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Abstract—In this paper, two different non-linear Kalman Filters for lithium-ion battery state of charge estimation are presented and 

compared. Nowadays, lithium-ion batteries are extensively used for hybrid and electric vehicles; in such applications, cells are assembled 

in module and pack to achieve high performance. At this scope, a Battery Management Systems BMS is required to control each cell and 

improve the battery pack performance, safety, reliability, and lifecycle. One of the major tasks a BMS must fulfill is an accurate online 

estimation of the State Of Charge (SOC) of the battery pack. In this paper, the Extended Kalman Filter and Sigma Points Kalman filter 

are developed and compared. A battery equivalent circuit model has been chosen to have a good compromise between complexity and 

accuracy and model parameters have been identified from Hybrid Pulse Power Characterization (HPPC) tests carried out at different 

temperatures and current rates to obtain a model valid for a wide range of operating conditions. The SOC estimation strategies are 

developed starting from the experimental results and it is validated through different driving cycling simulations. The results show that 

the Sigma Points Kalman filter produces a better estimate of SOC with respect to the Extended Kalman Filter, due to its better capability 

to deal with system non-linearities, with comparable computational complexity. 

Keywords—Battery, Control, Kalman filter, State of Charge, Experimental validation 

I. INTRODUCTION 

In the last few years, the increased awareness of the impact of fossil fuels on the environment has justified the need for a strong 
development of renewable energies [1]. The automotive sector is a major contributor to greenhouse gas emissions; thus, a great effort 
is being made for fleet electrification today. An important feature of Electric vehicles, EVs, and hybrid electric vehicles, HEVs, is 
the higher efficiency of the electric motors involved which present an overall efficiency of up to 96% compared to the efficiency of 
Internal Combustion Engine ICE of 18-20% [2] - [3]. Other advantages of electric motors are the lower number of moving 
components which imply low maintenance compared to ICEs, but the most important feature of electric motors is their power 
characteristic curve able to deliver high torque at low speed which makes a multi-speed gearbox unnecessary. Among all battery 
chemistries Lithium-ion cell is the most widespread technology for energy storage in hybrid and electric vehicles due to their high 
intrinsic safety, fast charging, small dimensions, weak memory effects, and long cycle life. On the other hand, the cost of materials 
and manufacturing remains not negligible.  

The automotive application requires both high power and energy, thus a huge number of cells must be connected in series and in 
parallel to fulfill the vehicle requirements. During its operation, each cell faces a wide range of working conditions characterized by 
extremely dynamic current profiles and different temperatures, thus they must be controlled to verify and enhance safety and 
performance, this task is carried out by the battery management system, BMS. It must be able to evaluate the battery status in terms 
of state of charge SOC, state of health SOH, and cell aging. 

The market penetration of the electric and hybrid electric vehicles is still low due to some limitations such as high battery price, 
poor charging infrastructure, long charging time, and range anxiety, which is justified by the very low specific energy of battery pack 
equal to around 0.25 kWh/kg compared to fossil fuel vehicle which is equal to around 13 kWh/kg [4]. 

One way to solve partially the issue of range anxiety is to evaluate accurately the residual energy inside each cell of the battery 
pack. Nevertheless, two main issues occur: first, it is impossible to directly measure this quantity, second, the capacity of each cell is 
affected by temperature, current profile, and aging conditions, thus dedicated algorithms must be developed which are able to take 
into account the dependency from these quantities. An accurate estimation of the SOC is required because it increases the 
performance, lifetime, and safety of the battery pack. The battery pack performance can be enhanced using some balancing methods 



to equalize the energy inside each cell. It is fundamental to extend the battery capacity in both charging and discharging phases. On 
the other hand, battery lifetime can be maximized through some current derating strategies used to avoid battery degradation at a low 
level of SOC. Finally, pack safety is increased by controlling each cell and avoiding any undervoltage, overvoltage, and overcharge 
faults.  

Moreover, the SOC value acts as an input for other calculations such as SOH, cell balancing, and power calculation.  

There are basically two main methods used for SOC estimation: 

- measuring the battery Open Circuit Voltage, OCV, 

- measuring the current provided by the battery. 

However, the methods above are very simple and cannot be able to provide accurate results which are required in the automotive 
field. In recent years, many carmakers have therefore been working to improve the accuracy of SOC estimates using more advanced 
and robust algorithms. 

The goal of this paper is to model a lithium-ion cell by means of an Equivalent Circuit Model ECM and to compare two non-
linear Kalman Filter performances in estimating cell SOC. 

In section II the battery modelling and the most important SOC estimation algorithms are introduced. In section III the model 
parameters identification procedure is presented, whereas in section IV the results of the proposed algorithms are discussed and 
compared. 

II. BATTERY MODELLING 

A. Battery Cell Model 

ECM uses passive electrical components to describe the behaviour of the battery. It has been developed especially for vehicle 
power management control and BMS. Typically, an ideal voltage source is selected to represent the OCV, additional resistance and 
capacitance blocks simulate the battery internal resistance and dynamic effects such as the voltage drops due to polarization and mass 
diffusion phenomena.  

There are two categories of ECM: the first uses Electrochemical Impedance Spectroscopy (EIS) to evaluate the cell internal 
electrical parameters and are called Impedance models. [5], [6]–[8]. The second type of model is the Thevenin model, in particular, 
the 2nd order Thevenin model has been chosen in this work because it is a trade-off between precision, and lightness [9]. It is made 
up of an ideal voltage source, a series resistance, a first resistance in parallel with a capacitance and a second resistance in parallel 
with another capacitance to describe the high non-linear behaviour of the cell. The second RC parallel block can simulate with high 
fidelity the electrical behaviour of the cell and its voltage response during the transient phase caused by the slow chemical reactions 
which occur inside the cell. The battery voltage response is evaluated using the next non-linear formula [10]: 

V(t)=OCV-V1e-t τ1⁄ -V2e-t τ2⁄                          (1) 

However, a coupled electrical and thermal battery models are required to evaluate how both phenomena affect the battery 
behaviour. At this scope, a previous battery model described and validated in [11] is used. The proposed model (based on the 2nd 
order Thevenin) solves the energy balance of the cell for the thermal problem according to the equations: 
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where: ρ, cp, kr, kz are the thermophysical properties of the cell:  density, specific heat capacity, thermal conductivity in the 

radial and axial direction, respectively.  

Several SOC estimations have been presented in the literature [12]–[14] and classified in: voltage-based, coulomb counting, direct 
method, electromotive force, and adaptive technique. The simplest method for SOC estimation is the voltage-based method 
commonly used for lead-acid battery which are characterized by a quite linear trend of SOC and OCV, thus starting from a voltage 
measurement is possible to evaluate the battery state of charge through the relationship: 

OCV(t)=a1SOC(t)+a0                          (4) 

Where the coefficients a1 and a0 are properly tuned to fit the OCV-SOC curve. 

The model is very simple, nevertheless, it shows many drawbacks: it does not consider temperature, aging, and C-rate 
dependencies, it is very sensitive to voltage sensor error especially in the middle range of the voltage curve where it is very flat, thus 
a small variation of voltage implies high variation of SOC. Moreover, the hysteresis effect is not taken into account, which in turn 
causes large errors. 



Lithium-ion cells are characterized by high non-linear behaviour; thus the voltage-based algorithm becomes unfeasible for this 
kind of chemistry. Coulomb counting is the most widespread method to calculate the battery state of charge. It consists in the 
integration of the current over time using the equation: 

SOC=SOC0+
1

Cn
∫ i(t)dt

t0+∆t

t0
                         (5) 

Where: SOC0 is the state of charge at time zero, Cn is the battery capacity, and i the measured current. Coulomb counting is very 
simple to be implemented in real-time applications, nevertheless, it has two major drawbacks: first, the impossibility to recover from 
a wrong SOC0 initialization, second error accumulation over time due to sensor noise and inaccuracy in current measurement. 

To overcome the limits of the Coulomb counting method some model-based adaptive techniques can be used, in which the 
previous model output is corrected with some measured data to obtain some posterior values and the right state estimation of the 
system. Kalman filter is one of the most important algorithms for model-based methods.  

 

B. Linear Kalman Filter 

The Kalman filter is an effective recursive algorithm able to evaluate the state of a linear dynamic system using some 
measurements affected by gaussian white noise. To model the system the following linear state-space form is used: 

{
xk=Ak-1xk-1+Bk-1uk-1+wk-1

y
k
=Ckxk+Dkuk+vk

                          (6) 

Where: xk is the system state vector at time index k, uk is the input of the system, y
k
 is the system output, wk and vk are mutually 

uncorrelated Gaussian white noises, with zero mean and known covariance matrices. 

The Kalman filter algorithm is made up of two steps: 

1. prediction step, it uses the model equations to predict the states at the present time step; 

2. correction step, the algorithm corrects the predicted state using the measured output coming from the real system. 

Due to the non-linearity of the battery model, the linear Kalman filter is not suitable to describe the internal state of the system, 
thus a more advanced non-linear Kalman filter must be used. In this paper, two different algorithms are presented and implemented 
in the control system: 

- Extended Kalman Filter EKF, 

- Sigma Point Kalman Filter SPKF 

In particular, the full model in state space form [x+1, y
k+1

] is: 
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Vk+1=OCVk+1+V1,k+1+V2,k+1-Rintik+1              (8) 

C. Extended Kalman Filter 

It is the most widespread application of the Kalman filter when non-linear systems are involved. The algorithm is based on two 
fundamental assumptions for the estimation of the non-linear function output and covariance. In particular, the expected value of the 
output state is approximated to the same non-linear function evaluated at the state expected value. Moreover, for covariance estimate, 
EKF linearizes analytically the model equations through the Taylor series expansion. As for the Linear Kalman Filter, the EKF is 
made up of two steps, the prediction, and the correction. In the first step the state prediction based on previous states and input is 
performed, then the covariance prediction and the output guess are calculated according to equations [15]: 
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In the second step, the Kalman gain matrix is calculated using the Taylor series expansion and it is used for the correction of both 
the state and the covariance of the state: 
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The proposed model represented in Errore. L'origine riferimento non è stata trovata. is made up of the main blocks: 

- Blue block, called “GetParams”, contains the lookup tables of the electrical circuit parameters both for charging and discharging 
phases. 

- Orange block, contain three different sub-blocks. In the 1st the 2nd order equivalent circuit model is implemented, and it linearizes 
the non-linear function computing partial derivatives. Moreover, it performs the prediction step to compute the covariance matrices 
related to the state prediction and the output prediction. The 2nd sub-block evaluates the SOC of the cell through the Coulomb counting 
algorithm. Finally, a 3rd sub-block calculates the Kalman gain and performs the Kalman filter correction step. It also computes the 
error between the measured voltage across the cell and the predicted output based on the model, consequently, it applies a correction 
to the SOC prediction and its covariance matrix. 

- Red block thermal problem is solved, in the first moment the heat source is calculated, and it is used in a second moment for 
the solution of the energy balance through a finite difference to evaluate the thermal field inside the cell. 

 

 

 

Fig.1.   EKF Matlab model 

D. Sigma Point Kalman Filter 

The EKF is the most common algorithm among non-linear Kalman filters, but it has some drawbacks linked to its assumptions 
which cause some mistakes in output estimation. To overcome these limits a sigma-points method can be used, where an empirical 
or statistical linearization is used instead of an analytical linearization. In this way no derivatives must be evaluated, the function can 
be not differentiable, a better covariance estimation can be calculated with a comparable computational cost. 

A suitable number of points X is taken so that their mean and covariance is equal to the mean x̅ and covariance Σx̃  of the a priori 
random variable. The points are the input of the non-linear function which returns them as a set of point Y. The statistics of the 
transformed point can then be calculated to form an estimate of the non-linearity transformed mean and covariance. Sigma points 
evaluate a precise number of vectors calculated in a deterministic way. The equations involved in the prediction and correction steps 
typical of the Kalman filter method are: 
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-ŷ

k
)                              (19) 

∑
x̃,k

+
=∑

x̃,k

-
-Lk∑
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III. PARAMETERS IDENTIFICATION 

The model parameter identification is based on the current pulse test and has been explained in [16]. The cells under test are LG 
INR18650−MJ1 3500 mAh. The experimental setup (Errore. L'origine riferimento non è stata trovata.) is composed of: The 
Neware-BTS; 8 LG cells; an environmental chamber; 8 NTC to measure the cell temperatures; a PC for storing and processing data. 
The Neware-BTS is a programmable electronic load with 16 independent channels. Proprietary software developed in Beond 
company is used for test programming and for acquiring current and voltage at a sampling frequency of 1Hz. Besides the cell voltage 
and current, the temperature from each cell is recorded. To set different and constant environmental temperature is used a climatic 
chamber. 

 

Fig. 2.   Experimental setup 

 

The goal of cell characterization is to identify the electrical parameters of the equivalent circuit and its dependencies with respect 
to SOC, temperature and current. Initially, the cells performed a preconditioning procedure [5]. After preconditioning, a pulse test is 
performed. The Pulse test is known in different standards also as Hybrid Pulse Power Characterization HPPC test. The cells are 
excited with constant current pulses, these must always remain within the limits specified by the manufacturers, in terms of voltage, 
maximum currents and temperatures. The voltage response to these pulses is fitted with a combination of passive elements, resistors, 
and capacitors, leading to the parametrization of the equivalent circuit model. The voltage relaxation behaviour is provided in Fig. 3.  

The OCV is obtained as the last voltage value at the end of the relaxation period, and its accuracy increases with a longer relaxation 
time. The series resistance R0 is evaluated as the ratio of the voltage variation V0 at the end of the current pulse end ∆I: 

R0=V0/∆I                                    (21) 

 

The resistance and capacitance in the parallel blocks are calculated by a curve fitting procedure able to provide the non- linear 
part of the voltage response of the cell V1(t)+V2(t), since the double-RC equivalent circuit model response has the form: 

f = OCV +V1(1-e
-
∆t

τ1)+V2(1-e
-
∆t

τ2)                      (22) 

The fitting process is carried out in MATLAB environment, in particular, lsqnonlin MATLAB function has been used. 

HPPC tests have been repeated at the following temperatures: 0°C, 10°C, 20°C, 30°C, and 40°C. Moreover, the C-rate influence 
has been investigated by repeating the tests at different currents: 1C, 2C, and 3C. This operation was very time consuming but allows 
to create a model valid for a wide range of operating conditions. This strategy significantly increases the number of estimation steps, 
but it reduces the number of free parameters in each task increasing the accuracy.  

 



 

Fig. 3.   Parameter extraction procedure in discharging phase 

 

 

Fig. 4.   HPPC Voltage Profile 

It has been decided to charge and discharge the cells with pulses of different duration. The pulses at high and low SOC were taken 
while discharging 3% of the cell capacity, while the other pulses discharged 10% of the cell capacity. In this way, it has been collected 
more data at high and low SOCs, where the cell behaviour is significantly non-linear. After each pulse, the cell observed a rest period 
of 30 minutes, allowing the cell to reach almost stationarity OCV values (Fig. 4). 

IV. RESULTS 

In this section, the parameters of the 2nd order Thevenin battery model obtained from the experimental tests are provided. In 
particular, the dependence of the parameters from SOC, temperature, and current are highlighted. These values are the input for both 
models Extended Kalman Filter and Sigma Point Kalman Filter. Then, the results obtained from both models are provided and 
compared in terms of accuracy. 

A. ECM Parameters  

The extracted parameters are represented in Fig. 5, Fig. 6, and Fig. 7. As mentioned, the parameters are a function of SOC, 
temperature, and current, nevertheless in the all the figures one variable is kept fixed and the dependence from the other two is 
evaluated for an effective visualization of the results. 

In this paper only the outline of the internal resistance, R0, is show. 



 

Fig. 5.   R0 vs. SOC and Temperature at 1C 

 

 

Fig. 6.   R0 vs. SOC and C-rate at 20°C 

 

Fig. 7.   R0 vs. Temperature and C-rate at SOC 55% 

B. SOC Estimation Algorithms 

A standard driving cycle is selected to validate the proposed models. A current profile is applied to a real cell and its voltage 
response is compared with the output of both models to evaluate the best SOC estimation strategies. Different performance indices 
were used: root mean square error, absolute mean error and SOC variance. Different scenarios were taken into account, in the first 
one the current profile typical of a WLTP Class 3 driving cycle is used and the SOC initial value is set correctly to its maximum 
values (Fig. 8, Fig. 9, Fig. 10 and Fig. 11). 

 

Fig. 8.   WLTP Test 1 vs. Models: Voltage Comparison 



 

Fig. 9.   WLTP Test 1 vs. Models: Voltage absolute error 

 

 

Fig. 10.   WLTP Test 1 vs. Models: SOC Comparison 

 

Fig. 11.   WLTP Test 1 vs. Models: SOC absolute error 

TABLE I. MODELS RESULTS FOR WLTP TEST 1 

Algorithm 
Performance Index 

SOC RMSE 

[%] 
V RMSE [mV] SOC Variance 

EKF 0.024 33.7 1.77 e-4 

UKF 0.0025 33.3 0.001 

 

As it is possible to see from the table above, both filters perform very well minimizing the value of the state of charge root mean 
square error. The UKF is more accurate than EKF, nevertheless it shows a higher variance.  

 

Fig. 12.   WLTP Test 2 vs. Models: Voltage Comparison 



 

Fig. 13.   WLTP Test 2 vs. Models: Voltage absolute error 

 

 

Fig. 14.   WLTP Test 1 vs. Models: SOC Comparison 

In the second scenario, the cell is subjected to 4 WLTP driving cycles and a wrong SOC initialization is made to evaluate the 
ability of both the strategies to converge to correct SOC values (Fig. 12, Fig. 13 and Fig. 14).  

Although both algorithms cannot effectively simulate the battery voltage response during the rest periods, they converge to the 
real voltage as soon as the battery contactors are closed. In particular, the performance indices of the table below show how the EKF 
has a faster convergence to the correct SOC, a lower SOC RMSE and a lower mean SOC variance with respect to the UKF. 

TABLE II. MODELS RESULTS FOR WLTP TEST 2 

V. CONCLUSIONS 

In this paper, two SOC estimation algorithms for lithium-ion battery 
were developed and validated through experimental test properly made. 
The battery behaviour is simulated through a 2nd order Thevenin 
equivalent circuit model which works accurately and requires low 
computational cost even when highly dynamic current profiles are involved. The ECM parameters (SOC, temperature and current 
dependent) have been evaluated by means of several hybrid pulse power characterization tests performed at different temperatures 
and C-rates. Also, the battery thermal response is evaluated to predict the cell temperature evolution and to capture the strict link 
between electrical and thermal phenomena occurring inside the cell. 

The model was validated by means of a highly dynamic current profile providing a good precision in voltage response evaluation 
with a root mean square equal to 0.75% of the nominal cell voltage. Different scenarios were used to evaluate the performances of 
the proposed SOC algorithms. In the first case, a correct SOC initialization is set, the SOC estimation precision of the UKF algorithm 
was significantly higher than the EKF. In the second scenario, SOC was initialized to a wrong value to evaluate the speed of the 
convergence. The EKF showed a faster speed convergence with respect to UKF. Moreover, the EKF performed better also in terms 
of SOC variance which was significantly smaller than the value obtained from the UKF algorithm. 
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