,933 325,588 409,551

Max frequency 129,584 112,280 287,780

Min frequency 2 2 2

Avg. frequency 119 330 278

Avg. document
length 9.68 18.26 16.67

# terms 3,386,835 5,946,360 6,828,539

Dictionary V 28,300 17,999 24,510

TTR 0.008 0.003 0.006

Hapax % 0 0 0

Guiraud Index 15.37 7.38 9.38

Table 13. Experimental results through the joint-approach.

Weight KLSA KClustering GSI ASI Weighted
Silhouette

D7

BooL-IDF
4 4 0.371 0.364 0.009

12 18 0.182 0.175 0.005
31 15 0.221 0.248 0.007

LogTF-IDF
5 3 0.310 0.325 0.008

11 8 0.248 0.248 0.007
28 19 0.191 0.192 0.006

TF-IDF
6 2 0.474 0.532 0.013

10 3 0.351 0.546 0.014
22 2 0.394 0.389 0.010

D8

BooL-IDF
3 3 0.406 0.409 0.011
7 6 0.170 0.172 0.005

28 2 0.062 0.055 0.003

LogTF-IDF
4 4 0.286 0.294 0.008
9 8 0.170 0.170 0.005

28 20 0.107 0.106 0.004

TF-IDF
5 5 0.289 0.298 0.009

13 18 0.206 0.189 0.006
30 20 0.154 0.135 0.004

D9

BooL-IDF
3 3 0.390 0.396 0.009
6 4 0.248 0.246 0.006

25 15 0.163 0.163 0.004

LogTF-IDF
3 3 0.399 0.406 0.009
6 3 0.232 0.232 0.006

25 17 0.174 0.184 0.004

TF-IDF
4 2 0.358 0.355 0.008
9 2 0.256 0.249 0.006

26 13 0.189 0.172 0.004

Figure 5 shows how the reviews of the Luggage dataset are distributed between
clusters. It is possible to notice a difference between the two weighting schemas used in
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these graphs; in fact, the shape of the Boolean-IDF clusters seems to be more defined with
respect to LogTF-IDF.

(a) (b)

Figure 5. Boolean-IDF and LogTF-IDF weighting schemas’ results for the Luggage dataset. (a) Dataset
D9. t-SNE representation. B-IDF weighting schema K = 3. (b) Dataset D9. t-SNE representation.
LogTF-IDF weighting schema K = 4.

6.5.2. Probabilistic Approach

As mentioned earlier, in this section, we conduct experiments only for datasets D8 and
D9, which are those with highest average length. The performance of the statistical model
has been explored thanks to the quality index of perplexity computed within ESCAPE.
These results are shown in Table 14, where low perplexity values indicate better results.

Table 14. Experimental results for dataset D8 and D9 for the probabilistic approach.

Dataset Weight KCl Perplexity

D8

BooL-IDF 5 7.273681

LogTF-IDF
3 7.352020098
5 7.263175195
8 7.190609656

TF-IDF 5 7.270052194

D9
BooL-IDF 2 7.588552184

LogTF-IDF 2 7.581219438
TF-IDF 2 7.583352794

Regarding dataset D8 on Luggage reviews, the LogTF-IDF weighing strategy differs
from the others since it provides a more detailed analysis and also discovers subtopics,
in addition to the five main topics already discovered by the other schemas. Instead,
this different level of result granularities is not present for the Video product category
dataset (D9).

The graphical visualization of the results obtained with D8 is then shown in Figure 6.
In Figure 6a,c, we can see similar shapes and distribution of the documents between the
clusters. In Figure 6b, it is possible to recognize an imbalance of the coloring of the points:
the five main topics, containing a major number of documents, and three smaller subtopics.

6.6. Comparison with Respect to the State-of-the-Art Techniques

Here follows a comparison between ESCAPE and the main state-of-the-art techniques.
Joint-Approach. In order to assess how effectively ESCAPE is able to select the

proper number of clusters, we compared the results obtained with those proposed by a
state-of-the-art methodology designed for the same purpose. This method is known as
the elbow graph or the knee approach [62]. In the following, we will refer to this method as
kSSE. This method involves evaluating the evolution of the SSE (sum of squared errors)
value as the value kcls increases. The kcls value identified as optimal is the one immediately
preceding a negligible change in the SSE value (there is no great performance advantage in
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adding another centroid). In the following, we will refer to the dataset D1 as representative,
but similar trends have also occurred in other datasets.

(a) (b) (c)

Figure 6. The best partitioning t-sne maps for all the weighting strategies for the Luggage dataset are
displayed above. (a) Dataset D8. t-SNE representation. Bool-IDF weighting schema K = 5. (b) Dataset
D8. t-SNE representation. LogTF-IDF weighting schema K = 8. (c) Dataset D8. t-SNE representation.
TF-IDF weighting schema K = 5.

In order to compare the methods fairly, both ESCAPE and the kSSE method receive
as input the reduced matrix XK−LSI . This matrix is obtained by analyzing the trend
of the singular values extracted by the decomposition of the original document–term
matrix. In our proposed methodology, ESCAPE selects the possible good values at the
points 10, 24, and 67. These three points are able to characterize the singular-value plot,
analyzing different values which subsequently include a large number of dimensions in
the reduction phase.

However, the kSSE method usually selects a lower number of optimal clusters than
the one selected in ESCAPE. For example, in D1, the kSSE method selects 5 clusters by
exploiting TF-IDF, and 3 with LogTF-Entropy, against the 10 clusters selected by ESCAPE
using TF-IDF and 6 clusters with LogTF-Entropy.

To evaluate the best configuration between those identified by the two approaches, we
evaluated the silhouette index for each clustered document in both methods. As shown in
Figure 7, more than 83% of the documents obtain a higher index in the approach proposed
by us than in that based on the analysis of the SSE curve. Thus, this result tells us that
ESCAPE is able to discover a cluster set better than the knee approach.

Figure 7. Silhouette index for D1, weighted via LogTF-Entropy for the joint-approach.

Probabilistic Approach. Here, we offer a comparison between the results obtained
by ESCAPE and those obtained with known state-of-the-art techniques, such as RPC and
En-LDA. RPC [50] is an heuristic algorithm that, in order to choose the proper number of
topics, evaluates the average perplexity variation of the LDA models. Instead, EnLDA [63]
chooses as the optimal K value the one that best reduces the total amount of entropy of the
topic modeling. These two approaches will be discussed in more detail below.

Table 15 shows a comparison between the results obtained by ESCAPE and those
obtained by the RPC and en-LDA methods for the various weights considered. We can
see that, using TF-IDF, these two approaches produce 3 and 19 as K values (with RPC



Appl. Sci. 2022, 12, 5125 28 of 41

and En-LDA, respectively). These values depict two different scenarios, whose results are
shown, along with ESCAPE’s, in Figure 8 through a t-SNE representation.

Table 15. Comparison between ESCAPE’s performance and that of other state-of-the-art methods.

Weights Method K Perpl Silh Entr

D1

TF-IDF

RPC 3 8.812 0.772 0.256

En-LDA 19 8.427 0.621 0.534

ESCAPE 10 8.482 0.682 0.395

TF-Entr

RPC 5 9.072 0.762 0.282

En-LDA 5 9.072 0.762 0.282

ESCAPE 5 9.072 0.762 0.282

LogTF-IDF

RPC 7 9.183 0.693 0.319

En-LDA 16 9.189 0.553 0.443

ESCAPE 8 9.187 0.675 0.320

LogTF-Entr

RPC 3 9.777 0.852 0.144

En-LDA 3 9.777 0.852 0.144

ESCAPE 7 9.884 0.846 0.174

Boolean-TF

RPC 4 6.492 0.697 0.421

En-LDA 20 6.412 0.661 1.255

ESCAPE 5 6.464 0.661 0.483

Figure 8. Comparison of t-SNE representations for dataset D1.

The RPC proposes three as the optimal number of clusters. This is the same value pro-
posed by the first solution of the ESCAPE framework. As described above, the clustering
result is not bad, but some of the original topics are mixed together (music and literature,
sports and mathematics). In this sense, ESCAPE outperforms RPC, giving more options
with different granularity levels to the analyst.

With the En-LDA approach, which proposes 19 as the optimal number of clusters,
good partitions are identified. As a matter of fact, all the original categories of the dataset
can be recovered in topics. Furthermore, the model identifies very specific topics that
describe only a few documents, and it often divides the main categories into subtopics,
which deal with more specific arguments compared to main ones. For instance, the En-LDA
approach identifies the opera and the instruments topics, which both belong to the music
main category. The modeling is good overall, but having more topics than what is actually
required does not necessarily mean having a better result. Indeed, too many topics may
not be useful for the analysis since, then, the analysts have a more complex result set to
consider in their work.

Figure 9 offers an intuitive graphical representation of the topics identified using
TF-IDF as the weighting scheme and K = 10. The word clouds depicted represent the
main categories present in the original dataset and effectively show which are the most
significant terms for summarizing the identified topics. The five missing clusters that do
not appear in the representation are those that include terms referring to more detailed
subtopics, and, therefore, have not been included in the figure.



Appl. Sci. 2022, 12, 5125 29 of 41

Figure 9. Word cloud representation of a subset of topics; dataset D1, TF-IDF weighting scheme,
K = 10.

A graphical comparison between solutions with different K values is offered in
Figure 10, showing t-SNE representations with four different configurations.

(a) D1, TF-IDF, K = 3 (b) D1, TF-IDF, K = 6

(c) D1, TF-IDF, K = 10 (d) D1, TF-IDF, K = 19
Figure 10. D1 t-SNE representation, TF-IDF weighting scheme, K = 3, 6, 10, and 19, respectively.

Another appropriate comparison between ESCAPE and other state-of-the-art methods
should be made from the point of view of computational cost and time. Compared to
En-LDA, the proposed methodology is much faster; in fact, the number of iterations to be
performed in En-LDA increases substantially with the growing vocabulary of documents.
Furthermore, the search for the minimum entropy value among all possible solutions with
a different K means that the methodology must be calculated for all the topics in the given
set. RPC performance, on the other hand, from a computational cost perspective, can be
compared to the one required by ESCAPE in the worst case. Moreover, with respect to the
state-of-the-art techniques, ESCAPE considers the semantic descriptions of the topics to
assess the level of separation of the clusters. This is not considered in the state-of-the-art
approaches that only evaluate the goodness of the results by means of probabilistic metrics.
In ESCAPE, the quantitative indices of confidence could be used instead to analyze the
proposed results more deeply.

6.7. Comparison Between Joint-Approach and LDA

An analyst can be interested in analyzing the difference between the two types of
partitions obtained using the two strategies. To this end, ESCAPE compares the best
solutions found by the two different methodologies by computing the ARI index, which
gives us a quick comparison of the obtained partitions.
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The ARI index between the best partitions of the two methodologies is reported in
Table 16. We can observe that the results are quite different, and analyzing only the previous
table is not sufficient to draw conclusions on the two methodologies. Since the Boolean-IDF
and Boolean-Entropy are very similar in terms of partitions for the joint-approach, we only
consider the weight Boolean-Entropy for the comparison with respect to the Boolean-TF
weight.

Table 16. Adjusted Rand index for Dataset D1.

Weighting Scheme

Dataset TF-IDF LogTF-IDF TF-Entropy LogTF-
Entropy Boolean

D1 0.554 0.321 0.320 0.100 0.790

We recall also that the ARI index penalizes the partitions with different numbers of
clusters more than the Rand index; however, especially for the weighting LogTF-Entropy,
the comparison value is really poor.

To analyze the obtained partitions in major detail, ESCAPE includes several graphical
representations that are self-explained. These proposed graphical representations are
exploited to simplify and synthesize the extracted knowledge patterns in a compact, human-
readable, detailed, and exhaustive representation.

For each experiment, ESCAPE reports the proposed visualization techniques, allow-
ing different stakeholders to easily capture a high-level overview of topic-detection in
each corpus.

We recall that the two highest similarity weighting schemes are the TF-IDF and the
Boolean for both the topic modeling approaches. The partitions are not the same because
the ARI index tends to 0.554 and 0.790, respectively. Still, analyzing only the values is
not sufficient to quantify the similarity between the topics. Below, we have reported the
analysis of these two weighting strategies to highlight the main differences between the
two approaches.

6.7.1. TF-IDF Weight

Here, we have analyzed the impact of the TF-IDF weighting function on both the
methodologies integrated in ESCAPE. To this end, we have reported the word cloud
comparison for the weighting scheme TF-IDF for both the methodologies. Specifically, in
Figure 11, the 10 word clouds related to the joint-approach are reported, while in Figure 12,
the 10 ones related to the LDA modeling are reported. By analyzing the most-likely words
for each topic, we can extract the following considerations.

In both the partitions found, we have 10 clusters; however, the partitions should not
be the same, since the value of the ARI index is not 1. Moreover, we recall that the five a
priori known categories are: cooking, literature, mathematics, music, and sport. We expect to
find these themes in the 10 partitions.

Firstly, we reported a summary of the found topic in Table 17. Although the partitions
are equivalent in number (10 topics), the meaning of the topics found are different. In fact,
the five macro-categories are correctly identified by both approaches, but the algebraic
method finds subdivisions for the mathematics and sport categories, while the probabilistic
method finds them for the literature and sports categories. Both the results are satisfactory.

We have also included the correlation analysis of the discovered partitions. For the
joint-approach, we have reported the correlation matrix in terms of hot–cold topics. In this
way, the colors help the analyst to read the possible correlation between topics. We have
used red to highlight correlations between partitions (see Figure 13). Meanwhile, in the
probabilistic approach, we have reported the graph representation, which is able to help
the end-user to analyze the possible intersection between words in the different topics (see
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Figure 14). To compute the correlation matrix, ESCAPE first sorts the clusters based on
their cardinality, then calculates the correlation between all the pairs of documents.

Figure 11. D1, word cloud representation, TF-IDF weighting scheme for joint-approach.

Table 17. Topic description for dataset D1 for both the approaches.

ClusterID Topic—Joint-Approach Topic—Probabilistic Modeling

Cluster0 Literature Music

Cluster1 Food Maths

Cluster2 Music Oil Food

Cluster3 Maths Literature

Cluster4 Sport Sport

Cluster5 Sport Dynamic sport

Cluster6 Graph Theory Music

Cluster7 Music Quiddich—Literature

Cluster8 Literature Literature

Cluster9 Oil Musical Instruments
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Figure 12. D1, word cloud representation, TF-IDF weighting scheme for LDA modeling.

Figure 13. D1 Hot-topic correlation matrix representation, TF-IDF weighting scheme, K = 10, joint-
approach.
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From Figure 13, we can notice a high correlation between clusters 4 and 5, which, by
analyzing Table 17, (Topic—Joint-Approach column) are both related to sports. Moreover,
there is another correlation between clusters 3 and 6, which, looking always at Table 17 or
also the previously presented word clouds, are both related to the maths topic. Specifically,
cluster 3 is related to several maths topics, while cluster 6 is inherent mainly to graph
theory.

(a) D1, TF-IDF, K = 3 (b) D1, TF-IDF, K = 6
Figure 14. D1 graph representation, TF-IDF weighting scheme, K = 10, probabilistic approach,
considering the top-20 (a) and the top-40 (b) words.

Instead, Figure 14 reports the graph representation for the probabilistic LDA modeling.
The most-relevant words for each topic, (i.e., the words which are most likely to belong to a
particular topic) are well-separated, as can be deduced from the graph analysis. Considering
both the top-20 (see Figure 14a) and the top-40 (see Figure 14b) words, the graph is still
very disconnected, indicating that the analyzed partitions are well-separated.

Another way to compare the found partitions with respect to the two approaches is
the analysis of the t-SNE representations, which give the analyst the possibility to plot
the high-dimensional data under analysis into a lower space (i.e., 2D in our framework).
This representation is reported in Figure 15. We recall that the T-distributed sstochastic
neighbor embedding (t-SNE) is a machine learning algorithm for visualization, which
is based on a non-linear dimensionality-reduction technique well-suited for embedding
high-dimensional data for visualization in a low-dimensional space. It is based on the
concept of probability distribution; indeed, it constructs a probability distribution over
pairs of high-dimensional objects in such a way that similar objects have a high probability
of being picked, whilst dissimilar points have an extremely small probability of being
picked.

A key feature aspect of t-SNE is a tunable parameter, perplexity, which we have
presented as a quality metric to evaluate the goodness of the probabilistic LDA modeling.
This parameter says how to balance attention between local and global aspects of the data
under analysis. The parameter is related to the concept of the number of close neighbors
had by each point. The perplexity value has a complex effect on the resulting pictures;
in fact, since the algebraic model is not suited to measuring perplexity in probabilistic
terms, the good value to be set for its plot could be complex to infer. In Figure 15, we have
reported the representations of the t-SNE visualization for the joint-approach (top) and for
the probabilistic approach (bottom). The shape is quite similar; however, the plot using the
LDA model converges better in the presented figures. It is probably bad news that, to see a
global geometry shape, a fine-tunable perplexity parameter is necessary. Moreover, since
real data are characterized by multiple clusters with different cardinalities (i.e., number of
documents), it could happen that using only one single perplexity value is not enough to
capture distances across all clusters. Indeed, the perplexity metric is a global parameter
defined for the entire model. Thus, an interesting area for future research could be the
fixing of this problem.
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Figure 15. D1 t-SNE representation, TF-IDF weighting scheme, K = 10, joint-approach (top) and
probabilistic approach (bottom).

6.7.2. Boolean Weight

While analyzing the ARI between the two approaches for dataset D1, the highest value
is computed for the Boolean weighting strategy. This highlights a great similarity between
the two partitions. Moreover, the number of documents in each cluster is comparable.
In the joint-approach, we have integrated two weighting strategies with respect to the
local weight Boolean, which are Boolean-IDF and Boolean-Entropy. However, since the
two partitions were really similar, we only consider the Boolean-IDF for comparison with
respect to the Boolean-TF used for the LDA modeling.

We have reported, in Figures 16 and 17, the word clouds of the two approaches, respec-
tively. Specifically, Figure 16 is related to the five topics found using the algebraic approach,
while Figure 17 is related to the probabilistic model. In detail, analyzing Figure 16, we can
observe that, with respect to the TF-IDF local weight, the analysis is less precise. We can
extract the main topic from each word cloud; however, the partitions present more common
words used for more topics.

For the probabilistic model, we can observe that when we consider the clustering
obtained with K equal to five and its topic descriptions, when looking at the word clouds
in Figure 17, many terms (such as include or first) appear to be in all the groups of the
most-significant words for each cluster. This happens because the Boolean-TF weighting
scheme gave more relevance to words which appeared most in the whole corpus without
penalizing them. However, it could mean that these words do not belong to any specific
topic, or they just do not bring any additional information useful for the topic modeling
description phase. To this end, we have included a post-processing phase for this particular
weighting scheme.
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Figure 16. D1 word cloud representation, Boolean-IDF weighting scheme, joint-approach.

Figure 17. D1 word cloud representation, Boolean-TF weighting scheme, K = 5, probabilistic model-
ing.

In order to not consider these terms and bring up the words characterising the topics
identified by the LDA modeling process, we have decided to apply a further post-processing
step to evaluate the results. Once the models have been created and the K values selected,
we took into consideration more words to describe the topics, and then we removed all the
words appearing at least in four topic representations from them.

The results obtained by this post-processing operation are reported in Table 18. In
this way, the most-common words that do not carry any specific information have been
excluded from the descriptions, and the terms relevant for the meaning of the categories
are visible to the analysts. As a matter of fact, the assigned labels to the clusters generated
by the LDA model cover the following main topics: sport, mathematics, music, cooking, and
literature. Using this post-processing approach, we are able to describe the macro-categories
of this dataset perfectly.

To better show the impact of removing words that appear at least in four topics, we
reported the graph representation before and after this improvement. Figure 18 shows the
graph representation analyzing the top-20 words for each topic. Specifically, on the left, the
case without the post-processing is reported, while on the right, we report the case with the
proposed post-processing. The first graph is more connected with respect to the second
one; moreover, from the analysis of the graph after the post-processing, we can see the
improvement of this phase, since the new graph is not connected at all. This means that the
words that describe each topic are well-separated from cluster to cluster.
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Table 18. D1 topic–terms representation, Boolean-TF weighting scheme, K = 5, probabilistic modeling.

K Topic Description

1 game, team, sport, player, event, competition, ball, rule,
international, must, country, united, man, national, run

2 space, theory, case, graph, define, function, note, every,
write, order, result, element, must, system, general

3 music, musical, player, record, song, event, write, release,
instrument, note, sound, international, style, piece, back

4 food, water, cooking, united, sometimes, produce, result,
high, oil, modern, large, require, must, list, process

5 write, book, literature, story, character, art, university,
music, novel, modern, english, word, note, study, later

Figure 18. D1 t-SNE representation, Boolean-TF weighting scheme, K = 5, without post-processing
(left) and with post-processing (right).

7. Discussion

From the analysis of the obtained experimental results, we can assess that ESCAPE
performs well in describing the six corpora under analysis, clustering the documents based
on their main content. The proposed framework is generally able to group the documents
into well-separated topics.

We have observed that the joint-approach, which is based on a dimensionality alge-
braic phase before the application of the partitional K-means algorithms, is able to find
homogeneous partitions in terms of documents for each cluster. In other words, this ap-
proach creates more balanced clusters. Moreover, changing the weighting strategy, the
end-user is able to clusterize the same dataset at different granularity levels. Specifically,
we have seen that the global weight IDF is able to create more clusters, and is also able
to find sub-topics related to the major category. Thus, this weighting scheme is able to
characterize each dataset in a more precise way. On the other hand, the entropy is able to
find larger clusters, finding only the main relevant topics associated with each partition.
Indeed, both the clusterizations are able to split the corpora into well-separated groups.

For the probabilistic approach, considering the semantic similarity among the pro-
duced topics, it turned out that ESCAPE outperforms the currently used approach to find
the proper number of clusters. As a matter of fact, the proposed algorithm is able to capture
the effective cohesion level of the clusters, and then properly identify the optimal number
of topics. The results obtained from all the datasets considered in the thesis confirm the
clusters to be well-separated, especially for certain weighting schemes such as TF-IDF.
Nevertheless, with respect to the joint-approach, some weighting schemes lead to very
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poor results, such as the entropy-based scheme. In general, the probabilistic model tends to
find more inhomogeneous clusters; however, despite these schemes, the other results are
also satisfactory.

ESCAPE turns out to be really helpful for analysts during their analytical tasks.
Indeed, the analyst can choose to assign a different relevance to each word in the docu-
ments by means of different weights, and compare the solutions obtained using the two
approaches, analyzing the different granularity levels. The best partitions can also be
compared using innovative visualization techniques, which are able to help the analyst
during the validation step. Moreover, the two proposed approaches are able to characterize
different aspects in which the analyst may be interested, including also the possibility of
comparing the proposed approaches with respect to the other state-of-the-art techniques.

8. Conclusions and Future Work

This paper has presented the ESCAPE framework (enhanced self-tuning characterization
of document collections after parameter evaluation), which is able to support the user dur-
ing all the phases of the analysis process tailored to textual data. ESCAPE includes three
main building blocks to streamline the analytics process and to derive high-quality infor-
mation in terms of well-separated and well-cohesive groups of documents characterizing
the main topics in a given corpus.

Firstly, the data distribution of each corpus is characterized by several statistical indices
(e.g., Guiraud Index, TTR). The joint analysis of these statistical features is able to describe
the lexical richness and characterize the data distribution of each collection under analysis.
Then, a pre-processing phase is applied to prepare the textual content of documents for the
next phases. These activities, which are performed subsequently, represent each document
via the bag-of-words (BOW) representation. Using this model, a text (e.g., a sentence or a
document) is represented as the bag (multi-set) of its words, disregarding grammar and
even word order, but keeping multiplicity. To measure the relevance of these multiplicities,
ESCAPE includes several weighting strategies, which are able to measure term relevance
in the same dataset by exploiting a local weighting scheme (e.g., TF, LogTF), together
with a global weighting scheme (e.g., entropy, IDF). ESCAPE automatically exploits all
the possible combinations of local and global weighting schemes to suggest the ones that
well-model the term relevance in the collection under analysis to the user. Since we are
interested in finding the number of topics contained in a given collection of documents, in
ESCAPE, we have integrated two strategies, because no strategy is universally superior.

Specifically, we have integrated:

• an algebraic model based on SVD decomposition, together with the K-means clustering
algorithm (i.e., the joint-approach);

• a probabilistic model, based on the analysis of latent variables through the LDA (i.e.,
the probabilistic method).

Each strategy has been enriched with a self-tuning methodology to automatically set
the specific input parameters required by each involved algorithm. This frees the end user
from the correct configuration of the input parameters, which is usually a time-consuming
activity. Lastly, several user-friendly and exhaustive informative dashboards have been
embedded to help the end-user to explore the results effectively and efficiently. To evaluate
the quality of corpora partitions automatically discovered by ESCAPE, a variety of quality
indices have been integrated into the proposed framework.

Possible future extensions concern the integration in ESCAPE of:

1. New data analytics algorithms to exploit other interesting models. Specifically, we are
currently including:

• Other algebraic data-reduction algorithms (e.g., principal components analysis
(PCA)) for the joint-approach, together with the exploitation of other cluster-
ing methods (e.g., hierarchical algorithm) and other probabilistic topic modeling
methods (e.g., probabilistic latent semantic analysis (pLSA));
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• Autoencoder-based data reduction algorithms to compress the information of the
input variables into a reduced dimensional space and then recreate the input
dataset;

• More weighting functions (e.g., aug-norm) to underline the relevance of specific
terms in the collection;

• More statistical indices to characterize the corpora distribution (e.g., [64]), and
innovative strategies to extend the ability of ESCAPE to be more domain-
adaptive ([65]);

• Deep learning models to deal with a large set of corpora characterized by a variable
data distribution. These models can be used either to improve the preprocessing
phase or to facilitate the modeling task by shifting the current methods to the
supervised ones;

2. A semantic component (e.g., WordNet [66]) that is able to support the analyst in a
double phase. Such a component would be useful during the pre-processing phase,
to eliminate semantically bound words and thereby reduce the dictionary and also
the complexity of the algorithms, and also during the post-processing phase. In
this way, it would be possible to analyze, through the most relevant words for each
topic, those that are related to each other, helping the analyst in understanding the
outputs. Specifically, each topic can be characterized by words which are semantically
related, and so could represent subtopics of the same macro-category. Moreover,
thanks to the ontological base, the analyst could also add a hierarchy level for each
word of the dictionary to support other analytics tasks (e.g., generalized association
rules discovery);

3. A knowledge-base to store all the results of the experiments, including the data charac-
terization and the top-k selected results, for each methodology and weighting scheme,
so as to efficiently support self-tuning methodologies;

4. A self-learning methodology based on a classification algorithm trained on the knowl-
edge base content to forecast the best methods for future analyses. So, when a new
collection needs to be analyzed, ESCAPE should compute the data distribution char-
acterization through statistical features and suggest possible good configurations
without performing all the analytics tasks.
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