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Abstract: To simplify the design and optimization of new-generation nanomaterials and related
electronic and optoelectronic quantum devices, energy dissipation versus decoherence phenomena
are often simulated via local models based on the Wigner-function formalism. Such a local description
is, however, intrinsically incompatible with the fully quantum-mechanical (i.e., non-local) nature
of the dissipation-free carrier dynamics. While the limitations of such hybrid treatments have
already been pointed out in the past in diverse contexts, the spirit of the present work is to provide
a more cohesive and critical review. To this aim, we focus on the fundamental link between the
Wigner-function picture and the density-matrix formalism. In particular, we show that, starting from
well-established density-matrix-based models, the resulting Wigner-function dissipation and/or
thermalization dynamics is necessarily non-local. This leads to the conclusion that the use of local
Wigner function models borrowed from the semiclassical Boltzmann theory is formally not justified
and may produce unreliable results, and that such simplified local treatments should be replaced by
fully non-local quantum models derived, e.g., via the density-matrix formalism.

Keywords: semiconductor nanodevices; quantum transport; density-matrix formalism; Wigner-function
simulations; nonlocal dissipation models

1. Introduction

Despite its intrinsically quantum-mechanical nature, the steady-state electro-optical response of
a conduction electron within a bulk crystal may be safely described via semiclassical models based
on the Boltzmann transport theory [1]. This fact has allowed the development of a wide variety of
semiclassical simulation strategies [2], and, during the last decades, the latter have provided a strong
impetus to the development of semiconductor physics and technology [3].

The continuous progress in nanoelectronics and nanooptics, however, pushes device dimensions
toward space- and time-scales where the semiclassical picture is questionable, and should at least
be compared with authentic quantum approaches [4–15]. The latter can be qualitatively grouped
into two main classes: double-time approaches based on the nonequilibrium Green’s function
technique [16–18] and single-time approaches based on the density-matrix theory [19,20], including
phase-space treatments within the Wigner-function formalism [21].

The replacement of semiclassical simulation schemes with genuine quantum-mechanical
treatments implies, in general, a considerable increase in computational effort and resources; indeed,
a microscopic treatment of various scattering mechanisms via proper Monte Carlo simulations [2]
is often computationally too demanding already within the conventional Boltzmann theory;
for quantum-transport simulations, the situation is even worse.

The design and optimization of new-generation nanomaterials as well as of related electronic
and optoelectronic quantum devices is therefore frequently performed via partially phenomenological
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transport models based on the Wigner-function formalism [22–66]; within such simplified
quantum-simulation schemes, energy dissipation versus decoherence phenomena are still described via
local models borrowed from the semiclassical Boltzmann theory, namely relaxation-time treatments or
Boltzmann-type scattering approaches. Such a local description is, however, intrinsically incompatible
with the fully quantum-mechanical (i.e., non-local) nature of the dissipation-free carrier dynamics
within the device active region. Indeed, during the last decades the intrinsic limitations of such hybrid
treatments have been repeatedly pointed out, both for the case of thermalization models based on the
conventional inflow-boundary-condition scheme [34,37,45–47,67] and for the case of dissipation versus
decoherence treatments based on the relaxation-time approximation as well as on Boltzmann-like
scattering models [61,64].

The aim of the present paper is twofold: on the one hand, we review and discuss selected
simulated experiments pointing out these intrinsic limitations in different contexts, providing in
addition a cohesive theoretical treatment able to clearly identify the origin of such diverse anomalies
within the Wigner-function picture; and, on the other hand, starting from the density-matrix formalism,
we discuss how to derive genuine quantum-mechanical dissipation models, able to overcome the
intrinsic limitations just recalled. The main conclusion is that within the Wigner-function picture
a correct treatment of both dissipation versus decoherence phenomena within the device active
region and of the device-reservoir thermalization process requires the use of intrinsically non-local
scattering models.

The paper is organized as follows. In Section 2, we briefly recall the fundamentals of the
semiclassical transport theory applied to the simulation of semiconductor devices, while, in Section 3,
the latter is generalized to the quantum-mechanical case, replacing the semiclassical distribution
function with the Wigner function but still employing the very same energy dissipation as well
as thermalization models used in the semiclassical case, In contrast, starting from well-established
quantum models based on the density-matrix formalism, in Section 4, we derive fully non-local
dissipation and thermalization superoperators acting on the Wigner function. Finally, in Section 5, we
summarize and draw a few conclusions.

2. Fundamentals of Semiclassical Device Modeling

The key ingredient of the semiclassical transport theory is the carrier distribution function.
More specifically, adopting a simplified model based on a single conduction band, the semiclassical
distribution function f (r, k) describes the probability distribution of the conduction electrons over the
single-particle phase-space r, k, and is thus always positive-definite.

The primary goal of any semiclassical device simulation is the investigation of the carrier
distribution function within the device volume Ω, often referred to as the device active region. This is
the result of a highly non-trivial interplay between the deterministic (i.e., scattering-free) carrier
dynamics and the stochastic one induced on the carrier system by dissipation phenomena within the
device active region as well as by thermalization processes due to the coupling of the device with
external carrier reservoirs (see Figure 1). Regardless of the specific dissipation and thermalization
models considered, the time evolution of the carrier distribution function can always be written as the
sum of a deterministic (det) and of a stochastic (stoc) contribution,

∂ f (r, k)
∂t

=
∂ f (r, k)

∂t

∣∣∣∣
det

+
∂ f (r, k)

∂t

∣∣∣∣
stoc

, (1)

where the latter, in turn is the sum of a dissipation (diss) and of a thermalization (th) term,

∂ f (r, k)
∂t

∣∣∣∣
stoc

=
∂ f (r, k)

∂t

∣∣∣∣
diss

+
∂ f (r, k)

∂t

∣∣∣∣
th

. (2)
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Figure 1. (Color online) Schematic representation of a typical semiconductor-based quantum device as
an open system connected to two external charge reservoirs. Here, the distance between the interfaces
is l and z is the longitudinal transport direction. Reprinted from [67].

In the presence of slowly-varying electromagnetic forces and relatively large device sizes
(compared to the typical electron de Broglie wavelength) the deterministic carrier dynamics can
be safely described in classical terms via the conventional drift-diffusion model of the Boltzmann
transport theory [2,18,20]. More specifically, adopting the customary parabolic-band approximation
(with effective mass m∗) and in the presence of a static electric field only (i.e., no magnetic fields)
described by a force ~F, the deterministic contribution in Equation (1) is given by:

∂ f (r, k)
∂t

∣∣∣∣
det

=

(
−~v(k) · ∇r −

~F
h̄
· ∇k

)
f (r, k) , (3)

where ~v(k) = h̄k
m∗ denotes the carrier group velocity.

As anticipated, in a conventional semiconductor device, the deterministic carrier dynamics in
Equation (3) is significantly modified by a variety of stochastic processes described by Equation (2); the
latter, in turn, take place both within the device active region due to different scattering mechanisms
(carrier–impurity, carrier–phonon, carrier–carrier, etc.) and close to the device spatial boundaries due
to carrier exchange between the device and one or more external charge reservoirs. The explicit form
of the corresponding dissipation and thermalization contributions in Equation (2) strongly depends on
the nature of the transport model adopted. As we now discuss, in any semiclassical simulation scheme,
dissipation as well as thermalization processes are always described via spatially local models, and the
same applies to the Wigner-function modeling as well (see Section 3). Such local treatments can,
however, be subdivided into two different classes: phenomenological models based on relaxation-time
schemes where the total electronic charge within the device is not necessarily conserved (open-system
paradigm) and kinetic models based on Boltzmann-type schemes where the total number of simulated
carriers is always conserved (closed-system paradigm).

2.1. Phenomenological Dissipation and Thermalization Models

As far as energy-dissipation within the device active region is concerned, the simplest choice is the
adoption of a phenomenological model based on the relaxation-time approximation (RTA) [18,20], i.e.,

∂ f (r, k)
∂t

∣∣∣∣
diss

= −Γ(r, k) ( f (r, k)− f ◦(r, k)) , (4)

where the relaxation of the carrier distribution in (r, k) toward its equilibrium value f ◦(r, k) is
described in terms of a space- and momentum-dependent relaxation rate Γ(r, k) encoding all relevant
scattering mechanisms characterizing the operational conditions of the device under investigation;
the space and momentum/energy dependence of Γ(r, k) may be extracted from fully microscopic
Monte Carlo simulations [2] or modeled via simplified Fermi’s Golden rule treatments.
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As far as the device-reservoir thermalization is concerned, within the semiclassical picture,
the latter may be easily described via a net spatial separation between the device active region
Ω and the external charge reservoirs (given by one or more electrical contacts/device terminals).
Within this spirit, the simplest and physically more intuitive thermalization model is the so-called
inflow-boundary-condition (IBC) scheme [2], where the carrier distribution function entering the
device at its spatial boundary region coincides with the quasiequilibrium distribution in the external
charge reservoirs. More specifically, denoting with rb the generic point of the device boundary surface
σb and with f b(rb, k) the carrier distribution function entering the device at the surface point rb, such a
boundary condition can be easily fulfilled/implemented via the following thermalization operator [20]

∂ f (r, k)
∂t

∣∣∣∣
th
= −

∫
σb

dσb δ(r− rb) vin(rb, k)
(

f (rb, k)− f b(rb, k)
)

, (5)

where
vin(rb, k) = −min(~v(k) ·~n(rb), 0) (6)

is the incoming component of the carrier group velocity ~v(k) at the boundary point rb (~n(rb) being the
unit vector normal to the boundary surface σb). Indeed, according to its definition in Equation (6), vin is
different from zero for incoming carriers only; moreover, in view of the Dirac delta function, the action
of the thermalization operator in Equation (5) is limited to the device boundary surface σb. As a result,
the above thermalization scheme is able, as requested, to fix the incoming carrier distribution to that of
the external reservoirs, i.e., f (rb, kin) = f b(rb, kin), and has no influence on the outgoing carrier flux.

The simplest physically relevant implementation of the IBC scheme in Equation (5) is that of
a one-dimensional system/device (r, k → z, k) of length l in thermal contact with a left and a right
charge reservoir. As schematically shown in Figure 2, in this case, the boundary surface σb of the
three-dimensional case reduces to two points: zb = ±l/2. This amounts to fixing the value of the
incoming distribution function f (z, k) at these two points, i.e., f (−l/2, k > 0) and f (+l/2, k < 0).

z
z = � l

2
z = +

l

2

U scheme

(k > 0) (k < 0)

re
se

rv
oi

r

re
se

rv
oi

r

device

Left contact Right contact

Figure 2. The conventional inflow or U boundary condition scheme adopted in semiclassical device
modeling [20] for a one-dimensional problem. The value of the distribution function f (z, k) is specified
at the boundaries zb(k) of the active region, i.e., f (−l/2, k > 0) and f (+l/2, k < 0) are fixed by the
incoming/inflowing carrier distribution function. Reprinted from [67].

From a physical point of view, the action and role played by the IBC thermalization scheme
in Equation (5) are significantly different from those of the dissipation term in Equation (4): while the
latter modifies the carrier distribution in any point r inside the device volume Ω, the former simply
fixes the value of the incoming distribution on the boundary surface σb and has no effect inside the
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device. Despite these profound differences, the two models share a common formal structure, i.e., they
are both RTA-type operators of the form:

∂ f (r, k)
∂t

∣∣∣∣
RTA

= −Γ(r, k)
(

f (r, k)− f (r, k)
)

, (7)

where, for the dissipation model in Equation (4), we have

Γ(r, k) = Γ(r, k) , f (r, k) = f ◦(r, k) (8)

while, for the IBC thermalization model in Equation (5), we have

Γ(r, k) =
∫

dσb δ(r− rb) vin(rb, k) , f (r, k) = f b(rb, k) . (9)

It is worth stressing that, while for the dissipation model in Equation (8) the relaxation rate Γ acts
as a simple algebraic multiplication, for the IBC thermalization model in Equation (9) the latter is an
integral operator acting on our phase-space coordinates r, k.

As we discuss in Section 4, such formal similarity may help in understanding the common
origin of diverse anomalous results obtained applying the local dissipation and thermalization models
introduced thus far to quantum-transport simulations based on the Wigner-function formalism.

2.2. Kinetic Dissipation and Thermalization Models

To overcome the well-known limitations of the phenomenological dissipation model in
Equation (4), the key step is to replace the RTA scheme with a Boltzmann collision term of the
form [2,18,20]

∂ f (r, k)
∂t

∣∣∣∣
diss

=
∫

dk′
[
P(r; k, k′) f (r, k′)− P(r; k′, k) f (r, k)

]
, (10)

where
P(r; k, k′) = (1− f (r, k)) P0(r; k, k′) (11)

denotes the low-density scattering rate P0 in r for the generic transition k′ → k, weighted by the
usual Pauli-blocking factor, and simply reduces to P0(r; k, k′) in the low-density limit ( f (r, k) → 0).
The Boltzmann-type collision operator in Equation (10) provides a kinetic description of energy
dissipation in terms of stochastic carrier transitions dictated by the low-density scattering rates
P0(r; k, k′). Opposite to the phenomenological nature of the relaxation rate Γ(r, k) in Equation (4),
such scattering rates can be microscopically derived in quantum-mechanical terms via the well-known
Fermi’s golden rule including all relevant interaction mechanisms. Moreover, such a stochastic
dynamics may be efficiently and intuitively simulated via a wide variety of Monte Carlo approaches [2].

As anticipated, the Boltzmann-type kinetic treatment in Equation (10) is intrinsically charge
conserving, which implies that in this case the possible time variation of the total carrier number
inside the device active region Ω is due to device-reservoir thermalization processes only, customarily
described via the phenomenological IBC scheme in Equation (5). As a result, most of the semiclassical
device modeling is currently based on a kinetic treatment of dissipation phenomena inside the device
properly combined with a phenomenological treatment of environment-induced carrier thermalization
processes. This is typically accomplished via generalized (i.e., particle non-conserving) Monte Carlo
simulations able to account for the presence of external reservoirs by means of corresponding injection
versus loss terms [15].

As already stressed, the IBC thermalization model in Equation (5) is grounded on an artificial
spatial separation between device and external contacts/reservoirs (see Figures 1 and 2); such an abrupt
jump is, in general, not well justified, and one may expect that for some device operating conditions
the distribution of incoming carriers may display nonequilibrium features as well. To properly
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describe the (continuous) device-reservoir transition, the key step is to include in the simulated
region a significant portion of the electrical contacts as well; to this aim, in addition to the Boltzmann
collision operator in Equation (10) (describing energy-dissipation phenomena inside the device), carrier
thermalization due to the presence of the electrical contacts can be described again via a corresponding
Boltzmann-type operator, whose thermalization rates are different from zero within the contact regions
only. As a result, one deals with a kinetic treatment of both dissipation and thermalization phenomena,
and the latter may be conveniently simulated via standard (i.e., particle conserving) Monte Carlo
simulations [2]. Compared to the phenomenological IBC scheme, such kinetic treatments of the
device-reservoir coupling are by far computationally more demanding. To overcome this limitation,
an alternative Monte Carlo scheme, especially suited for the modeling of one-dimensional devices, has
been also proposed [68,69]; the latter provides a solution of a Boltzmann-like equation defined over
the single-particle electronic states of the device, and is thus more efficient compared to conventional
phase-space (r, k) simulations.

3. Partially Quantum-Mechanical Device Modeling Based on the Wigner-Function Formalism

The Wigner function is introduced as the Weyl–Wigner transform of the single-particle density
matrix. Even though the latter is defined over the very same phase-space r, k of the semiclassical
distribution, and that very often the notation f (r, k) is used for the Wigner function as well, this new
quantum distribution, while still being a real quantity, is no longer positive-definite. Its time evolution
is described by the so-called Wigner transport equation. The latter can still be written analogously
to Equation (1); due to this similarity, Monte Carlo simulation techniques for its solution (so-called
Wigner Monte Carlo schemes [32,35]) have been developed. However, despite this formal resemblance,
the explicit form of the deterministic as well as of the stochastic Wigner-function terms are expected to
differ from their semiclassical counterparts.

The deterministic contribution is the quantum-mechanical generalization of the diffusion-plus-drift
term in Equation (3) and can be conveniently formulated in terms of Moyal brackets [70]. Indeed,
denoting with V(r) the scalar potential corresponding to the electric force ~F, one has

∂ f (r, k)
∂t

∣∣∣∣
det

= −~v(k) · ∇r f (r, k)−
∫

dk′ V(r, k− k′) f (r, k′) , (12)

where

V(r, k′′) =
ı
h̄

∫
dr′

e−ık′′ ·r′

(2π)3

[
V
(

r +
r′

2

)
−V

(
r− r′

2

)]
(13)

is the nonlocal Weyl–Wigner superoperator corresponding to the scalar-potential profile [20].
Comparing Equation (12) with its semiclassical counterpart in Equation (3), we notice that the diffusion
term remains unchanged while the quantum-mechanical version of the drift term is still local in r but
non-local in k.

The stochastic contribution can still be cast in terms of dissipation as well as thermalization
phenomena, as in Equation (2). It is then a common practice to treat these processes within the same
local models previously described, namely the RTA model in Equation (7) and the Boltzmann collision
operator in Equation (10). However, within the Wigner-function picture, this local approach suffers of
intrinsic limitations. The latter is highlighted in the remainder of this section, where selected examples
focusing on the analysis of energy dissipation versus decoherence phenomena [61] (Section 3.1) and
on the device-reservoir carrier thermalization dynamics [67] (Section 3.2) are briefly reviewed.

3.1. Failure of Local Dissipation Models

The incompatibility between the local dissipation models of the semiclassical theory and the
(non-local) deterministic Wigner-function dynamics in Equation (12) is already evident in modeling
a basic prototypical quantum-well (QW) device such as the one sketched in Figure 3. The effects of
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device spatial boundaries as well as the role of device-reservoir thermalization phenomena may be
neglected assuming semi-infinite barriers and limiting our investigation to QW bound states only.

-10 -8 -6 -4 -2 0 2 4 6 8
growth direction (nm)

0

0.1

0.2

0.3

en
er

gy
 (e

V)

-10 -8 -6 -4 -2 0 2 4 6 8 10
growth direction (nm)

0

0.1

0.2

0.3

en
er

gy
 (e

V)

3 

-10 -8 -6 -4 -2 0 2 4 6 8 10
growth direction (nm)

0

0.1

0.2

0.3

en
er

gy
 (e

V)

-10 -8 -6 -4 -2 0 2 4 6 8 10
growth direction (nm)

0

0.1

0.2

0.3

en
er

gy
 (e

V)

3 

2 

1 

Figure 3. Conduction band profile along the growth direction for the prototypical GaAs/AlGaAs QW
nanostructure considered in our simulated experiments. Energy levels of the three 1D bound states are
shown, together with the corresponding squared envelope functions. Readapted from [61].

Due to confinement along the growth (z) direction, the system three-dimensional (3D) electronic
states exhibit the usual subband structure. However, within the prescription of the RTA dissipation
model in Equation (4), we neglect the in-plane phase-space coordinates and adopt an effective
one-dimensional (1D) description: The set of single-particle quantum numbers then reduces to the
discrete index (n) of the confined 1D state only and (r, k) → (z, k). Figure 3 shows the three bound
energy levels and squared envelope functions for the model case of a GaAs/(Al,Ga)As 12 nm-thick
QW, with a conduction band offset of 0.3 eV. In the following, we resume the results of simulated
experiments performed on this nanosystem in the low-temperature regime, thus assuming that the
QW lowest energy level (n = 1) corresponds to the thermal-equilibrium condition. In particular,
we analyze the spatial carrier-density profile, along the growth direction, corresponding to the 1D
Wigner function f (z, k), namely

n(z) =
1

2π

∫
dk f (z, k) , (14)

and investigate its time evolution, when the system is initially prepared in the first excited level (n = 2),
by solving the 1D version of the Wigner transport equation (Equation (1)) with the quantum-mechanical
deterministic term in Equation (12) and the conventional RTA scheme in Equation (4).

In Figure 4, the dissipation dynamics induced on our prototypical QW system by three different
versions of the RTA approach are compared. Within the model labeled M1, we assume a space- and
energy-independent rate Γ0; this is often called phenomenological or macroscopic RTA approach.
Within the model M2, we employ a space-dependent but energy-independent rate Γ(z), assumed to
vanish within a given region − a

2 < z < + a
2 , and equal to Γ0 outside; this may partially mimic the

case of material-dependent semiclassical scattering rates, such as in the case of complex multi-layer
quantum heterostructures. Finally, within the model M3, we consider a space-independent but
momentum/energy-dependent rate Γ(k), vanishing for |k| < kmin =

√
2m∗εmin/h̄ and equal to Γ0

otherwise; this may describe the typical energy-threshold scenario of electron-optical phonon scattering
in a variety of nanomaterials and nanodevices, e.g., new-generation quantum-cascade lasers [15].

The dissipation dynamics resulting from M1 [Figure 4a] agrees with the physically valid scenario
in which the charge distribution in the QW ground state n = 1 increases, at the expenses of the one
of the initial state n = 2 (thin solid curve); after 1.6 ps (dash-dotted curve) the electronic system is
already pretty close to its equilibrium distribution (solid curve). In the case of M2 [Figure 4b] and M3
[Figure 4c], the scenario is substantially different: besides a significant slowdown of the excited-level
decay process, negative carrier distributions arise; this crucial difference with respect to M1 is an
unambiguous fingerprint of unphysical electronic states.
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Figure 4. Low-temperature dissipation dynamics in the 12 nm thick GaAs/AlGaAs QW of Figure 3.
The carrier density n(z) in Equation (14) is plotted as a function of position at different times (0 ps: thin
solid curve; 0.8 ps: dashed curve; and 1.6 ps: dash-dotted curve) for models: M1 (a); M2 (b); and M3 (c).
Here, the following parameters are employed: 1/Γ0 = 0.8 ps for M1, 1/Γ0 = 0.4 ps and a = 5 nm for
M2, and 1/Γ0 = 0.5 ps and εmin = 40 meV for M3. The equilibrium carrier density is also shown for
comparison (solid curve). Reprinted from [61].

A closer inspection of the dissipation dynamics may be provided by looking at the carrier
populations fn of the QW states. The latter are given by the diagonal terms of the single-particle density
matrix, which can be obtained from the 1D Wigner function via the inverse of the 1D Weyl–Wigner
transform. In Section 4, the link between the density matrix and the Wigner function is more extensively
addressed. Here, we just anticipate that the populations fn can be obtained applying to the 1D Wigner
function f (z, k) the inverse of the 1D Weyl–Wigner transform Wnn(z, k), i.e.,

fn =
∫ dz dk

2π
Wnn(z, k) f (z, k) . (15)

Figure 5 shows the time evolution of the populations of the three QW bound states ( f1, f2, and f3)
as well as of the continuum, the latter being defined as Ncont = Ntot −∑3

n=1 fn, with Ntot denoting the
total number of carriers. As expected, model M1 [Figure 5a] shows a simple exponential depopulation
of the initial level n = 2 into the ground state n = 1, while level n = 3 and the continuum are not
affected by the dissipation dynamics.

Such a plausible scenario is, however, lost in models M2 [Figure 5b] and M3 [Figure 5c], where we
do observe: (i) a slowdown of the n = 2 state depopulation; (ii) negative population values for states
n = 1 and n = 3; and (iii) particularly for M3, a marked charge transfer into the continuum in spite of
our zero-temperature analysis. The unavoidable conclusion is that the conventional RTA dissipation
model in Equation (4) does not preserve the positivity of the carrier populations fn, and induces a
fictitious interlevel coupling; the latter, in turn, may also artificially generate interlevel phase coherence.

The unphysical results of M2 and M3 are not related to the charge non-conserving nature of the
RTA model and/or to the effective 1D modeling of our nanodevice. In the following, we attest that
analogous problems also arise when: (i) a fully 3D treatment of the prototypical QW nanostructure is
adopted; and (ii) the RTA dissipation scheme in Equation (4) is replaced by the (charge-conserving)
Boltzmann collision term in Equation (10).
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Figure 5. Bound-state populations [see Equation (15)] as well as the continuum (cont) contribution as a
function of time for model:s M1 (a); M2 (b); and M3 (c). Reprinted from [61].

Concerning the latter, it has the well-established in- minus out-scattering structure and may also
be written as

∂ f (r, k)
∂t

∣∣∣∣
diss

=
∫

dr′ dk′
[

Pin(r, k; r′, k′)− Pout(r, k; r′, k′)
]

f (r′, k′) (16)

with
Pin(r, k; r′, k′) = δ(r− r′)P(r; k, k′) (17)

and
Pout(r, k; r′, k′) = δ(r− r′)δ(k− k′)

∫
dk′′P(r; k′′, k) . (18)

Both superoperators, Pin and Pout, are local in r; Pout is local in k as well.
The rates entering the Boltzmann collision term in Equation (10) are evaluated via the conventional

Fermi’s golden rule using as noninteracting states standard 3D plane waves, instead of the
nanostructure single-particle wavefunctions, and assuming as main dissipation mechanism the
carrier interaction with a bulk GaAs LO-phonon system [2]. The quantities P(r; k, k′) are therefore
space-independent. Within such 3D description, the Weyl–Wigner phase-space of the QW device is
given by r ≡ r‖, z and k ≡ k‖, kz. The effective 1D carrier-density profile along the growth direction (z)
in Equation (14) is then now replaced by

n(z) =
1

(2π)3

∫
dr‖ dk f (r, k) , (19)

and the effective 1D level population in Equation (15) by the following subband population

fn = ∑
k‖

fk‖n . (20)

Here, fk‖n is the population of the generic carrier state in subband n with in-plane wavevector k‖,
obtained via the 3D version (n→ k‖n) of the Weyl–Wigner transform in Equation (15).

Figure 6 shows the low-temperature and low-density energy-dissipation dynamics for the
GaAs/(Al,Ga)As prototypical QW nanostructure of Figure 3, resulting from the fully 3D Boltzmann
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bulk model just described. The spatial carrier density profile [Figure 3a] is now only marginally affected
by negative-value regions, if compared to the unphysical results obtained via the RTA dissipation model
(Figures 4 and 5). However, analogously to the RTA case, a marked slowdown of the excited-level decay
is evident: after 1.6 ps (dash-dotted curve), the charge distribution is still far from equilibrium (solid
curve). Such anomalous scenario is confirmed by an insight into the various subband populations
(Figure 3b), showing: (i) a marked slowdown out of the initial subband n = 2; (ii) negative values in
subband n = 3; and (iii) despite our zero-temperature analysis, considerable values in the continuum.
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Figure 6. Low-temperature and low-density dissipation dynamics in the 12 nm thick GaAs/AlGaAs
QW of Figure 3 resulting from the fully 3D local Boltzmann model in Equation (10) in the low-density
limit. (a) Carrier density n(z) in Equation (19) as a function of position at different times: 0 ps (thin
solid curve), 0.8 ps (dashed curve), and 1.6 ps (dash-dotted curve); the equilibrium carrier density is
also shown for comparison (solid curve). (b) Bound-state subband populations [see Equation (20)] as
well as continuum (cont) contribution as a function of time. Reprinted from [61].

A further close-up in the analysis may be achieved repeating the simulated experiment reported
in Figure 6 with a different initial condition, e.g., the QW low-temperature thermal-equilibrium
state n = 1. In this case, a correct scattering superoperator would leave the electronic system
unmodified. However, the results, reported in Figure 7, show that the Boltzmann collision
term in Equation (10) drives the electronic system out of equilibrium, populates the continuum,
and induces negative populations of the excited QW subbands. These outcomes confirm the
intrinsic limitations of local treatments, which are known to be intrinsically incompatible with any
quantum-mechanical framework.

Indeed, both the RTA results in Figures 4 and 5 and the Boltzmann-type ones in Figures 6 and 7
are based on bulk-like scattering models, where the relaxation rate Γ(r, k) in Equation (4) and the
semiclassical scattering probability P(r; k, k′) in Equation (10) do not account for the QW electronic
subband structure. The two terms in the Wigner transport equation (Equation (1)) are then intrinsically
conflicting: the deterministic one accounts for the QW subband structure via its confinement potential
V(r), while the scattering one does not. This contradiction, recently pointed out also within the
density-matrix formalism [71], is responsible for the dissipation slowdown as well as for the wrong
thermalization dynamics. Indeed, the steady-state solution of the bulk-like Boltzmann collision
term in Equation (10) is just the Fermi–Dirac distribution. The latter is space-independent and has
nothing to do with the thermal-equilibrium Wigner function f ◦(r, k) of the quantum device, which is
space-dependent and significantly different from zero within the QW region only.
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Figure 7. (a,b) The same as in Figure 6 but considering as initial state the thermal-equilibrium state
n = 1. Reprinted from [61].

As a final remark, we notice that the unphysical features of the low-density Boltzmann-type
simulations just reviewed come out to be further amplified in the presence of high carrier
concentrations. As discussed in detail in [64], in high-density conditions, the Wigner function may
still be negative, but also greater than unity. This implies that, for high carrier concentrations, the role
played by the Pauli factor (1− f (r, k)) in Equation (11) may deviate significantly with respect to the
conventional semiclassical scenario (where it is always bounded between 0 and 1), leading to highly
counter-intuitive effects such as a sort of “negative dissipation”.

3.2. Failure of Local Thermalization Models

In the presence of a significant device-reservoir thermal coupling, the primary goal of any
quantum simulation scheme is the solution of the steady-state Wigner transport equation

∂ f (r, k)
∂t

∣∣∣∣
det

+
∂ f (r, k)

∂t

∣∣∣∣
diss

+
∂ f (r, k)

∂t

∣∣∣∣
th
= 0 ; (21)

in particular, two crucial issues need to be assessed: (i) Is the solution of Equation (21) always unique?
(ii) When this is the case, is it always physically acceptable?

As we now discuss, the answers to these questions depend crucially on the choice of the
thermalization model as well as on the presence/absence of dissipation phenomena within the device
active region. In particular, we now briefly review the detailed analysis originally presented in [67].
The latter has shown intrinsic limitations of Wigner-function simulations based on the conventional
IBC thermalization scheme in Equation (5), providing the following answers: (i) in the coherent limit,
the solution of the steady-state Wigner equation (compatible with given spatial boundary conditions)
is definitely not unique; and (ii) when dissipation phenomena are taken into account, the solution,
although unique, may be physically unacceptable.

It is useful to start with a simplified 1D model, having the notable advantage to allow for an
exact analytical treatment; in particular: (i) the deterministic dynamics is described via a delta-like
potential profile; (ii) the dissipation dynamics is neglected (so-called coherent limit); and (iii) the
device-reservoir thermalization is described via the semiclassical IBC scheme in Equation (5), whose
1D version is schematically depicted in Figure 2. Within such a simplified scheme, it is possible to
demonstrate [67] that the solution is not unique. This is a consequence of the double degeneracy of
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the 1D electronic scattering states corresponding to our potential profile, which in turn is due to the
time-reversal symmetry of the dissipation-free dynamics.

In the presence of energy dissipation phenomena, in contrast, the time-reversal symmetry is
lost, and the solution of the steady-state Wigner equation is found to always be unique. However,
such mathematical solution does not necessarily correspond to a physically acceptable Wigner function,
namely to the Weyl–Wigner transform of a genuine single-particle density matrix (see Section 4).

To better focus on this intrinsic limitation, let us consider a realistic GaAs-based nanostructure
characterized by a rectangular potential barrier and assume a monoenergetic carrier injection from
the left spatial boundary only. Moreover, we describe energy dissipation via the RTA scheme in
Equation (4), with a space- and energy-independent relaxation rate Γ0 = 1/τ.

The resulting spatial carrier-density profiles corresponding to the coherent limit (solid curve)
as well as to two different values of the relaxation time [τ = 5 ps (dashed curve) and τ = 50 fs
(dash-dotted curve)] are reported in Figure 8. In the coherent limit, a strongly anomalous feature
shows up: the density profile comes out to be rigorously symmetric, despite the assumed left-injection
into a significantly high potential barrier. The presence of energy dissipation mechanisms (dashed and
dash-dotted curve) induces some (apparently more physical) spatial asymmetry. However, for the
parameters considered here, the barrier transmission coefficient is so small (of the order of 10−3)
that no charge should be present in the right portion of the device (see also Figure 10 in Section 4.1).
Moreover, in addition to this, all three density profiles display negative-value regions. This outcome is
qualitatively similar to the one reported in [37] for the case of a cosine-like potential, thus confirming
the physical limitations of conventional Wigner-function simulations based on the semiclassical
IBC scheme.

-20 -10 0 10 20
position (nm)

0

1

2

3

4

de
ns

ity

Figure 8. Room-temperature spatial carrier density (in units of its barrier-free value) corresponding to a
GaAs-based rectangular-barrier profile (device length l = 40 nm, barrier width w = 10 nm, and barrier
height V0 = 150 meV) in the presence of a monoenergetic injection from the left (ε0 = 50 meV). Here,
the coherent-limit (τ → ∞) density profile (solid curve) is compared to the results corresponding to
two different values of the relaxation time: τ = 5 ps (dashed curve) and τ = 50 fs (dash-dotted curve).
Readapted from [67].

Again, similar to the case of the local dissipation models previously discussed, the physical origin
of these anomalies is that the deterministic and the thermalization term entering the steady-state
Wigner equation (Equation (21)) are intrinsically incompatible. While the former accounts for the
QW subband structure via the nanostructure potential V(r) [see Equation (12)], the same does not
apply to the semiclassical IBC scheme [see Equation (5)], where the carriers injected into the device
active region are implicitly treated as free particles (i.e., plane waves), regardless of the presence of the
confinement potential.
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4. Fully Quantum-Mechanical Device Modeling Based on the Density-Matrix Formalism

In view of the intrinsic limitations of local dissipation as well as thermalization models discussed
thus far, it is imperative to replace such semiclassical treatments with fully quantum-mechanical
schemes. Despite of the level of accuracy/approximation of the latter, intimately related to the
nanosystem as well as to the specific phenomenon under investigation, two basic requirements are,
however, always mandatory: (i) the positive-definite character of the quantum-mechanical state has
to be preserved at any time; and (ii) in the absence of external electro-optical excitations as well as
of nonequilibrium carrier injection, the solution of the steady-state Wigner equation (Equation (21))
should coincide with the thermal-equilibrium state.

It is in general a highly non-trivial task to check the conformity to the above requirements; to this
aim, it is crucial to exploit the close relation between the Wigner function and the corresponding
single-particle density matrix [11,15]. More specifically, adopting the very same notation employed
in [67], and by compactly labeling with α the set of relevant quantum numbers for the single-particle
electronic states of our semiconductor nanostructure, the density matrix ρα1α2 (whose diagonal terms of
the density matrix describe the population of the generic single-particle state α, while the off-diagonal
terms describe the quantum-mechanical phase coherence (or polarization) between states α1 and α2)
can be written in terms of the Wigner function f (r, k) as

ρα1α2 =
∫ dr dk

(2π)3 Wα1α2
(r, k) f (r, k) , (22)

where

Wα1α2
(r, k) =

∫
dr′φα1

(
r +

r′

2

)
e−ık·r′φ∗α2

(
r− r′

2

)
(23)

denotes the well-known Weyl–Wigner transform [70], and φα(r) the real-space wavefunction of the
electronic state α.

Applying the inverse Weyl–Wigner transform equation (Equation (22)) to the original Wigner
transport equations (Equations (1) and (2)), in the absence of external electromagnetic excitations, the
latter can be easily translated into the density-matrix equation

∂ρα1α2

∂t
=

∂ρα1α2

∂t

∣∣∣∣
det

+
∂ρα1α2

∂t

∣∣∣∣
stoc

(24)

with
∂ρα1α2

∂t

∣∣∣∣
det

=
εα1 − εα2

ıh̄
ρα1α2 , (25)

where εα is the energy of state α, and

∂ρα1α2

∂t

∣∣∣∣
stoc

=
∂ρα1α2

∂t

∣∣∣∣
diss

+
∂ρα1α2

∂t

∣∣∣∣
th

. (26)

As far as the deterministic dynamics is concerned, the density-matrix term in Equation (25) is by
far simpler compared to its Wigner-function version in Equation (12): the diagonal terms (α1 = α2) do
not change in time, while the non-diagonal terms (α1 6= α2) simply rotate with frequency (ε1 − ε2)/h̄.
As far as the dissipation and thermalization terms in Equation (26) are concerned, the latter may
be conveniently described via well-established density-matrix models able to fulfill the two basic
requirements mentioned above [72].

Based on the density-matrix picture just recalled, in the remainder of this section, we discuss in a
more formal way the intrinsic limitations of the semiclassical treatments, and, starting from physically
reliable and robust density-matrix models, we derive their Wigner-function versions given by fully
non-local scattering superoperators.
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4.1. Non-Local Relaxation-Time Models

As discussed in Section 2, both dissipation and thermalization processes are routinely described
via the generic RTA scheme in Equation (7). To better clarify the intrinsic limitations of such local model
within a Wigner-function simulation, it is useful to analyze its density-matrix version. To this aim,
applying to Equation (7) the inverse Weyl–Wigner transform equation (Equation (22)), one gets [61]

∂ρα1α2

∂t

∣∣∣∣
RTA

= − ∑
α′1α′2

Γα1α2,α′1α′2

(
ρα′1α′2

− $α′1α′2

)
(27)

with
Γα1α2,α′1α′2

=
∫ dr dk

(2π)3 Wα1α2
(r, k)Γ(r, k)W∗α′1α′2

(r, k) , (28)

where $α1α2
denotes the inverse Weyl–Wigner transform of the equilibrium or quasiequilibrium

distribution function f (r, k) in Equation (7).
It is now worth comparing Equation (27) (obtained by applying a semiclassical RTA model to

the Wigner function) to the equation obtained applying the RTA scheme straightforwardly to the
density-matrix evolution, i.e.,

∂ρα1α2

∂t

∣∣∣∣
RTA

= − Γα1 + Γα2

2

(
ρα1α2 − ρα1α2

)
, (29)

where ρα1α2
= f α1

δα1α2 denotes the (diagonal) equilibrium or quasiequilibrium density matrix (with
respect to our single-particle basis α). Here, Γα can be regarded as a sort of state-dependent effective
inverse life-time, involving all relevant dissipation/thermalization mechanisms acting on the carrier
in state α; indeed, in the semiclassical limit (ρα1α2 = fα1 δα1α2), the density-matrix RTA model in
Equation (29) reduces to the well-known injection-loss scheme [15] of conventional device modeling.

∂ fα

∂t

∣∣∣∣
RTA

= −Γα

(
fα − f α

)
= Sα − Γα fα . (30)

In addition to the population dynamics in (30), the density-matrix RTA model in (29)
describes the dissipation/thermalization-induced decay of the interlevel polarization, known as
decoherence process.

As one can see, while the superoperator in Equation (29) is diagonal in the single-particle basis
α, the superoperator Γ in Equation (27) is, in general, non-diagonal in such basis. Moreover, while it
is possible to show [72] that the density-matrix RTA model in Equation (29) is always positivity
preserving, the same does not apply, in general, to the non-diagonal RTA model in Equation (27)
[and therefore to its Wigner-function version in Equation (7)], as confirmed by the negative carrier
populations in Figures 4 and 5). The only exception is the case of a space- and energy-independent
relaxation rate, Γ(r, k) = Γ0, as well as a state-independent rate, Γα = Γ0, for which the two RTA
models in Equations (27) and (29) coincide. This is indeed confirmed by the convincing results in
Figure 4a.

The density-matrix analysis presented so far suggests to replace the highly problematic
semiclassical-like RTA scheme in Equation (7) with a fully quantum-mechanical Wigner-function
model. To this aim, our strategy, originally proposed in [61], is to start from the physically sound
density-matrix RTA scheme in Equation (29) and apply to it the following Weyl–Wigner transform:

f (r′, k′) = ∑
α′1α′2

Wα′2α′1
(r′, k′)ρα′1α′2

. (31)
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The resulting Wigner-function model is given by

∂ f (r, k)
∂t

∣∣∣∣
RTA

= −
∫

dr′ dk′ Γ(r, k; r′, k′)
(

f (r′, k′)− f (r′, k′)
)

, (32)

where

Γ(r, k; r′, k′) = ∑
α1α2

Wα1α2
(r, k)

Γα1 + Γα2

16π3 W∗α1α2
(r′, k′) (33)

is a fully nonlocal RTA superoperator expressed in terms of the relaxation rates Γα of the density-matrix
theory, and f (r, k) is the Weyl–Wigner transform of the equilibrium or quasiequilibrium density
matrix ρα1α2

.
In striking contrast to the standard RTA model in Equation (7), the generalized version in

Equation (32) intrinsically ensures the positivity of the spatial charge density as well as of the
single-particle state populations; indeed: (i) the density-matrix RTA model in Equation (29) is
known to preserve the positive-definite character of the density matrix ρα1α2 ; and (ii) the action
of the Weyl–Wigner transform in Equation (31) does not alter such property.

At this point, it is crucial to recall (see Section 2) that the original local RTA model in Equation (7)
may be employed to describe both dissipation and thermalization phenomena, and the same applies
to the density-matrix based RTA model in Equation (29) as well. Indeed, as discussed in more detail
in [72], the generic relaxation rate Γα may describe energy dissipation inside the device toward an
equilibrium-state population (Γα = Γdiss

α , f α = f ◦α ), or device-reservoir thermalization toward the
quasiequilibrium state population induced by one or more external charge reservoirs (Γα = Γres

α ,
f α = f res

α ). It follows that also the new RTA model in Equation (32) may be employed for the
description of dissipation as well as thermalization phenomena, and that in both cases the action of
the new RTA superoperator is always non-local.

To illustrate the quality and physical soundness of the proposed non-local RTA scheme in
Equation (32), we focus first on the study of energy dissipation phenomena. To this end, the new
non-local RTA model has been applied once again to the prototypical QW nanosystem in Figure 3
adopting again the very same effective 1D model introduced in Section 3.1. In this case, the in-plane
carrier dynamics is neglected and the confined states of our QW system as well as the corresponding
dissipation rates are labeled by the integer number n only, i.e., Γdiss

α ≡ Γdiss
n . In particular, Figure 9

shows the results obtained by setting 1/Γdiss
1 = 1 ps and 1/Γdiss

2 = 0.7 ps. A comparison with Figures 4
and 5 shows that, here, opposite to the pathological behaviors obtained via the RTA models M2
and M3, both the spatial carrier distributions (Figure 9a) and the corresponding level populations
(Figure 9b) are always positive-definite. Moreover, as for the case of model M1, we deal again with a
correct relaxation dynamics toward the equilibrium state (solid curve in Figure 9a) without unphysical
interlevel relaxation couplings and continuum population.

Let us finally apply the proposed non-local RTA scheme in Equation (32) to the investigation of
device-reservoir thermalization. To this end, let us consider again the 1D problem of Figure 8, namely
the steady-state quantum transport across a rectangular barrier due to a monoenergetic carrier injection
from left. In this case, the single-particle states α corresponding to the 1D rectangular potential profile
are conventional scattering states labeled by their 1D carrier wavevector k, and the device-reservoir
relaxation rates depend on k as well, i.e., Γres

α ≡ Γres
k . To mimic the monoenergetic-injection scenario of

Figure 8, let us assume a monoenergetic carrier distribution in the left reservoir, i.e., f res
k ∝ δ(k− k0),

k0 denoting the wavevector corresponding to the injection energy ε0. As a result, in this case, the
device-reservoir coupling is described via a single relaxation rate Γres

0 ≡ Γres
k0

. The latter can be regarded
as the inverse of the so-called device transit time of the semiclassical theory [15], i.e., the ratio between
the device length l and the injection carrier group velocity v0 = (h̄k0)/m∗, which for our simulation
parameters is of the order of 100 fs.
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Figure 9. The same as in Figure 4 (a) and in Figure 5 (b) but for the proposed nonlocal RTA model in
Equation (32) with 1/Γdiss

1 = 1 ps and 1/Γdiss
2 = 0.7 ps. Reprinted from [61].

The results obtained via the new non-local RTA model in Equation (32) are reported in Figure 10,
where we have assumed again a monoenergetic thermalization with ε0 = 50 meV, and we have
employed a device-reservoir relaxation time 1/Γres

0 = 100 fs. Opposite to the highly non-physical
results of the local IBC scheme in Figure 8, here, the charge distributions are always non-negative,
thus confirming the positive-definite character of the proposed non-local RTA model in Equation (32).
Moreover, regardless of the dissipation level, the amount of charge in the right portion of the device
is now definitely negligible, in total agreement with the fact that for our simulation parameters the
transmission coefficient across the rectangular barrier is extremely small (of the order of 10−3). In
addition, while in the coherent limit (solid curve) as well as in the weak dissipation regime (dashed
curve) one deals with the typical interference scenario between incoming and reflected wavefunctions,
in the strong-dissipation regime (dash-dotted curve), such interference process is partially suppressed
due to dissipation induced decoherence [20].
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Figure 10. The same as in Figure 8 but replacing the semiclassical IBC scheme based on the local RTA
model in Equation (7) with the fully non-local model in Equation (32). To this end, the monoenergetic
left injection of the IBC scheme employed in Figure 8 is replaced by a thermal coupling of the device with
a corresponding monoenergetic distribution in the left reservoir via a relaxation time 1/Γres

0 = 100 fs.
The coherent-limit result (solid curve) and the weak-dissipation one (dashed curve) are basically
coincident; the dash-dotted curve refers to the strong-dissipation regime.
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Comparing once again the present convincing results with the highly problematic ones
in Section 3.2, we also notice that, while there, in Figure 8, the curves corresponding to the
coherent-limit result (solid line) and the weak-dissipation one (dashed line) differ significantly, here,
in Figure 10, they basically coincide (the two profiles are hardly distinguishable). Recalling that
the so-called coherent limit (τ → ∞) is concretely fulfilled when the dissipation time τ is much
larger than any other characteristic time, and that for our system the only other time-scale is the
thermalization time 1/Γres

0 (of the order of 100 fs), it is clear that in the weak-dissipation regime
(τ = 5 ps) the dissipation time is about fifty times larger than the thermalization one; this tells us
that the weak-dissipation result (dashed curve) should closely resemble the coherent-limit one (solid
curve). Such a physically sound scenario is fully confirmed by the results shown in Figure 10. This is
instead not the case for Figure 8, where, as discussed in more detail in [67], the anomalous difference
between the weak-dissipation result (dashed curve) and the coherent-limit solution (solid curve) is
due to the fact that the latter is not unique. The coherent-limit result shown in Figure 8 (solid curve)
should be therefore totally disregarded, and the dissipation-free scenario is well reproduced by the
weak-dissipation result (dashed curve).

To confirm the quality and physical soundness of the non-local RTA model in Equation (32), we
have repeated the simulated experiments of Figure 10 for a thinner (w = 6 nm) and lower (V0 = 75 meV)
barrier. Opposite to the original (almost transmission-free) barrier profile in Figure 10, in this case, the
transmission coefficient is about 25 %, leading to a significant tunneling dynamics across the barrier.
This scenario is fully confirmed by the new results reported in Figure 11: while in the left portion
of the device the role played by dissipation phenomena is similar to the one reported in Figure 10,
here, in addition, we deal with a relevant tunneling across the barrier, leading to a significant charge
distribution in the right portion of the device as well. In particular, while the coherent-limit result
(solid curve) coincides again with the weak-dissipation one (dashed curve), in the strong-dissipation
regime (dash-dotted curve), we deal again with a suppression of the left-side interference pattern,
and to a decoherence-induced suppression of the tunneling dynamics.
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Figure 11. The same as in Figure 10 but for a thinner (w = 6 nm) and lower (V0 = 75 meV) barrier
(see text).

It is finally important to stress once again that the physically sound results in Figures 9–11
obtained employing the new RTA model in Equation (32) are primarily due to its non-local character.
To better elucidate the link between the non-local RTA model in Equation (32) and its local version in
Equation (7), it is useful to realize that the former reduces to the latter in the presence of a fully local
relaxation function, namely:

Γ(r, k; r′, k′) = Γ(r, k)δ(r− r′)δ(k− k′) . (34)
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Recalling that, for the thermalization IBC scheme in Equation (5), we have Γ(r, k) = vin(rb, k)δ(r−
rb), the explicit form of the local relaxation function in Equation (34) is given by:

Γ(r, k; r′, k′) = vin(rb, k)δ(r− rb)δ(r− r′)δ(k− k′) . (35)

This clearly shows that the local action of the conventional IBC scheme takes place on the
device boundary region rb only, in clear contrast to the action of the non-local relaxation function
in Equation (33). Indeed, regarding again any RTA model as an injection/source minus a loss/drain
term [see Equation (30)], while in the conventional IBC scheme carrier injection versus loss takes place
on the device spatial boundaries only, in the non-local model, the action of both injection and loss
phenomena due to the presence of external charge reservoirs is present inside the device as well.

4.2. Non-Local Boltzmann-Type Models

The very same generalization procedure employed to derive the nonlocal RTA model in
Equation (32) can also be adopted to overcome the limitations of the Boltzmann-like treatment pointed
out in Section 3.1 (see Figures 6 and 7). Instead of defining the scattering superoperator directly within
the Weyl–Wigner phase-space (r, k), one can start from a reliable dissipation model for the density
matrix, and then translate it into the Wigner-function picture.

To this aim, we refer to the nonlinear density-matrix approach proposed in [73], which:
(i) applies to any generic nanostructure; (ii) accounts for high-density effects; (iii) provides the correct
thermal-equilibrium state; and (iv) preserves the positive-definite character of the single-particle
density matrix. More specifically, for both carrier–phonon and carrier–carrier interaction mechanisms,
energy dissipation and decoherence is described by the following nonlinear scattering superoperator

∂ρα1α2

∂t

∣∣∣∣
diss

=
1
2 ∑

α′α′1α′2

((
δα1α′ − ρα1α′

)
Pα′α2,α′1α′2

ρα′1α′2
−
(

δα′α′1
− ρα′α′1

)
P∗α′α′1,α1α′2

ρα′2α2

)
+ H.c. , (36)

where P
α1α2,α′1α′2

are generalized scattering rates, whose explicit form is given in [73]. The nonlinearity

factors (δα1α2 − ρα1α2) can be regarded as the quantum-mechanical generalization of the Pauli factors
of the conventional Boltzmann theory [see Equation (10)].

The key step is then to apply to the density-matrix scattering superoperator in Equation (36) the
Weyl–Wigner transform in Equation (31). The resulting Wigner-function scattering superoperator still
has the in-minus-out structure of Equation (16), with the local terms of the semiclassical theory in
Equations (17) and (18) replaced with the following nonlocal generalizations.

Pin/out(r, k; r′, k′) =
∫ dr′′ dk′′

(2π)3

(
1− f (r′′, k′′)

)
P̃in/out(r′′, k′′; r, k; r′, k′) (37)

with

P̃in(r′′, k′′; r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗α1α′(r

′′, k′′)Pα′α2,α′1α′2
W∗α′1α′2

(r′, k′)
}

(38)

and

P̃out(r′′, k′′; r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′α′1α′2

<
{

Wα1α2
(r, k)W∗α′α′1

(r′′, k′′)P∗α′α′1,α1α′2
W∗α′2α2

(r′, k′)
}

. (39)

It is worth stressing that, despite the strong formal similarity with the conventional Boltzmann
transport theory, the generalized Wigner-function scattering rates in Equation (37) are not necessarily
positive-definite.
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The proposed quantum-mechanical generalization of the standard Boltzmann collision term in
Equation (10) is thus intrinsically nonlocal. In particular, comparing Equation (37) with its semiclassical
counterpart in Equation (11), it is evident that the action of the Pauli exclusion principle within the
Wigner phase-space is itself nonlocal: the generalized in and out scattering rates for a given transition
r, k→ r′, k′ depend on the value of the Wigner function in any other phase-space point r′′, k′′ via the
Pauli factor 1− f (r′′, k′′). A detailed investigation of such Pauli-blocking nonlocality is outside the
scope of the present work and can be found in [64].

In the low-density limit f (r, k) → 0, the proposed scattering model in Equation (37) then
reduces to:

Pin(r, k; r′, k′) =
1

(2π)3 ∑
α1α2α′1α′2

<
{

Wα1α2
(r, k)Pα1α2,α′1α′2

W∗α′1α′2
(r′, k′)

}
(40)

and
Pout(r, k; r′, k′) =

1
(2π)3 ∑

α1α2α′1α′2

<
{

Wα1α2
(r, k)P∗α′1α′1,α1α′2

W∗α′2α2
(r′, k′)

}
. (41)

To test the suitability of the proposed nonlocal Boltzmann superoperator, we have applied the
latter to the case of the simulated experiment of Figure 6; the resulting energy-dissipation dynamics
is presented in Figure 12. Here, opposite to the unphysical behaviors obtained via the semiclassical
Boltzmann model (see Figures 6 and 7), both the spatial carrier distributions (Figure 12a) and the
corresponding subband populations (Figure 12b) are always positive-definite. Moreover, analogously
to the physically sound results of the RTA model M1 [see Figures 4a and 5a], the system now correctly
relaxes toward the equilibrium state (solid curve in panel a) without unphysical interlevel couplings
and continuum populations. Here, due to the trace-preserving character of the original density-matrix
model in Equation (36), the proposed nonlocal Boltzmann-type superoperator in Equation (37) is
intrinsically charge-conserving.
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Figure 12. The same as in Figure 6 but replacing the local Boltzmann model in Equation (10) with the
proposed nonlocal model in Equation (37). Reprinted from [61].

As pointed out in Section 2.2, a possible strategy to improve the quality of semiclassical device
modeling is to replace the standard IBC thermalization scheme with a global simulation of the
device-plus-reservoir system. To this aim, an efficient approach is to describe reservoir-induced
carrier thermalization via an effective Boltzmann-type collision term, as originally proposed
in [68,69]. It is worth stressing that the very same strategy can be adopted for quantum-simulation
schemes as well; indeed, instead of accounting for thermalization phenomena via the non-local
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RTA scheme in Equation (32), it is possible, in principle, to describe reservoir-induced carrier
thermalization via the non-local Boltzmann-type superoperator in Equation (16) equipped with
corresponding device-reservoir thermalization rates formally identical to the non-local dissipation
rates in Equation (37).

5. Summary and Conclusions

The simulation of novel nanomaterials and of related electronic quantum devices is often
grounded on partially phenomenological transport models based on the Wigner-function formalism.
Within these simplified modeling strategies, energy dissipation versus decoherence phenomena are still
described via local models borrowed from the semiclassical Boltzmann theory, namely relaxation-time
treatments or Boltzmann-type scattering approaches. Such a semiclassical treatment is intrinsically
incompatible with the fully quantum-mechanical coherent (i.e., dissipation-free) carrier dynamics
within the device active region. Indeed, during the last decades, the intrinsic limitations of such hybrid
treatments emerged in different contexts, both for semiclassical thermalization models based on the
conventional boundary-condition scheme and for dissipation versus decoherence treatments based on
the relaxation-time approximation, as well as on Boltzmann-like scattering models.

In this paper, our primary goal is twofold: (i) We review selected simulated experiments, showing
the above-mentioned limitations in different contexts, and providing a cohesive theoretical treatment
able to clearly identify the origin of such diverse anomalies faced within the Wigner-function picture.
(ii) Starting from the density-matrix formalism, we show how to derive genuine quantum mechanical
dissipation models, able to overcome the intrinsic limitations just reviewed.

The main conclusion of our analysis is as follows: within the Wigner-function picture, a
correct treatment of both dissipation versus decoherence phenomena inside the device and of
the device-reservoir thermalization process requires the use of intrinsically non-local scattering
models. In addition, our investigation shows that the most natural theoretical framework for a fully
quantum-mechanical simulation of electronic and optoelectronic nanodevices is the density-matrix
picture, which comes out to also be computationally less expensive. Indeed, in the presence of non-local
dissipation and/or thermalization models, a direct numerical solution of the corresponding transport
equation via finite-difference schemes over the Wigner phase-space is by far computationally more
demanding (compared to the local case), and a direct numerical solution of the density-matrix equation
comes out to be, in general, less expensive. No matter which is the adopted computational strategy
(Wigner-function versus density-matrix solution), at any time, one can simply switch between the two
pictures via the corresponding Weyl–Wigner transform.
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