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Detecting Phase Scintillation at High Latitudes
Using Ionospheric Scintillation Monitoring Records
and Machine Learning Techniques

Rayan Imam
Dept. of Elec. and Telecom.
Politecnico di Torino
Turin, Italy
rayan.imam@polito.it

Abstract—In this paper, we present a bagged tree model
able to detect phase scintillation at high latitudes with 95%
accuracy, 5% scintillation miss-detection and 5% scintillation
false alarm. The input to the model is a series of 3 minutes
of the Total Electron Content (TEC), 3 minutes of the change
in TEC (dTEC), and the satellite elevation. These values are
extracted from Ionospheric Scintillation Monitoring Records
(ISMR) logged by Ionospheric Scintillation Monitoring (ISM)
receivers. We compare the performance of this model to Support
Vector Machine (SVM) models, k-Nearest Neighbors (k-NN)
models, and also to other decision tree models. Furthermore,
we assess the ability of the TEC and dTEC features to detect
scintillation independently of the scintillation indexes. For this,
we compare the above decision trees, KNN and SVM models to the
same models but trained using scintillation indexes as additional
inputs. Moreover, we show the results of testing the proposed
model using a novel data set. Finally, we compare the accuracy
of the machine learning model to the performance of a detector
based on the phase scintillation index o4 threshold.

Index Terms—global navigation satellite system, Supervised
learning, Geophysical signal processing, bagged decision trees,
support vector machines

I. INTRODUCTION

Phase scintillations are rapid and random fluctuations in the
phase of radio wave signals as they pass through irregularities
in the electron density of the ionosphere. These irregularities
occur mainly near the earth magnetic equator and poles caus-
ing disturbances to trans-ionospheric signals at these regions.
High latitude phase scintillations are induced by ionospheric
irregularities often associated to space weather events like
geomagnetic storms.

Global Navigation Satellite Systems (GNSS) services are
vulnerable to scintillation because scintillation leads to de-
graded availability, reliability and accuracy of the GNSS ser-
vice. On the other hand, because GNSS signals are susceptible
to scintillations, they have been utilized as signals of oppor-
tunity to monitor the state of the ionosphere. Leveraging the
global coverage of multi-frequency GNSS signals, ionospheric
scintillation monitoring (ISM) receivers have been continu-
ously recording ionospheric measurements for the last couple
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of decades. This resulted in a rich repository of Ionospheric
Scintillation Monitoring Records (ISMR), which are logged
at 1 minute rate, as well as other records with higher logging
rate (for example raw correlator outputs are typically logged
at 50 Hz or 100 Hz and raw IF (Intermediate Frequency)
GNSS signals are logged at several MHz).

For such a high volume of data, automatic detection of
scintillation is necessary, and in fact it has always been
implemented by ISM receivers and ionospheric studies’ re-
searchers. However, phase scintillation detection, and GNSS
scintillation in general, has not been a trivial task because
of the scintillation-like anomalies that affect the scintillation
indexes. Satellite and receiver clock anomalies, and multipath
are the main sources for false scintillation alarms in GNSS
measurements [1].

In recent years, Machine Learning (ML) models to detect
phase scintillation have been proposed in the literature. For
example, in [2], the high-rate raw correlator measurements
from ISM receivers are utilized to train machine learning
models able to detect phase scintillation and the performance
of SVM (Support Vector Machines)-based implementations
for phase and amplitude scintillation detection is evaluated.
In [3], amplitude and phase scintillation indexes provided in
ISMR records are utilized to carry out the detection task. In
this paper we utilize the other measurements in ISMR files
to detect phase scintillation. We investigate the feasibility of
detecting phase scintillation relying on Total Electron Content
(TEC) and the change in TEC over time (dTEC).

The motivation behind using ISMR records is that they
are available with almost continuous monitoring for decades.
That makes them a rich resource of scintillation monitoring
data. In this paper we focus on exploiting TEC and dTEC
measurements calculated from dual frequency pseudorange
measurements and carrier phase measurements, respectively.
Furthermore, besides SVM [3] and decision tree [4] [5]
learning methods, the usage of k-NN (k-Nearest Neighbors) al-
gorithm for phase scintillation detection is investigated through
a comparative performance analysis. Because, beforehand it’s
quite hard to choose directly the correct method in most cases



in high dimensional spaces on the selection of SVM, k-NN,
and decision trees for the classification problems. Most of
the time, a validation data-set is used to not only optimize
hyperparameters of the algorithms but also to choose between
algorithms, as is investigated in this paper.

The rest of the paper is organized as follows. In Section
II, we review the machine learning algorithms investigated
in this paper. In Section III we present the trained machine
learning models and show the results of testing these models.
We conclude the paper in Section IV summarizing the results.

II. OVERVIEWS OF THE APPLIED ML APPROACHES TO
SCINTILLATION DETECTION

Support Vector Machines (SVM) is a model-based algo-
rithm creating a model of which the parameters are learned
from the training data. However, k-Nearest Neighbors (k-NN)
is an instance-based algorithm that uses the whole dataset as
the model [6]. Both methods can be used for classification and
regression, and in classification cases, given a feature vector,
they only output the class. Furthermore, decision tree learning
is another type of classification and regression algorithm
that also provides a score beside the class output, as being
different from SVM and k-NN. It shows the confidence level
of the algorithm on the prediction made for a certain class
[6]. Overviews of the algorithms considered for scintillation
detection (i.e. classification) in this paper are given in the
following.

A. SVM Algorithm

SVM algorithm that is one of the most influential supervised
learning approach associated with kernel trick aims to classify
the samples using a separating hyperplane and it output a class
identity [7]. Fig. 1 depicts an example of SVM for two-class
(e.g. square and circle samples) classification.
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Fig. 1. An overview sketch of SVM algorithm linear classifier.

The predictions are made using the function [7]
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where f(x) describes the approximate relationship between
input = and corresponding target output values . x' is a
sample of training input data-set given {z',z?% ... z™+}
where 2° € R™. b is the parameter of the optimum hyperplane

shown in Fig. 1 and w; is the vector coefficients, which are to
be optimized. « is the kernel function. In some cases in which
the samples are linearly separable, the linear kernel function
can be used:

K(2s,x5) = :r;?rxj 2)

where the kernel function x provides a mapping from the
instance space to a feature space associated the kernel. Hence,
it enables to find another hyperplane in the kernel space and
to achieve nonlinear separation in the feature space [8]. The
most commonly used kernel is the Gaussian kernel also known
as Radial Basis Function (RBF):
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where o is the width of the kernel and it has to be properly
selected. If it gets closer to zero, it might cause over-fitting.
However, a bigger value of ¢ might lead to under-fitting and
ends up with classifying all the instances into one class [8].
Selection of kernel scale parameter + in the RBF has the
similar issues as well. Another well-known kernel function
is the polynomial the polynomial:

k(x, ;) = (1 + :L';ij)p )

where addition of 1 provides in-homogeneity

In Section III, a comparative performance analysis of linear
kernel, Gaussian kernel having different kernel scale param-
eters, and polynomial kernel with second and third order
functions through experimental test results is provided.

B. k-NN Algorithm

k-NN is a type of non-probabilities supervised algorithm
and it is generally used for classification or regression. In
classification, k-NN algorithm looks at the close neighborhood
of the input example in the feature space and labels it that as
seen in this close neighborhood [6]. In other words, a test
sample (z(")) is classified considering majority class of its
neighbors:

k
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where t(¥) is a class label and d is the distance metric. The
algorithm is generalized through a distance metric to measure
the distance or similarity between training samples and test
examples. Fig. 2 shows an example of k-NN classification
cases for k = 1 and k£ = 3, where k is the number of training
examples closest to the considered input sample.

As it is observed in Fig. 2, if £k > 1, there are multiple
training samples describing an example input test sample that
is shown as a blue triangle mark. When k& = 1, it creates
a locally constant surface computed cell-by-cell in which the
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Fig. 2. k-NN classification example.

feature space is divided. There are various distance metrics and
one of them used for real-valued vector spaces is Minkowski
distance [9]:

! 1/r
d($i7$j) = (Z |$l — xj|r> (6)
=1

where [ is the number of dimensions. z; and x; are the data
points. When p = 1 it is Manhattan distance and if p is set
to 2, Euclidean distance that is most popular among distance
metrics is got. It represents the root of the sum of the square of
differences in vectors [9]. Euclidean distance can be weighted

d(l’i7l’j) = Zwl (I’l — .’Ej)Q (7)
i=1

where w; is the weight that influences the distance of
instance z; = [zj1,%2, " ,Tim] to the nearest neighbor
instance x; = [xj1,Z 2, - , L m]. w; represents the feature
weighting that consists of m weight coefficient for m features.
Furthermore, a distance weighted k-NN can also be applied
directly in (5) before distance function d(z®,¢(™). One of
the widely applied weighting is the inverse squared distance.

Cosine distance that is also called angular distance is a type
of similarity measure [9]:
7, -

d(xi,xj) (8)
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where - represents the dot product between two vectors and
it is normalized by their magnitude.

The choice of the distance metric and the value of & should
be made carefully. In order have powerful k-NN classification,
a proper value for k should be selected. If it is set too small,
k-NN becomes sensitive to class noise. However, selecting &
too large leads to include many neighbor points and hence
increases the bias. A performance comparison of selected
different k£ values and distance metrics in terms of scintillation
detection accuracy through carried out experimental tests is
discussed in Section III.

C. Decision Tree Learning

Decision tree learning is based on tree structures, defined by
recursively partitioning the input space, as depicted in Fig. 3.
Decision tree is an acyclic graph in which each branching node

a decision is made by examining a specific feature vector and
depending on the decision the right or left branch is followed
[6]. In other words, the learning takes place along the branches
and nodes by means of applied functions for the decision
criteria in each node [4].
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Fig. 3. An example of feature space partitioning in decision tree.

A classifier can be represented by C(S,x) where z is the
input point and S is the training data having a set of labeled
data:

S o {(3«”1‘7%)}1']\;1 ©)

where it also denotes the start node that contains all examples
[6].

Bagging trees utilize an ensemble technique that creates a
classifier from training a number of tree classifiers. Bagging
trees classify by majority vote

B

C'(z) = Majority Vote {C (S(b), x)} (10)

where B is the number of decision trees in the ensemble.
Boosting is another ensemble technique that classifies by
weighted majority vote

M
C(z) = sign [Z Wiy Cm(a:)] (11)
m=1
where M is the number of decision trees in the ensemble.
The tree structure should be pruned to an optimal size

through evaluations of cross-validation results.

III. IMPLEMENTATION AND TEST RESULTS

ISMR data collected in Antarctica was utilized to train and
test the machine learning models. In this section we describe
the data preparation for the machine learning task. Then we
present the machine learning models obtained in this paper.
Finally we show and discuss the testing results of testing these
models.

A. Data Preparation

The data utilized to train, validate and test the models
were collected at the South African Antarctic research base
(SANAE 1V, 71.67 S, 2.84 W) using Septentrio PolaRx5S Re-
ceiver between 23-29 August 2018. These days were selected
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Fig. 4. Data preparation.

because on 26-27 August 2018 phase scintillation occurred at
high latitudes due to a G3 geomagnetic storm [10].

The data was manually labeled using visual inspection
after consulting data from consecutive days (to check for
multipath), data from all visible satellites (to check for receiver
clock errors), and data from different frequency bands (to
check for satellite clock errors). To read more about checking
for multipath and oscillator anomalies refer to [5] and [11]
respectively. The data is labeled as scintillated if the phase
measurements were randomly fluctuating, but no multipath
or clock anomaly was observed during the anomaly check
mentioned above. Otherwise, the data was labeled as non-
scintillated. Approximately 16,000 labeled samples were ex-
tracted, of which 50 % were scintillated. The samples were
randomly split into training and testing sets, with 70% of the
data in the training set. Again, 50% of the training set was
scintillation. Validation using 5-fold cross-validation was also
implemented during the training phase.

Two sets of attributes were considered for training the
machine learning models:

e F1: contains a 3-minutes series of TEC, dTEC and
elevation values. A sliding window step of 1 minute
was implemented. In other words, the label is given at a
rate of 1 minute, and we evaluate 3 minutes of data to
give the label. TEC and dTEC are logged in ISMR files
every 15s.

o F2: contains all the measurements related to L1 CA signal
in the ISMR file, also grouped in blocks of 3-minutes
overlapping measurements, with sliding window step of
1 minute.

Fig. 4 depicts how the 3-minute overlapping window was
prepared. In this figure, we showed only 3 features for demon-
stration purpose, but the concept is general.

In [12], the analysis carried out through collected data shows
that the mean duration of the phase scintillation events in
the polar region is 5.6 minutes. So as not to miss shorter
scintillation events too, time-window is adjusted to 3-min
through an experimental analysis. Furthermore, the tests car-
ried out applying an extended time window (e.g. 5-min) has
not provided a significant improvement in the accuracy.

B. The Machine Learning Models

Table I summarizes the applied ML models having different
settings. The first column shows the general machine learning

models name. The second column shows the name of the
variation of the model. By model variation we mean differ-
ent hyperparameter settings of the model. The third column
describes the model variation indicating the hyperparameters
values.

TABLE 1
THE MACHINE LEARNING MODELS CONSIDERED
Model Variation Description
Fine Max number of splits = 100
Decision Medium Max number of splits = 20
Tree Coarse Max number of splits = 4
Learning Ensemble method: Bag,
Bagged Number of learners = 30
Max number of splits = No limit
Ensemble method: AdaBoost
Boosted Number of learners = 30
Max number of splits = 20
Linear Kernel function: Linear
Quadratic Kernel function: Quadratic
SVM Cubic Kernel fun(.:tion. Cubi.c
Kernel function: Gaussian
Fine Kernel Scale = \/(n)/4
where n is the number of predictors
Medium Kernel function: Gaussian
Kernel Scale = 1/(n)
Coarse Kernel function: Gaussian
Kernel Scale = 4,/(n)
Fine Distance metric: Euclidean
Number of neighbors = 1
Medium Distance metric: Euclidean
k-NN Number of neighbors = 10
Coarse Distance Metric: Euclidean
Number of neighbors = 100
Cosine Distance metric: Cosine
Number of neighbors = 10
Cubic Distance metric: Minkowski
Number of neighbors = 10
Distance metric: Euclidean
Weighted Number of neighbors = 10

Distance weight : Square inverse

C. Experimental Test Results

Figure 5 reports the results of training and testing the models
using feature set F1, while Fig. 6 reports the results of training
and testing the models using Feature set F2. The x-axis reports
the models. The solid and dashed blue lines report the training
and testing accuracy, respectively. The solid and dashed red
lines report the miss-detection and false alarm rate respectively
for the scintillation class. These metrics are defined as follows:

o Accuracy is the ratio of the number of correctly classified
samples to the total number of samples.

« Scintillation Miss detection rate is the ratio of the number
of scintillation samples wrongly classified to the total
number of scintillation samples.



o False scintillation alarm is the ratio of the number of
samples wrongly classified as scintillation to the total
number of samples classified as scintillation.

Focusing on the bagged tree models (BaggedT) in Fig. 5
and Fig. 6, the results show that it is possible to obtain a
model with 95% accuracy, 5% false alarm, and 5% scintillation
miss detection, relying on TEC, dTEC and satellite elevation
measurements alone (i.e. F1). Moreover, using F2 which
includes all ISMR measurements did not give superior results
to using F1 only. This indicates that TEC and dTEC are
utilizable to detect phase scintillation without the need for
phase scintillation indexes. Furthermore, many of the machine
learning models achieved comparable good results in terms of
accuracy, however the bagged tree demonstrated the highest
accuracy.

The k-NN models in general reported lower accuracy and
higher scintillation miss-detection than the trees. The decrease
observed in the accuracy of coarse k-NN is expected since the
number of neighbors might be accepted as the limit consider-
ing the rule of thumb (i.e. k < \ﬂm), where m is the number
of training examples). At the same time, the cosine distance
function, which is used when the magnitude between vectors
does not matter but the orientation, could track better the trend
of the scintillation indices (i.e., consecutive decrease/increase).

Finally, the SVM models, except the cubic SVM, reported
a performance comparable to the trees. A drop in the accuracy
of the cubic SVM is expected at an acceptable range observed
in F1 and F2, considering the possibility that higher-degree
polynomial might lead to over-fitting in the training test set.
However, the same is not valid in cubic k-NN, because the
classification output is computed through the majority class
in that case. Furthermore, Manhattan distance has not been
applied since it would work as thresholding.

D. Comparison with Standard Method

We compare the performance of the bagged tree model
trained with F1 to the performance of a standard method in the
literature; the threshold on the phase scintillation metric oyp;.
For the Septentrio PolaRx5S Receiver installed at SANAE
IV station, a threshold of o4, = 0.15 rad is acceptable
to detect moderate scintillation. To detect weak scintillation,
lower threshold value is needed. For this reason, we tested
different threshold values: 0.05, 0.1 and 0.15 rad as shown
in Table II. In the table we report the scintillation miss-
detection and false alarm beside the overall accuracy. We can
see that with the threshold technique, the accuracy is below
80% while with the bagged tree model it reaches ~ 95%. The
improvement comes mainly from the significantly low miss-
detection rate of the machine learning model (5.2%) compared
to 27.8% for the best case in threshold method. The false alarm
is slightly higher than a 0.1 rad threshold, but it is acceptable
when looking at the overall accuracy.

IV. CONCLUSIONS

In this paper, we compare the performance of SVM, k-
NN and Tree models trained to detect high latitude phase

TABLE II
COMPARING THE PERFORMANCE OF THE BAGGED TREE MODEL TO
STANDARD THRESHOLD METHOD

Method Miss detec- False alarm Accuracy
tion [%] [%] [%]
Threshold=0.05 27.8 16.5 79.0
Threshold=0.10 57.2 32 70.7
Threshold=0.15 714 1.3 64.1
Bagged Tree Model 52 5.4 94.7

scintillation. We propose relying on series of 3-minutes TEC
and dTEC measurements extracted directly from ISMR files
to train the models. We compare these models to models
trained with 3-minute samples that contain all LI1CA related
measurements in the ISMR records, in addition to the TEC
and dTEC values. Finally, we show examples of testing the
models with a novel data set.

We show that bagged trees relying on 3-minutes of TEC
and dTEC measurements are able to detect phase scintillation
with 95% accuracy, 5% scintillation miss detection and 5%
scintillation false alarm.
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Fig. 5. Results of training and testing the models using feature set F1.
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Fig. 6. Results of training and testing the models using feature set F2.
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