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* Correspondence: marco.piumetti@polito.it; Tel.: +39-011-090-4753

Abstract: In this study, a set of CuCeOx catalysts was prepared via the coprecipitation method using a
Multi-Inlet Vortex Reactor: the Cu wt.% content is 5, 10, 20, 30 and 60. Moreover, pure CeO2 and CuO
were synthesized for comparison purposes. The physico-chemical properties of this set of samples
were investigated by complementary techniques, e.g., XRD, N2 physisorption at −196 ◦C, Scanning
Electron Microscopy, XPS, FT-IR, Raman spectroscopy and H2-TPR. Then, the CuCeOx catalysts were
tested for the CO and ethene oxidation reactions. As a whole, all the prepared samples presented
good catalytic performances towards the CO oxidation reaction (1000 ppm CO, 10 vol.% O2/N2): the
most promising catalyst was the 20%CuCeOx (complete CO conversion at 125 ◦C), which exhibited a
long-term thermal stability. Similarly, the oxidative activity of the catalysts were evaluated using a
gaseous mixture containing 500 ppm C2H4, 10 vol.% O2/N2. Accordingly, for the ethene oxidation
reaction, the 20%CuCeOx catalyst evidenced the best catalytic properties. The elevated catalytic
activity towards CO and ethene oxidation was mainly ascribed to synergistic interactions between
CeO2 and CuO phases, as well as to the high amount of surface-chemisorbed oxygen species and
structural defects.

Keywords: CO oxidation; ethene oxidation; copper-cerium mixed oxides; Multi-Inlet Vortex Reactor;
synergistic effects

1. Introduction

Over the last few years, the emission limits in the automotive field have become stricter.
Several pollutants are produced in diesel and gasoline engines, such as carbon monoxide
(CO) volatile organic compounds (VOCs), nitrogen oxides (NO, N2O and NO2, labelled as
NOx), unburned carbon-based compound (UHC) and particulate matter (PM) [1–4].

Carbon monoxide (CO) originates from the incomplete combustion of fuel inside
the engine reaction chamber. The engine working conditions are directly connected with
the CO production: a higher quantity of CO is generated when the air-to-fuel ratio is
under-stoichiometric (λ ratio < 1, rich mixture) [4,5]. However, it is possible to form CO in
lean conditions too (λ ratio > 1), due to kinetic effects [6]. The CO is a harmful substance
for humans because it can create confusion and asphyxia over a certain concentration [7–9].

The volatile organic compounds (VOCs) are a set of various substances present in the
atmosphere that are originated due to natural or human-related processes (i.e., biogenic
or anthropogenic, respectively) [10]. These compounds may represent an important risk
for humans’ health [11]. Moreover, they can participate in atmospheric photochemical
processes that lead to the formation of other harmful substances (e.g., peroxyacyl nitrates
or ozone) [11,12]. Accordingly, the emission of these substances, as well as the emission
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of CO, is regulated [13]. In previous research works [14], ethene has been often used as
VOC probe molecule [15–20]. In this sense, ethene has shown higher resistance to oxidation
respect to other VOCs (e.g., propylene) [16,18], whereas it can be oxidized at temperatures
similar to those required by some aromatic compounds, e.g., toluene [16,20].

The catalytic systems used for the abatement of automotive pollutants typically contain
noble metals. Among them, Pt is probably the most used metal, since it is very active
towards several oxidation reactions [21–27]. However, there are limitations in the utilization
of noble metals (i.e., their high cost and the poisoning phenomenon) [28]. In this work, Cu
was chosen in order to enhance the ceria reactivity and to be proposed as a valid alternative
to noble metal-based catalysts.

According to the literature, CeO2-based catalysts are interesting materials for both the
CO and ethene oxidations [17,18,29–36]. Ceria exhibits good redox properties due to the
presence of the Ce3+–Ce4+ couple and it is able to store a high amount of oxygen. Moreover,
the addition of foreign metals inside the CeO2 framework allows to further improve its
promising performances [37–45].

Among the foreign metals, Cu is of particular interest. In fact, copper can be found
as Cu+ and Cu2+, which could create a synergistic effect in terms of coupled Ce and Cu
redox pairs (i.e., Ce3+–Ce4+ and Cu2+–Cu+) during the oxidation reactions. Specifically, the
presence of CuO enhances the redox mechanism at the catalysts surface, because CuO and
CeO2 can be reduced and oxidized at the same time [46–48]. Moreover, copper provides
new active sites for the adsorption of reduced molecules. Hence, CuO–CeO2 systems are
highly effective for both the CO and ethene oxidation reactions [14,17,18,49–51].

In this work, a set of CuCeOx catalysts was studied for the catalytic oxidation of CO
and ethene. The latter was used as probe molecule for the oxidation of VOCs. The samples
were also characterized by complementary techniques, such as X-Ray Diffraction (XRD),
N2 physisorption at −196 ◦C, Field Emission Scanning Electron Microscopy (FESEM),
X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra-Red spectroscopy (FT-IR),
Raman spectroscopy and H2 Temperature-Programmed Reduction (H2-TPR) in order to
unveil which physico-chemical properties determine the catalytic activity.

2. Materials and Methods
2.1. Synthesis of CuCeOx Catalysts

A Multi-Inlet Vortex Reactor (MIVR) was used to synthesize the CuCeOx catalysts.
Five samples were prepared with different Cu wt.% content, namely 5, 10, 20, 30 and 60, and
herein labeled as 5%CuCeOx, 10%CuCeOx, 20%CuCeOx, 30%CuCeOx and 60%CuCeOx,
respectively. Moreover, pure CeO2 and CuO were prepared for comparison purposes. The
synthesis procedure was adapted from reference [52].

Two 60 mL syringes were filled with a 0.1 M NaOH (Merk, Steinheim, Germany).
Afterwards, a metal precursor solution (0.1 M) at the desired weight ratio was prepared
with Ce(NO3)3•6H2O and Cu(NO3)2•3H2O (Merck, Steinheim, Germany). The metal
precursor solution was put inside other two syringes (60 mL). Then, the four syringes were
connected to the MIVR inlets (Øinlet = 1 mm), as shown in Scheme 1A and 1B. The syringes
are driven by a KD Scientific KDS220 infusion syringe pump (Merck, Steinheim, Germany)
with the total flow rate fixed to 20 mL min−1 in order to have a turbulent flow in the MIVR
reaction chamber (Øreaction chamber = 4 mm), according to previous fluid dynamic studies
(Re = 8320) [52,53]. During the injection, the metal hydroxides nanoparticles (CuCeOH
NPs) were formed in the reaction chamber, meanwhile the suspension was moving upward
in a spiral way towards the outlet on the top of the reactor. Then, the suspension was
collected into a beaker (Scheme 1C).

Afterwards, the thus-obtained suspension was stirred for 1 h at room temperature.
Then, it was centrifuged (5000 rpm, 1 h) and the produced powder was washed three
times with ultra-pure water (MilliQ, Direct Water Purification System, Merk, Steinheim,
Germany). Finally, the powder was dried overnight at 60 ◦C and calcined at 650 ◦C for 4 h
(heating rate of 10 ◦C min−1).
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Scheme 1. Scheme of the Multi-Inlet Vortex Reactor (MIVR): (A) Top view, (B) and (C) Front view.

2.2. Characterization Techniques

The X-ray diffraction (XRD) patterns of the powders were registered by means of an
X’Pert Philips PW3040 diffractometer (Malvern Panalytical Ltd., Malvern, UK) and using
Cu Kα radiation (2θ = 10–80◦; step = 0.013◦ 2θ; time per step = 0.2 s). The data obtained
was indexed using the Powder Data File database (PDF-2 1999, International Centre of
Diffraction Data).

The measurement of the textural properties of the catalysts (i.e., specific surface area
and total pore volume) was carried out by performing N2 physisorption at −196 ◦C in a
Micromeritics Tristar II 3020 (v1.03, Micromeritics Instrument Corp., Norcross, GA, USA).
Before the analysis, the samples were outgassed at 200 ◦C for 2 h. The values of specific
surface area (SSA) were calculated through the Brunauer–Emmett–Teller (BET) method.
On the other hand, the pore volume (Vp) was assessed by analyzing the desorption phase
using the Barrett–Joyner–Halenda (BJH) method.

The morphology of the catalysts was investigated with a field emission scanning
electron microscope (FESEM Zeiss MERLIN, Gemini-II column, Oberkochen, Germany), in
which Energy Dispersive X-Ray (EDX) analysis was performed as well.

The elemental composition of the samples was also investigated using an Inductively
Coupled Plasma Mass Spectrometer (iCAP Q ICP-MS, ThermoFisher Scientific, Waltham,
MA, USA). For this analysis, 100 mg of each sample were dissolved in an aqueous solution
of hydrochloric acid (1 M), nitric acid (1 M) and ascorbic acid (0.5 M), which was then
stirred for 8 h to completely solubilize the powder.

Raman spectroscopy was carried out with a Renishaw InVia micro-Raman spectrome-
ter (Renishaw plc, Wotton-under-Edge, UK). The spectra were collected at room tempera-
ture using a 514.5 nm excitation wavelength, a 10 mW laser power, a 5× objective and a
225 s total acquisition time. For each sample, three spectra were collected in different points
and averaged. The ratio between the area of the defect-related band (D band) and that of
the ceria F2g peak (D/F2g ratio) was calculated as an estimation of defect abundance. The
areas were obtained by deconvolution of the main bands using Lorentzian fitting curves.

FT-IR (Fourier transform infrared) spectroscopy was performed using a Bruker Invenio
S spectrophotometer (Bruker Corporation, Billerica, MA, USA) equipped with a cooled
MCT detector. Self-supporting wafers were prepared by pressing the catalyst powder
and were analyzed in transmission mode in a quartz cell equipped with KBr windows.
Prior to analysis, the wafers were outgassed at 50 or 150 ◦C for 1 h to remove water, using
a standard vacuum frame. The spectra were collected at a 2 cm−1 resolution and were
normalized to the mass per unit area of each wafer.

The core-level spectra of the elements of interest were studied through the X-ray
photoelectron spectroscopy (XPS) technique. The analyses were performed in a PHI Versa
probe apparatus (Physical Electronics Inc. PHI, Chanhassen, MN, USA) using: band-pass
energy: 187.85 eV; take-off angle: 45◦; X-ray spot size diameter: 100 µm.

The reducibility of the catalysts was investigated performing temperature-programmed
reduction analyses under a flow of H2 (H2-TPR). The analyses were carried out in a Ther-
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moQuest TPD/R/O 1100 (ThermoFisher Scientific, Milan, Italy), comprising a thermal
conductivity detector (TCD). Before the analysis, an oxidative pretreatment was carried out
under a flow of O2 (20 mL min−1) at 550 ◦C for 1 h. Subsequently, the catalysts were put
under a reducing gas mixture containing 5 vol.% of H2/Ar (flowrate: 20 mL min−1). During
a typical analysis, the temperature was increased from 50 ◦C until 900 ◦C (heating rate
10 ◦C min−1). At the end of the analysis, the temperature was held at 900 ◦C for 10 min. For
the H2-TPR analysis, the onset temperature (Tonset) was considered as a catalytic parameter.
The Tonset is defined as the intersection of the tangent passing through the inflection point
of the first reduction peak and the baseline.

2.3. Catalytic Activity Tests

The catalytic activity of the prepared powder catalysts was performed in a temperature-
programmed oxidation (TPO) setup comprising a PID-controlled furnace. A quartz U-tube
reactor (ID = 0.4 cm) hosted a fixed-bed containing the catalyst. The temperature was
quantified using a K-type thermocouple set in the upper limit of the fixed-bed. The gas
outlet from the reactor was analyzed by a non-dispersive infrared analyzer ABB Uras
14 (ABB S.p.A – PAMA, Milan, Italy).

2.3.1. CO Oxidation Reaction

The catalytic bed for the CO oxidation reaction was prepared by putting 100 mg of
catalyst inside a quartz-U reactor. Then, the catalyst was pretreated with 50 mL min−1 of
N2 for 30 min at 100 ◦C, in order to desorb impurities on the catalyst surface (i.e., H2O).
Then, the temperature was cooled down until 25 ◦C. After that, a gas mixture containing
about 1000 ppm CO and 10 vol.% O2 balanced with N2 was sent to the reactor (total flow
50 mL min−1). Then, the temperature was increased by 25 ◦C (heating rate 5 ◦C min−1).
The temperature was kept constant for 30 min in order to have a complete stabilization at
each increment of the temperature and to avoid adsorption-desorption phenomena. The
test finished when the CO conversion reached the 100%.

2.3.2. Ethene Oxidation Reaction

For the ethene catalytic oxidation tests, 100 mg of catalyst were introduced into the
quartz-U reactor. Prior to the catalytic testing, a degassing pretreatment under a flow of
N2 (50 mL min−1) at 150 ◦C was performed for 1 h. Afterwards, the temperature was
set to 100 ◦C and the catalytic test started. During this test, a gaseous mix containing
C2H4 (500 ppm), O2 (10 vol.%) and N2 (balance) was flowed (50 mL min−1) in the reactor.
In addition, the temperature was raised from 100 ◦C to 425 ◦C. Isothermal steps were
performed every 25 ◦C until the conversion of the ethene (in terms of outlet CO and CO2
concentrations) was stable.

3. Results
3.1. Structural and Textural Properties

The crystalline structure of the prepared samples was investigated by means of XRD
analysis in the 10◦ < 2θ < 80◦ range. The diffractograms of the catalysts are reported in
Figure 1. As a whole, all the samples (except for CuO) exhibit the typical CeO2 cubic
fluorite structure, characterized by the (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (3 3 1) and
(4 2 0)-type planes [31,33,37,54,55]. The patterns of these samples were compared to
reference code 96-900-9009 (CeO2). The CuO (reference code 96-101-1195) has the main
diffraction peaks at 35.6◦ ((0 2 2)-type plane) and 38.8◦ ((1 1 1)-type plane), which are
ascribed to the typical monoclinic crystalline phase of CuO [56].

Notably, the samples 30%CuCeOx and 60%CuCeOx exhibit both CuO and CeO2
patterns. This outcome evidences the presence of two different phases (segregates). Fur-
thermore, the presence of weak reflection peaks of the CuO was detected for 10%CuCeOx
and 20%CuCeOx too (Figure S1).
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Figure 1. X-ray diffractograms in the range 10◦ < 2θ < 80◦ over the samples. The typical peaks of
CuO are marked with asterisks.

The crystallites dimensions (Dc) were evaluated by Scherrer’s equation and reported
in Table 1. As a whole, all the samples have CeO2 crystallites with similar dimensions,
in the range between 10 and 16 nm. Instead, the crystal size of the CuO phase gradually
increases with the Cu content, from 7 nm (10%CuCeOx) to 73 nm (pure CuO).

Table 1. Textural properties of the CuCeOx catalysts derived by means of X-ray diffraction, N2

physisorption and Raman spectroscopy.

Catalyst
Dc

a (nm)
SSA b (m2 g−1)

Vp
c

(cm3 g−1)
D/F2g

d

CeO2 CuO

CeO2 15 - 45 0.07 0.06

5%CuCeOx 13 - 50 0.08 0.13

10%CuCeOx 11 7 55 0.10 0.16

20%CuCeOx 10 9 50 0.09 0.34

30%CuCeOx 14 26 22 0.03 0.13

60%CuCeOx 16 39 11 0.06 0.09

CuO - 73 2 0.01 -
a Crystallite size estimated by the Scherrer’s equation; b Specific surface area calculated by the Brunauer–Emmett–
Teller (BET) method; c Total pore volume evaluated by the Barrett–Joyner–Halenda (BJH) method; d Ratio between
the area of the defect band and that of the F2g peak in the Raman spectra.

The SSA and the total pore volume were investigated through the N2 physisorption
analysis at −196 ◦C. The results are resumed in Table 1. The 10%CuCeOx presents the
highest SSA (55 m2 g−1, Vp = 0.10 cm3 g−1), while the 5%CuCeOx and 20%CuCeOx have
promising textural properties as well (SSA = 50 m2 g−1, Vp = 0.08–0.09 cm3 g−1).

The morphology of the CuCeOx catalysts was investigated by means of FESEM analy-
sis and the micrographs are reported in Figure 2. The CeO2, 5%CuCeOx, 10%CuCeOx and
20%CuCeOx images suggest a good homogeneity of the particle size. Conversely, at higher
Cu content, namely, 30 and 60 wt.%, big CuO particles were observed along with small
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CeO2 nanoparticles. The CuO phase in 30%CuCeOx and 60%CuCeOx presents the typical
octahedral or truncated-octahedral shape, confirmed by other research works [56,57].

Figure 2. FESEM images of the CuCeOx catalysts.

The elemental composition of the different catalysts was evaluated through EDX and
ICP analyses (Tables 2 and S1): for all the samples, both the techniques confirmed a copper
content similar to the nominal one.

Figure 3A displays the Raman spectra of the different catalysts. Raman spectroscopy
can indeed provide insight into the modifications induced in the catalyst structure and
defectiveness by the increasing content of Cu. Pure ceria features an intense F2g peak at
464 cm−1 related to the symmetric stretching of Ce-O bonds in the fluorite lattice [58]. A
much less intense band at about 595 cm−1 (D band) is instead associated with the presence
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of defects and it is usually assigned to intrinsic Frenkel sites, in which a vacancy is generated
by the displacement of an oxygen atom into an interstitial position [58,59].

Table 2. EDX and ICP analysis of the CuCeOx catalysts: the elemental content is expressed in
percentage of Ce and Cu with respect to the total amount of cations (Ce + Cu).

Catalyst
Elemental Composition (wt.%)

EDX * ICP

Ce Cu Tot. Ce Cu Tot.

5%CuCeOx 97 3 100 97 3 100

10%CuCeOx 92 8 100 90 10 100

20%CuCeOx 82 18 100 79 21 100

30%CuCeOx 67 33 100 67 33 100

60%CuCeOx 32 68 100 37 63 100
* The values are estimated over three different areas.

Figure 3. (A) Raman spectra of (a) CeO2, (b) 5%CuCeOx, (c) 10%CuCeOx, (d) 20%CuCeOx,
(e) 30%CuCeOx, (f) 60%CuCeOx and (g) CuO collected at ambient conditions, normalized to the
intensity of ceria F2g peak. (B) Variation of the D/F2g ratio as a function of the Cu content.
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The ceria-copper mixed oxides are characterized by analogous Raman spectra, al-
though some differences are evident. The F2g peak of doped ceria is broader and red-shifted
to 448–451 cm−1, evidencing structural distortion [60,61]. Moreover, the intensity of the
defect band gradually increases upon copper addition and new defect-related components
appear. In detail, a peak centered at 620–630 cm−1 can be ascribed to substitutional sites
containing a copper atom in 8-fold coordination [62,63], while a shoulder band around
550 cm−1 arises as a consequence of oxygen vacancies generation [64–66]. These outcomes
point out that copper is partially incorporated in ceria structure, causing lattice distortion
and the formation of new extrinsic defects. At high Cu loading, the typical peaks of CuO
starts to be visible in the Raman spectra of the mixed catalysts, as a consequence of the
segregation of this oxide. These components, centered at about 280, 335 and 612 cm−1,
have been ascribed to one Ag and two Bg modes, respectively [67].

Spectral deconvolution allowed to estimate the abundance of defects in the cerium
oxide structure, by calculating the ratio between the area of the defect (D) band and the
area of the F2g peak of ceria (D/F2g) [63,68]. For highly doped ceria, a peak was set at
612 cm−1 in order to take into account the presence of segregated CuO, and its contribution
was not considered in the calculation of the D band area. The D/F2g values are reported in
Table 1 and their trend is depicted in Figure 3B. The amount of defects initially grows with
increasing Cu doping and it is maximum for the 20%CuCeOx sample. However, further
addition of copper results in the segregation of CuO particles rather than in the formation
of structural defects in the ceria framework, in line with previous studies [17].

FT-IR spectroscopy was employed for studying the chemical species at the surface of
the different catalysts. FT-IR spectra collected after outgassing the samples at 150 ◦C are
reported in Figure 4. The thermal treatment allows to remove physisorbed water and to
more clearly detect the vibrational modes of the surface species (for comparison purposes,
spectra of samples outgassed at 50 ◦C are displayed in Figure S2).

Figure 4. Normalized FT-IR spectra of the different catalysts outgassed at 150 ◦C in the (A) 3800–3000 cm−1

and (B) 2000–800 cm−1 range.

The bands in the 3800–3000 cm−1 region are related to the stretching of the hydroxyl
groups. Different OH species are present at the surface of the ceria-rich materials: the band
at 3710 cm−1 can be ascribed to isolated OH groups while the intense peak at 3655–3650 cm−1

was assigned to bridging OH [69,70]. The asymmetry of the latter component has been
previously attributed to the presence of bridging OH in the proximity of an oxygen vacancy,
giving rise to a shoulder at 3640–3630 cm−1 [69]. The less intense band at about 3520 cm−1

may instead be related to triply coordinated OH [69,70]. The presence of a variegated
population of OH groups is an index of ceria hydrophilicity. According to previous studies,
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a hydrophilic support can promote the catalytic activity of metallic active sites [71]. All the
hydroxyl species become less abundant at high copper loading and are no more detectable
in pure copper oxide, suggesting that Cu doping can reduce ceria hydrophilicity.

The 1700–800 cm−1 region is featured by several broad bands which signal the presence
of a heterogeneous population of carbonate and formate species, including monodentate,
bidentate, bridged and polydentate carbonates [58,70,72,73]. The carbonate fingerprint
is quite similar for pure ceria and for the mixed oxides containing up to 30% of copper.
Conversely, new components can be noticed in the FT-IR spectrum of the 60%CuCeOx
sample, probably linked to carbonate species at the surface of CuO particles. An almost flat
profile was obtained for pure copper oxide, likely due to the much lower specific surface
area of this material (see BET analysis in Table 1).

3.2. Chemical Properties
3.2.1. Surface Oxidation States

The oxidation state of the elements of interest and the surface species of the catalysts
were investigated through XPS measurements. The Ce 3d, O 1s and Cu 2p spectra are
reported in Figure 5, while the Cu LMM Auger spectra are shown in Figure S3.

Figure 5. XP spectra of (a) CeO2, (b) 5%CuCeOx, (c) 10%CuCeOx, (d) 20%CuCeOx, (e) 30%CuCeOx,
(f) 60%CuCeOx and (g) CuO in the (A) Ce 3d, (B) O 1s and (C) Cu 2p regions.

The Ce 3d core levels are reported in Figure 5A, which shows the different u and v
peaks corresponding to 3d3/2 and 3d5/2 spin orbital, respectively. The Ce3+ amount was
estimated by the deconvolution of the u1 and v1 peaks, while the amount of Ce4+ was
evaluated by the deconvolution of u0, v0, u2, v2, u3 and v3 peaks [17,18,31]. The relative
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amounts of Ce3+ and Ce4+ are reported in Table 3. The 10%CuCeOx and 20%CuCeOx
samples exhibit the highest Ce3+ amount, namely 25 and 26 at.%, respectively.

Table 3. Relative amount of Ce species as derived from XP spectra of Ce 3d core level.

Catalyst Ce3+ (at.%) Ce4+ (at.%)

CeO2 12 88

5%CuCeOx 22 78

10%CuCeOx 25 75

20%CuCeOx 26 74

30%CuCeOx 19 81

60%CuCeOx 21 79

The O 1s core levels are displayed in Figure 5B. Each O 1s spectrum is characterized by
two peaks: the one at higher binding energy (BE) which is related to chemisorbed oxygen,
Oα (O2

2−, carbonates, O− or OH−), while the one at lower binding energy is due to lattice
oxygen, Oβ (O2− of the Ce-O bonds) [17,31,54,74,75]. The relative abundance of the Oα and
Oβ species is reported in Table 4. Interestingly, when the Cu content increases, two different
Oβ species can be noticed, due to the simultaneous presence of two different oxides, CeO2
and CuO. This is clearly evident for the 30%CuCeOx and 60%CuCeOx samples (Figure 5B,
curves e and f): the two Oβ peaks can be ascribed to Cu-O (529.6–529.9 eV) and Ce-O
(528.7–528.8 eV). Moreover, when the Cu content increases, the Oβ peak generally becomes
more intense [74–78]. Furthermore, the Oα-to-Oβ ratio was calculated and reported in
Table 4. Interestingly, the 20%CuCeOx sample exhibits the highest ratio, namely, 0.67,
possibly due to the higher content of structural defects (vide Raman) [79]. The presence
of abundant Oα may enhance the reactivity during the oxidation reactions since these
oxygen species, namely, O2

2−, carbonates, O− or OH−, are more reactive compared to bulk
oxygen [17,54,74,75].

Table 4. Relative amounts of the surface-adsorbed oxygen (Oα) and lattice oxygen (Oβ) species and
their respective ratios, as derived from the deconvolution of the O 1s core level.

Catalyst
Oα Oβ (Cu-O) Oβ (Ce-O)

Oα/Oβ
BE (eV) %-Atom BE (eV) %-Atom BE (eV) %-Atom

CeO2 531.2 26 - - 529.0 74 0.35

5%CuCeOx 530.9 32 - - 529.1 68 0.47

10%CuCeOx 531.4 33 - - 529.4 67 0.49

20%CuCeOx 531.3 40 - - 529.3 60 0.67

30%CuCeOx 531.4 31 529.9 36 528.8 33 0.45

60%CuCeOx 531.3 29 529.6 45 528.7 26 0.41

CuO 531.4 43 529.8 57 - - 0.75

The Cu 2p spectra are reported in Figure 5C. The most intense peak can be deconvo-
luted into two different Cu2+ species: the peak at lower binding energy is related to Cu-O
bonds in the lattice, while Cu-CO3 or Cu-(OH)2 species bonded at the surface give a con-
tribution at higher binding energy. The Cu LMM Auger spectra are reported in Figure S3.
The Auger peaks are centered in the range 917.0–917.7 eV, thus confirming the presence
of Cu2+ species in the CuO phase and the absence of Cu metallic phase which could be
ascribed to the presence of possible alloy [74,77,78].
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3.2.2. Reducibility Tests

The H2-TPR measurement was performed in order to investigate the reducibility
of the CuCeOx catalysts and the obtained profiles are reported in Figure 6A. Pure ceria
is characterized by a side peak in the 300–400 ◦C range which can be attributed to the
reduction of chemisorbed oxygen species (i.e., carbonates) that are feebly attached to the
catalyst surface [80–82]. Furthermore, a main reduction peak is centered at 540 ◦C and it
is due to the reduction of surface Ce4+ species [17,18,54,83]. Finally, the signal occurring
at higher temperatures (T > 600 ◦C) can be attributed to the reduction of Ce4+ in the
bulk [17,18,54,80–83].

Figure 6. (A) H2-TPR profiles of the CuCeOx catalysts. (B) Trend in the position of the low-
temperature reduction peaks as a function of the Cu content in the different samples.

The samples containing a Cu loading between 5 and 60 wt.% exhibit two convoluted
reduction peaks in the 150–500 ◦C range, as shown in Figure 6A. As a whole, the reduction of
these CuCeOx catalysts occurs at lower temperatures comparing with pure CeO2. Thus, the
reducibility of these samples was enhanced by the presence of CuO alongside CeO2 phase.
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According to the literature, the first low temperature peak was attributed to the reduction
of Ce-O-Cu species, while the second one was assigned to the reduction of small CuO
clusters interacting with CeO2 [17,18,34,74,80,83,84]. Moreover, when the copper loading
increases, the second peak shifts towards higher temperatures and this phenomenon may
be related to the larger CuO particles. Figure 6B displays the trend of the position of the
Tonset reduction peaks as a function of the Cu content. The following trend for the surface
reducibility can be outlined: 10%CuCeOx < 5%CuCeOx < 20%CuCeOx < 30%CuCeOx
< 60%CuCeOx < CuO < CeO2.

Table 5 reports the hydrogen uptakes measured during the H2-TPR analysis. As a
whole, the higher the Cu content, the higher the H2 consumption. Moreover, the H2-to-Cu
consumption ratio was estimated and reported in Table 5. This value corresponds to the
ratio between the H2 consumed during the TPR analysis and the stoichiometric amount
of H2 required to reduce the Cu2+ species contained in the samples. Notably, the CuCeOx
catalysts present higher H2-to-Cu consumption with respect to pure CuO, indicating that
the Cu2+ reduction is accompanied by the reduction of Ce4+ to Ce3+ [17].

Table 5. Hydrogen consumption (mmol g−1) evaluated by H2-TPR.

H2-Uptake Total H2/Cu H2-Uptake
<200 ◦C

H2-Uptake
200–400 ◦C

H2-Uptake
400–500 ◦C

H2-Uptake
>500 ◦C

CeO2 1.41 - 0.01 0.11 0.16 1.13

5%CuCeOx 1.33 3.46 0.16 0.52 0.05 0.60

10%CuCeOx 1.91 1.50 0.15 1.21 0.06 0.49

20%CuCeOx 3.59 1.34 0.09 2.52 0.30 0.68

30%CuCeOx 5.35 1.27 0.05 4.07 0.43 0.79

60%CuCeOx 8.83 1.11 0.02 5.86 1.99 0.96

CuO 12.57 1.00 0.00 4.37 5.92 2.28

3.3. Catalytic Activity
3.3.1. CO Oxidation Reaction

The results of the CO oxidation tests are shown in Figure 7. The CO conversion (%)
is reported as a function of the temperature and the catalytic tests were compared with
the non-catalytic one (labeled as “no-catalyst”). The red graph displays a magnification in
the range between 0 and 125 ◦C for a better comprehension. Moreover, Table 6 reports the
temperatures at which the catalysts convert the 10, 50 or 90% of CO (T10%, T50% and T90%,
respectively) and the CO oxidation rates (µmol h−1 g−1) evaluated at 50 ◦C.

As a whole, all the samples exhibit good catalytic performances comparing to the ther-
mal CO oxidation (no catalyst). Interestingly, the most performing sample is 20%CuCeOx:
in fact, the CO complete oxidation occurs at 125 ◦C in the presence of this catalyst. On the
other hand, pure CeO2 presents the worst performance. In detail, as can be seen in Figure 7,
the catalytic activity follows this increasing reaction order: CeO2 < CuO < 60%CuCeOx
< 30%CuCeOx < 5%CuCeOx < 10%CuCeOx < 20%CuCeOx.

In order to explain the good catalytic performance of the 20%CuCeOx sample, Figure 8
reports the values of Oα abundancy (at.%), Ce3+ abundancy (at.%), D/F2g ratio and the CO
oxidation rate (µmol h−1 g−1) as a function of the Cu content (wt.%). As a whole, a good
correspondence was found among the trends of all these parameters. In particular, the
Pearson correlation coefficients (reported in Table S2) point out that the catalytic activity
for CO oxidation is primarily linked to the presence of reactive Oα species, followed by the
quantity of structural defects and lastly by the abundance of Ce3+ ions.
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Figure 7. CO conversion as a function of the temperature in the range 0–500 ◦C (black graph) and a
magnification in the range 0–125 ◦C (grey graph).

Table 6. Catalytic performances of the prepared samples in the catalytic oxidation of CO.

Catalyst CO Oxidation Rate a

(µmol h−1 g−1)
Tparameter (◦C)

T10% T50% T90%

CeO2 2.6 × 10−2 258 314 372

5%CuCeOx 171 46 69 98

10%CuCeOx 257 35 62 90

20%CuCeOx 375 30 58 75

30%CuCeOx 138 46 73 105

60%CuCeOx 2.7 × 10−4 104 139 171

CuO 3.7 × 10−4 151 179 197
a Calculated at 50 ◦C.

Actually, defect sites and Ce3+ species are directly involved in the Mars–van Krevelen-
type reaction mechanism. This mechanism implies the oxidation of CO by means of
structural oxygen, leaving a defective site (i.e., an oxygen vacancy) that is then replenished
(oxidized) by gas phase O2 [65,85]. Moreover, the Oα species, consisting of chemisorbed
oxygen on the catalyst surface, are also highly reactive during the oxidation processes.
Hence, the higher the amount of defects, Ce3+ and Oα species, the higher the oxidative
performance of the catalyst.

Consequently, the 20%CuCeOx mixed oxide, which exhibits the largest quantity of
defect sites, Oα and Ce3+ species, has the highest CO oxidation rate. The 5%CuCeOx and
10%CuCeOx samples exhibit similar reducibility properties to 20%CuCeOx (see Figure 6),
but their lower abundancy of Oα, Ce3+ and structural defects is likely responsible for their
slightly lower catalytic activity.
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Figure 8. Trends of various parameters of the different CuCeOx catalysts reported as a function of
the Cu wt.% content.

The CO oxidation performances of the 20%CuCeOx sample were compared with those
of the most performing catalysts studied in references [17,86–92]. The latter research works
deal with copper-cerium based catalysts synthesized by means of different co-precipitation
techniques, such as Solution Combustion Synthesis (SCS) [17,86], Sol-gel [87,88], hydrother-
mal [89,90] and wet impregnation method [91,92]. The comparison, in terms of T50% for
CO oxidation, is shown in Figure 9.

Figure 9. Comparison of the T50% accomplished during the CO oxidation among the most performing
copper-cerium based catalysts synthesized by different techniques reported in the literature and the
20%CuCeOx sample studied in this work.
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The 20%CuCeOx sample exhibits the lowest T50% (58 ◦C) comparing with the other
Cu–Ce mixed catalysts. Then, a last comparison was performed with Pt/CeO2 catalysts
studied in references [93–95] and it is possible to conclude the CuCeOx samples show good
low-temperature CO oxidation activity compared with ceria-supported noble-metal. Thus,
the MIVR method represents a promising synthesis procedure, since it enables to obtain
CuCeOx nanocatalysts with very interesting physico-chemical and catalytic properties.

In order to investigate the effect of the co-presence of CeOx and CuxO phases, the
CO oxidation rates listed in Table 6 are plotted in Figure 10 as a function of the Cu weight
content. A growing trend could be observed for Cu doping ranging from 5 to 20 wt.%,
while a decreasing one was noticed upon further Cu addition. As previously described, the
sample containing the 20 wt.% of Cu exhibits the highest reaction rate (375 µmol h−1 g−1).

Figure 10. Specific reaction rates of CO oxidation accomplished over the powder catalysts at 50 ◦C as
a function of the Cu wt.%.

Moreover, Figure 10 shows a black dashed line representing the theoretical reaction
rate of a mixture of completely non-interacting CeO2 and CuO phases. This hypothetical
rate is defined by the following linear function (Equation (1)):

ri = rCeO2 xCeO2 + rCuOxCuO (1)

where ri represents the theoretical reaction rate, rCeO2 and rCuO the reaction rates of cerium
and copper oxide, respectively, while xCeO2 and xCuO are the mass fractions of cerium and
copper oxide. In Figure 10, the red dashed line represents the actual trend of the reaction
rates. Interestingly, for all the mixed samples, the real CO oxidation rates are above the
theoretical ones (the black dashed line). Thus, a synergistic effect between the two active
phases is occurring [96].

Similarly, the T10% was reported in Figure S4 as a function of the Cu wt.% content. The
theoretical Ti value is represented by the following equation (Equation (2)):

Ti = TCeO2 xCeO2 + TCuOxCuO (2)

where Ti represents the theoretical T10%, TCeO2 and TCuO the T10% of cerium and copper
oxide, respectively, while xCeO2 and xCuO are the mass fractions of cerium and copper oxide.
It appears that the two oxide phases exhibit a positive collaboration in agreement with the
results reported in terms of reaction rates (Figure 10).
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In order to assess the stability of the most performing catalyst (20%CuCeOx), two
consecutive CO oxidation tests were carried out, and the results are reported in Figure 11A.
The 20%CuCeOx sample exhibits good catalytic stability since reproducible results were
achieved after the two consecutive runs.

Figure 11. (A) Thermal stability study of the 20%CuCeOx for two consecutive CO oxidation tests and
(B) CO conversion (%) over the time during the long-term stability test for the 20%CuCeOx sample.

Moreover, another stability test was performed on this sample and reported in Fig-
ure 11B. During this test, the T50% and T95% were chosen and alternated for two consecutive
cycles as follows:

• First cycle: the starting temperature was fixed to 89 ◦C, at which the catalyst exhibits a
CO conversion of about 95% and this temperature was kept constant for 2 h. Then,
the catalytic system was cooled down until 58 ◦C (T50%) and it was kept constant for
other 2 h. After that, the temperature was increased until 89 ◦C. Hence, the first cycle
is characterized by a Time-on-Stream (TOS) of about 5 h.

• Second cycle: the same as the first one.

As a whole, the 20%CuCeOx catalyst is able to reach, during the second cycle, the same
conversion achieved during the first one. It is therefore possible to that the 20%CuCeOx
catalyst exhibits not only a notable activity but also good stability properties since, after
two cycles, its performance is fully preserved.

3.3.2. Ethene Oxidation Reaction

The catalytic performances of the synthesized materials measured during the catalytic
oxidation of ethene are displayed in Figure 12. The presence of the prepared catalysts
allowed the conversion of ethene at lower temperatures, compared to those of the blank
test (i.e., the test where no catalyst was present).

Consistently, the catalytic improvement is confirmed by the rates of the ethene oxi-
dation reaction calculated at 175 ◦C, as included in Table 7. As a whole, considering the
catalytic performances reported in Figure 12, a catalytic activity trend for the CuCeOx sam-
ples can be outlined, as follows: 20%CuCeOx > 10%CuCeOx > 5%CuCeOx > 30%CuCeOx
> 60%CuCeOx.



Catalysts 2022, 12, 364 17 of 23

Figure 12. Catalytic conversion (%) of ethene over the synthesized catalysts as a function of the
temperature.

Table 7. Catalytic performances of the prepared samples in the catalytic oxidation of C2H4.

Catalyst Ethene Oxidation Rate a

(µmol h−1 g−1)
Tparameter (◦C)

T10% T50% T90%

CeO2 15 275 345 396

5%CuCeOx 25 194 238 273

10%CuCeOx 56 177 223 259

20%CuCeOx 62 175 221 252

30%CuCeOx 26 197 242 277

60%CuCeOx 21 217 290 357

CuO 3 237 287 328
a Calculated at 175 ◦C.

The catalyst containing the lowest loading of Cu (i.e., 5%CuCeOx) evidenced an
overall improved catalytic performance compared to the parent CeO2, thus highlighting
the beneficial effect of incorporating Cu species in the ceria structure (as observed in XRD
and Raman analyses). Interestingly, an enhancement of the reaction rate was observed for
the prepared set of mixed oxide catalysts (see Figure 13).

As observed in Figure 13, the ethene oxidation rates were in all cases above the
theoretical (linear) trend drawn between CeO2 and CuO (see black dashed line). The
mentioned baseline represents an ideal estimation of the reaction rate as if it depended only
on the relative amounts of non-interacting CeO2 and CuO in a mixed sample, as reported
in Equation (1) of Section 3.3.1.
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Figure 13. Ethene catalytic oxidation reaction rate behavior as a function of the Cu loading in the
prepared catalysts.

Consistently, the increased reaction rates verified for the whole set of mixed oxides
(compared to the ideal behavior) evidence that beneficial interactions are taking place
between the active components present in the catalysts. Moreover, this result is supported
by the trend observed in Figure S5 for the temperatures needed for converting 10% of the
ethene present in the gaseous stream (i.e., the T10% parameter). In fact, this improvement
coincides with the contemporary presence of small CuO crystallites along with CeO2 in
the catalysts (as demonstrated by means of XRD, vide supra). In this sense, the overall
catalytic performance varies (in terms of ethene reaction rate and T10%) as a function of the
size of CuO crystallites (as reported in Figure S6) and evidenced the following: the smaller
the size of CuO crystallites in contact with CeO2, the better the catalytic performance in
ethene oxidation.

Moreover, there is a positive correlation between the catalytic activity and some
physico-chemical properties, namely, the amount of defect sites (vide Raman spectroscopy)
and the Oα/Oβ ratio (vide XPS). The catalytic behavior (in terms of TX%), as a function of
the aforementioned properties is reported in Figure S7. Accordingly, the trends evidence
that the higher the amount of Oα species and lattice defects, the better the catalytic perfor-
mance. As well, XPS revealed that the most active catalysts (i.e., the 20%CuCeOx followed
by the 10%CuCeOx) contained elevated amounts of Ce3+ species (see Table 3).

This complex scenario evidences that synergistic interactions are most likely taking
place between CuO and CeO2 and leading to a marked improvement of the catalytic
oxidation of ethene (Figure 13). As reported in the literature, smaller particles may contain
a higher number of crystal edges and corners, and thus an increased number of structural
defects and reactive sites that may improve the catalytic performance [97]. On the other
hand, electrophilic Oα species are highly active in the oxidation of hydrocarbons [16,98,99].
Consistently, the elevated amounts of active Oα species (that can participate in spillover
phenomena between CeO2–CuO phases) could contribute to the catalytic activity of the
ceria-based catalysts prepared in this work. Moreover, the results highlight the positive
effect of defective sites for the ethene catalytic oxidation reaction.

Similarly to CO oxidation, the catalytic oxidation of VOCs over ceria-based materials
could also be modeled as a redox process occurring at the catalytic surface known as
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Mars–van Krevelen reaction mechanism [100,101]. However, the literature highlights the
complexity of VOCs oxidation mechanism over oxide catalysts, as a function of the nature
of the reactant molecules and of the catalytic materials [100–103].

4. Conclusions

In this study, CuCeOx catalysts prepared by the Multi-Inlet Vortex Reactor (MIVR),
were carefully characterized and tested towards the CO and ethene oxidation reactions. The
results pointed out that the MIVR procedure can be effective to synthesize mixed oxides
with promising physico-chemical properties and catalytic oxidation activity.

The CuCeOx mixed catalysts present much better CO oxidation performances with
respect to pure CeO2 due to the co-presence of CeO2 and CuO phases that cooperate
during the catalytic cycle. Interestingly, this set of samples is featured by outstanding
catalytic activities comparing with the literature results of other copper-cerium based
catalyst prepared by different co-precipitation methods and with Pt/CeO2-type catalysts.
The most promising catalyst is the 20%CuCeOx sample, thanks to its optimized physico-
chemical properties: good textural-structural properties (SSA, Vp and Dc), high amount of
structural defects (such as oxygen vacancies and Frenkel sites), and great availability of
Ce3+ and Oα species. This catalyst also exhibited a considerable thermal stability.

The catalytic activity for the oxidation of ethene was observed to vary according to the
amount of copper present in the catalyst. Overall, the best catalytic performance for ethene
oxidation was observed for the 20%CuCeOx catalyst. The catalytic activity was ascribed
to the contemporary presence of CeO2 and CuO phases and to their possible synergistic
interactions. Moreover, the catalytic performance in ethene abatement increased when the
size of the CuO particles decreased, i.e., the smaller the size of CuO particles, the higher the
catalytic activity. Finally, it was observed that the occurrence of elevated relative amounts
of (i) chemisorbed Oα species and (ii) defect sites positively contribute to the catalytic
performances in ethene oxidation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12040364/s1, Figure S1: XRD magnification in the range 35–40◦

for the 5, 10 and 20 wt.% Cu samples. The typical peaks of CuO are marked with asterisks; Figure
S2: Normalized FT-IR spectra of the different catalysts outgassed at 50 ◦C in the (A) 3800–3000 cm−1

and 2000–800 cm−1 (B) range; Figure S3: Cu LMM Auger spectra of a) CuO, b) 60%CuCeOx, c)
30%CuCeOx, d) 20%CuCeOx, e) 10%CuCeOx, f) 5%CuCeOx; Figure S4: T10% accomplished over
the powder catalysts as a function of the Cu wt.% during the catalytic oxidation of CO; Figure S5:
T10% accomplished over the powder catalysts as a function of the Cu wt.% during the catalytic
oxidation of ethene; Figure S6: Catalytic activity trend observed during the ethene abatement tests
with the ceria-based catalysts, in terms of (A) ethene-specific reaction rate and (B) temperature for
achieving 10% conversion of ethene; Figure S7: Catalytic activity performance trend (in terms of
TX%) for the ethene oxidation reaction over the ceria-based catalysts, as a function of (A) the Oα/Oβ

ratio and (B) the amount of defect sites (D/F2g ratio). Table S1. EDX of the CuCeOx catalysts: the
elemental content is expressed in percentage (wt.%) of each element in the catalysts; Table S2. Pearson
correlation coefficients between some structural or chemical properties of the mixed oxides and their
catlytic activity fo CO oxidation, in terms of specific reaction rates (reported in Table 6).
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