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Abstract This paper continues the application of circuit theory to experi-
mental design started by the first two authors. The theory gives a very special
and detailed representation of the kernel of the design model matrix named
circuit basis. This representation turns out to be an appropriate way to study
the optimality criteria referred to as robustness: the sensitivity of the design
to the removal of design points. Exploiting the combinatorial properties of the
circuit basis, we show that high values of robustness are obtained by avoiding
small circuits. Many examples are given, from classical combinatorial designs
to two-level factorial design including interactions. The complexity of the cir-
cuit representations is useful because the large range of options they offer,
but conversely requires the use of dedicated software. Suggestions for speed
improvement are made.

Keywords Algebraic Statistics and combinatorics · Design of Experiments ·
Robustness
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1 Introduction

In Design of Experiments, Fractional Factorial Designs are frequently used in
many fields of application, including medicine, engineering and agriculture.
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2 1 INTRODUCTION

They offer a valuable tool for dealing with problems where there are many
factors involved and each run is expensive. The literature on the subject is
extremely rich. A non-exhaustive list of references includes Mukerjee and Wu
(2007), Dey and Mukerjee (2009), Hedayat et al (2012), Bailey (2008).

When searching for an optimal experimental designs, we aim to select a
design in order to produce the best estimates of the relevant parameters for
a given sample size. The are many criteria for choosing an optimal design
for the problem under study. A possible classification divides such criteria
into two classes: model-free and model-based criteria. An example of model-
free criterion is the minimization of the size of an orthogonal array of a given
strength. Examples of model-based criteria include alphabetical design criteria
(among these D-optimality is one of the most commonly used in applications).

In this work we focus on the model-based setting and we consider the no-
tion of robustness of a design. Although most of the examples will concern
Fractional Factorial Designs for linear models, the theory developed in this
paper is quite general, and some pointers and an example regarding polyno-
mial models are described in Sect. 4. The notion of robustness is particularly
important when at the end of the experimental activity the design may be
incomplete i.e. the response values are not available for all the points of the
design itself. Fractional Factorial Designs with removed runs are studied in, e.g.
Butler and Ramos (2007), Street and Bird (2018), Xampeny et al (2018) and
with combinatorial analysis in Fontana and Rapallo (2019), but in a model-
free context. Following Ghosh Ghosh (1979), Ghosh (1982), Dey (1993), we
consider robustness in terms of the estimability of a given model on the basis
of incomplete designs. We will see that this definition of robustness is also
related, but not equivalent, to D-optimality.

The model-design pair determines the design matrix. We study a combi-
natorial object derived from the design matrix namely the circuit basis of the
design matrix. We analyze the behavior of the circuits of the design matrix for
sub-matrices. This results in sub-fractions (when removing rows) or in super-
models (when removing columns). A connection between the circuits and the
estimability of saturated designs has been investigated in Fontana et al (2014).

From the results of this analysis we derive a greedy algorithm to find ro-
bust designs by checking the intersections of the design with the supports of
the circuits. Moreover, we define a simplified version of this algorithm based
on a subset of circuits that can be theoretically characterized (i.e., without
symbolic computation) for most cases of factorial designs. The advantage of
the simplified version of the algorithm is that it can work in higher dimensions
than the standard algorithm. We perform a simulation study where several
examples are illustrated to prove the effectiveness of the algorithm. The use of
greedy algorithms for D-optimality, but in a different context, have been used
recently also in Harman and Rosa (2020) and Harman et al (2020).

The paper is organized as follows. In Section 2 we define the robustness
and we obtain its relation with D-optimality in the case of totally unimodular
design matrices. Some definitions and a few basic facts concerning the algebraic
and combinatorial properties of the model matrices are presented in Section 3.
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In Section 4 we study the connections between the robustness of a fraction and
the circuits contained in the fraction itself. The algorithms and the simulation
study are described in Section 5. Final remarks are in Section 6.

2 Factorial designs, optimal design, and robustness

In this section, we summarize the basic definitions and notation about the
notion of optimality of fractional factorial designs and introduce the definition
of robustness.

We adopt here a candidate set approach to experimental design. Let D be
a large discrete set in Rm from which a small set F , usually referred to as
design or fraction, is to be selected. We will also consider the general case of
fractions with replicates. In this case the fraction F is a multiset and D is its
underlying set.

One standard example is to consider as candidate set D the cartesian prod-
uct of the level sets of the m factors. The set D, when thought of as a design
in its own right, is referred to as a full factorial.

We point out that in our theory the coding of the level set is irrelevant, so
that for the level set of a factor with s levels we can use {0, . . . , s− 1} or the
complex coding {

exp

(
2πik

s

)
: k = 0, . . . , s− 1

}
or any other coding that is considered appropriate. For binary factors (s = 2)
we observe that the complex coding corresponds to choosing {−1, 1} as the
level set.

In general, the problem of finding optimal designs can be stated as follows.
Given a big set D with K design points and a linear model on D, choose an
optimal small set F with n design points. Let us denote with y the vector of
the response variable. We consider a linear model on D of the form

y = XDβ + ε , (1)

where XD is the full-design model matrix with dimensions K × p, β is the p-
dimensional vector of the parameters, E(y) = XDβ, and the usual assumptions
on the variance hold: V(y) = σ2IK , where IK is the identity matrix with
dimension K. Moreover, we assume that the full-design model matrix XD
is full rank, i.e. its rank is p. Although this last assumption is not strictly
necessary for the validity of our results, nevertheless it makes easier theorem
statements and proofs, so we work under the full-rank assumption without
loss of generality.

For instance, in a two-factor design, first factor A1 has level set {0, . . . , s1−
1} and second factor A2 has level set {0, . . . , s2 − 1}, under the simple effect
model we have p = s1 + s2 − 1 and a possible design matrix is:

XD = (m0 | a0 | . . . | as1−2 | b0 | . . . | bs2−2) , (2)
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where m0 is a column vector of 1’s, a0, . . . ,as1−2 are the indicator vectors of
the first (s1 − 1) levels of the factor A1, and b0, . . . ,bs2−2 are the indicator
vectors of the first (s2 − 1) levels of the factor A2.

Let us now reconsider the model in Eq. (1) under the point of view of
Polynomial Algebra. From the design F and given a statistical model with
p parameters, we can write the design matrix XF . Given the data (yi,xi),
i = 1, . . . , n, a model here is typically a polynomial function

ηi = E(yi) =
∑
α∈L

cαxα
i , (3)

where we have used the monomial notation: α = (α1, . . . , αm) and xα
i =

xα1
i,1x

α2
i,2 · · ·x

αm
i,m for a point xi = (xi,1, xi,2, . . . , xi,m) in Rm.

The notation L, meaning a list of integer exponents, is a convenient way
to summarize the model and we shall refer to the model basis by {xα, α ∈ L}.
The design-model pair (F , L) gives a design matrix

XF = {xα}x∈F,α∈L . (4)

For instance in the case of two factors A1 and A2 with 3 levels each, coded
with {0, 1, 2}, the model matrix for the design

F = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}

and the polynomial model 1 +A1 +A2
1 +A2 +A1A2 is:

XF =


1 0 0 1 0
1 0 0 2 0
1 1 1 0 0
1 1 1 2 2
1 2 4 0 0
1 2 4 1 2

 ,

Notice that the definition in Eqs. (3) and (4) still holds when F = D, and
that for a fixed design the matrix XF is obtained from D simply by selection
of the appropriate rows of D. In case F contains replicates the matrix XF is
obtained from D by replication of the appropriate rows of D.

In the model-based approach to experimental design, the quality of the
chosen design F is expressed by some properties of XF . We shall be partic-
ulary interested in the D-optimality of the design F , as a proper subset or
eventually as a subset with replicates, of the candidate set D. As described in
Institute (2004), D-optimality is based on the determinant of the information
matrix for the design, which is the same as the reciprocal of the determinant
of the variance-covariance matrix for the least squares estimates of the linear
parameters of the model. The D-efficiency of a design F with design matrix
XF is defined as

D(XF ) = 100×
(

det(Xt
FXF )1/p

n

)
(5)
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where p is the number of parameters in the linear model, and n is the number
of design points, n = #F . The D-efficiency is the relative number of runs (ex-
pressed as percentages) that are required by a hypothetical orthogonal design
to achieve the same det(Xt

FXF ), Mitchell (1974).
Given a design F we will compare its D-optimality with its robustness. For

a design F to be full rank we must have n ≥ p. Let us suppose that n > p
but that for some unexpected reasons n − p points of F are lost. We would
obtain a size p design that we denote by Fp. The corresponding design matrix
XFp

could be full rank and then the p parameters are estimable or not. When
XFp

is full rank the corresponding design Fp is said to be saturated. We define
the robustness of a fraction F as the ratio between the number of saturated
fractions and the total number of fractions of size p which are obtained by
removing n− p points from F .

Definition 1 (Robustness) We define the robustness of a fraction F with
design matrix XFas

r(XF ) =
# saturated Fp

#Fp
=

# saturated Fp(
n
p

) . (6)

In particular a design F is robust if its robustness is equal 1, r(XF ) = 1.
Now we recall the definition of totally unimodular matrices and prove that
for totally unimodular matrices XF the definitions of robustness in Eq. (6)
and D-efficiency in Eq. (5) are equivalent. This follows from the Cauchy-Binet
lemma from Linear Algebra.

Lemma 1 (Cauchy-Binet) Let Xp be a p× p sub-matrix of X. Then:

det(XtX) =
∑

det(Xt
pXp) =

∑
det(Xp)

2 ,

where the sum extends over all p× p sub-matrices of X.

Definition 2 A matrix X is totally unimodular if every square sub-matrix
Xp has determinant 0, +1, or −1. In particular, this implies that all entries
are 0 or ±1.

Proposition 1 Let us consider a fraction F ⊂ D with design matrix XF ,
and assume that the design matrix of the full factorial model matrix XD is
totally unimodular. Then, the relation between the robustness R(XF ) and the
D-efficiency D(XF ) is

r(XF ) =
(nD(XF )/100)

p(
n
p

) ;

D(XF ) =
100

((
n
p

)
r(XF )

)1/p
n

.

and in particular D-optimality is equivalent to maximum robustness.
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• • •
• • •
• • •
• • •

Fig. 1 The candidate set D for Example 1.

Proof Using the Cauchy-Binet lemma we can write

det(Xt
FXF ) =

∑
det(Xp)

2 ,

where the summation is extended to all the p× p sub-matrices Xp of XF .
For totally unimodular matrices det(Xp)

2 ∈ {0, 1} and then
∑

det(Xp)
2

is the number of saturated fractions Fp contained in F . It follows that the
robustness of the fraction F with design matrix XF can be written as

r(XF ) =
det(Xt

FXF )(
n
p

) .

Finally, from the definition of D-efficiency in Eq. (5), the result follows.

Example 1 (Balanced Incomplete Block Design) Let us consider an example
with two factors,A with level set {1, 2, 3, 4} andB with level set {1, 2, 3, 4, 5, 6}.
As candidate set D we choose an Orthogonal Array of size 12 and strength
1. If the levels of A (B) represent the rows (the columns) of a table we can
represent the points of D as the bullets in Fig. 1. The design D can also be
seen as a Balanced Incomplete Block Design (BIBD) with t = 4 treatments,
b = 6 blocks, k = 2 treatments in each block and λ = 1 (i.e. each pair of
treatments occurs together λ = 1 time within a block).

One possible full rank design matrix for the main effects model is

XD = (m0 | a1 | . . . | a3 | b1 | . . . | b5) , (7)

where m0 is a column vector of 1’s, a1, . . . ,a3 are the indicator vectors of the
first 3 levels of the factor A, and b1, . . . ,b5 are the indicator vectors of the
first 5 levels of the factor B. The rank of the matrix XD is p = 9.

It can be proved that XD as defined in Eq. (7) is totally unimodular, Schri-
jver (1986). It follows that any sub-matrix XF of XD obtained by selecting n
rows from XD with n = 9, 10, 11 is totally unimodular. Then from Proposition
1 robustness and D-efficiency are equivalent for all the fractions of D.

Let us suppose that we want to find robust sub-fractions with n = 10 runs.
By simply checking all the

(
12
10

)
= 66 fractions of D we find 6 fractions that

do not allow estimability of the model (the rank of the design matrix is less
than p = 9), 48 fractions with robustness equal to 0.6 and 12 fractions with
robustness equal to 0.8.

Except from the special case of totally unimodular matrices, robustness
and D-efficiency are not related as in Proposition 1. In the next sections we
will explore the relationship between robustness and D-efficiency in different
scenarios.
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3 Circuits and their properties

In order to give a complete account of our theory and to present our algorithms
with full details, some definitions and a few basic facts concerning the algebraic
and combinatorial properties of the model matrices are needed. Thus, in the
first part of this section, we recall some definitions and results from Algebraic
Statistics. The interested reader can find a detailed presentation in Pistone
et al (2001). As a general reference for Commutative Algebra we refer to Cox
et al (2007).

Let us consider a design matrix on a set of K design points. For instance,
such a set can be the full factorial design, D, and in this case K = N , but the
theory is not limited to full factorial designs. Let X = XF be a model matrix
on F , and assume that X has integer entries. To simplify the notation, we
drop the subscript F if there is no ambiguity. The matrix X has dimensions
K × p. Moreover, in order to match the common notation in Statistics with
the notation in Commutative Algebra, we consider the matrix A = Xt, the
transpose of the model matrix.

Given a p × K integer matrix A, we define the polynomial ring R[x] =
R[x1, . . . , xK ] of all polynomials with indeterminates x1, . . . , xK with real co-
efficients, i.e., we define an indeterminate for each element of y or, equivalently,
for each point of the design. An ideal I in R[x] is a subset of R[x] such that
f + g ∈ I for all f, g ∈ I and fg ∈ I for all f ∈ I and for all g ∈ R[x]. The
ideal generated by the polynomials f1, . . . , fr is the ideal

I(f1, . . . , fr) = 〈f1, . . . , fr〉 = {g1f1 + . . . grfr : g1, . . . , gr ∈ R[x]} .

A classical result in polynomial algebra, namely the Hilbert basis theorem,
ensures that every ideal in R[x] is finitely generated.

The toric ideal defined by A is the binomial ideal (i.e., an ideal generated
by binomials)

I(A) = 〈xa − xb : Aa = Ab〉
where the monomials xa are written in vector notation xa = xa11 · · ·x

aK
K .

In our examples we label the design points lexicographically for conve-
nience. For instance in the 24 case we define the indeterminates as follows:
(−1,−1,−1,−1) 7→ x1, (−1,−1,−1, 1) 7→ x2, (−1,−1, 1,−1) 7→ x3 and so on
until (1, 1, 1, 1) 7→ x16. Moreover, we use the log notation for binomials:

f = xa − xb 7−→ a− b

when this helps in simplifying the presentation.

Definition 3 The support of a binomial f = xa − xb is the set of indices i
(i = 1, . . . ,K) such that a(i) 6= 0 or b(i) 6= 0. We denote the support of f with
supp(f).

Definition 4 An irreducible binomial f = xa−xb ∈ I(A) is a circuit if there
is no other binomial g ∈ I(A) such that supp(g) ⊂ supp(f) and supp(g) 6=
supp(f). We denote the set of all circuits of I(A) with C(A).
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Remark 1 Each column of A identifies a design point, and therefore the defini-
tion of a set of column-indices is equivalent to the definition of the fraction with
the corresponding design points. Given F = {i1, . . . , in}, AF is the sub-matrix
of A obtained by selecting the columns of A according to F .

The set C(A) is also called the circuit basis of the matrix A. With a slight
abuse of notation, we denote with C(A) also the set of the exponents, i.e.,
C(A) := {u | xu+ − xu− is a circuit } and we call such integer vectors the
circuits of F with respect to A.

Notice that by construction a circuit u must belong to ker(Xt), where
ker(A) denotes the kernel of a matrix A.

In the following proposition we collect some major properties of the circuits.
The proofs can be found in Sturmfels (1996).

Proposition 2 1. Every circuit is a primitive binomial, i.e., if xu+ − xu−

is a circuit, then there is no binomial xv+ − xv− such that xv+ properly
divides xu+ and xv− properly divides xu−.

2. Every vector v ∈ ker(Xt) can be written as a non-negative rational combi-
nation of (n− p) circuits

v =
∑

cj(x
u+j − xu−j ) cj ∈ Q, xu+j − xu−j ∈ C(Xt) .

Each circuit in the previous decomposition is sign-compatible with v.
3. The support of a circuit has cardinality at most (p+ 1).

Remark 2 The circuit basis of an integer matrix A can be computed through
several packages for symbolic computation. The computations presented in the
present paper are carried out with 4ti2, see 4ti2 team (2018). 4ti2 can be
used as an independent executable program or as a package of the Computer
Algebra System Macaulay 2, see Grayson and Stillman (2019). For small de-
signs the computations are performed in few seconds at most, and the circuit
basis in the output can be easily analyzed.

Example 2 First, we illustrate an example in some details. We consider the
full factorial 24 design with main effects. Writing the transpose matrix to save
space, a full-rank version of the design matrix is

Xt =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 , (8)

where each column is a design point (lexicographically from (−1,−1,−1,−1)
to (1, 1, 1, 1)) and the five rows are the intercept plus one parameter for each
main effect. The circuits in C(D) are 1, 348. More precisely, there are:
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(a) 100 circuits with support on 4 points: they are of the form

(1,−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(such moves are well known in Algebraic Statistics and are named as “basic
moves” in the context of contingency table analysis).

(b) 160 circuits with support on 5 points: they are of the form

(1,−2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0) .

(c) 1, 088 circuits with support on 6 points: in this case there are different
patterns of nonzero elements. For instance, there are 384 circuits of the
(symmetric) form

(1,−2, 0, 2, 0, 0, 0,−1, 0, 0,−1, 0, 0, 1, 0, 0) .

There are also asymmetric configurations such as the 16 circuits of the
form

(1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0,−1, 0,−1,−1, 3) .

Example 3 Let us consider the full factorial 24 design with main effects and
second order interactions. A full rank version of the design matrix has dimen-
sions 16× 11 and there are 140 circuits: 20 circuits with support on 8 points;
40 circuits with support on 10 points; 80 circuits with support on 12 points.

Other examples, also with multi-level and asymmetric designs, include:

(i) Design 25; model with simple factors, 2-way and 3-way interactions. There
are 3, 254 circuits that can be divided into 12 classes, up to permutations
of factors or levels.

(ii) Design 25; model with simple factors. The circuits are 353, 616 and they
can be divided into 38 classes.

(iii) Design 2× 3× 4; model with simple factors and 2-way interactions. There
are 42 circuits that can be divided into 2 classes.

(iv) Design 3× 3× 4; model with simple factors and 2-way interactions. There
are 19, 722 circuits that can be divided into 20 classes.

Note that all the computations for the Examples above can be performed
with 4ti2 in less than 1 second, but the computational cost (and the number
of circuits) increases fast with the dimension of the full factorial design. For
instance, there are 353, 616 circuits for the full-factorial 25 design with main
effects, and the computation takes about 8 hours of CPU time. This makes
important some properties of the circuits that we state and discuss in the
next section. These properties will allow computations also for medium-sized
designs, where the computations on the full factorial design are unfeasible.

A first connection between the circuits and the properties of the designs
has been presented in Fontana et al (2014) and concerns saturated designs.
A design F , subset of a full factorial design D, is a saturated design if it has
minimal cardinality #D = p and it allows us to estimate the model parameters.
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Thus, by definition the model matrix XF of a saturated design (under a full-
rank parametrization) is a non-singular matrix with dimension p × p. The
following theorem replaces a linear algebra condition with a combinatorial
property for checking whether a design with p runs is saturated or not.

Theorem 1 Let A be a (full-rank) full-design model matrix with dimensions
p ×K and let CA = {f1, . . . , fr} be the set of its circuits. Given a set F of p
column-indices of A, the sub-matrix AF is non-singular if and only if F does
not contain any of the supports supp(f1), . . . , supp(fr).

Example 4 Consider the 24 full-factorial design and the model with simple
effects and 2-way interactions.

The design matrix X has rank 11, thus we search for fractions with 11
points. The design

F1 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}

is not saturated, but replacing the point (0, 1, 0, 1) with the point (0, 1, 0, 0)
we obtain the saturated design

F2 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)} .

In fact, the full-factorial design matrix has 140 circuits. They can be divided
into three classes, up to permutations of factors or levels:

(a) 20 circuits of the form

u1 = (0, 0, 0, 0, 1,−1,−1, 1,−1, 1, 1,−1, 0, 0, 0, 0) ;

(b) 40 circuits of the form

u2 = (1,−2, 0, 1, 0, 1,−1, 0, 0, 1,−1, 0,−1, 0, 2,−1) ;

(c) 80 circuits of the form

u3 = (1, 0,−2, 1, 0,−1, 1, 0,−2, 1, 3,−2, 1, 0,−2, 1)

and it is immediate to check that the fraction F1 contains the support of the
circuit u2.
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4 Robustness and circuits

In this section we study the connections between the robustness of a fraction
and the circuits contained in the fraction itself. The first key result here states
that the circuits are consistent with the operation of subset selection. This has
two relevant consequences. First, it yields a convenient mathematical frame-
work for design search, and we will exploit this fact in the next section, where
we will define an algorithm for finding robust fractions. Second, for a given
problem of subset selection, the circuit basis can be computed only once on
the candidate set and this is enough to perform the analysis on all possible
fractions.

Consider two fractions F1 and F2 with k1 and k2 design points respec-
tively, such that F1 ⊂ F2. Without loss of generality, the matrix XF2 can be
partitioned into

XF2
=

(
XF1

XF2−F1

)
.

and each vector u ∈ Zk2 can be written as

u = (uF1
,uF2−F1

) with uF1
∈ Zk1

Theorem 2 If F1 and F2 are two fractions with F1 ⊂ F2, then the circuits
in C(XF1

) are

{uF1
: u ∈ C(XF2

) with supp(u) ⊂ F1} .

Proof Let u be a circuit in C(XF2
) such that supp(u) ⊂ F1. Then uF1

∈
ker(Xt

F1
) and it is support-minimal. To prove this, suppose that there is an

integer vector v ∈ ker(Xt
F1

) with supp(v) ⊂ supp(u). This implies that the
vector u′ = (u,0F2−F1

) obtained by filling with zeros the vector u to reach
the size of F2 has support containing the support of v′ = (v,0F2−F1), and
thus u′ is not a circuit in C(XF2).

On the other side, suppose that v is a circuit in C(XF1
). Then u =

(v,0F2−F1
) is a circuit of C(XF1

) and v = uF1
.

In order to show how to apply the previous result, let us consider again
the BIBD example already introduced in Sect. 2.

Example 5 (BIBD revisited) Let us consider again the BIBD example with the
candidate set D pictured in Fig. 1. The model matrix of the complete design
has 1, 650 circuits but only 7 of them have support in our candidate set D.
They are listed below:

0 0 0 0 1 −1 0 −1 1 0 1 −1
0 1 −1 0 0 0 −1 0 1 1 0 −1
1 −1 0 −1 1 0 1 −1 0 0 0 0
1 0 −1 −1 0 1 0 0 0 1 −1 0
0 1 −1 0 −1 1 −1 1 0 1 −1 0
1 −1 0 −1 0 1 1 0 −1 0 −1 1
1 0 −1 −1 1 0 0 −1 1 1 0 −1
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Our problem is to select 10 points defining a sub-fraction with robustness
as high as possible.

Now, note that the best selection strategy would be to remove two points
such that all circuits are canceled, i.e., a set of 10 points with no circuits in-
side. But this can not be done here. Each pair of points we choose to remove
preserves at least one circuit. For instance, removing the first and the second
points preserves the first circuit, removing the last two points preserves the
third circuit, and so on. Thus, at least one circuit survives and the full robust-
ness can not be reached. To choose the best subset we need to inspect with
some more details the circuits. We observe that there are 4 circuits with sup-
port on 6 points and 3 circuits with support on 8 points. Since the robustness
of a fraction depends on the estimability of the saturated sub-fractions, it is
better to remove the small circuits as much as possible. In this case, the best
solution is obtained by killing all circuits with support on 6 points. This can be
done in 12 ways, obtaining 12 sub-fractions which share the same robustness,
and actually the maximum achievable in this problem. Such 12 fractions are
obtained by removing the following pairs of points:

{1, 9}, {1, 12}, {2, 6}, {2, 11}, {3, 5}, {3, 8},

{4, 9}, {4, 12}, {5, 10}, {6, 7}, {7, 10}, {8, 10} .

In Example 1 we have noted that there are 66 fractions of D with 10 points, and
6 fractions do not allow estimability of the model, 48 fractions have robustness
equal to 0.6 and 12 fractions have robustness equal to 0.8. If we look at the
circuits, we see that in the 12 fractions with robustness 0.8 only one circuit
with support on 8 points survives; in the 48 fractions with robustness 0.6 only
one circuit with support on 6 points survives; in the 6 non estimable fractions
more than one circuit survive.

As a general rule, from the definition of robustness and the property of the
circuits stated in Theorem 2, to obtain a robust fraction we need to remove
as much circuits as possible, and in particular we need to remove the circuits
with small support.

In the example below, we show that the connections between circuits and
robustness are not limited to linear models, but they can be used in the general
case of polynomial models, which represent the most general class of models
on a finite grid of points, according to the expression in Eq. (3). We limit the
computation to the univariate case to ease the discussion of the results, but
the computations can be extended to a general multivariate polynomial model.

Example 6 Let us consider a (univariate) polynomial model on 7 points labeled
{−3,−2,−1, 0, 1, 2, 3}. The model matrix for a quadratic function is

Xt =

 1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3

9 4 1 0 1 4 9

 .
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The circuit basis of Xt is formed by 35 circuits with support on 4 points. The
35 supports cover all possible subsets with 4 points. Thus, in this example all
the sub-fractions have the same robustness.

In view of the last property of the circuits stated in Proposition 2, another
interesting case happens when we search for fractions with p+ 1 runs.

Corollary 1 The supports of circuits with p + 1 points are fully robust frac-
tions.

Proof Since the circuits are support-minimal, if a fraction F with p+ 1 points
is the support of a circuit, then there are no circuits with support contained
in F , and in particular all the sub-fractions of F with p points are estimable.

Example 7 (OA) Consider the following Orthogonal Array F with 18 runs of
strength 2 for the 2 × 33 design. This is the best GWLP Orthogonal Array
according to the Eendebak catalogue, see Eendebak and Schoen (2018). We
write the transposed of the design to save space, so each row is a factor.

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2

A full-rank version of the (transposed of the) design matrix XF for the
main effect model on this fraction is

Xt
F =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0


,

There are 591 circuits in C(XF ), namely: 27 circuits with support on 4
points; 114 circuits with support on 6 points; 270 circuits with support on 8
points; 180 circuits with support on 9 points. The 180 circuits with support
on 9 points are the sub-fractions of F with 9 points.

Note that the computation of the circuits in the previous example is easily
performed with 4ti2 in 0.07 seconds while the circuits of the corresponding full
factorial design are actually unfeasible. This fact shows the practical relevance
of Theorem 2 for the proposed approach. The circuits which are needed are
only those of C(XF ) and not those of C(XD).

In view of the two examples discussed above, two remarks are now in order.
First, the circuits with support on p+ 1 points and the circuits with support
on p points or less have a completely different role in finding robust fractions.
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While the circuits with support on p points or less yield non estimable minimal
fractions, and therefore they should be avoided as much as possible, the circuits
with support on p+1 points define fully robust fractions. Second, when a circuit
with support on p points or less is contained in fraction, the loss in robustness
it causes is as high as small the support is. In fact, a small circuit (with
support on less than p points) will have impact on a large number of minimal
fractions, while on the opposite side a circuit with support on exactly p points
will produce only one non estimable minimal fraction. Such remarks will be
useful in the next section, where an algorithm for finding robust fractions will
be introduced.

Finally, we point out that the result on the estimability of saturated frac-
tions mentioned in the previous section comes now as a corollary of Theorem
2. Moreover, we can state a slight generalization as follows.

Proposition 3 Consider a fraction F ⊂ D with k > p points. Then the
fraction F is estimable (i.e., the p parameters are estimable) if and only if
there is at least one fraction F1 ⊂ F with p design points that does not contain
supports of the circuits in C(XD).

For the proof it is enough to apply Theorem 1 and the Cauchy-Binet lemma.

5 Algorithm for robust fractions

In this section we describe a simple algorithm for finding robust fractions of
a specified size. The basic idea of the algorithm is to improve a given fraction
by exchanging, for a certain number of times, the worst point of the fraction
with the best point among those which are in the candidate set but not in the
fraction. This kind of algorithms is commonly used in design generation. In
general, they are referred to as exchange algorithms, see e.g. Wynn (1970).

5.1 The algorithm and a simulation study

The basic points of the algorithms come from the theory discussed in the the
previous section. First, the a good fraction should avoid as much as possible the
circuits with support on p points or less. Second, small circuits are worse than
large circuits, since they are contained in a larger number of minimal fractions,
leading to a higher loss in robustness, as noticed in Example 5. Thus, at each
step a loss function is computed for each point R of the current fraction as
the number of minimal fractions becoming non-estimable when removing the
point R. In formulae:

L(R) =
∑
u

(
n−#supp(u)

p−#supp(u)

)
(9)

where the sum is taken over all the circuits (u) in the current fraction contain-
ing the point R. Notice that the formula in Equation 9 does not guarantee that
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the relevant minimal fractions are all distinct. The formula should be viewed
as a first-order approximation of the inclusion-exclusion formula.

Therefore, the main steps of the algorithm are as follows:

1. Take the circuits C(XD) of the candidate set under the given model, and
a starting fraction F of a specified size n;

2. Select the circuits of C(XD) with support on p points or less. We denote
this set of circuits by Cp(XD);

3. Repeat until a max-iter number of iterations are performed:

(a) Consider the circuits of Cp(XD) which are contained in F ;
(b) For each pointR in F compute its associated loss L(R) as the (weighted)

number of circuits which include R;
(c) Take all the points with the highest loss and build up all possible pairs

with one point not in F . Make the exchange using the pair which re-
duces as much as possible the number of circuits contained in the frac-
tion;

(d) If no reduction is possible, then break.

In the simulation study below, the starting fraction F of a specified size n
is uniformly-at-random selected from all the subsets of size n of the candidate
set. In all the examples below the results are obtained on a sample of 1, 000
fractions.

As a first scenario, we describe the use of the algorithm on some examples
where the candidate sets are full factorial designs. We consider four and five
2-level factors with the main-effect model and two mixed-level cases. In both
mixed-level cases we consider three factors, with 2,3 and 4 levels: in the first
case we work with the main-effect model without interactions and in the second
one with the main-effect model plus the interaction between the second and the
third factor. The candidate sets are the 24, the 25 and the 2×3×4 full factorial
designs respectively. The algorithm is used for finding robust fractions with
different sizes. For each case the algorithm has been used starting from 1, 000
randomly selected fractions and using 20 as the maximum number of iterations
max-iter. For each case in Tables 1, 2, 3, and 4 some statistics concerning the
robustness rB of the initial randomly selected designs and the difference δ
between the final and the initial value of the robustness are reported. It is
worth noting that in all but one cases the fifth percentile of δ is positive. It
means that in 95% of the simulations the algorithm has been able to improve
the initial design. The fifth percentile is negative for the 25 design with 8 runs.
In this case the twentieth percentile is positive 0.0357 meaning the in 80% of
the simulations the algorithm has been able to improve the initial design.

In Figure 2 the 1, 000 pairs of robustness of the starting fraction and ro-
bustness of the final fraction are reported in the case of 5 factors and n = 10
as pre-specified size of the fraction.

As a second scenario, we consider the problem of finding robust subsets of a
given Orthogonal Array. In these cases, the problem on the full-factorial design
is not feasible, but the algorithm can still be used thanks to the properties of
the circuits for sub-fractions discussed in Section 4.
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4 factors
n r̄B med rB δ̄ med δ δ0.05
8 0.687 0.679 0.135 0.143 0
10 0.691 0.698 0.071 0.063 0.016
12 0.69 0.689 0.032 0.033 0.005
14 0.689 0.693 0.004 0 0

Table 1 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 24 design for various sizes
of the fraction.

5 factors
n r̄B med rB δ̄ med δ δ0.05
8 0.615 0.607 0.198 0.179 -0.071
10 0.613 0.624 0.156 0.138 0
12 0.614 0.621 0.139 0.135 0.022
14 0.613 0.618 0.109 0.107 0.034

Table 2 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 25 design for various sizes
of the fraction.

2 × 3 × 4 no interaction
n r̄B med rB δ̄ med δ δ0.05
14 0.385 0.393 0.107 0.103 0.007
16 0.385 0.394 0.077 0.07 0.019
18 0.383 0.387 0.045 0.041 0.009

Table 3 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 2× 3× 4 design (without
first-order interaction) for various sizes of the fraction.

2 × 3 × 4 with interaction
n r̄B med rB δ̄ med δ δ0.05
14 0.008 0 0.277 0.286 0.286
16 0.01 0 0.047 0.057 0
18 0.01 0 0.012 0.022 0
20 0.01 0.013 0.003 0 0

Table 4 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 2 × 3 × 4 design (with
first-order interaction) for various sizes of the fraction.
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Fig. 2 Robustness of the input and the output fraction for the model 25 with main effects,
size n = 10.

To illustrate a first example in this scenario, let us consider the Orthogonal
Array with strength 3 in Tonchev (1989). It consist of 40 runs of a 220 full
factorial design, and it also reported in the collection neilsloane.com/oadir,
see Sloane (2020). Under the first-order model, the circuits contained in the
Orthogonal Array are 190, all with support on 4 points. We have performed a
simulations by running the algorithm for finding robust fractions with 22 runs
from random starting fractions. One easily finds that in all 1, 000 replicates a
fraction with r = 0.1818 is generated, while the starting random fraction has
r = 0 in all but one cases. The same holds when finding fractions with 23 runs,
where in all cases the algorithm selects a fraction with robustness r = 0.0474.
In this example all the moves are basic moves, so the simplified version of
the algorithm does not modify the computations. Since the robustness of the
output fractions is constant, we can recover the number of saturated fractions
in each case. So, for 22 runs we have 4 saturated fractions, for 23 runs we have
12 saturated fractions, for 24 runs we have 32 saturated fractions.

As another example, we move to a non-binary example. Consider the best
GWLP 3 Orthogonal Array with 27 runs in the 34 full factorial design, see
Eendebak and Schoen (2018). In this case, under the main-effect and first
order interaction model, there are 58, 113 circuits in the relevant Orthogonal
Array, 36, 045 of which can be discarded since their support is on 10 points.
Here, only 81 moves are basic moves. In Figure 3 the 1, 000 pairs of robustness
of the starting fraction and robustness of the final fraction are reported when
fractions of size n = 12 are considered. In the case n = 12, while the mean
robustness of the starting fraction is rB = 0.3197, the mean robustness of the
final fraction is rA = 0.4567.
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Fig. 3 Robustness of the input and the output fraction for the subsets of size n = 12 from
the best GWLP 3 Orthogonal Array with 27 runs in the 34 full factorial design.

5.2 Computational remarks

As we have already noticed, the proposed algorithm is a first order approxi-
mation of the inclusion-exclusion formula. In case of ties, both for the run to
be excluded and the candidate new run, the algorithm seeks for the optimal
exchange, so that it stops in few steps. In all our simulations, the parameter
max-iter is set to 20 but in most cases 3 or 4 iterations are enough to reach a
stationary point.

A first-order approximation of the inclusion-exclusion formula can be not
accurate when there is a large number of circuits contained in the proposed
fraction. Indeed, the algorithm computes for each point the (weighted) number
of circuits containing the point, and this number is taken as an estimate of
the number of minimal fractions which would become estimable if the point is
removed. However, several circuits can pertain to the same minimal fraction.
For this reason, when the number of desired runs becomes large, one can con-
sider a reduced version of the algorithm taking into account only the circuits
with minimal support. The algorithm is performed as above, simply by taking
the set of circuits with minimal support Cmin(XD) instead of C(XD).

For each case in Tables 5, 6, 7, and 8 some statistics concerning the robust-
ness rB of the initial randomly selected designs and the difference δ between
the final and the initial value of the robustness are reported. The reduced ver-
sion of the algorithm performs extremely well. In all cases the fifth percentile
of δ is positive (or null in some cases). It means that in 95% of the simulations
the reduced algorithm has been able to improve the initial design. For the 24

and the 25 cases, fractions with 10 runs, the robustness before and after the
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4 factors
n r̄B med rB δ̄ med δ δ0.05
8 0.695 0.714 0.109 0.107 0
10 0.688 0.698 0.063 0.063 0
12 0.688 0.689 0.032 0.033 0.005
14 0.689 0.693 0.005 0 0

Table 5 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 24 design for various sizes
of the fraction. Reduced algorithm.

5 factors
n r̄B med rB δ̄ med δ δ0.05
8 0.605 0.607 0.231 0.214 0
10 0.613 0.624 0.244 0.229 0.095
12 0.612 0.616 0.257 0.259 0.12
14 0.613 0.619 0.147 0.141 0.075

Table 6 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 25 design for various sizes
of the fraction. Reduced algorithm.

2 × 3 × 4 no interaction
n r̄B med rB δ̄ med δ δ0.05
14 0.382 0.392 0.148 0.138 0.056
16 0.384 0.389 0.088 0.081 0.033
18 0.383 0.387 0.047 0.044 0.012

Table 7 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 2× 3× 4 design (without
first-order interaction) for various sizes of the fraction. Reduced algorithm.

reduced algorithm is plotted in Fig. 4 for 1, 000 randomly generated starting
fractions.

The results here confirm that for small n the reduced algorithm has worse
performances, but it outperforms the complete algorithm when the design
size n increases. The simplified version can be used also in the case of large
designs, since in most cases the circuits with minimal support can be defined
theoretically, without computations.

Also, note that the algorithm does not need the computation of the ro-
bustness at each step (as for instance in a standard exchange algorithm). As
a consequence, the execution time is less than 1 sec per fraction in all the
examples.

Finally, since there are several local minima, the algorithm can be put into
a standard simulated annealing. We have not explicitly considered this option
in our algorithm since the main aim of this paper is to highlight the connec-
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2 × 3 × 4 with interaction
n r̄B med rB δ̄ med δ δ0.05
14 0.011 0 0.274 0.286 0.286
16 0.01 0 0.047 0.057 0
18 0.01 0 0.013 0.022 0
20 0.01 0.013 0.004 0 0

Table 8 Mean (r̄B) and median (med rB) of the robustness of the randomly selected
fractions. Mean (δ̄), median (med δ), and fifth percentile (δ0.05) of the differences between
the final and the starting value of the robustness obtained in the 2 × 3 × 4 design (with
first-order interaction) for various sizes of the fraction. Reduced algorithm.
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Fig. 4 Robustness of the input and the output fraction for the subsets of size n = 10 for
the 24 (left) and 24 (right) models with main effects. Reduced algorithm.

tions between robustness and the geometry of the fraction studied through the
circuits.

5.3 Robustness and D-optimality

From our previous results in Section 2, we know that robustness is equivalent to
D-optimality in the case of totally unimodular model matrices. Thus, intuition
suggests to use a D-optimal fraction as a starting point of our algorithm also
in the general case. However, some simple simulations show that in for general
model matricesD-optimal fractions are far from being also robust. To illustrate
this feature, we show in Figure 5 the scatterplot of the D-efficiency versus the
robustness of a sample of fractions (including the D-optimal one) for the model
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Fig. 5 D-efficiency versus robustness of fractions in the 24 model with main effects (n = 7
on the left, n = 8 on the right).

with main effects in the 24 factorial design. It is immediate to see that in both
cases the D-optimal fraction has a low value of robustness.

6 Final remarks and the case of supersaturated designs

In this work, we have introduced an algorithm for finding robust fractions (i.e.,
subsets of a candidate set of design points) using the combinatorial notion of
circuit basis, and thus highlighting the geometric nature of the problem. We
have shown through several examples that the proposed algorithm is effective,
and can be applied also in the case of problems with moderate size, by exploit-
ing the properties of the circuit basis. It is worth noting that, from a practical
point of view, the robustness is interesting when n, the number of points of
the fraction is only a little bit larger than p, the number of parameters to be
estimated. To decide whether robustness is worth considering depends on the
application but, in our opininion, if n−pn is not greater than 10% the robustness
becomes a relevant characteristic of a fraction.

In this concluding section, we introduce the analysis of supersaturated
models by means of the circuit basis. The detailed analysis of this problem
needs some more theory and falls outside the scope of the present paper, but
nevertheless we aim at introducing the basic facts needed to proceed in that
direction.
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Now, fix a fraction F and consider the design matrix partitioned by columns
into two sub-matrices X(1) and X(2):

X(2) =
(
X(1) | X(a)

)
.

Here X(2) and X(1) are two nested models on the same fraction. In this
case the connections between the circuit bases for X(2) and for X(1) are less
simple, but the following result holds.

Proposition 4 If X(2) is a model matrix, and X(1) is a model matrix obtained
from X(2) by removing columns as above, then:

1. From X(1) to X(2):

u ∈ C(X(1)) s.t. u ∈ ker(X(2))⇒ u ∈ C(X(2)) .

2. From X(2) to X(1):

u ∈ C(X(2))⇒ u ∈ C(X(1))

or there exists v ∈ C(X(1)) with supp(v) ⊂ supp(u). In such a case,
vtX(a) 6= 0.

Proof Let u be a circuit in C(F , X1) and u ∈ ker(X2). The fact that u is
support-minimal for X2 follows immediately by contradiction.

The analysis of subfractions by means of Prop. 4 is less easy, but some aid
from the circuit bases still survives. In fact, for minimal fractions with p runs
either R(F) = 1 or R(F) = 0. Moreover, for saturated fractions Xp is non
singular so C(Xp) is the empty set.

Now we can consider from a saturated fraction sub-fractions with (p − 1)
runs on models with (p−1) parameters, and we look at maximizing the number
of non-singular X(p−1)×(p−1) matrices.

For saturated fractions

dim kerXp = 0 .

Thus, removing one parameter (column)

dim kerXp×(p−1) = 1 .

Therefore the generator of kerXp×(p−1) is the unique circuit.
The basic idea here is to compute the p circuits for all possible Xp×(p−1)

matrices. The zeros in these circuits, gives an index of robustness for saturated
fractions and helps in finding subfractions. In fact, following our theory, the
number of zeros in these circuits corresponds exactly to the number of singular
matrices X(p−1)×(p−1). Let us illustrate this fact with an example.
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+ + + + + + +
+ + − − − − +
+ − + + − − −
+ − − − + + −
− + + − + − −
− + − + − + −
− − + − − + +
− − − + + − +


Fig. 6 The 8-run Plackett-Burman design.

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1

Fig. 7 The 8 circuits obtained by deletion of one column from the 8-run Plackett-Burman
design.

Example 8 Consider the 8-run Plackett-Burman design for the 27 problem.
With the usual ± notation, it is diplayed in Fig. 6, together with the corre-
sponding model matrix.

The 8 circuits obtained by deletion of one column from XF are reported in
Fig. 7. We see that all the entries of the 8 circuits are non-zero, and thus all
7-points sub-fractions are estimable in all models with one removed column,
providing the optimality of the Plackett-Burman design in terms of robustness.

This example shows that the connections between the statistical proper-
ties of a design and its geometry are not limited to the algorithm for robust
fractions introduced in this paper. There are several possible new applications
of the circuit basis for the study of the structure of a design, as for instance
supersaturated fractions, optimal designs, and randomization for treatment
allocation.
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