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Abstract: The nearest-centroid classifier is a simple linear-time classifier based on computing
the centroids of the data classes in the training phase, and then assigning a new datum to
the class corresponding to its nearest centroid. Thanks to its very low computational cost, the
nearest-centroid classifier is still widely used in machine learning, despite the development of
many other more sophisticated classification methods. In this paper, we propose two sparse
variants of the nearest-centroid classifier, based respectively on ¢; and /o distance criteria. The
proposed sparse classifiers perform simultaneous classification and feature selection, by detecting
the features that are most relevant for the classification purpose. We show that training of the
proposed sparse models, with both distance criteria, can be performed exactly (i.e., the globally
optimal set of features is selected) and at a quasi-linear computational cost. The experimental
results show that the proposed methods are competitive in accuracy with state-of-the-art feature

selection techniques, while having a significantly lower computational cost.
Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)
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1. INTRODUCTION

In the last years the technological development has led
to a massive proliferation of large-scale datasets. The
processing of these large amounts of data poses many
new challenges and there is a strong need of algorithms
that scale mildly (e.g., linearly or quasi-linearly) with
the dataset size. For this reason, classification methods
with a very low computational cost, such as Naive Bayes
(McCallum et al., 1998; Jiang et al., 2007) and the nearest
centroid classifier (Manning et al., 2008; Tibshirani et al.,
2002), are an appealing choice in this endeavour. In many
cases, these methods are the only feasible approaches, since
more sophisticated techniques would be too demanding
from a computational point of view.

When the number of features in a datasets is very high,
feature selection is a necessary step of any machine learn-
ing algorithm. Feature selection consists in detecting the
most relevant features of the dataset. Besides reducing the
dataset size, feature selection has some other important
advantages. First, it eliminates noisy or irrelevant features,
reducing the risk of overfitting. Second, by selecting only
the most significant features, it improves the interpretabil-
ity of the model. State-of-the-art feature selection methods
are usually based on some heuristics without any guaran-
tee of optimality. Some of them, such as Lasso (Tibshirani,
1996) or ¢;-regularized logistic regression (Ng, 2004), are
based on a convex optimization problem with a ¢{-norm
penalty on the regression coefficients to promote sparsity.
The main drawback of these techniques is that they are
usually computationally expensive. Other methods, such
as Odds Ratio (Mladenic and Grobelnik, 1999), propose a
different approach that employs a feature ranking based on
their inherent characteristics. These methods are usually

1 This research was funded in part by sumup.ai.

very fast, but often their performance in terms of accuracy
is poor. Recently, Askari et al. (2019) have presented a fea-
ture selection method targeted for a Naive Bayes classifier.
This method can provide an optimal solution in the case of
binary data, and an approximate upper bound for general
data.

In this paper, we propose sparse nearest-center classifiers
that guarantee both global optimality and numerical ef-
ficiency. The proposed methods simultaneously perform
feature selection and classification. We discuss two variants
of the approach, namely an ¢;-sparse center classifiers and
an fo-sparse center classifier, in which we consider the ¢
and the /5 distance criteria, respectively. The £5 case is a
sparse variant of the nearest centroid classifier (Manning
et al., 2008; Tibshirani et al., 2002), which is a widely
used classifier, especially in text classification (Han and
Karypis, 2000). Instead, the ¢; case is related to the me-
dian classifier (Hall et al., 2009; Jornsten, 2004), that has
shown to be more robust to outliers than the ¢o version.
We prove that both the proposed methods select the op-
timal subset of features for the corresponding classifier, in
quasi-linear time. The experimental results show that the
proposed techniques achieve similar performance as state-
of-the-art feature selection methods, but at a substantially
lower computational cost.

2. PRELIMINARIES ON CENTER-BASED
CLASSIFIERS

Let
X {xu) x(’ﬂ eR™", (1)

be a given data matrix whose columns z) € R™, j =
1,...,n, contain feature vectors from n observations, and
let y € R™ be a given vector such that y; € {—1,+1} is
the class label corresponding to the j-th observation. We
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consider a binary classification problem, in which a new
observation vector x € R™ is to be assigned to the positive
class Cy (corresponding to y = +1) or to the negative
class C_ (corresponding to y = —1). To this purpose,
the nearest centroid classifier is a well-known classification
model, which works by assigning the class label based on
the least Euclidean distance from « to the centroids of the
classes. The centroids are computed on the basis of the
training data as

I 3 a0, I

n+ . " n_ . "

JjET JjET

where Jt = {j € {1,...,n} : y; = +1} contains the

indices of the observations in the positive class, J~ =

{j € {1,...,n} : y; = —1} contains the indices of

the observations in the negative class, and ny, n_ are

the cardinalities of JT and J~, respectively. A new

observation vector x is classified as positive or negative
according to the sign of

Ag(@) = llo = 27|13 — [l — 213,

that is, x is classified in the positive class if its Euclidean
distance from the positive centroid is smaller than its
distance from the negative centroid, and viceversa for the
negative class. The discrimination surface for the centroid
classifier is linear with respect to x, since

20)

)

Ag(x) = |lzl3 + |27 |3 — 227 @™ — 2|3 — [|lz* |3 + 2272+
= (2713 = lz*]3) + 227 (@* - 27), (3)

where the coefficient in the linear term of the classifier
is given by vector w = z+ — . Notice that, whenever
7 = z; for some component i (ie., w; = 0), the
corresponding feature x; in x is irrelevant for the purpose
of classification.

Remark 1. We observe that the centroids in (2) can be
seen as the optimal solutions to the following optimization
problem:

1 : 1 ,
i = @) g2 4+ — @) _ g2,
i iy 2 I =0T 3 e -0l
J

T jeg-

(4)
That is, the centroids are the points that minimize the
average squared distance to the samples within each class.
A proof of this fact is immediate, by taking the gradient
of the objective in (4) with respect to 6% and equating it
to zero, and then doing the same thing for #~. The two
problems are actually decoupled, so the two coefficients
1/ny and 1/n_ play no role in terms of the optimal so-
lution. However, they have been introduced for balancing
the contribution of the residuals of the two classes. *

We shall call (4) the (plain) fs-center classifier training
problem, and As in (3) the corresponding discrimination
function. The usual centroids in (2) are thus the points
that minimize the average {5 distance from the respective
class representatives. This interpretation opens the way
to considering different types of metrics for computing
centers. In particular, there exist an extensive literature on
the favorable properties of the ¢; norm criterion, which is
well known to provide estimates that are robust to outliers,
see, e.g., Huber (1981); Rousseeuw and Leroy (1987). The
natural ¢; version of problem (4) is

1 A 1 .
i il E (@ _ pt — E @) _g-
o+ 0+ erm ny Iz i+ n_ I I
JjeET* JET ™
(5)

which we shall call the (plain) ¢;-center classifier training
problem. It is known that an optimal solution to problem
(5) is obtained, for each i = 1,...,m, by taking 0 to be
(4)

the median of the values x;”’ in the positive class, and 0,

to be the median of the values xz(.j ) in the negative class,
see also the more general result given in Proposition 2. We

let

pt=med({xV}jez4), 1 =med({zP}er-), (6)
where med computes the median of its input vector se-
quence along each component, i.e., for each i = 1,...,m,

i is the median of {xgj)}jej+7 and p; is the median of

{J:Z(-j )}je 7-. The classification in the ¢;-center classifier is
made by computing the distances from the new datum =
and the ¢; centers of the classes, and assigning x to the
closest center, that is, we compute
Ar(@) = llo—p = lle = p s,

and assign x to the positive or negative class depending on
the sign of A (z). We observe that, contrary to the ¢ case,
the discrimination criterion based on the sign of A;(z) is
not linear in x. However, expressed more explicitly in its
components, Aj(x) is written as

m

Ar(w) =Y (i — i | = i — 1)

i=1
and we observe again, like in the /5 case, that the contri-
bution to A(z) from the ith feature z; is identically zero
when p; = ,u;".

3. SPARSE ¢; AND /¢y CENTER CLASSIFIERS

In Section 2 we observed that, for both the ¢ and the ¢,
distance criteria, the discrimination is insensitive to the
ith feature whenever 6" — 0" = 0, where 0%, 6~ are the
two class centers. The sparse classifiers that we introduce
in this section are aimed precisely at computing optimal
class centers such that the center difference 67 — 0~ is k-
sparse, meaning that |07 —07||o < k, where || - ||o denotes
the number of nonzero entries (i.e., the cardinality) of its
argument, and k < m is a given cardinality bound. Such
type of sparse classifiers will thus perform simultaneous
classification and feature selection, by detecting which k&
out of the total m features are relevant for the classification
purposes. We next formally define the sparse ¢5 and ¢
center classifier training problems.

Definition 1. (Sparse {o-center classifier). A sparse f3-cen-
ter classifier is a model which classifies an input feature
vector x € R™ into a positive or a negative class, according
to the sign of the discrimination function

Dg(z) =z = 075 — |z — 073
= (67115 = 167 113) + 227 (6% — 67),

where the sparse fo-centers 0, 0~ are learned from a data
batch (1) as the optimal solutions of the problem
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@) _pt)2 L — (@) — 9|2
s Z 29— 6*3+ =3 20 3 (7
j€‘7*
s.b.: 0T — 0~ |lo <k,

where & < m is a given upper bound on the cardinality of
0t —0-.

Definition 2. (Sparse {1-center classifier). A sparse ¢1-cen-
ter classifier is a model which classifies an input feature
vector x € R™ into a positive or a negative class, according
to the sign of the discrimination function

Ay(z) = lz =07 [l = [lz = 071,

where the sparse ¢1-centers 8T, #~ are learned from a data
batch (1) as the optimal solutions of the problem

; ) () _ p+ o -
. min Z 29— 6%+ 3" o9 6 (8)
jEJ*
5.t 167 — 67|l < k.

where k < m is a given upper bound on the cardinality of
0t —0-.

A perhaps notable fact is that both the sparse f5 and
the sparse ¢; classifier training problems can be solved
exactly and with almost-linear-time complexity (this fact
is discussed in the next sections), which also makes them
good candidates for efficient feature selection methods in
two-phase (feature selection + actual classifier training)
classifier training procedures.

4. TRAINING THE SPARSE /¢,-CENTER
CLASSIFIER

Let £ denote a fixed set of indices of cardinality m —k, and
D denote the complementary set, that is, D = {1,...,m}\
E. For any vector x € R™ we next use the notation zp to
denote a vector of the same dimension as x which coincides
with x at the locations in D and it is zero elsewhere. We
define analogously z¢, so that x = zp + z¢.

The following result characterizes an optimal solution to
problem (7); for space reasons a proof of this result is
reported in the full version of this paper (Calafiore and
Fracastoro, 2019).

Proposition 1. The optimal solution of problem (7) is
obtained as follows:

(1) Compute the standard class centroids z+, 77;
(2) Compute the centroids midpoint &
_ LTt
xr= ——
2
and the centroids difference § =z — z7;

(3) Let D be the set of the indices of the k largest
absolute value elements in vector d, and let £ be the
complementary index set;

(4) The optimal parameters 61, 6~ are given by

ot = :i‘;g + Z¢
0~ = Tp+ Tg.
Remark 2. Steps 1-2 in Proposition 1 essentially require

computing mn sums. Finding the k largest elements in
Step 3 takes O(mlogk) operations (using, e.g., min-heap

sorting), whence the whole procedure takes O(mn) +
O(mlogk) operations. Thus, while training a plain cen-
troid classifier takes O(mn) operations (which, inciden-
tally, is also the complexity figure for training a classical
Naive Bayes classifier), adding exact sparsity comes at the
quite moderate extra cost of O(mlogk) operations. *

Remark 3. The sparse {5 center classifier training proce-
dure is amenable to efficient online implementation, since
the class centers are easily updatable as soon as new data
comes in. Denote by Z(v) the centroid of one of the two
classes when v observations £V, . .. £®) in that class are
present: Z(v) = %Z;:l €W, If a new observation &(*+1)
in the same class becomes available, the new centroid will
be

v+1 v
1 1 . y
x(VJr]_)—mZg(j)iV—’—l ZS(J)Jrg( +1)
j=1 j=1
__Y = (v+1)
v+ lx(l/) v+ 15

This latter formula gives the new centroid as a weighted
linear combination of the previous centroid and of the
new observation. An online version of the procedure in
Proposition 1 is thus readily obtained, in which only the
current centroids are kept into memory and, as soon as
a new datum is available, the corresponding centroid is
updated (this takes O(m) operations, or less if the datum
is sparse) and the feature ranking is recomputed (this takes
O(mlogk) operations). A sparse {2 center classifier can
therefore be trained online with O(m) memory storage and
O(mlogk) operations per update. *

Remark 4. (Sparsity-accuracy tradeoff). As it is custom-
ary with sparse methods, in practice a whole sequence of
training problems is solved at different levels of sparsity,
say from k = 1 (only one feature selected) to k = m (all
features selected), accuracy is evaluated for each model via
cross validation, and then the resulting sparsity-accuracy
tradeoff curve is examined for the purpose of selection of
the most suitable k& level. Most feature selection methods,
including sparse SVM (Fan et al., 2008), the Lasso (Tib-
shirani, 1996), and the sparse Naive Bayes method (Askari
et al., 2019), require repeatedly solving the training prob-
lem for each k, albeit typically warm-starting the optimiza-
tion procedure with the solution from the previous k value.
In the sparse {5 classifier, instead, one can fully order the
vector |zt — Z7| only once, at a computational cost of
O(mlogm), and then the optimal solutions are obtained,
for any k, by simply selecting in Step 3 of Proposition 1
the first k£ elements of the ordered vector. *

5. TRAINING THE SPARSE ¢;-CENTER
CLASSIFIER

We next present a result for efficient and exact solution of
the sparse {i-center classifier training problem. We start
by stating a preliminary instrumental result, whose proof
is reported in (Calafiore and Fracastoro, 2019) for space
resons, and an ensuing definition.

Proposition 2. (Weighted ¢; center). Given a real vector
z = (#z1,%2,...,%) and a nonnegative vector w =
(wn,...,wp), consider the weighted ¢; centering problem
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P
dy(z) = %ﬂ%};w’m I (9)
Let
P
W(C) = Z Wi, W = sza
{ir2:<¢} i=1
and

¢=inf{¢: W() > W/2}.

Then, an optimal solution for problem (9) is given by

- 4
¢ it W(¢) > >
U =med,(z) = B (10)
1o . - W
§(C+ ) iEW(C) = 50
where (; = min{z;, i =1,...,p : z; > (} is the smallest
element in z that is strictly larger than (. *

Definition 3. (Weighted median and dispersion). Given a
row vector z and a nonnegative vector w of the same
size, we define as the weighted median of z the optimal
solution of problem (9) given in (10), and we denote it
by med,,(z). We define as the weighted median dispersion
the optimal value d,,(z) of problem (9). We extend this
notation to matrices, so that for a matrix X € R™" we
denote by med,,(X) € R™ a vector whose ith component is
med,, (X; ), where X . is the ith row of X, and we denote
by d.,(X) € R™ the vector of corresponding dispersions. x

We now let £ and D be defined as in Section 4, and
we use the same notation as before for 9%, 9?, Tp, Tg-
The following result characterizes an optimal solution to
problem (8); for space reasons a proof of this result is
reported in the full version of this paper (Calafiore and
Fracastoro, 2019).

Proposition 3. The optimal solution of problem (8) is
obtained as follows:

(1) Compute the plain class medians
pt=med({zP} ;¢ 7+)
p~ =med({z\V};c7-)
and the weighted median of all observations
p=medy ({2} o1, n),
where the weight vector w is such that, for j =
L,...,n,w; = 1/ny if j € JF, and w; = 1/n_ if
jeJg .
(2) Compute the median dispersion vectors dt, d~,
whose entries, for i = 1,...,m, are given by

1 .
o 2 e =
tjegt

-1 Gy -
di = n_ Z | = i |-
T jeg-
Also, compute the weighted median dispersion vector
d, whose components are, for i =1,...,m,

d; = ij\ng) — i
=1

1 i 1 i
o Z o) _/“Li|+n7_ Z o — pal,
JETT JET™

di =

Table 1. Text dataset sizes

TWTR  MPQA SST
Number of features 273779 6208 16599
Number of samples 1600000 10606 79654

and compute the difference vector
e=(d"+d)—d.

(3) Let D be the set of the indices of the k smallest
elements in vector e, and let £ be the complementary
index set.

(4) The optimal parameters 0, 6~ are given by

0" = g + e

07 =pp + pe.
Remark 5. Computation of the medians in Step 1 of
Proposition 3 can be performed with in O(m) operations,
see, e.g., Blum et al. (1973). Computation of the me-
dian dispersions requires O(mn) operations, and finding
the k£ smallest elements in vector e can be performed
in O(mlogk) operations, hence the whole procedure in
Proposition 3 is performed in O(mn) + O(mlog k) opera-
tions. Similar to the case discussed in Remark 4, also in
the sparse ¢1 center classifier one need to do a full ordering
of an m-vector only once in order to obtain all the sparse
classifiers for any sparsity level k. *

6. EXPERIMENTS

In this section, we perform an experimental evaluation
of the proposed methods, comparing their performance
with other feature selection techniques. The sparse fo-
center classifier is tested in the context of sentiment
classification on text datasets. This is one of the most
common application fields of the nearest centroid classifier.
Instead, the sparse £1-center classifier is evaluated on gene
expression datasets. Since this type of data is usually
affected by the presence of many outliers, the classifier
with the /1 distance criteria can be preferred over the /5
version (Hall et al., 2009; Jornsten, 2004).

6.1 Sparse ly-center classifier

We compared the proposed sparse {5-center classifier with
other feature selection methods for sentiment classification
on text datasets. We considered three different datasets:
the TwitterSentiment140 (TWTR) dataset, the MPQA
Opinion Corpus Dataset, and the Stanford Sentiment
Treebank (SST). Table 1 gives some details on the dataset
sizes. Before classification, the dataset are preprocessed
rescaling each feature by the inverse of its variance. Each
dataset was randomly split in a training (80% of the
dataset) and test (20% of the dataset) set. The results
reported in this section are an average of 50 different
random splits of the dataset.

For each dataset, we performed a two-stage classification
procedure. In the first stage, we applied a feature selection
method in order to reduce the number of features. Then,
in the second stage we trained a classifier model, by
employing only the selected features. In order to have a
fair comparison, we used the same classifier for all the
feature selection methods, namely a linear support vector
machine classifier. We compared different feature selection
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Fig. 1. Classification accuracy and average run time on text datasets.

methods: sparse fo-centers (¢5-SC), sparse multinomial
naive Bayes (SMNB), logistic regression with recursive
feature selection (Logistic-RFE), ¢;-regularized logistic
regression (Logistic-¢), Lasso, and Odds Ratio. Logistic-
RFE, Logistic-¢; and Lasso are not considered on some
datasets, due to their high computational cost that makes
them not viable when the dataset size is very large. Fig. 1
shows the accuracy performance and the average run time
of the different feature selection methods. These plots show
that the sparse £5-centers is competitive with other feature
selection methods in terms of accuracy performance, while
its run time is significantly lower than most of the other
feature selection methods. The only method that has a
comparable computational time is Odds Ratio, but its
performance is poor in terms of accuracy.

6.2 Sparse {1-center classifiers

We compared the proposed sparse £1-center classifier with
other feature selection methods for RNA gene expression
classification. We considered three datasets: Chin dataset
(Chin et al., 2006), Chowdary dataset (Chowdary et al.,
2006), and Singh dataset (Singh et al., 2002). The details
of the datasets are summarized in Table 2. As done in the

Table 2. RNA gene expression dataset sizes

Chowdary Chin Singh
(Breast Cancer) (Breast Cancer) (Prostate Cancer)
N. features 22283 22215 12600
N. samples 104 118 102

5 case, we subdivided each dataset in a training (80% of
the dataset) and test (20% of the dataset) set, and we
tested 50 random splits.

For each dataset, we performed a two-stage procedure,
as explained in the previous section. In the first stage,
we compared five feature selection methods: sparse ¢;-
centers (¢1-SC), ¢1-regularized logistic regression (Logistic-
£1), logistic regression with recursive feature elimination
(Logistic-RFE), Lasso, and Odds Ratio. Sparse Multino-
mial Naive Bayes (SMNB) is not taken into account in
this experiment since the gene expression datasets can
have negative features and SMNB can only be applied to
datasets with positive features. In the second stage, we
used a linear SVM classifier, as in the previous section. Fig-
ure 2 shows the balanced accuracy and average run time of
the feature selection methods. Also in this experiment we
observe that the proposed method provides an accuracy
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Fig. 2. Classification accuracy and average run time on
RNA gene expression datasets.

performance which is similar to that of state-of-the-art
techniques, but with a significantly lower computational
time.

7. CONCLUSION

In this paper we proposed two types of sparse center classi-
fiers, based respectively on ¢; and the /5 distance metrics.
The proposed methods perform simultaneous classification
and feature selection, and in both cases the proposed train-
ing method selects the optimal set of features in a quasi-
linear computing time. The experimental results also show
that the proposed methods achieve accuracy levels that
are on par with state-of-the-art feature selection methods,
while being substantially faster.
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