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Abstract

The plasmoid formation in collisionless plasmas, where magnetic reconnection within turbulence may take place
driven by the electron inertia, is analyzed. We find a complex situation in which, due to the presence of strong
velocity shears, the typical plasmoid formation, observed to influence the energy cascade in the
magnetohydrodynamic context, has to coexist with the Kelvin–Helmholtz (KH) instability. We find that the
current density layers may undergo the plasmoid or the KH instability depending on the local values of the
magnetic and velocity fields. The competition among these instabilities affects not only the evolution of the current
sheets, that may generate plasmoid chains or KH-driven vortices, but also the energy cascade, that is different for
the magnetic and kinetic spectra.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Plasma physics (2089); Magnetic fields
(994); Magnetohydrodynamics (1964)

1. Introduction

Magnetic reconnection, a fundamental process in magnetized
plasmas, involves a topological change in magnetic fields. It is
often associated with significant magnetic energy release and is
ubiquitous in several astrophysical environments where, due to
high Reynolds numbers, the transition to turbulence is
unavoidable (Lazarian et al. 2015). In the presence of strong
turbulence in the medium, magnetic field line reconnection is
continuously met along the flow. This makes magnetic
reconnection an intrinsic element of the turbulent cascade and
vice versa (Servidio et al. 2009, 2011). Both of these processes
involve the transfer of energy across different scales. Magnetic
reconnection typically occurs where intense current sheets
form, giving rise to plasmoid formation, while the turbulent
cascade explains how the energy provided at large scales is
dissipated at small scales. The strong interplay between these
two processes is an essential aspect of the energy cascade, and
indeed significant efforts have been devoted to understanding
how the reconnection process, via plasmoid instability,
influences the turbulent cascade in resistive magnetohydrody-
namics (MHD) (Biskamp & Welter 1989; Politano et al. 1989;
Carbone et al. 1990; Carbone 1995; Politano et al. 1995;
Boldyrev & Loureiro 2017; Mallet et al. 2017; Comisso et al.
2018; Dong et al. 2018).

The first analytical calculation of the impact of the plasmoid
formation on the MHD turbulent cascade was performed by
Carbone et al. (1990), who proposed that current sheets break
apart when γτnl∼ 1, with τnl and γ corresponding to the
nonlinear eddy turnover time and the growth rate of the fastest
tearing mode, respectively. Under this condition, they derived a
length scale at which the inertial range of turbulence breaks and
found that the energy spectrum steepens because of the

plasmoid instability. The same disruption condition was
employed in Boldyrev & Loureiro (2017) and Mallet et al.
(2017), where similar predictions were obtained. A refined
theory was developed in Comisso et al. (2018) by taking into
account that plasmoids disrupt the current sheet when γτnl? 1
rather than γτnl∼ 1 (Comisso et al. 2016, 2017; Huang et al.
2017, 2019; Baty 2020). Then, the theoretical predictions were
confirmed by the high-resolution MHD turbulence simulations
of Dong et al. (2018).
However, space and astrophysical plasmas where reconnec-

tion and turbulence have mutual influence are most of the time
collisionless (Ji & Daughton 2011), suggesting that the electron
inertia may play a crucial role as a driving mechanism for
reconnection. Indeed the plasmoid instability in collisionless
regimes of plasma turbulence has started to be investigated also
numerically via particle-in-cell (Comisso & Sironi 2018, 2019)
and hybrid Vlasov–Maxwell simulations (Cerri & Califano
2017; Franci et al. 2017). Nonetheless, to benefit of the
advantages of a fluid description, a two-fluid model can be
adopted. In the framework of collisionless magnetic reconnec-
tion described by two-fluid equations, several studies have also
been devoted to the evolution of current and vorticity sheets
that undergo secondary instabilities of the fluid type, especially
the Kelvin–Helmholtz (KH) instability (Del Sarto et al. 2003;
Grasso et al. 2007, 2009). For the limiting case of symmetric
equilibrium magnetic field configurations, these studies found
that the KH instability could develop only when the ion sound
Larmor radius was smaller than the electron inertial length.
More recently (Grasso et al. 2020), it has been shown that this
condition is wiped out when asymmetric equilibrium magnetic
field configurations are considered. Notwithstanding, the
competition of the plasmoid and KH instabilities and their
combined effect on the collisionless turbulent cascade remains
largely unexplored. On the other hand, the linear interplay of
these two instabilities in the resistive regime is a textbook
subject (Biskamp 2000). Indeed, it is known that the presence
of a shear flow together with a magnetic shear leads to an
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increase in the linear growth rate as well as of the number of
modes growing due to tearing instability. More recently, the
coexistence of the plasmoid instability together with the KH
one has been studied in the framework of a resistive Sweet–
Parker current sheet linear model (Loureiro et al. 2013).

As a contribution toward the clarification of the influence of
magnetic reconnection on the turbulent cascade, here we
analyze the development of plasmoids in a turbulent collision-
less plasma where the reconnection mechanism is provided by
the electron inertia. We find that the presence of strong shear
flows, naturally generated in the turbulent plasma, also drives
the KH instability that competes with the plasmoid instability.
The impact of the current sheets disruption on the energy
cascade is addressed, together with the influence of the KH
instability on the reconnection growth rate. A comparison
between resistive and collisionless plasmoid formation is
performed to understand the main differences between these
two regimes.

2. Model Equations and Numerical Approach

We consider a reduced two-dimensional, two-fluid model
suitable to describe magnetic reconnection in weakly colli-
sional regimes (Grasso et al. 1999). This model retains
microscopic effects related to the finite electron inertia in a
simplified fluid framework and therefore allows to reduce the
competition of the plasmoid and KH instabilities to a few
essential ingredients. In view of this, here we consider, as a first
step, the vanishing electron temperature limit of the model. The
equations for the magnetic flux and the stream function,
normalized to the Alfvén time, evaluated using the super-
imposed transverse magnetic field and the box length, are

t
d

J

t
d J J J, , , 1e e

2 2
eq[ ] [ ] ( ) ( )y

j y j h
¶
¶

+ = -
¶
¶

- - -

U

t
U J U, , , 22[ ] [ ] ( )j y n

¶
¶

+ = + 

where η is the plasma resistivity, ν is the kinematic viscosity,
de= c/ωpe is the electron skin depth, with c and ωpe indicating
the speed of light and the plasma frequency, respectively.
Furthermore, J=−∇2ψ is the electric current density, and
U=∇2j is the plasma vorticity. The magnetic and velocity
fields are given by B= B0ez+∇ψ× ez and v= ez×∇j,
where B0 is a strong (with respect to the in-plane component)
uniform magnetic field. Note that, due to the adopted
normalization and the dependence of the Alfvén velocity on
B0, the amplitudes of the magnetic and velocity fields are
directly comparable. Equations (1)–(2) are solved with a
parallel code based on a pseudospectral discretization method,
where spatial derivatives are evaluated in the Fourier space.
The time stepping is performed in real space with a third-order
Adams–Bashforth scheme.

2.1. Setup and Convergence Tests

We adopt the initial condition setup considered in Dong
et al. (2018). We solve Equations (1)–(2) in the domain
−1/2� x, y� 1/2. For the collisionless runs, the plasma
resistivity is set to η= 0, while the viscosity, introduced for
numerical reasons, has been fixed to ν= 10−6. The electron
skin depth is set to de= 5× 10−4 in order to achieve a large
scale separation. We initialize the simulation placing

uncorrelated, equipartitioned ψ and j fluctuations in Fourier
harmonics

k x k ysin sin , 3mn m mn n mn0 1 2( ) ( ) ( )åy y x x= - + +

k x k ysin sin , 4mn m mn n mn0 3 4( ) ( ) ( )åj j x x= + +

where m and n indicate the mode numbers in the x and y
directions, km= 2πm/L are the wavenumbers, and ξi, where
i= 1,K,4, are random phases. Energy is initialized in the
range m, n= 0,K,10, with l m n lmin

2 2 1 2
max( )+  , where

l 1min = , l 10max = and

m n l l2 , 5mn0 0
2 2

max
2

min
2( )( ) ( )y y p= + -

m n l l2 . 6mn0 0
2 2

max
2

min
2( )( ) ( )j j p= + -

This is essentially equivalent to set 10 large eddies per side, and
this is convenient both to achieve early an adequate state of
turbulence and to have thin and elongated current sheets with a
high aspect ratio lcs/de∼ 200. Namely, these conditions are
necessary to see the onset of the plasmoid instability (Comisso
& Sironi 2018, 2019). On the other hand, the length of the
largest current sheets is related to the size of the largest eddies
for geometrical reasons, and the size of the largest eddies is
related to the box size. So, if we perturb 10 initial modes, it
results to lcs∼ 1/10. We set j0= ψ0; 2 in order to have initial

energy v BE
1

2
12 2 1

8 0
2

0
2( )j y= á + ñ +  , where 〈L 〉

represents the spatial average.
The convergence of our results has been checked analyzing

the rms value of the current density, shown in the left panel of
Figure 1, on three runs with increasing resolution: with 96002,
19,0402, and 38,0802 grid points. Convergence is reached
starting from 19,0402 grid points. As complementary informa-
tion, in the right panel of Figure 1, we show the rms of the
vorticity, equivalently adopted as an indicator of convergence
in resistive MHD turbulence. However, in collisionless systems
this quantity has a different behavior. The electron skin depth
provides the physical mechanism that limits the current density,
which, despite the scales developed well below de, remains
mainly distributed over de (Grasso et al. 1999). On the contrary,
the viscosity does not prevent the cascade toward smaller
scales. Indeed in analogous works carried out in the resistive
regime (Dong et al. 2018) the values of resistivity and viscosity
were acting on the same scales allowing to reach convergence
on the rms of both the current density and the vorticity. The
different behavior of the vorticity provides the justification for
focusing on the highest-resolution run from now on.
We will refer to the time at which the rms of the current

density reaches its peak as tpeak, which should represent the
maximum turbulent activity (Mininni & Pouquet 2009). The
simulations carried out with lower resolution, up to 96002 grid
points, have shown that tpeak/τnl≈ 6 and does not depend on
the numerical grid. However, as is shown in Figure 1, we
stopped the high-resolution run before reaching tpeak because,
as we discuss later in the paper, the plasmoid formation starts
well in advance of it.

3. Plasmoid Formation

Although plasmoids have been already detected in several other
collisionless turbulence works (Cerri & Califano 2017; Franci
et al. 2017; Comisso & Sironi 2018, 2019; Comisso et al. 2020),
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their competition with the KH instability was, as far as we know,
never reported.

We start considering the time evolution of the J field over the
entire simulation domain. In Figure 2, where the domain has
been divided in four subdomains, we can see that the initial
eddies merge, giving rise to the formation of thin and elongated
current sheets, which are analogous for the vorticity. Zooming
in and superimposing the contour levels of the magnetic flux,
we can distinguish between the different evolution of these
current sheets, which may be dominated by the plasmoid or KH
instability. In Figure 3, the contour levels of ψ clearly indicate

the presence of plasmoid chains in each of the subdomains of
Figure 2. However, it is possible to also observe current sheets
dominated by the KH instability, where no magnetic structures
are detected. We point out that, if on one hand the time
evolution of the plasmoid-dominated current sheets ends up
with the generation of turbulence, on the other hand the KH-
dominated current sheets never show the presence of
plasmoids. Nonetheless, it is likely that the turbulent evolution
of these sheets also generates secondary reconnection
sites (Faganello et al. 2008), as also revealed by the X-point
detection, not shown here, but these are not related to the

Figure 1. rms value of the current density and vorticity for increasing resolutions.

Figure 2. J over the entire simulation domain at t/τnl = 2.62.
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plasmoid instability. Notice that we also had hints of plasmoid
formation in the runs with lower resolution, from which we
have been able to tell that this phenomenon happens before
reaching tpeak, which is why we stopped our highest-resolution
run earlier.

This early appearance of the plasmoid instability brings the
fast disruption of the current sheets. In fact, the proliferation of
plasmoids is accompanied by an increasing number of small
vortices, sometimes making the distinction between the two
difficult. As we show in the Appendix, the presence of a
sheared velocity field enhances significantly the growth rate of
the reconnecting mode in the collisionless case, compared to
the resistive one. In order to understand the reason of the
different evolution of the current sheets, we analyze first the
intense current density layer, which leads to the formation of
the plasmoid chain in the left bottom panel of Figure 3. In
Figure 4, the current density sheet is shown at t/τnl= 2.1, right
before its disruption, together with the profiles of the
component of the velocity and magnetic fields in the direction
parallel to the layer on a perpendicular cross section.

These profiles resemble the standard equilibrium shape of
the velocity and magnetic field, like the ones treated in the
Appendix. Here it is important to observe that the magnetic
field amplitude on the layer boundary is greater than the
velocity peak, located at the maximum of the current sheet.
According to the linear theory of shear flow instability
(Biskamp 2000) this is a stabilizing condition for the KH

instability. Indeed, the layers evolve forming the plasmoid
chain discussed above. A similar approach, although in the
context of resistive MHD, was adopted also in Loureiro et al.
(2013).
We consider now a different current density layer at

t/τnl= 2.1, which has evolved according to the KH instability
as shown in Figure 3 at t/τnl= 2.62. The magnetic field and
velocity profiles along the layers, shown in Figure 5, are now in
an opposite relation: the velocity peak significantly exceeds the
magnetic field amplitude, and the current sheet is disrupted
under the effects of a fluid-type instability. To highlight the
difference with respect to the layers that evolve according to
the plasmoid instability, in Figure 6 we show the evolution of
the vorticity layer that corresponds to the current density one
analyzed in Figure 5. In the left panel, the vorticity layer at
t/τnl= 2.36 has started to develop the KH instability that leads
to its complete disruption in many small vortices at time
t/τnl= 2.62, as shown in the right panel.
Finally, Figure 7 shows an example of how turbulence

develops in the regions where current sheets undergo the
plasmoid instability, as anticipated at the beginning of this
section. Here the evolution of the vorticity sheet corresponding
to the current sheet shown in Figure 4 is plotted at two
subsequent times. In the first stages of the instability (left
frame), turbulence is bounded inside the magnetic structures,
where the vorticity and current density exhibit small scale
vortices. This is a distinguished feature of the vanishing

Figure 3. Zoomed-in regions of the domain in which J, at t/τnl = 2.62, is plotted with the corresponding magnetic surfaces, highlighting the plasmoid chains.
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electron temperature collisionless regimes that has also been
observed in purely magnetic reconnection numerical
simulations (Del Sarto et al. 2003; Grasso et al. 2007). When
the plasmoids become larger (right frame), their mutual
interaction leads to the coalescence between the magnetic

structures that belong to the same island chain. This results in
large turbulent regions where the magnetic structures even-
tually disappear. The magnetic connections between the nearby
turbulent regions finally drive the appearance of macroscopic
turbulent domains.

Figure 4. Left: contour plot of J at t/τnl = 2.1. The dashed overplotted line identifies the direction perpendicular to the current sheet at the point (−0.483246,
−0.227442). Right: velocity and magnetic field components along the direction parallel to the current sheet at the same point vs. the coordinate of the perpendicular
cross section shown in the left frame. The outer vertical dashed lines identify the boundaries of the current layer, while the central one marks the position of the peak of
the current sheet.

Figure 5. As in Figure 4, but in a different subdomain. The considered point is (−0.418172, −0.234743).

Figure 6. Two different stages of the nonlinear evolution of a vorticity layer shown via U = ∇2j, which, starting from a laminar structure at t/τnl = 2.1, develops a
KH instability at t/τnl = 2.366 (left panel) ending in a turbulent structure at t/τnl = 2.62 (right panel).

5

The Astrophysical Journal, 929:62 (10pp), 2022 April 10 Borgogno et al.



The layers examined above are representative of the many
ones that form and disrupt according either to the plasmoid or
the KH instability, depending on the relative magnitude of the
magnetic and velocity fields. Although distinguishing between
these two different evolution paths may be difficult, we believe
that their coexistence is crucial in explaining the energy
cascade.

4. Plasmoid-mediated Turbulence in the Collisionless
Regime

If the turbulent energy cascade is dominated by the
formation of plasmoids, the energy spectrum steepens with
respect to the standard inertial range spectrum (Biskamp 2003).
We can calculate the half thickness λ of the turbulence-
generated current sheets at which the plasmoid instability
becomes critical by following Comisso et al. (2018) and
Comisso & Sironi (2019). In order to affect the energy cascade,
plasmoids need to grow to large amplitude before the current
sheets in which they are born are swept away by the turbulent
fluctuations. Therefore, the first step of the analysis requires
determining the condition for the instability growth rate to
amplify a perturbation from noise level to nonlinearity in one
eddy turnover time, τnl. According to Comisso et al.
(2016, 2017, 2018), this is equivalent to the condition

w
ln

2
, 7in

0

nl ( )⎜ ⎟
⎛
⎝

⎞
⎠

d gt
=

where δin is the half width of the inner tearing layer. For the
collisionless regime of interest here, we can take δin= de
(Ottaviani & Porcelli 1995). Furthermore, w b20 0

1 2( )y l d= l
is the half width of the plasmoid, where δbλ indicates the
magnetic field fluctuation at scale λ. The quantity

k0 ( )y k x= x
a- is the noise perturbation, which is assumed to

have a general power-law form. Here, κ is the noise amplitude,
ξ is the half length of the current sheet, kξ is the wavenumber
along the ξ direction, and α is the power-law exponent, which
has to be self-consistently determined from the turbulent
energy spectrum.

We can substitute the growth rate of the dominant
collisionless tearing mode into Equation (7) and rewrite this

expression as (Comisso et al. 2016)

w
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d
dln

1

2
, 8in

0

d

0

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

ò
d

g l
l

l=
l

l

where γ= γsγl/(γs+ γl) is the semiharmonic mean of the
growth rates γs and γl, which characterize the small and large
D¢ regimes, respectively (Ottaviani & Porcelli 1995), and suffix
d denotes current sheet disruption. Here, D¢ is the tearing
stability parameter (Furth et al. 1965), which, for a Harris-like
(Harris 1962) current sheet, can be evaluated as (White
1986)

k
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x
x

Equation (8) should be solved for an exponentially shrinking
current sheet of the form λ(t)= λ0e

− t/ τ, using also λd= λ0
and the fact that kξλ= 1 for the plasmoids that disrupt the
current sheet. Then we notice that the wavenumber and the
growth rate of the plasmoids at current sheet disruption have
the same scaling properties of the fastest collisionless tearing
mode (Comisso & Sironi 2019), and can be written as

k
d d

v, , 10d
e

d
d

e

d
A, 2

2

3
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l
g

l
~ ~x l

where vAl is the Alfvén speed associated with the fluctuating
magnetic field at scale λ.
Solving Equation (8) for the dominant collisionless tearing

mode, we obtain the following expression for the critical aspect
ratio of the current sheets (Comisso & Sironi 2019)
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where bk̂ k d x= l is the normalized amplitude of the noise
that seeds the plasmoid instability. Here, we set τ= 1 as we
consider current sheets forming on the Alfvénic timescale.
Equation (11) can be solved by iteration (Comisso &
Sironi 2019), replacing into Equation (11) the solution at the

Figure 7. Vorticity distribution at two different stages of the nonlinear evolution of the current sheet shown in Figure 4. The overplotted black lines show the
corresponding magnetic structures through isocontours of the magnetic flux ψ. The set of figures highlights the transition of turbulence from a localized distribution
inside the magnetic structures at t/τnl = 2.88 (left frame), to a macroscopic scale when the coalescence of the plasmoids starts at t/τnl = 3.14 (right frame).
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zeroth order. Thus, at the first order, one has
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while the growth rate at the end of the linear phase is
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From this relation we have that γdτnl? 1 at current sheet
disruption, as is required for the instability to amplify the
perturbation to a significant level within the lifetime of the
current sheet.

In order to determine the energy spectrum in the plasmoid-
dominated range, we consider a constant energy flux

b2
nle d t= l , where the nonlinear timescale is now controlled

by the growth rate given by Equation (13). Therefore, using
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The expression of δbλ as a function of λ in the plasmoid-
dominated range can be obtained following the same first-order
approximation adopted in Comisso et al. (2018) and using the
results obtained so far in the collisionless regime.

As a first step, we need to adopt a suitable expression of ξ as
a function of λ, as well as determine α and k̂. The first task can
be easily carried out neglecting the logarithm to obtain a zeroth
order estimate of the noise and considering λd as a fixed scale
in the previous equations for τnl and δbλ. Hence, if we
introduce the alignment angle sine sinJ l x~l , we obtain
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as from Equation (15) we have δbλ∝ λ, b k 1 3d µl x
- . This

implies that at the zeroth order E k k 5 3( ) µx x
- and considering

that E k k k0
2 2 1 2( ) ( )( )y k x x~ =x x x

a- we can determine
α= 4/3. To evaluate k̂ in a consistent way, we take into
account the energy content at a given scale, b2d l , the probability
of occurrence of a certain fluctuation amplitude on the current
sheet, f, and the projection of the fluctuation onto the unstable
modes, δin/λ, as (Comisso et al. 2018)
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k d x
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where δbλξ is the magnetic flux associated with the energy
content at a scale λ. Factor f can be estimated from geometrical
considerations. Indeed, if we envision current sheets that form
between alternately twisted flux bundles (magnetic islands), a
close-packed configuration yields hexagonal arrays with
current sheets that develop on two of the six edges (see, e.g.,
Zhou et al. 2014). Therefore, from the area of a regular
hexagon, we can estimate f∼ csλ/ξ, with c 2 3 3s ( )= . Then,
the noise that seeds the plasmoid instability can be estimated as
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We can now substitute α= 4/3 and Equation (19) into
Equation (15) obtaining
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Finally, the energy spectrum can be obtained from
E k dk b
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We can see that for the considered collisionless plasma model,
the turbulence energy spectrum in the plasmoid-dominated
range tends to E(k)∝ k−3 at the zeroth order. However, the
exponential growth rate of the plasmoid instability also results
in a nontrivial relationship that does not obey a true power law,
as it is reflected by the logarithmic factor. We also notice that,
as the adopted plasma model does not include ion physics, the
plasmoid-dominated range is not limited by the ion skin depth
di or the ion Larmor radius ρi, but it rather ends at the scale
corresponding to the electron skin depth k d2d ee p~ .

4.1. Energy Spectra

We analyze the magnetic and kinetic energy spectra resulting
from our simulations in comparison with the analytical
prediction derived above. Figure 8 (left frame) shows the
curves for the magnetic energy spectra at four times, after the
plasmoid formation, together with the theoretical slope values
for the inertial and plasmoid range. The change in the slope
occurs at kde∼ 0.1, which corresponds to plasmoids of size
wpl∼ 0.1lcs∼ 20de, as can also be inferred from the plasmoid
chains highlighted in Figure 3. The average values of the slope
evaluated on these curves in the two aforementioned ranges are
γmag1= −1.3 and γmag2= −2.7. The latter somewhat differs
from our theoretical prediction of the slope in the plasmoid-
dominated regime in the collisionless case. Indeed, as the time
increases, the magnetic energy spectrum tends to flatten,
consistent with the observation that the fully plasmoid-
mediated regime is somehow inhibited by the presence of a
turbulence dominated by the KH instability. In the right frame
of Figure 8, an analogous picture is shown for the kinetic
energy spectra, whose slope never matches that of the magnetic
one in the same regime. The average values of the slopes
evaluated on these curves are γkin1= −1.14 and γkin2=−1.7,
clearly far from −3/2 and −3. Moreover, the kinetic energy
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spectrum changes more smoothly with respect to the magnetic
one. While the abrupt change of the cascade to small scales in
the magnetic energy spectrum is caused by the generation of
the plasmoids, which facilitates the cascade of magnetic
energy, the kinetic energy spectrum is dominated by the KH
instability that continuously generates smaller and smaller
scales due to the low viscosity value adopted here in order not
to affect the collisionless dynamics.

4.2. Comparison with a Resistive Case

In order to clarify this issue, we performed a resistive
simulation with 19,0402 grid points, choosing η such that the
inertial ranges of the two simulations are comparable. We
estimate the dissipation scale of the resistive simulation
as (Servidio et al. 2011)

k t
U J

. 22diss 3

1 4 2 2 1 4

1 2
( ) ( )⎛

⎝
⎞
⎠

e
n n

= =
á + ñ

Solving this equation for ν and choosing the plasma resistivity
to be equal to the plasma viscosity, and further using
k k d2d ediss e p= = , we obtain

U J

d2
. 23

e
diss

2 2 1 2

2( )
( )n

p
=

á + ñ

We take for η the value of νdiss at time t; 2 τnl, when we detect
the development of the plasmoid instability in the previous
simulations, so we set η= 5× 10−6.
Looking directly at the current density field evolution, we

can spot some differences with respect to the collisionless case.
In Figure 9, there is a small number of plasmoids at times at
which we could spot numerous plasmoids in the collisionless
regime. However, the number of plasmoids significantly
increases as we follow the turbulence evolution and we get
closer to tpeak. This difference can be understood according to
the linear analysis performed in the Appendix. Indeed, when
comparing the resistive and collisionless regimes characterized
by the same magnetic dissipation length scale, we find the new
interesting result that the impact of a velocity shear on the
growth rate of reconnecting modes is greater in the collisionless
regime. It turns out that the number of unstable modes
increases as well as their growth rate, which doubles that of the
resistive regime. Hence, it is reasonable to find that the
plasmoid instability starts earlier in the collisionless case. In the
resistive regime, the current and vorticity sheets evolve
following a laminar behavior and are not affected by the KH
instability. Moreover, while in the collisionless regime
plasmoids appear to already have grown to a highly nonlinear
phase and have fully disrupted the current sheets in which they
were formed, in the resistive case we can see the presence of

Figure 8. Magnetic and kinetic energy spectra at five different nonlinear times after the plasmoid formation has started.

Figure 9. J for the resistive (left) and collisionless (right) simulations around t/τnl = 3.41.
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laminar current sheets within the first generation of plasmoids.
This is not surprising if compared with the results in Dong et al.
(2018), where plasmoids were detected with η of the order of
10−6, which is smaller than the value adopted here. This results
in less intense resistive current sheets preventing their further
thinning to smaller scales.

Figure 10 is the analogous of Figure 8 for the resistive case.
Also here, within the inertial range, we are able to identify two
different ranges, characterized by different slopes in the
magnetic energy spectrum. Even though the slope of the
spectrum is varying, it shows a tendency to remain steeper than
the slope of −2.2 observed in Dong et al. (2018). This can be
ascribed to the fact that in our case the plasmoid instability is
still developing, and we might not have reached the plasmoid-
mediated regime in which the −2.2 slope is expected to hold. It
was not the same in the collisionless regime, where the slope
was progressively flattening from the zeroth order theoretical
value of −3 after the disruption of current sheets.

The kinetic energy spectrum in the collisional regime is
similar to the magnetic energy spectrum and thus different from
what we observed for the collisionless regime. This fact may be
understood in terms of the dissipative effects of the plasma
resistivity that affect J, whose value is comparable to that of the
plasma viscosity, determining the same dissipation length scale
for J and U.

5. Conclusions

We have carried out an analysis of the turbulent cascade in
the collisionless regime following a new perspective focused
on the different structures observed in our numerical simula-
tions that allowed us to shed light on the complex interplay
between plasmoid and KH instabilities. Due to the presence of
strong velocity shears, the plasmoid formation in collisionless
regimes has to compete with the KH instability. The current
sheets may disrupt into a plasmoid chain or into KH-driven
vortices depending on the local behavior of the magnetic and
velocity fields. This finding explains the discrepancy between
the magnetic energy spectrum evaluated from the numerical
simulations and the one we derived analytically under the
assumption that the fully plasmoid-mediated turbulent regime
has been achieved.

The authors thank T. Passot for useful discussions. This
work benefits from the support of the Ignitor project under the

CNR contract DFM.AD003.261 (IGNITOR) - Del. CIPE n.79
del 07/08/2017. The numerical simulations were performed
using the INDACO High-performance Computing platform at
the Università degli Studi di Milano (http://www.unimi.it) and
the Marconi system at CINECA (under the ISCRA initiative
No. HP10CHTQOB).

Appendix A
Magnetic versus Fluid Instability

We analyze the growth rate of reconnection and KH
instabilities for a current-sheet-like equilibrium. Following
Biskamp (2000), we assume sheared magnetic and velocity
fields of the form

B x B xtanh , A1eq eq
0( ) ( ) ( )=

V x
V

xcosh
. A2eq

eq
0

2
( )

( )
( )=

We solve numerically the linearized version of the system of
Equations (1)–(2) assuming B 0.8eq

0 = and V 1.0eq
0 = . The

results are summarized in Figure 11, where we show the
growth rate for different cases: resistive tearing mode with
η= 3× 10−4 (as in Biskamp 2000), collisionless tearing mode
with de= 0.188, and two cases of coexistence of velocity shear
and resistive or collisionless reconnection. These values have
been chosen imposing the condition de

2g h= so that the linear
growth rate of the tearing mode instability is the same in the
purely resistive (blue curve) and collisionless (yellow curve)
regimes.
We can see that the combined action of a sheared velocity

field together with the sheared magnetic field in the collision-
less regime gives a growth rate that is much higher than in all
other cases. To our knowledge, this represents a new result that
was previously overlooked. It is interesting that the spectrum of
unstable modes broadens with respect to the purely collision-
less tearing mode, but not as much as in the combined effect of
KH and resistive tearing mode.
The effect of the presence of an equilibrium shear flow on

the stability of resistive tearing modes has been studied in the
past (Chen & Morrison 1990). Due to the freezing of the
magnetic flux into the flow, valid in the ideal region where
resistivity can be neglected, and being the standard stability
parameterD¢ determined by the solution in this region, it is not

Figure 10. Magnetic and kinetic energy spectra at three different nonlinear times for the resistive case.
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surprising that the presence of a shear flow can change the
stability spectra for the tearing modes. The difference observed
here, when considering the collisionless tearing mode, can be
understood taking into account that in the high-k regime the
growth rate of a collisionless tearing mode is proportional to de

3

(Biskamp 2000), which is very small. Hence these modes could
be marginally stable and less influenced by the shear flow.

Moreover, we observe that the peak value is shifted to a
higher k value. This result is relevant for the problem we are
addressing here, where the evolution of current sheets in a
turbulent environment is considered. Therefore, we may expect
a stronger competition between magnetic reconnection and KH
instability, unlike what happens in resistive regimes, where the
current sheets in a turbulent environment are disrupted
according to the plasmoid instability.
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