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A Probabilistic Machine Learning Approach for the
Uncertainty Quantification of Electronic Circuits

Based on Gaussian Process Regression
Paolo Manfredi, Senior Member, IEEE, Riccardo Trinchero, Member, IEEE.

Abstract—This paper introduces a probabilistic machine learn-
ing framework for the uncertainty quantification (UQ) of elec-
tronic circuits based on Gaussian process regression (GPR).
As opposed to classical surrogate modeling techniques, GPR
inherently provides information on the model uncertainty. The
main contribution of this work is twofold. First, it describes how,
in an UQ scenario, the model uncertainty can be combined with
the uncertainty of the input design parameters to provide confi-
dence bounds for the statistical estimates of the system outputs,
such as moments and probability distributions. These confidence
bounds allows assessing the accuracy of the predicted statistics.
Second, in order to deal with dynamic multi-output systems,
principal component analysis (PCA) is effectively employed to
compress the time-dependent output variables into a smaller set
of components, for which the training of individual GPR models
becomes feasible. The uncertainty on the principal components
is then propagated back to the original output variables. Several
application examples, ranging from a trivial RLC circuit to real-
life designs, are used to illustrate and validate the advocated
approach.

Index Terms—Gaussian process regression, machine learning,
principal component analysis, probability, statistical analysis,
stochastic processes, surrogate modeling, uncertainty quantifi-
cation.

I. INTRODUCTION

UNCERTAINTY quantification is becoming more and
more essential to take into account the effect of process

variations in the early-stage design of electronic devices [1]–
[9]. In this scenario, Monte Carlo (MC) analysis is a robust
method that is still considered to be the golden reference
and is implemented in virtually any commercial simulator for
yield estimation [10]. However, it becomes extremely time-
consuming for realistic designs, since it is characterized by a
slow convergence rate. Even though Latin hypercube sampling
(LHS) and quasi-MC methods allow reducing the number of
simulation samples [11], thereby speeding up the calculation,
the family of MC methods remains “blind” as it concerns
the input-output relationship, thus hindering more in-depth
analyses such as the calculation of sensitivity information or
the solution of optimization tasks.

To overcome these limitations, several modeling approaches
were investigated to surrogate computationally-expensive sys-
tems and expedite their UQ. The methods based on the
generalized polynomial chaos [12] are specifically tailored for
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UQ, since the model aims at minimizing the error w.r.t. the
target function in statistical terms, by taking into account the
probability distribution of the design parameters. They can
be divided into two categories [13]: intrusive methods [14]–
[17] are mostly based on stochastic Galerkin projection and
favor accuracy at the expense of efficiency and ease of
implementation. Non-intrusive methods are instead sampling-
based techniques that share the implementational benefits
of MC methods, yet with better convergence properties.
In particular, sparse implementations are suitable for high-
dimensional problems and include least-angle regression [18],
[19], sparse interpolations [20], [21], and low-rank tensor
decompositions [22]–[25]. All these methods, including sparse
ones, are parametric techniques, i.e., they require to define a
priori the form of the predictor. Therefore, the cost of model
training increases with the dimensionality of the problem in
terms of input design variables.

A powerful alternative in this regard is the class of non-
parametric machine learning methods, for which the model
complexity is transparent to the problem dimensionality, but
it is rather related to the number of available training data.
Examples include neural networks [26], support-vector ma-
chine (SVM) [27], least-square support-vector machine (LS-
SVM) [28], and Gaussian process regression (GPR) [29], also
known as Kriging [30]. The nonparametric feature makes these
methods even more attractive for high-dimensional problems.
In particular, enhanced variants of GPR/Kriging were specif-
ically proposed to address the “curse of dimensionality” for
systems with a large number of inputs [31]–[36]. Applica-
tions of machine learning to circuit design include behavioral
macromodeling [37]–[39], sensitivity analysis [40], reliability
analysis [41], yield analysis and (Bayesian) design optimiza-
tion [42]–[45], reliability-based optimization [46], [47], as well
as UQ [48]–[50].

Since UQ is essentially a probabilistic task, it is useful to
assess the accuracy of the predicted statistics by assigning
confidence bounds to them. For example, when performing
a classical MC analysis, the standard deviation of the MC
estimates of the mean and the variance can be analytically
computed. However, when using surrogate models, it is diffi-
cult to account for the error introduced by the model itself, as
information on the model uncertainty is usually unavailable.
In practice, when performing UQ, the surrogate model is
implicitly assumed to be arbitrarily accurate. For instance,
analytical estimates of the first two statistical moments (mean
and variance) can be obtained using the polynomial chaos
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expansion approach [12]. Yet, such estimates come with no
associated uncertainty.

In this scenario, GPR exhibits the attractive feature that
the model inherently carries an estimate of its uncertainty.
Indeed, as opposed to most surrogate modeling techniques,
the GPR model is probabilistic, rather than deterministic, and
it is described by a Gaussian process (GP) with a given mean
function (also called “trend”) and covariance. The former
provides the best or more likely prediction, while the latter
is typically used to assign (local) confidence bounds to the
(deterministic) prediction for a given configuration of the
inputs. This property has been exploited to guide adaptive
sampling strategies in deterministic modeling problems, in
which new samples are selected in the regions exhibiting the
largest prediction variance [51]–[53].

In an UQ scenario, the difficulty lies in combining the
model uncertainty with the one of the input parameters, as the
correlation between different samples must be suitably taken
into account. A naive application of GPR to UQ is to sample
the model trend in order to obtain an inexpensive estimate
of the MC samples [50], as is typically done with any other
deterministic surrogate model. However, this causes the loss
of the precious information about the model uncertainty.

The aim of this paper is to provide a probabilistic framework
for UQ, in which the uncertainty of the input design parame-
ters is propagated to the output variables by also taking into
account, in a rigorous way, the inherent uncertainty of the GPR
model. The Gaussian nature of the model uncertainty turns out
to be particularly convenient to accomplish this task, while any
distribution can be assigned to the input design variables. The
result is a simulation framework for UQ in which statistical
estimates, such as moments and probability distributions of
the outputs, are given in terms of expectations and confidence
bounds, as is usually done in traditional MC analysis. How-
ever, these confidence bounds now simultaneously account for
the uncertainty of both finite sampling and model error. This
allows assessing the uncertainty of the model predictions due,
e.g., to the lack of data and/or non-optimal assumptions on
the prior.

To our best knowledge, there has been a very limited attempt
to undertake this task in the literature. An example is found
in [57], in which the same prior covariance is assumed for
all output components, and a separate GPR model is trained
for each statistical moment thereof. Moreover, the predictions
at different input values are assumed to be conditionally
independent, thus resulting in wider confidence bounds. In
our paper instead, we express each output variable with a
single GPR model, and we obtain statistical information by
rigorously propagating uncertainty using statistical properties.

Furthermore, an important limitation of most surrogate mod-
eling techniques is that they readily apply to scalar outputs,
whereas their application to the time-dependent responses
of a multi-output dynamic system becomes cumbersome. A
naive approach is to train an individual model for each
variable and time point of interest, which however becomes
computationally intractable for large systems. Alternatively,
this problem could be directly addressed using deep learning
approaches, such as deep neural networks [54], recurrent

neural networks [55], or deep networks with long short-term
memory [56]. These approaches allows tackling problems with
long time-series output data and a high-dimensional input
space. However, the training of deep-learning models is in
general extremely expensive, as it requires a very large number
of observations and the solution of a high-dimensional non-
convex optimization problem to estimate the huge amount of
weights that describe their complex network topology. There-
fore, these methods are not very attractive for applications to
UQ, since the cost of the training phase would be comparable
to the one of a typical MC analysis. Our goal here is to train
an accurate model using the least amount of data.

We overcome this limitation by means of principal compo-
nent analysis (PCA), which allows compressing the outputs
into a much smaller set of reduced variables, for which the
training of individual models becomes feasible [58]. The PCA
compression exhibits three convenient features, as it allows:
1) to rigorously control the accuracy of the compression;
2) to readily propagate the uncertainty on the compressed
variables back to the original outputs, since it is in fact a linear
combination of Gaussian random variables; 3) to automatically
take into account redundancy and correlation between data,
thus scaling extremely favorably when a finer time step or
more output variables are considered in the analysis. In [57],
the correlation between different outputs is neglected, whereas
in a later paper [59] the correlation is represented by a large
covariance matrix that is assumed to be factorizable as the
product of smaller matrices, which is not necessarily the case.

The advocated approach is validated starting from a trivial
illustrative example, and by then considering two real-life
designs, namely a power amplifier and digital integrated link.
The rest of the paper is organized as follows. Section II intro-
duces the fundamental notions of GPR. Section III discusses
the application of GPR to UQ, whereas rigorous statistical
estimates and their confidence bounds are provided in Sec-
tion IV. Section V introduces the PCA compression. An illus-
trative application example is provided in Section VI, whereas
realistic application scenarios are discussed in Section VII.
Finally, conclusions are drawn in Section VIII. Throughout the
paper, plain letters (x or X) denote scalar variables, lowercase
bold letters (x) denote vectors, and uppercase bold letters
(X) denote matrices. The superscript T denotes the transpose
operator.

II. CLASSICAL GAUSSIAN PROCESS REGRESSION

Consider a generic system

y =M(x) (1)

depending on a set of input parameters x = (x1, . . . , xd)T,
which for the moment we assume to be deterministic. In (1),
M : Rd → R is understood to be a function (or “model”) that
maps, either explicitly or implicitly, a given configuration of
the input parameters x to the corresponding system output y.
At this time, we also assume that the output of model (1) is
a scalar. Later, in Section III, we relax the assumption on the
non-stochasticity of x, whereas we extend the discussion to
multi-output dynamical systems in Section V.
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The underlying idea of GPR is to consider the target
function y as a realization of a GP with a given mean
function µ(x) : Rd → R and a covariance or kernel func-
tion k(x,x′) : Rd×d → R. We call this GP the prior, and we
compactly denote it as GP (µ(x), k(x,x′)). For the moment,
we assume that the prior mean and kernel be fully specified.

Let us now assume that a set of L observations {yl}Ll=1

of the actual system (1) be available for some configura-
tions {xl}Ll=1 of the input parameters, with yl = M(xl) ∀l.
We denote these data as X = (xT

1 , . . . ,x
T
L)T and y =

(y1, . . . , yL)T, and we use them to “train” the GPR model,
i.e., to identify the specific realization of the prior that best
fits the available data. This is done by conditioning the prior
on the observations (X,y), thus resulting in a posterior GP
whose realizations interpolate the training data. The posterior
mean and covariance function are therefore found as [29]

m(x) = µ(x) + k(x)K−1(y − µ) (2)

and
c(x,x′) = k(x,x′)− k(x)K−1k(x′)T, (3)

respectively. In the above equations:
• µ ∈ RL is a column vector with entries µl = µ(xl);
• K ∈ RL×L is a matrix with entries Klm = k(xl,xm);
• k(x) : Rd → RL is a vector function with components
kl(x) = k(x,xl).

With the above definitions, the resulting GPR model of y is

y ≈ M̂(x) ∼ GP (m(x), c(x,x′)) . (4)

Therefore, even for a deterministic system (1), the GPR model
is a stochastic, rather than a deterministic function, as opposed
to most surrogate modeling techniques. Because of this, an
attractive feature of GPR models is that they implicitly carry
information on the model uncertainty. The calculation of this
uncertainty is eased by the fact that the distribution of the
model is Gaussian, as many notable properties are available
for Gaussian random variables.

For example, the prediction mean coincides with the poste-
rior trend m(x), which can be regarded as the “most likely”
model. However, any function sampled from the GP (4) is a
reasonable model, albeit less likely. The model (local) standard
deviation is obtained as σ(x) =

√
c(x,x), and it is used

to provide confidence bounds for the model prediction at a
given value of x. The standard deviation collapses to zero at
the observations [30], and generally reduces by increasing the
number of training samples.

In practice, the posterior is evaluated at a discrete set X∗ of
values of x. In this case, (2) and (3) reduce to the mean vector
and covariance matrix of a finite set of correlated Gaussian
variables, obtained as

m = µ∗ +K∗K
−1(y − µ) (5)

and
C = K∗∗ −K∗K−1KT

∗ , (6)

respectively, where the meaning of vector µ∗ and matrices K∗
and K∗∗ is inferred from the definitions in (2) and (3).

It should be noted that the complexity of the GPR model
is independent on the dimensionality of the input space d,
and it is only related to the number of available training
samples, which determines the size of the covariance matrix
that is inverted in (5) and (6) to obtain the posterior trend
and covariance. Therefore, the GPR model is nonparametric.
The calculation of the covariance (6) may be ill-conditioned,
leading to a non-positive semi-definite matrix. Nevertheless,
this property can be enforced by finding the “nearest” positive
semi-define matrix that minimizes the Frobenius norm of the
difference [60].

A. Prior Trend

So far, we assumed that both the prior mean and covariance
function be available. In practice, this is hardly the case, but
several options are widely used as guesses.

For the mean function, it is very common to simply assume
µ(x) = 0. It is important to point out that this apparent
oversimplification represents by no means an actual limitation
since, according to (2), the posterior mean is not confined to
be zero [29]. Indeed, a suitable correction of the prior trend
is learned in order to yield a posterior trend that is consistent
with the observed data. A predefined and fixed function can
be alternatively used based on possible prior knowledge of the
system output behavior.

Another and more general option is to use a lin-
ear combination of predefined basis functions h(x) =
(h0(x), . . . , hP (x))T with unknown coefficients β =
(β0, . . . , βP )T, i.e., µ(x) = h(x)Tβ, which is referred to
as “universal Kriging”. For example, a PCE is used for the
trend in the so-called PCE-Kriging [61]. A special (and quite
common) case is to merely use as a trend a non-zero constant,
i.e., µ(x) = β0, which is referred to as “ordinary Kriging”.

The use of a non-zero prior trend may improve the model
interpretability, but it was shown to provide marginal benefit
(see, e.g., [61]). Moreover, a non-fixed trend requires the
additional estimation of the coefficients β. In this case, there
is an added contribution to the posterior covariance (3),
accounting for the additional uncertainty in the parameters of
the trend [29], [30]. The derivations presented in the following
apply seamlessly, provided that the correct expression is used
for the covariance.

B. Kernel Function

Another key ingredient of a GPR model is the prior kernel.
Also in this case, several choices are available [29], [30]. The
most popular are surely the squared-exponential (Gaussian)
kernel

k(x,x′|θ) = σ2
f exp

(
−1

2
r2

)
, (7)

and the Matérn 5/2 kernel

k(x,x′|θ) = σ2
f

(
1 +
√

5r +
5

3
r2

)
exp

(
−
√

5r
)
, (8)

where

r =

√√√√ d∑
j=1

(xj − x′j)2

θ2
j

(9)
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and θ = (θ1, . . . , θd) is a set of hyperparameters defining the
correlation length along each input dimension. Such kernels
were shown to provide good generalization properties and to
work well with relatively smooth functions [62], as we expect
in our applications. As for the prior trend, specific knowledge
on the output behavior (e.g., periodicity, non-smoothness, etc.)
can guide the selection of more appropriate and specialized
kernels [62]. A common simplification is to consider the kernel
to be isotropic, i.e., with the same correlation length σl for all
dimensions (θj = σl, ∀j = 1, . . . , d). In this case, r reduces
to

r =

√
(x− x′)T(x− x′)

σ2
l

. (10)

The hyperparameters θ do not need to be specified a
priori, but they are usually optimized as part of the training
process. The two main strategies to carry out this task are the
minimization of either the negative (log) likelihood function
over the training data or a cross-validation error [29]. In
this work, we rely on the training function available in the
MATLAB R© Statistics and Machine Learning ToolboxTM [63],
which adopts the former approach. Therefore, the optimal
hyperparameters are found as [30]

θ̂ = arg min
θ

1

2

[
log(det(R(θ))) + L log(2πσ2

f (θ)) + L
]
(11)

where R(θ) is a correlation matrix evaluated at the training
points, with entries Rlm(θ) = k(xl,xm|θ)/σ2

f , whereas

σ2
f (θ) =

1

L
(y − µ)TR(θ)−1(y − µ). (12)

Once the hyperparameters have been optimized, (12) is used
to calculate the final value of the kernel variance σ2

f .
It should be noted that, by considering an isotropic kernel,

the problem reduces to minimizing a one-dimensional function
to find σl. Anisotropic kernels are more flexible, yet they
require the solution of a high-dimensional optimization prob-
lem for the hyperparameter estimation, which may become
computationally intensive if the number of input parameters
d is large. In the following, we will use an isotropic squared-
exponential kernel, unless stated otherwise. In one of the
application examples, we will compare its performance against
the use of an anisotropic Matérn kernel. From now on, the
explicit dependence of the kernel on the hyperparameters is
omitted for brevity of notation when there is no ambiguity.

C. Noisy Observations

Sometimes, the training observations might be affected by
an error or, differently put, be noisy. In that case, they can be
expressed as yl =M(xl) + ε, ∀l = 1, . . . , L. It is common to
assume that the additive noise ε follows a zero-mean Gaussian
distribution, i.e., ε ∼ N (0, σ2

n), with σ2
n being the noise

variance. The outlined method is readily applied to noisy
observation by adding a diagonal contribution to matrix K,
hence replacing it with K+σ2

nI in (2), (3), (5), and (6), where
I is the identity matrix of compatible size. Since the noise
variance σ2

n is usually unknown, it has to be estimated together

with the kernel hyperparameters, thereby slightly complicating
the optimization problem outlined in Section II-B [30].

Without loss of generality, we assume here that the training
observations are noise free, which is reasonable since in
our applications they come from computer simulations. The
outlined method applies, with minimal modifications, to noisy
observations as well, provided that the posterior trend and
covariance are corrected as mentioned above.

D. Illustrative Example: Analytical Function
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Fig. 1. Illustration of classical GPR. Given a target function (blue line) and
some samples thereof (red dots), a prior GP (gray lines in the top panel) is
conditioned on the observations, resulting in a posterior GP that interpolates
the available data (gray lines in the bottom panel). The dashed and solid red
lines are the mean (or trend) and the 95% confidence bounds of the posterior,
respectively.

As an illustrative example, we consider the univariate
(hence, d = 1) function

y =M(x) = e−10/x (2 cos(x) + sin(x)) , (13)

which is deliberately inspired to the response of an under-
damped second-order circuit. We consider a zero-mean trend
for the prior. With training samples X = (3, 4, 5)T, and cor-
responding observations y = (−0.170,−0.053, 0.310)T, the
kernel hyperparameter is estimated to be σl = 0.75, leading
to σf = 0.22. Figure 1 shows, with a blue curve, the actual
function (13), and with red dots the training samples. The
gray lines in the top panel are some realizations of the prior.
The bottom panel shows instead the result of conditioning the
prior to interpolate the training samples. The gray lines are
now realizations of the posterior, whereas the dashed red line
is the model trend (2) and the solid red lines are its 95%
confidence bounds, corresponding to m(x)± 1.96 ·

√
c(x,x).

It is interesting to note that the actual function lies within
the confidence bounds. It should be noted, however, that these
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confidence bounds are only an estimate. The actual confidence
is subject to the model accuracy and to the assumptions on the
prior. We will further elaborate on this later on.
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Fig. 2. GPR models of function (13) trained with L = 5 (top panel) and
L = 7 (bottom panel) samples.

By using instead training samples computed for X =
(3, 4, 5, 6, 7)T and X = (2, 3, 4, 5, 6, 7, 8)T, the optimal kernel
parameters become (σl, σf ) = (1.57, 0.30) and (1.39, 0.29),
respectively, resulting in the GPR models shown Fig. 2. A
considerable reduction of the model uncertainty, reflected
by the progressive narrowing of the confidence bounds, is
achieved by increasing the number of training samples.

III. APPLICATION TO UNCERTAINTY QUANTIFICATION

We now assume that the input parameters x are uncer-
tain with an associated joint probability density function
(PDF) ρ(x), and we aim at performing UQ of the output y
of system (1). The most common measures of uncertainty are
the first two statistical moments (i.e., mean and variance), as
well as PDFs. The mean and variance of y are defined as

µy = E{y} =

∫
Rd

M(x)ρ(x)dx (14)

and

σ2
y = Var{y} = E{(y − E{y})2}

=

∫
Rd

(M(x)− µy)
2
ρ(x)dx

= E{y2} − (E{y})2

=

∫
Rd

(M(x))
2
ρ(x)dx− µ2

y (15)

respectively. However, the computation of the above integrals
quickly becomes prohibitive as the dimensionality d increases,
and/or (1) is expensive to compute. Moreover, a closed-form

solution for the PDF fy(y) is available only for the univariate
case and if M(x) is analytical [64].

More conveniently, the above statistical information is es-
timated by considering a (large) number of random configu-
rations {xi}Ni=1 of the uncertain inputs, and by observing the
corresponding outputs {yi}Ni=1, with yi = M(xi) ∀i. In this
case, the actual moments are estimated using the sample mean
and variance, i.e.,

µy ≈ µ̂y =
1

N

N∑
i=1

yi (16)

and

σ2
y ≈ σ̂2

y =
1

N

N∑
i=1

(yi−µy)2 =
1

N − 1

N∑
i=1

(yi − µ̂y)
2
, (17)

respectively, whereas the PDF of y can be obtained by binning
the samples into a histogram or using kernel density estimates.
This is the essence of the MC analysis. It is important to
remark that the above estimates are random variables them-
selves, with a variance that reduces only for large values of
N , typically on the order of several thousands. This is why
MC also becomes computationally prohibitive when (1) is
expensive to evaluate.

In this context, surrogate models come to our rescue, by
providing a computationally cheap alternative to the original
model. In this process, however, they are often assumed to
be error free, and the uncertainty due to the model error is
typically neglected. In the case of a GPR model, a trivial and
naive approach would be to sample the posterior trend (2) in
place of the original model. This would provide the most likely
prediction of the MC samples, from which statistical estimates
are readily obtained. However, the precious information about
the model confidence would unavoidably be lost.

In order to retain this information, we should rather treat
the GPR model as a stochastic function and sample many
realizations (or “trajectories”) of the posterior with a common
set of realizations of the input parameters. The process is
illustrated in Fig. 3 for the function (13), when the normal
distribution N (5, 1) is assigned to x. The top and bottom
panels refer to the sampling of the GPR models trained with
L = 3 samples (cfr. bottom panel of Fig. 1) and L = 5
samples (top panel of Fig 2). The trajectories are displayed
as lines, whereas each sample is represented by a dot. The
blue and red dots are the samples computed by sampling the
actual function (blue line) and the GPR trend (dashed red
line), respectively. The gray dots are the samples computed
for some random realizations of the posterior, shown by the
gray lines. A different set of MC samples is obtained for
each trajectory. As a result of the Gaussian distribution of
both the input and output variables, the samples tend to
crowd around the mean value of x, as well as around the
posterior trend, consistently with the confidence bounds shown
in Figs. 1 and 2. This information can be exploited to calculate
many statistical estimates and assess their dispersion, thus
obtaining information on their confidence. The dispersion of
the estimates (i.e., their uncertainty) is expected to reduce
when increasing the number of training samples, consistently
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Fig. 3. MC sampling of function (13) and of its GPR models trained with
L = 3 (top panel) and L = 5 (bottom panel) samples. The red and gray dots
are the samples computed by evaluating the posterior trend (dashed red line)
and other random trajectories (gray lines), respectively. The blue dots are the
corresponding samples of the actual function (blue line).

with the reduction in the model uncertainty that is observed
in Figs. 1 and 3. The calculation of statistical estimates is
discussed in detail in the next section.

IV. STATISTICAL ESTIMATES WITH GPR MODELS

This section discusses the calculation of GPR estimates of
statistical moments and their uncertainty, starting from analyt-
ical derivations and introducing successive approximations.

A. Analytical Estimates

As opposed to classical MC estimates, the UQ of the GPR
posterior (4) is complicated by the fact that we are applying a
stochastic, rather than a deterministic function to a stochastic
variable. Therefore, we have two sources of uncertainty: the
input parameters, and the GPR model itself. In order to make
this explicit, we express the posterior GP using the Karhunen-
Loève transform [65], which allows recasting (4) as

M̂(x) = m(x) +

∞∑
q=1

√
λqξqΨq(x) (18)

where ξ = {ξq}∞q=1 is a discrete, though infinite set of in-
dependent standard normal random variables, whereas λq and
Ψq(x) are the eigenvalues and corresponding eigenfunctions
of the posterior covariance c(x,x′), satisfying

λqΨq(x) =

∫
Rd

c(x,x′)Ψq(x′)dx′ (19)

Hence, the aforementioned two sources of uncertainty are now
explicitly identified as the input parameters x and the random

variables ξ. It should be noted that (18) can be in practice
truncated to a finite set of components, as the eigenvalues
usually decay very fast.

We can now define the GPR estimates of the mean µy as
the expectation of (18) over x, i.e.,

µGPR = Ex

{
M̂(x)

}
=

∫
Rd

m(x)ρ(x)dx (20)

+

∞∑
q=1

√
λqξq

∫
Rd

Ψq(x)ρ(x)dx

It is important to remark that µGPR is still a random variable
because of the random variables ξ. Hence, the best estimate of
µy is taken as the expectation of (20) over ξ. Since E {ξq} = 0
∀q, this leads to

µy ≈ Eξ {µGPR} =

∫
Rd

m(x)ρ(x)dx, (21)

which corresponds to the expected value computed over the
GPR trend. Interestingly, it is possible to compute also the
variance of µGPR, i.e.,

Varξ {µGPR} = Eξ

{
(µGPR − Eξ {µGPR})2

}
(22)

= Eξ


( ∞∑

q=1

√
λqξq

∫
Rd

Ψq(x)ρ(x)dx

)2


=

∞∑
q=1

λq

(∫
Rd

Ψq(x)ρ(x)dx

)2

where we have developed the square of the summation and
used the fact that E {ξqξk} = δqk (i.e., the Kronecker’s delta),
being the random variables statistically independent.

Similarly, we calculate the GPR estimates of the variance σ2
y

as

σ2
GPR = Ex

{(
M̂(x)

)2
}
−
(

Ex

{
M̂(x)

})2

, (23)

and we take the best estimate as the expectation of σ2
GPR

over ξ. Lengthy calculations lead to

σ2
y ≈ Eξ

{
σ2

GPR

}
(24)

=

∫
Rd

m2(x)ρ(x)dx−
(∫

Rd

m(x)ρ(x)dx

)2

+

∞∑
q=1

λq

[∫
Rd

Ψ2
q(x)ρ(x)dx−

(∫
Rd

Ψq(x)ρ(x)dx

)2
]
.

It is interesting to note that the above estimate does not
coincide with the variance computed along the GPR trend,
which is given by only the first two terms in (24). The
complexity of dealing with the infinite-dimensional represen-
tation (18) discourages the attempt of deriving similar closed-
form relations for the variance of σ2

GPR.
In practice, the eigenvelues λq and eigenfunctions Ψq(x)

can be effectively approximated by considering a discrete
set of x-values and calculating the eigendecomposition of
the corresponding covariance matrix (6). For low-dimensional
problems, the integrals involved in (21), (22), and (24) can
be then evaluated using any numerical technique, such as a
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trapezoidal rule. Nonetheless, these semi-analytical estimates
become intractable when d is large.

B. Single Monte Carlo Sampling

A first simplification is to approximate the expectations
over x in a “MC way”, i.e., by considering a finite number of
samples of the input variables, {xi}Ni=1, and using sample esti-
mates. In this case, the corresponding samples of the posterior
GP can be considered as a finite collection ŷ = (ŷ1, . . . , ŷN )T

of N correlated Gaussian variables, with mean vector m and
covariance matrix C calculated as in (5) and (6), and whose
entries correspond to mi = m(xi) and Cij = c(xi,xj),
∀i, j = 1, . . . , N .

The GPR estimates of the mean are approximated by the
sample mean over the available realizations of x, i.e.,

µGPR ≈ µ̂GPR =
1

N

N∑
i=1

M̂(xi) =
1

N

N∑
i=1

ŷi (25)

The above expression turns out to be a sum of correlated
Gaussian variables. As such, it is itself Gaussian, with mean
and variance given by [66]

E {µ̂GPR} =
1

N

N∑
i=1

E {ŷi} =
1

N

N∑
i=1

m(xi) (26)

and

Var {µ̂GPR} =
1

N2

N∑
i=1

N∑
j=1

Cij =
1

N2

N∑
i=1

N∑
j=1

c(xi,xj)

(27)
Similarly to the results in Section IV-A, the best GPR estimate
of µy corresponds to the sample mean calculated over the
GPR trend. Compared to (21) and (22), the approximation
in (26) and (27) is related to considering a finite number of
realizations of x.

Along the lines of the previous derivations, we introduce
the GPR estimates of the variance, which are approximated
as the sample variance of the posterior calculated over the
realizations of x:

σ2
GPR ≈ σ̂2

GPR =
1

N − 1

N∑
i=1

(
M̂(xi)− E {µ̂GPR}

)2

=
1

N − 1

N∑
i=1

(
ŷi −

1

N

N∑
i=1

m(xi)

)2

(28)

With reference to Appendix A, σ̂2
GPR turns out to be a

quadratic form in ε = ŷ−E {µ̂GPR}, with Λ = 1
N−1 ·1N×N ,

where 1N×N denotes the N×N identity matrix. As such, the
mean and variance of the variance estimate σ̂2

GPR are found
as [66]

E
{
σ̂2

GPR

}
=

1

N − 1

N∑
i=1

(m(xi)− E {µ̂GPR})2 (29)

+
1

N − 1
tr(C)

and

Var
{
σ̂2

GPR

}
(30)

=
4

(N − 1)2
(m− E {µ̂GPR})TC(m− E {µ̂GPR})

+
2

(N − 1)2
tr
(
C2
)

respectively. Like in the analytical case (24), the expectation
of the variance estimate differs from the variance computed
by sampling the GPR trend. Moreover, it should be noted that
the distribution of σ̂2

GPR is generally not Gaussian.
Table I provides the mean and variance of (13) estimated

with the GPR models trained using L = 3, L = 5, and L = 7
samples, which were shown in Figs. 1 and 2. The analytical
estimates and the results of single MC sampling, computed
using 1000 samples of the input parameter x, are both pro-
vided. The estimates are given in terms of the interval of the
expectation± 1.96 times the standard deviation, corresponding
to a 95% confidence for a Gaussian distribution. An exception
is the analytical estimate of the variance, for which only the
result of the expectation (24) is provided, since no closed-form
formula is available for its standard deviation. The exact values
computed with (14) and (15) are also provided for comparison.
It is remarkable that the exact result is always within the
confidence interval, except for the single MC estimates of the
mean for the models with L = 5 and L = 7 training samples,
which are (slightly) overestimated. This is due to the finite
precision of the MC estimate itself. Moreover, it is once again
noted that the confidence interval narrows around the exact
value as the number of training samples is increased.

In order to further investigate the confidence of the GPR
predictions, we repeat the experiment by randomly draw the
training samples, and we check how often the MC estimates
actually lie within the predicted GPR confidence bounds. The
results, based on 10000 runs each, are reported in Table II.
It is noted that the actual figure is quite consistent with the
targeted 95% confidence, especially when L is increased. This
is reasonable if we consider that the confidence bound is itself
an estimate that depends on the model accuracy.

C. Double Monte Carlo Sampling

The estimates introduced in the previous sections only
concern the first two statistical moments, while they do not
provide information on the PDF fy(y). Therefore, a feasible
approach is to consider also a finite number of posterior trajec-
tories, and to sample them using the same realization {xi}Ni=1

of the uncertain inputs. This is equivalent to drawing a finite
number of samples from the random vector ŷ. This allows
generating many instances of the PDF, and assess its uncer-
tainty. We refer to this approach as “double MC sampling”,
as we sample both the input parameters and the posterior. Of
course, this approach can also be used to further approximate
the estimates of the mean and variance, and in particular to
assess the actual distribution of the latter which, as already
noted, is in general non-Gaussian.

Figure 4 shows the PDFs of y obtained with four different
GPR models. In addition to the models computed with L = 3,
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TABLE I
ANALYTICAL AND SINGLE MC ESTIMATES COMPUTED FOR THE FUNCTION (13) WITH GPR MODELS TRAINED WITH DIFFERENT NUMBERS OF SAMPLES.

GPR estimates
L = 3 L = 5 L = 7

Moment Exact Analytical Single MC Analytical Single MC Analytical Single MC

Mean of (13) 0.0381 [−0.0123, 0.0492] [−0.0123, 0.0492] [0.0381, 0.0401] [0.0382, 0.0401] [0.0381, 0.0382] [0.0382, 0.0383]

Variance of (13) 0.0448 0.0376 [0.0232, 0.0527] 0.0453 [0.0447, 0.0460] 0.0448 [0.0447, 0.0450]

TABLE II
ESTIMATE OF THE ACTUAL GPR CONFIDENCE BASED ON MULTIPLE RUNS

WITH RANDOM TRAINING SAMPLES (TARGETED CONFIDENCE: 95%).

L = 3 L = 5 L = 7

Mean 86.3% 97.9% 88.2%
Variance 58.0% 97.5% 91.5%
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Fig. 4. PDF of (13). The result of direct MC sampling (blue line) is
compared against the estimates obtained by sampling the trend of GPR models
constructed with different sets of training samples (dashed red lines). The gray
lines are the PDFs obtained for some realizations of the posterior trajectories
and show the dispersion of the GPR estimate. The solid red lines are the
corresponding 95% confidence bounds.

L = 5, and L = 7 training samples, shown in Figs. 1 and 2, a
model with L = 4 samples within [3.5, 6.5] is considered (top-
right panel). The blue line represents the actual PDF estimated
by sampling (13) with 1000 MC samples. The dashed red and
the gray lines are the PDFs obtained by sampling, with the
same set of MC samples, the GPR trend and some realizations
of the posterior trajectories, respectively. Finally, the solid red
lines are the 95% confidence bounds of the GPR distributions,
obtained by considering 5000 posterior realizations. Also in
this case, the reference result mostly lies within the confidence
bounds, which reduce by increasing the number of training
samples.

V. PRINCIPAL COMPONENT ANALYSIS COMPRESSION

The framework introduced so far applies to a system with
an input vector x of arbitrary dimension, but single (scalar)
output y. However, in realistic application scenarios, the target
function is often a set of multiple responses of a dynamical
system. In this section, we apply the PCA compression intro-
duced in [58] to effectively deal with multi-output systems.
We show that the linearity of the PCA combines well with the
Gaussian model of the surrogate output, making it possible to
obtain the GPR models of the original outputs directly from
those of the principal components.

To this end, we consider the multi-output system

y =M(t;x) (31)

where y = (y1, . . . , yS)T ∈ RS and M : Rd → RS . In
practice, the system response is evaluated for a discrete set
of time points. Since for our analysis it is irrelevant whether
data refer to different output components and/or different time
points, we assume that y generically denotes the ensemble
of available output data for all components and time points
of interest. A naive approach would be to train a separate
GPR model for each component of y, which soon becomes
intractable when the goal is to perform UQ of a large number
of output variables evaluated at a large number of time points,
as the dataset size S would be enormous.

Indeed, the training set now consists of a matrix Y =
(y1, . . . ,yL) ∈ RS×L, with yl = M(t,xl) ∀l and large S.
An effective strategy is to apply a PCA compression [67],
which allows approximating Y with a truncated singular value
decomposition (SVD) [58]. This leads to

Y = ȳ +USV T ≈ ȳ + Ũ S̃Ṽ
T

= ȳ + ŨZ̃, (32)

where ȳ ∈ RS is the columnwise dataset mean

ȳ =
1

L

L∑
l=1

yl, (33)

whereas Ũ ∈ RS×n̄, S̃ ∈ Rñ×ñ, Ṽ ∈ RL×ñ are the truncated
matrices of an “economy-size” SVD of matrix Ỹ having
columns ỹl = yl − ȳ, for l = 1, . . . , L. The truncation is
determined based on a relative threshold on the singular values,
which allows to rigorously control the accuracy of the PCA
approximation (32). In this work, we set the threshold to 1%
of the largest singular value. Since the various outputs of the
same system at different time points exhibit a certain amount
of interdependency, a substantial compression (i.e., ñ� S) is
usually achieved.
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In this context, matrix

Z̃ = S̃Ṽ
T

= Ũ
T

(Y − ȳ) ∈ Rñ×L (34)

can be interpreted as a collection of L training responses of a
reduced system

z =MPCA(y) = Ũ
T

(y − ȳ) = Ũ
T

(M(t;x)− ȳ) (35)

with only ñ output components, where MPCA : RS → Rñ.
Hence, each of these “principal components” can now be mod-
eled effectively with an individual GPR surrogate, yielding

zn ≈ M̃n(x) ∼ GP(mn(x), cn(x,x′)|θn), (36)

for n = 1, . . . , ñ. Since the principal components are zero-
meaned by construction, it is particularly reasonable to con-
sider a prior with µ(x) = 0 for the model (36).

From the reduced output z, the original output y is recov-
ered by inverting (35):

y =M(t;x) ≈M−1
PCA(z) = ȳ + Ũz (37)

Therefore, using the properties for linear combinations of
random variables, the GPR model for the s-th component
of y is obtained directly from the model of the principal
components as [66]

ys ≈ M̂s(x) = ȳs +

ñ∑
n=1

UsnM̃n(x) (38)

∼ GP

(
ȳs +

ñ∑
n=1

Usnmn(x),

ñ∑
n=1

U2
sncn(x,x′) |θn

)
∀s = 1, . . . , S, and allows computing statistical estimates as
described in Sections IV-A and IV-B. Alternatively, one can
directly sample the posteriors (36) and recover samples of the
original outputs via (37), for use in a “double MC analysis”
as described in Section IV-C.

VI. ILLUSTRATIVE EXAMPLE: RLC CIRCUIT

Before applying the proposed framework to real-life appli-
cation scenarios, we first illustrate the performance of PCA
compression based on the trivial case of a parallel RLC circuit
excited by a deterministic dc current source I0. According
to the modified nodal analysis (MNA) formulation [68], the
system is described by the set of ordinary differential equations(

C 0
0 −L

)
d

dt

(
vC(t)
iL(t)

)
=

(
1/R 1

1 0

)(
vC(t)
iL(t)

)
+

(
I0
0

)
(39)

where vC is the voltage across all elements and iL is the
current flowing through the inductor.

For the ease of visualization, we consider again the case
of a single uncertain parameter x, affecting however all three
passive components simultaneously. This could be the case,
for example, of the operating temperature. In order to stress
the proposed method, we assume a ±60% variability of the
elements around the nominal value, which we express as

R = R̄(1 + 0.6x)

L = L̄(1 + 0.6x)

C = C̄(1 + 0.6x)

with x ∈ [−1, 1]. For the simulation, we consider R̄ = 10 Ω,
L̄ = 100 nH, C̄ = 1 nF, and I0 = 5 A. Under the above
assumptions, the circuit exhibits both over- and under-damped
behavior, depending on the value of x.
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Fig. 5. Capacitor voltage at t = 45 ns (top panels) and inductor current at
t = 50 ns (bottom panels) as a function of parameter x. Blue lines: actual
value; red markers: training samples; dashed red lines: mean GPR prediction
(trend); solid red lines: 95% confidence bounds of GPR prediction. Left and
right panels refer to GPR models trained with L = 5 and L = 10 samples,
respectively.

We evaluate the step response by solving (39) with null
initial conditions for 501 equally-spaced time points between
[0, 150] ns, leading to an output size of S = 1002. Figure 5
shows, with blue lines, the parametric variation, as a function
of x, of the capacitor voltage at t = 45 ns (top panels) and of
the inductor current at t = 50 ns (bottom panels).
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Fig. 6. PDF of the capacitor voltage and inductor current for a uniform
variability of x. The result from MC analysis (blue line) is compared against
the mean GPR prediction of the MC samples (dashed red line). The solid red
lines represent the 95% confidence bounds of the GPR distributions. Panels
refer to the same time instants and GPR models as in Fig. 5.
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Next, we apply GPR by using L = 5 and L = 10 training
responses, computed for equally-spaced values of x between
[−1,+1] and indicated by the red dots in Fig. 5. Specifically,
we apply PCA compression (35) to these responses, which
leads to ñ = 4 for the dataset with L = 5 samples and to ñ = 7
for the one with L = 10 samples, and we train individual GPR
models for the principal components. It is important to remark
that these ñ GPR models comprise the information of both the
capacitor voltage and the inductor current at any of the 501
simulated time points. The dashed red lines in Fig. 5 show the
prediction of the parametric variation of the capacitor voltage
and inductor current provided by the GPR trend, recovered
from the trend of the compressed variables according to (38).
Moreover, the solid red lines are the 95% confidence bounds
of the model. Once again, it is shown that the actual output
value is well within the confidence bounds, which substantially
reduce by increasing the number of training samples.
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Fig. 7. Step response of the capacitor voltage and inductor current. Panels in
the first and third rows show a subset of MC samples (gray lines), the mean
of the MC samples (blue lines), as well as the GPR estimate of the mean
(dashed red line) and its 95% confidence bounds (solid red lines). Panels in
the second and fourth rows show the variance of the MC samples (green
lines), the corresponding GPR estimate (dashed orange lines), and its 95%
confidence bounds (solid orange lines). Left and right panels refer to GPR
models trained with L = 5 and L = 10 samples, respectively.

Furthermore, Fig. 6 shows the PDFs of the same variables
when a uniform distribution is ascribed to x. The distribution
of 1000 MC simulations of the original system (39) (blue
line) is compared against the result obtained by predicting
the value of the MC samples with the GPR trend (dashed
red lines). This is what is normally done when exploiting

GPR as a deterministic surrogate model. It can be seen that
the prediction based on L = 5 training samples (left panels)
is quite off, especially for the inductor current. However, if
we take into account the uncertainty of the GPR model, we
obtain the 95% confidence bounds shown by the solid red
lines, which are indeed rather large and include the actual
PDF. By increasing the number of training samples to L = 10
(right panels), the confidence bounds reduce significantly, and
the GPR prediction compares well with the MC result.

Finally, Fig. 7 shows the entire transient response of the
capacitor voltage and inductor current. The gray lines in the
panels of the first and third rows are a subset of responses
from the MC analysis, whereas the blue line is the mean
of the MC samples. The dashed and solid red line show
instead the GPR estimate of the mean and its 95% confidence
bounds, respectively. The panels in the second and forth rows
refer to the variance instead. Specifically, the green line is
the variance of the MC samples, the dashed orange line is
the corresponding GPR prediction, and the solid orange lines
are its 95% confidence bounds. Left and right panels refer to
the GPR models trained with L = 5 and L = 10 samples,
respectively. For the model trained with L = 5 samples,
relatively large confidence bounds are observed especially for
the variance. Nevertheless, the prediction compares well with
the MC estimate. As already noted, the uncertainty of the GPR
model with L = 10 training samples is much lower, thereby
leading to narrow confidence bounds that indicate a very high
accuracy of the GPR statistical estimates.

VII. APPLICATION EXAMPLES

In this section, the advocated GPR-based framework for
UQ is applied to two realistic designs, namely a low-noise
amplifier and a digital electronic link.

A. Low-Noise Amplifier

4.7 pF

5.6 pF

100 nF 100 Ω

BFG425W

15 kΩ

5.6 pF 1 nF

22 Ω 82 Ω

2.7 pF

RF in
50Ω

+4.5 V

RF out
50Ω

TL1

TL2

TL3

TL4 TL4

Fig. 8. Schematic of the 2-GHz low-noise amplifier.

The first application example considers the low-noise am-
plifier with the schematic shown in Fig. 8. The amplifier is
designed for 2-GHz operation and to exhibit a gain of 16 dB
when operating at a collector current of 5 mA [69]. For the
BFG425W bipolar junction transistor (BJT), a standard SPICE
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model available by the vendor is used. The uncertainty is
provided by d = 21 parameters, namely the forward current
gain of the BJT, some of its parasitics, as well as all the
external resistors and capacitors shown in Fig. 8. All these
parameters are ascribed a Gaussian distribution with a 10%
relative standard deviation around their nominal values.
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10
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0

Fig. 9. Normalized singular values (markers) of the training dataset for the
low-noise amplifier test case. The red line indicates the 1% threshold for the
PCA truncation.

The amplifier is simulated with the HSPICE harmonic
balance solver to find the steady-state output power at 201
time points for a +10-dBm input tone of 2 GHz. Hence,
S = 201 in this case. Reference results are computed with a
MC analysis that considers 1000 samples generated according
to a LHS design. Moreover, training responses for the GPR
are calculated for L = 100 parameter samples from a Sobol
sequence [11], [70]. An inverse probability transform [71] is
applied to obtain samples for the Gaussian distribution, starting
from the canonical uniform sequence.

Figure 9 shows the normalized singular values resulting
from the SVD of the training dataset. It is found that the
singular values drop below the 1% threshold (red line) for
ñ = 12. A compression rate of 94% is thus achieved. Higher
compression rates are achieved for larger problems, as will be
shown by the next application example.

Figure 10 provides in the top panel a subset of MC samples
(gray lines) of the output power, as well as the average power
estimated from the MC samples (blue line) and with the
GPR model (dashed red line). The solid red lines are the
95% confidence bounds of the GPR estimate. The bottom
panel provides, with a green line, the MC estimate of the
variance, and with solid and orange lines the corresponding
GPR estimate and its 95% confidence bounds, respectively.
Very accurate estimates, as confirmed by the tightness of
the confidence bounds, are obtained with only 100 training
samples.

Finally, Fig. 11 shows the PDF of the output power at time
t = 0.18 ns (top panel) and t = 0.52 ns (bottom panel).
The distribution of the MC samples (blue lines) is compared
against the distribution of the same samples predicted with the
GPR trend (dashed red line). The solid red lines are instead
the 95% confidence bounds of the GPR prediction. Also in
this case, the confidence bounds are relatively tight, and the
MC estimate lies within them.

For the sake of comparison, the Fig. 11 further shows the
predictions obtained with a LS-SVM model using a squared-
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Fig. 10. Steady-state output power for the low-noise amplifier of Fig. 8.
Top panel: subset of MC samples (gray lines), MC mean (blue line), GPR
estimate of the mean and its 95% confidence bounds (solid and dashed red
lines, respectively). Bottom panel: MC variance (green line), GPR estimate
of the variance (dashed orange line) and its 95% confidence bounds (solid
orange lines).

exponential kernel (dotted green lines), and with an adaptive
sparse PCE (dash-dotted orange lines). These two models are
trained by means of the LS-SVMlab [72] and UQLab [73]
toolboxes, respectively, leveraging the same observations as
used for the GPR surrogate. It is interesting to note that the LS-
SVM and the GPR trend very provide similar results. Indeed,
it is possible to demonstrate that the mathematical formulation
of the posterior mean of a GPR with a noise variance σ2

n 6= 0
and the LS-SVM regression are in fact equivalent [74]. On the
other hand, for the specific case in which σ2

n = 0, the posterior
mean estimated via the GPR turns out to be equivalent to a
LS-SVM regression in which the regularizer term is neglected
(i.e., the hyperparameter γ →∞ [49]). The PCE distribution
exhibits instead a larger discrepancy, although it is also within
the GPR confidence bounds. This comparison shows that,
for this example, the GPR surrogate provides similar results
compared to state-of-the-art surrogate models, while providing
the additional information on the prediction uncertainty.

B. Digital Electronic Link

The second application example refers to the electronic link
investigated in [19]. It describes a node-to-node communica-
tion link between a driver and a receiver, including a number
of distributed and lumped discontinuities such as transmission
lines and vias. We consider d = 26 uncertain parameters,
namely all independent electrical, geometrical, and material
parameters, which are ascribed a Gaussian distribution with a
10% relative standard deviation. The Reader is referred to [19]
for the schematic, component values, and further information.
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Fig. 11. PDF of the steady-state output power at two different time instants.
Blue line: PDF of the MC samples; dashed red line: PDF computed by
sampling the GPR trend; solid red lines: 95% bounds of the distributions
obtained from the GPR model; dotted green and dash-dotted orange lines:
distributions obtained with a LS-SVM and a sparse PCE model, respectively.

For the simulation, a behavioral macromodel [75] of a 133-
MHz DDR memory with supply voltage of VDD = 1.8 V
is connected at the transmitter side with the inclusion of the
power rail network and package parasitics, and it is used
to transmit a pseudo-random bit sequence. Five outputs are
considered, namely four crosstalk voltages at the two inter-
mediate coupled transmission-line sections and the voltage at
the receiver side. These outputs are observed at 4001 time
points over a window of 200 ns. Therefore, the output size in
this case is S = 20005.

Reference results are generated by means of a MC sim-
ulation with 1000 samples drawn according to a LHS strat-
egy. The training responses for the GPR model are instead
computed for L = 300 Gaussian-distributed samples of the
uncertain parameters, generated with a Sobol sequence. The
PCA compression reduces this training dataset to ñ = 37
components only, thereby achieving a compression rate of
99.8%.

Figure 12 shows the received voltage, limited to a 16-bit
window for the sake of readability. In the top panel, the gray
lines are a subset of samples from the MC simulation. The
blue line is the average of the received voltage computed from
the MC samples, whereas the dashed and solid red lines are
the GPR mean and its 95% confidence bounds, respectively.
The bounds are tight enough to be indistinguishable from the
prediction itself. The bottom panel shows instead the variance
of the voltage computed from the MC samples (green line) as
well as the GPR prediction and its 95% confidence bounds
(dashed and solid orange lines, respectively). Also in this
case, the bounds are indistinguishable from the prediction. A
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Fig. 12. Voltage at the receiver side of the electronic link (limited to a 16-bit
window). In the top panel, the gray lines are a subset of MC samples, the
blue line is the average of the MC samples, whereas the dashed and solid red
lines are the GPR prediction of the average and its 95% confidence bounds,
respectively. In the bottom panel, the green line is the variance of the MC
samples, whereas the dashed and solid orange lines are the GPR prediction
of the variance and its 95% confidence bounds, respectively.

close-up around a local maximum shows that the prediction
compares well with the MC result, which is enclosed by the
confidence bounds. Similar results are provided in Fig. 13 for
the four crosstalk voltages, limited to a 6-bit window. The left
y-axis refers to voltage values and their mean, whereas the
right y-axis refers to their variance. Also in this case, very
narrow bounds, encompassing the MC results, are found.

Figure 14 provides a comparison on the PDFs computed
for each of the five output voltages at a significant time point.
The reference distribution of the MC samples is shown with a
blue line. The solid red lines are the 95% confidence bounds
of the prediction obtained with the GPR model. Furthermore,
to assess the impact of the prior kernel, the dashed green lines
show the confidence bounds obtained by using an anisotropic
Matérn 5/2 kernel. It is found that the anisotropic kernel
achieves a better prediction, with even tighter confidence
bounds compared to the isotropic Gaussian kernel.

In order to provide a more quantitative comparison in this
regard, two figures of merit are introduced. The first is the
confidence width (CW), and measures the cumulative width
of the confidence interval of the PDF:

CW =

∫
R

(qH(y)− qL(y)) dy, (40)

where qH and qL denote the upper and lower quantiles, re-
spectively. A larger CW indicates a wider confidence interval,
and hence a more uncertain prediction. The second figure
of merit is the root-mean-square error (RSME) between the
PDF ρGPR predicted by the GPR surrogate and the reference
MC distribution ρMC:

RMSE =

√∫
R

(ρGPR(y)− ρMC(y))
2
dy. (41)
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Fig. 13. Crosstalk voltages at the transmission-line sections of the electronic link (limited to a 6-bit window). The same color scheme as in Fig. 12 is used
for the MC samples, as well as for the MC and GPR statistical estimates.

The results are collected in Table III. The figures show that the
GPR model with anisotropic Matérn kernel is roughly twice
more accurate in both measures, which is reasonable given its
higher complexity in terms of degrees of freedom. However,
it is important to mention that the training requires about 8 s
for each of the 37 principal components, leading to a total,
non-negligible training time of 311.4 s, compared to a mere
3.9 s required by the GPR model with isotropic kernel.

TABLE III
PERFORMANCE COMPARISON BETWEEN AN ISOTROPIC GAUSSIAN

KERNEL AND AN ANISOTRIPIC MATÉRN KERNEL, IN TERMS OF ACCURACY
AND TRAINING EFFICIENCY.

Kernel → isotropic Gaussian anisotropic Matérn 5/2
Quantity ↓ CW RMSE CW RMSE

PDF of crosstalk
0.1530 0.1804 0.0848 0.1045

voltage #1 @ 160.4 ns
PDF of crosstalk

0.1516 0.4482 0.1192 0.2292
voltage #2 @ 139.8 ns
PDF of crosstalk

0.1413 0.2418 0.0730 0.1085
voltage #3 @ 162.0 ns
PDF of crosstalk

0.1664 0.4679 0.1292 0.2251
voltage #4 @ 173.0 ns
PDF of received

0.0842 0.0700 0.0417 0.0425
voltage #1 @ 130.2 ns
Training time 3.9 s 5 min 11 s

VIII. CONCLUSIONS

This paper introduced a probabilistic framework, based on
GPR, for the UQ of electronic circuits. As opposed to tradi-
tional surrogate modeling techniques, the advocated method
additionally provides confidence bounds for the predicted
statistical information. This is achieved by propagating the
uncertainty from the input parameters to the output variables
by also taking into account the inherent uncertainty of the GPR
model. Furthermore, the use of PCA compression allows to
effectively deal with problems characterized by a large number
of outputs.

The proposed method was applied to both illustrative and
real-life application examples, namely a low-noise amplifier
and a digital communication link, each with a relatively large
number of uncertain input parameters (21 and 26, respec-
tively). It was shown that similar results are obtained compared
to state-of-the-art techniques such as PCE and LS-SVM,
which however do not provide information on the prediction
confidence. Moreover, the use of an isotropic kernel provides
a viable solution with good accuracy and limited training
time, whereas anisotropic kernels allows to further improve the
accuracy at the price of a non-negligible training cost. Plans
for future work include the investigation of adaptive training
strategies and of alternatives for the trend and kernel functions
of the prior.
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APPENDIX

Given a vector ε of N random variables with mean µ
and covariance matrix Σ, and an N -dimensional symmetric
matrix Λ, the scalar quantity

Q = εTΛε (42)

is a “quadratic form” in ε [66]. The expected value of Q is

E {Q} = tr(ΛΣ) + µTΛµ. (43)

Moreover, if the random variables ε are normally distributed,
the variance of Q is

Var {Q} = 2 tr
(
(ΛΣ)2

)
+ 4µTΛΣΛµ. (44)
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