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Algorithms for Walking Speed Estimation Using
a Lower-Back-Worn Inertial Sensor:

A Cross-Validation on Speed Ranges
A. Soltani , K. Aminian , Senior Member, IEEE, C. Mazza ,

A. Cereatti, L. Palmerini , T. Bonci, and A. Paraschiv-Ionescu

Abstract— Walking/gait speed is a key measure for daily
mobility characterization. To date, various studies have
attempted to design algorithms to estimate walking speed
using an inertial sensor worn on the lower back, which is
considered as a proper location for activity monitoring in
daily life. However, these algorithms were rarely compared
and validated on the same datasets, including people with
different preferred walking speed. This study implemented
several original, improved, and new algorithms for estimat-
ing cadence,step length and eventually speed. We designed
comprehensive cross-validation to compare the algorithms
for walking slow, normal, fast, and using walking aids.
We used two datasets, including reference data for algo-
rithm validation from an instrumented mat (40 subjects)
and shanks-worn inertial sensors (88 subjects), with normal
and impaired walking patterns. The results showed up to
50% performance improvements. Training of algorithms on
data from people with different preferred speeds led to
better performance. For the slow walkers, an average RMSE
of 2.5 steps/min, 0.04 m, and 0.10 m/s were respectively
achieved for cadence, step length, and speed estimation.
For normal walkers, the errors were 3.5 steps/min, 0.08 m,
and 0.12 m/s. An average RMSE of 1.3 steps/min, 0.05 m,
and 0.10 m/s were also observed on fast walkers. For
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people using walking aids, the error significantly increased
up to an RMSE of 14 steps/min, 0.18 m, and 0.27 m/s.
The results demonstrated the robustness of the proposed
combined speed estimation approach for different speed
ranges. It achieved an RMSE of 0.10, 0.18, 0.15, and 0.32 m/s
for slow, normal, fast, and using walking aids, respectively.

Index Terms— Walking speed, step length, cadence,
inertial sensors, slow walkers, walking aids.

I. INTRODUCTION

WALKING speed has recently emerged as an essential
indicator of human functional ability, recognized as

the sixth vital sign and a key factor for healthy aging [1].
Moreover, in clinical studies, walking speed has become an
essential measure in the characterization of movement-related
pathologies, the design and assessment of interventions, and
the early detection of functional decline [2]. The critical
point is that people might walk differently in unsupervised
real-world situations (self-triggered and purposeful gaits) than
in supervised settings such as a laboratory/clinical setting.
Therefore, designing portable systems to reliably estimate
speed in everyday life conditions is essential.

With the development of wearable technologies, an appeal-
ing solution to estimate gait speed in a real-life setting is to
develop algorithms based on inertial sensors (i.e., accelerome-
ter and gyroscope) mounted on various body segments. How-
ever, among the different sensor configurations and locations,
a single sensor, worn on the upper body (e.g., lower back
(LB), sternum, waist, or wrist), has attracted more attention
by providing a user-friendly and straightforward setup for real-
world and long-term monitoring [3]–[14].

LB sensor’s location offers several advantages. Typically,
the sensor is tightly fixed on the body, which reduces move-
ment artifacts and provides the possibility to align the sensor’s
axes with the body or global coordinate systems. Second,
an LB-worn sensor is close enough to the body center of
mass (CoM), ensuring a robust gait pattern in the acceleration
signal, even in the presence of an abnormal gait. These
advantages provide the opportunity to develop biomechanical
and physical models for estimating a wide range of gait
parameters, from primary outcomes such as cadence, step
length, and speed to secondary ones like gait variability and
symmetry [3], [10], [12], [13], [15], [16].

For speed estimation based on an LB-mounted inertial sen-
sor, a common approach is to estimate cadence and step length
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separately, whose multiplication results in speed. For cadence
estimation, several algorithms have been proposed, including
both time and frequency domain approaches. Briefly, time-
based algorithms are based on detecting step-related temporal
events (e.g., initial contacts, ICs), using signal processing tech-
niques for peak enhancement and detection [6], [8], [17], [18].
The second type of algorithms works in the frequency domain
and tries to estimate the dominant frequency of the accelera-
tion signal, associated with the step or stride frequencies [19].
Step length can be estimated through biomechanical models
(BM, e.g., inverse pendulum model or sensor signal intensity-
based algorithms) [3], [12], [20], [21], direct integration of
acceleration (DI) [5], and by deploying machine learning (ML)
methods (e.g., linear regression, Gaussian process, support
vector machine, neural network) [14], [22]–[25].

Recent studies have revealed that people with movement-
related disorders, such as Multiple Sclerosis (MS),
Parkinson’s disease (PD), Hemiparesis (HE), Huntington’s
disease (HD), or even healthy older adults (OA), generally
have a lower range of walking speed than healthy populations.
Based on these previous findings, it is well known that
algorithms’ performances might decrease when analyzing
impaired and/or slow gait with/without walking aids due
to changes in the acceleration patterns and amplitudes.
Therefore, in the light of the abovementioned considerations
and evidence, it is crucial for the development of evidence-
based clinical gait analysis applications to assess validity of
algorithms across both healthy and pathological populations,
and to understand to which extent algorithms performances
are influenced by acceleration patterns changes due to
different speed or gait patterns [26]–[28].

This study pursues a comprehensive cross-validation analy-
sis to investigate speed estimation performance and related
parameters using a single LB-mounted sensor. This perfor-
mance was evaluated at different speeds, with data recorded
in healthy and diseased populations. To this end, we developed
and improved various algorithms according to methodologies
adopted from the existing literature. We also propose new
algorithms as well as a new concept to combine multiple
algorithms by taking advantage of all approaches into one
unique solution towards optimizing the performance. A cross-
validation was designed to investigate the performance of
algorithms when test and training datasets corresponded to
various partitions of walking patterns/speed (i.e., slow, normal,
fast, all ranges, as well as using walking aids). The algorithms
have been evaluated on two datasets, recorded in healthy
and mobility-impaired populations, which included reference
values for the estimated gait parameters.

II. METHODS

A. Materials and Measurement Protocols
1) Dataset M1: Instrumentation: An IMU-based device

(OpalTM, APDM) was attached to the subject’s lumbar spine
(between L4 and S2) using an elastic belt. The IMU con-
tained a 3D accelerometer (±6 g) and a gyroscope, sampled
at 128 Hz. A 7-m instrumented mat (GAITRiteTM Electronic
Walkway, CIR System Inc.) was employed as the reference for
temporal and spatial gait parameters (sampling at 128 Hz),
with an accuracy of 12.7 mm and 1 sample, respectively.

The mat and the IMU were synchronized (±1 sample) using
a custom-made cable.

Participants: 40 subjects (24 women, 16 men, 62 ± 8yrs,
165.8 ± 7.0 cm, 68.6 ± 10.7 kg) from four clinical populations
of OA, PD (with a unified Parkinson’s disease rating scale
of 62.7 ± 19.1), HE (because of stroke with a functional
ambulatory category score of 3.3 ± 1.5), and HD (with a
unified Huntington’s disease rating scale of 34.9 ± 16.9)
have been included (ten subjects form each category). The
participants were enrolled at the Movement Disorders Clinic
of the University of Genoa. Informed written consent was
collected, and a local ethics committee approved the protocol.

Protocol: A 12 m path was chosen where the instrumented
mat was place 2 m far from the starting line to ensure
recording steady state and straight walking. After starting the
IMU acquisition, the participants stood at the starting line for
a few seconds with their feet parallel. Then, they walked back
and forth for one minute at their self-selected comfortable
speed, and they turned whenever they reached the end of the
path. Participants were allowed to use their walking aids if
they needed them. Since only walking periods recorded on the
instrumented mat were used for this study, the gait initiation
and the turning phases were automatically discarded from the
analysis.

2) Dataset M2: Instrumentation: Three time-synchronized
IMU-based devices (OpalTM, APDM) were mounted on each
subject (one around lumbar spine L5, and one on each shank)
through adjustable Velcro straps, featuring a 3D accelerometer
(±6g) and gyroscope, sampled at 128 Hz. To obtain the ref-
erence values for the temporal and spatial gait parameters for
dataset M2, the algorithm described in [29] (optimized version
of [30] for pathological gait of PD patients) was applied to the
angular velocity data of the shanks. The reference algorithm
has been previously validated against a motion capture system
and errors (mean±std) of 0.002±0.023s, 0.038 ±0.066m, and
0.038 ±0.056 m/s were reported for estimating stride time,
stride length, and speed, respectively [29].

Participants: 88 subjects (59 women, 29 men, age
54 ± 9yrs) from two populations of Healthy Control
(HC, 24 subjects), and patients with the MS (64 subjects)
were included. Their disability status was evaluated by the
Expanded Disability Status Scale (EDSS), where a median
(range) score of 5.5 (3.0–6.5) was observed for the MS popu-
lation. The participants were chosen either from the Sheffield
MS Clinic at the Royal Hallamshire Hospital or the Sheffield
Clinical trial Unit (Sheffield, United Kingdom), with ethics
approval granted by the NRES Committee Yorkshire & The
Humber-Bradford Leeds (reference 15/YH/0300) and by the
North of Scotland Research Ethics Committee (ID: 224422).

Protocol: Each participant walked straight back and forth
over a 10 m path for around 6 minutes at their comfortable
speed. They could use walking aids and to end the measure-
ment at any time based on their exhaustion. The turnings were
detected and discarded using the algorithm proposed in [31].

B. Reference Values

Reference systems provided the cadence, stride length, and
speed in stride granularity. In order to compare the results
of the reference systems with the LB-based approaches, the
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average values of cadence, stride length, and speed over each
walking bout (i.e., walking period consists of consecutive
strides) were computed. For each walking bout, the average
stride length divided by 2 was considered as the average step
length.

C. Implemented Algorithms

In order to estimate walking speed using an LB-mounted
single sensor, we estimated the cadence and step length,
separately, whose multiplication resulted in the speed. This
simplification reduces the nonlinearity and complexity of the
developed algorithms, which might improve the performance.

1) Preprocessing: State-of-the-art algorithms based on
LB-sensor location generally use a 3D accelerometer
(ax , ay, az), and as inputs, the acceleration along unidirec-
tional axes (vertical or anterior-posterior), or acceleration
norm, anorm, computed based on (1).

anorm (t) =
√

ax (t)2 + ay (t)2 + az (t)2 (1)

The algorithms assume that the accelerometer axes
(x, y, z) are aligned with the global reference system, and/or
the measurement setup includes functional calibration proce-
dures. However, this assumption is not practical for the real-
world measurement setup. The alternative solution is to take
advantage of a 3D gyroscope available in the IMU devices and
correct the sensor orientation using complementary filters like
Madgwick [32]. Therefore, we proposed a preprocessing stage
including the Madgwick filter to correct the orientation of
the vertical acceleration, av (t), and the Principal Component
Analysis (PCA) during each walking bout to align the anterior-
posterior acceleration, aap (t), with the direction of movement.

2) Cadence Estimation: We developed seven cadence
estimation algorithms (CAD1-7) based on state-of-the-art
approaches, and two new combined methods (cTime and
cALL). For all algorithms, the mean cadence over each
walking bout was computed and compared to the reference
value. The algorithms were categorized into three approaches:
time, frequency, and combined.

a) Time-based approach: Time-based cadence estimation
algorithms (CAD1-6) were based on the detection of ICs.
Step duration was defined as the period between two consec-
utive ICs of different feet. Then, the instantaneous cadence
was estimated as the inverse function of the step duration
(in a minute unit, steps/min). For each algorithm, the mean
cadence of each bout was computed.

Peak enhancement technique: for the algorithms sensitive
to the step-related peaks in the input signals (CAD2, CAD3,
and CAD6), we employed a peak enhancement technique
adapted from [17]. To this end, a combination of de-trending,
zero-phase low pass filtering (FIR, ≈ fc3.2 Hz), followed
by a continuous wavelet transform (CWT) smoothing and
differentiation procedure (scale 10, gauss2), and a Savitzky-
Golay filtering were applied to reduce high-frequency noise
(movement artifacts) and enhance the step-related peaks.

CAD1: algorithm adapted from [3] where aap (t) was first
low-pass filtered (FIR, ≈ fc3.2 Hz) according to [17]. Then,
aap peaks preceding a signal sign change were detected
as ICs.

CAD2: algorithm based on [11] where the smoothed accel-
eration SW S (k) was obtained from anorm (t) using a sliding
window of size W equivalent to 0.2s, as in (2).

SW S (k) =
k∑

t=k−W+1

anorm (t) (2)

Then, the acceleration differential according to (3), adi f f (k)
was used for identifying ICs as zero-crossing of the
negative-to-positive signal slopes. To improve this algorithm,
we applied the peak enhancement technique (previously
described) on the anorm (t) before using it as the input.

adi f f (k) = SW S (k + W ) − SW S (k) (3)

CAD3: algorithm developed as a combination of the
processing techniques described in [6] and [17]. The vertical
acceleration, av (t), was filtered by the integration and differ-
entiation using the CWT (scale 9, gauss2). Then, ICs were
identified by detecting the maxima between zero-crossings,
a procedure adopted to increase robustness by avoiding a fixed
amplitude threshold. We boosted this method by applying the
peak enhancement technique (presented at the beginning of
this section) on av (t) before using it in this algorithm.

CAD4: algorithm according to [17] where, first, the peak
enhancement method was applied on anorm(t) to compute
the filtered acceleration, a f (t). Then, for further enhance-
ment of the step-related peaks, a peak sharpening method
was applied corresponding to the Taylor series expansion of
a f (t) where the second (a′′

f ) and fourth (a′′′′
f ) derivatives are

considered (4).

asharpen (t) = a f (t) − K2a′′
f (t) + K4a′′′′

f (t) (4)

Here, K2 and K4 are adjustable factors, empirically found
set as 20 and 2, respectively, to optimize the performance on
the training data. Eventually, an adaptive threshold was applied
on asharpen (t) to determine the step-related peaks as ICs.

CAD5: according to [9], aap (t) was linearly de-trended
and low-pass filtered using a 2nd-order Butterworth filter
( fc = 10 Hz). Then, the signal was integrated and differenti-
ated using CWT (by an estimated scale). Finally, the minima
of the processed signal were reported as ICs.

CAD6: according to [18], opening and closing morpho-
logical filters were applied to anorm (t) in order to highlight
the step-related peaks. Then, the peaks identified as maxima
during non-zeros periods in the processed signal were selected
as ICs. In order to improve this algorithm, anorm (t) went
through the peak enhancement method (previously explained),
before applying the morphological filters.

b) Frequency-based approach: CAD7: algorithm according
to [19], which is based on detecting the dominant peak of
the spectrum of the acceleration norm. To this end, a comb
function has been applied to the estimated frequency spectrum
to sharpen the dominant frequency related to step or stride.
Then, a maximum likelihood technique was used to estimate
the cadence. The algorithm presented in [19] employs the
Euclidean norm, anorm (t), which is a non-linear operation and
it might distort the acceleration signal. Hence, we improved
the algorithm by estimating the sum of spectrum of each
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acceleration channel as stated in (5).

OverallSpectrum = AX ( f ) + AY ( f ) + AZ ( f ) (5)

Here, AX , AY , and AZ are respectively the spectrum of
ax , ay , and az where f is the frequency variable. We used a
256-point Fast Fourier Transform (FFT) with a Hann window
to compute the frequency spectrum of acceleration signals.
Finally, mean cadence over each walking bout was calculated.

c) Combined approach: We proposed the combined
approach, where the output of different algorithms was aver-
aged with equal weights to generate a combined solution.
The hypothesis is that the averaging will reduce the random
error and increase robustness across various walking patterns
since the performance of each individual algorithm might be
different for the multiple datasets. Through this procedure,
we proposed two combined cadence estimation algorithms
called cTime and cALL, which were respectively the average
of the time-based (CAD1-6) and all (CAD1-7) algorithms.

3) Step Length Estimation: Twelve step length algorithms
(STPL1-12) plus four combined algorithms (cBM, cDI, cML,
and cALL), which have been categorized into four main
approaches (i.e., BM, DI, ML, Combined), were implemented.
For each algorithm, the mean value of the step length during
each walking bout was calculated. To isolate the error of the
step length algorithms from the error of cadence estimation
(ICs detection), here, we used ICs detected by the reference
systems (ic (m) where m is the step’s number/index within
a walking bout). Furthermore, the ICs were used to derive
the reference cadence, C ADstep(m), to be used as a para-
meter by some of the step length algorithms. Since several
algorithms required the cadence in per-second granularity, we
applied a moving window with the length of one second on
C ADstep(m) to estimate the instantaneous cadence in second
C ADsecond (t). Note that, in this section, variables A and B
are the tuning coefficients, optimized by training.

a) BM-based approach: This approach includes four algo-
rithms (STPL1-4) adapted from the literature and based on
the models that describe the human body’s biomechanics
(e.g., legs, trunk) during walking.

STPL1: algorithm based on the inverted pendulum
model [3], [13] where the step length was computed
through (6):

ST P L1 [m] = A

(
2
√

2ldstep [m] − dstep [m]2
)

+ B (6)

Here, dstep [m] is the vertical displacement of the body CoM
(i.e., LB in this study) during m-th step, and l is the pen-
dulum length (i.e., the leg length). To calculate the vertical
displacement of the CoM, in the original method the av (t)
was double integrated and high-pass filtered with a 4th-order
Butterworth filter with a cut-off frequency fc = 0.1 Hz
to obtain the vertical position, dv (t). Then, dstep [m] was
computed according to (7), within two neighboring ICs.

dstep [m] = | max(dv (t)) − min(dv (t))|︸ ︷︷ ︸
ic(m)≤t≤ic(m+1)

(7)

To enhance the estimation of the vertical displacement,
we proposed the method shown in Fig. 1. Here, the high-
pass filtered av (t) (4th-order Butterworth, fc = 0.1Hz) was

Fig. 1. Block diagram of the proposed method for the estimation of
the vertical displacement of body CoM during each step, dstep[m]. After
filtering and integrating av

(
t
)
, the vertical speed (Vv(t )) was high-passed

and integrated to obtain the vertical displacement (dv(t )). Then, the effect
of drift was removed by computing the difference between maximum and
minimum of dv(t ) between each neighboring ICs (ic(m)).

integrated to obtain the vertical speed,Vv (t). Then, Vv (t)
was high-pass filtered (4th-order Butterworth, fc = 1 Hz,
empirically chosen) and integrated (by the cumsum function
in MATLAB) to compute the vertical displacement, dv (t).
Eventually, we estimated dstep [m] using (7).

STPL2: algorithm developed according to [20], where the
step length was estimated using the geometrical acceleration-
intensity-based model (8).

ST P L2 [m] = A
(

4
√

amaxmin (m)
)

+ B (8)

Here, amaxmin (m) is the difference between maximum
and minimum of av (t) during m-th step as defined in
(9). We modified this algorithm by filtering av (t) with a
fourth-order low-pass Butterworth ( fc = 3 Hz) before using
it in (9).

amaxmin (m) = | max(av (t)) − min(av (t))|︸ ︷︷ ︸
ic(m)≤t≤ic(m+1)

(9)

STPL3: algorithm designed according to [33], [12], where
the mean absolute value of av (t) during a step duration
(av Mean (m) in (10)) was used to estimate step length in (11):

av Mean (m) = mean
ic(m)≤t≤ic(m+1)

|av (t)| (10)

ST P L3 [m] = A
(

3
√

av Mean (m)
)

+ B (11)

Note that, in the original algorithm, the vertical acceleration
is derived from a shank-mounted sensor. However, we used
the vertical acceleration obtained from the LB-mounted sensor
that should be valid for the algorithm since both vertical
accelerations were in the global frame.

STPL4: algorithm based on [21], where the step length
was modeled according to (12). Here, T (m) is the dura-
tion of the m-th step, which was computed according to
(13), and amaxmin (m), av Mean (m) were calculated through
(9), (10), respectively. It should be noted that, before
using (12), av (t) was smoothed by a moving average
with 0.125 s length.

ST P L4 [m]

= A

⎛
⎜⎝2.7

√√√√(av Mean (m))×
√

1√
T (m)×amaxmin (m)

⎞
⎟⎠+B

(12)

T [m] = ic (m + 1) − ic (m) (13)
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Fig. 2. Block diagram of STPL6. After removing mean of aap(t )
and integrating the zero-mean signal, EMD was used to keep the first
4 intrinsic modes. Then, another integration and EMD were applied
on the resulted signal to generate p(t ) by the first 3 intrinsic modes.
Then, (14) was used to compute step length.

b) DI-based approach: One straightforward way to estimate
the step length is to double integrate the forward acceleration,
aap (t) , in the global frame. The difficulty of this approach,
especially for single LB sensor configuration, is to assure
accurate estimation of forward acceleration and remove the
accumulated integration drift using an appropriate technique.
Only a few methods have been proposed in the literature, such
as [5], which needed some requirements like the initial values
for the anterior-posterior speed and an expected position of
CoM at specific gait events (e.g., ICs). Therefore, we adopted
the main ideas and proposed three new algorithms (STPL5-7).

STPL5: first, the acceleration aap (t) was filtered using
a 2nd-order high-pass Butterworth filter ( fc = 0.5 Hz).
Then, the filtered signal was double integrated to obtain the
anterior-posterior position, p (t). Finally, to reduce the effect
of drift, step length was computed according to (14). Here,
aapMean (m) is the mean value of aap (t) during m-th step
calculated in (15).

ST P L5 [m] = A

⎛
⎜⎝| max(p(t))−min(p(t))|︸ ︷︷ ︸

ic(m)≤t≤ic(m+1)

×aapMean (m)

⎞
⎟⎠

+ B (14)

aapMean (m) = mean
ic(m)≤t≤ic(m+1)

(
aap (t)

)
(15)

STPL6: algorithm based on a data-adaptive estimation
of integration drift and more effective removal using the
Empirical Mode Decomposition (EMD) [12]. As illustrated in
Fig. 2, after removing the mean value of aap (t), the signal was
integrated. Then, EMD procedure was applied where only the
first four intrinsic modes were used for reconstruction. Next,
the resulted signal was again integrated, and EMD applied
to remove the drift and to reconstruct the anterior-posterior
position, p (t), by keeping only the first three modes. Finally,
p (t) was fed into (14) to obtain the step length.

STPL7: another effective approach for removing the inte-
gration drift is to reset the integration by an initial value at
each gait cycle. For sensors mounted on the lower limbs, espe-
cially on foot, the assumption of zero-velocity update at the
beginning of each gait cycle has been widely used. However,
for the sensors mounted on the upper body (such as LB), this
assumption might not be valid since the upper body can move
even when the foot is on the ground. In STPL7, we proposed
to correct the mean value of the linear speed (i.e., integrated
acceleration) by the speed estimated using ST P L1 (m) and
ST P L2 (m). To this end, as it is shown in Fig. 3, first, aap (t)

Fig. 3. Block diagram of STPL7. After the integration of aap(t) with zero-
velocity update assumption, mean value of Vlinear(t) at each gait cycle
was replaced with a new mean, Vmean(m), computed according to (16)
to obtain Vcorrected(t). Then, resulted signal was integrated and (17) was
used to compute step length.

was integrated with the zero-velocity update assumption at
each IC to obtain the linear velocity, Vlinear (t). In parallel,
in the Mean Velocity Computation block, we calculated the
mean value of speed at each step according to (16). Then,
the mean value of Vlinear (t) at each gait cycle was removed
and replaced by Vmean [m] to obtain Vcorrected (t). Next,
Vcorrected (t) was integrated to compute the position, p (t).
Finally, we employed (17) to estimate the step length.

Vmean [m] =
(

ST P L1 (m)+ST P L2 (m)

2

)
×C AD (m)

(16)

ST P L7 [m] = A

(
max(p(t))

ic(m)≤t≤ic(m+1)

)
+ B (17)

c) ML-based approach: Five algorithms (STPL8-12) based
on the machine learning technique were implemented.
STPL8-11 were developed and improved according to the
literature, while STPL12 was newly developed. For STPL9-12,
a moving window with a one-second shift was used to extract
features. The length of this window was set according to the
minimum value between the length of each walking bout and
5 seconds. For STPL5, the features were extracted during each
step duration.

STPL8: in this algorithm, several statistical features such as
mean, median, and std of av (t) and aap (t) during each step,
as well as demographic information like height and gender
were fed into a feedforward 5-layer Neural Network [23].

STPL9: algorithm developed according to [24] where fea-
tures such as mean, mode, median, std, sum of absolute
values, sum of square values, and number of zero crossings
of anorm (t) , along with height and gender information were
fed into a Gaussian process regression model.

STPL10: algorithm based on [7] where a regression model
based on Support Vector Machine was deployed to estimate the
step length using mean, range, kurtosis, the cross-correlation
of the filtered av (t) and aap (t) (2nd order low-pass Butter-
worth, fc = 12 Hz), and the amplitude of the spectrum of
the filtered av (t) at dominant frequency. Moreover, cadence
(C ADsecond (t)), height and gender were also used in the
model.

STPL11: algorithm proposed as an adaptation of the non-
personalized version of the algorithm described in [14] to be
suitable for the LB-mounted sensor. Features like mean of
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TABLE I
DISTRIBUTION OF PARTICIPANTS IN THE CROSS VALIDATION

anorm (t), std of av (t), std of aap (t), mean absolute derivative
of anorm (t), cadence (C ADsecond (t)), height, and gender
were used in a linear least square regression to model the step
length. The original algorithm [14] required the path slope,
derived from a barometer, which was discarded in this adapted
model.

STPL12: newly proposed algorithms where features like the
vertical displacement of CoM (according to (7) and Fig. 1)
median, range, and kurtosis of aap (t), mean and std of
anorm (t), mean of av (t), cadence (C ADsecond (t)), height,
and gender were used in a linear regression model with
LASSO (least absolute shrinkage and selection operator) regu-
larization, which guaranteed a non-singular solution, and also
provided an intrinsic feature selection [25].

d) Combined approach: Like cadence estimation, here,
combined approaches for step length estimation were pro-
posed. Four combined algorithms, cBM, cDI, cML, and cALL
were derived as the average of the outputs of BM (STPL1-4),
DI (STPL5-7), ML (STPL8-12), and all (STPL1-12) algo-
rithms, respectively.

D. Implementation, Cross-Validation, and Statistical
Analysis

All the above-mentioned algorithms were implemented in
MATLAB. Comprehensive cross-validation was performed
separately for dataset M1 (with the instrumented mat)
and M2 (with an IMU-based reference system). In each cross-
validation, first, the mean speed of each subject (Vref Mean (s),
where s is the subject index) was computed using the reference
speed values. Second, in order to evaluate the effect of speed
range and the usage of walking aids, subjects were categorized
into four groups as follows: slow (Vre f Mean < 1m/s), normal
(1 ≤ Vre f Mean ≤ 1.3 m/s), fast (Vref Mean > 1.3m/s), and
walking aids (subjects with walking aid). Then, the subjects
of each speed category (except the walking aid group) were
divided into two equal subgroups (i.e., 50-50 %) as training
and testing data. Since the subjects with walking aids were
not the focus of this study, we included this group only in
testing data. In addition, we built ALL_train (for training) and
ALL_test (for testing) subcategories, which were respectively
the integration of the training and testing data of slow, normal,
and fast walkers. To evaluate the implemented algorithms,
the Root Mean Square Error (RMSE) between the reference
values and the LB algorithms for cadence, step length, and
speed estimation were computed on the test dataset.

III. RESULTS

A. Participants

TABLE I shows the number of subjects within each speed
category used for the proposed cross-validation analysis.

Fig. 4. RMSE of the algorithms before (blue) and after (orange)
improvement, for step length (left side) and cadence (right side). The
graphs in the upper panel show the results on dataset M1, and the lower
panel for M2. The algorithms were trained (if required) and tested on ALL
category of the train and test sets.

TABLE II
PERFORMANCE OF THE CADENCE ESTIMATION ALGORITHMS TESTED

ON DIFFERENT SPEED RANGES FOR BOTH DATASETS M1 AND M2.
THE VALUES EXPRES THE RMSE [steps/min]

As indicated, there is a proper balance of the number of
subjects in the different groups. Note that the walking aids
groups were used only for testing. Moreover, since height
information was missing in dataset M2, we considered a
typical height value of 170 cm in the algorithms which needed
height.

B. Performance Improvements

Figure 4 compares the performance of the modified algo-
rithms before (blue) and after (orange) the improvements
for estimating cadence (right) and step length (left) in both
datasets M1 (top) and M2 (down). The RMSE decreases in
most cases after improvement. The algorithms were trained
(if required) and tested on the “ALL” category of the train and
test sets.

C. Cadence Estimation

Table II reports the RMSE of the cadence estimation algo-
rithms tested on both datasets M1 and M2 for different speed
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TABLE III
CROSS-VALIDATION RESULTS FOR STEP LENGTH ALGORITHMS. HERE, CBM, CML, CDI, AND CALL ARE COMBINED APPROACHES.

COLUMNS SEPARATED BY THE VERTICAL LINES CORRESPOND TO THE TRAINING CONDITIONS. ‘S’, ‘N’, ‘F’, ‘A’, AND ‘WA’
REPORT RMSE [m] OF TESTING ON Slow, Normal, Fast, ALL, AND WITH WALKING AIDS WALKERS. ‘status’

SHOWS IF THE ALGORITHMS ARE ORIGINAL, MODIFIED, OR NEW IN THIS STUDY

ranges. The algorithms are categorized by their conceptual
groups as Time, Frequency, cTime, and cALL. The status of
the algorithms determines whether the algorithms are original
from literature, modified, or newly proposed in this study.
Besides, algorithms performance on subjects with walking aids
is shown.

D. Step Length Estimation
The cross-validation results of step length estimation algo-

rithms are presented in Table III. The algorithms are catego-
rized according to their corresponding conceptual approach as
BM, DI, ML, cBM, cML, cDI, and cALL.

E. Walking Speed Estimation
Table IV compares the speed estimation results by multi-

plying different approaches of the step length and the cadence
estimation (each row is one combination). Here, to reduce
the number of combinations between the cadence and the
stride length algorithms, we only considered the combined
approaches that were proper representatives of their corre-
sponding conceptual groups.

IV. DISCUSSION

In this study, we implemented, improved, and compared
several LB sensor-based algorithms to estimate cadence, step

length, and walking speed. We analyzed data from two
datasets, containing both healthy and diseased populations.

Figure 4 illustrates that the proposed enhancements led to
improved cadence and step length estimation on both datasets.
For the algorithms CAD2 and CAD3 (both time-based), while
RMSE substantially decreased on dataset M2 (by at least
50%), a slight increase (maximum 25%) was observed on
dataset M1. One possible reason is that, according to our
observation, the step-related peaks in M2 were generally
weaker than in M1 (probably due to MS disease). That is
why the proposed peak enhancement method was generally
more effective on M2 dataset than M1. Furthermore, a con-
siderable improvement (minimum 30%) was also achieved for
the frequency-based algorithm (CAD7) on both datasets but
again more effective on M2. For the step length algorithms
(STPL1 and STPL2, both based on BM), the error has been
consistently reduced on both datasets M1 (minimum 16 %)
and M2 (minimum 10 %).

Referring to Table II, for the normal walkers, almost all
cadence algorithms worked well and similar (an average
RMSE of 3.5 and 3.8 steps/min on M1 and M2). However, for
the slow walkers, the time-based algorithms showed a severe
degradation of the performance (up to an error of 13 and
23 steps/min on M1 and M2, respectively), probably due
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TABLE IV
CROSS-VALIDATION RESULTS FOR SPEED ESTIMATION. HERE, EACH ROW REPRESENTS ONE COMBINATION OF STEP LENGTH AND CADENCE

ALGORITHMS TO COMPUTE SPEED. COLUMNS SEPARATED BY THE VERTICAL LINES CORRESPOND TO TRAINING CONDITIONS. ‘S’, ‘N’, ‘F’, ‘A’,
AND ‘WA’ REPORT RMSE [m/s] OF TESTING ON SLOW, NORMAL, FAST, ALL, AND WITH WALKING AIDS WALKERS

to weakened step-related peaks in the acceleration signal.
On the other hand, the frequency-based algorithm (CAD7)
achieved a low error of 2.5 steps/min for slow walkers on
both datasets, possibly because this approach depends mainly
on the gait-related repetitive patterns than the peaks in the
time-domain signal. Furthermore, for the fast walkers, while
both approaches provided very good results on the M2 dataset
(maximum error of 2 steps/min), a significant increase of the
error (up to 18 steps/min) was observed for the frequency-
based algorithm on M1. One explanation is the severity of gait
impairment in patients with HD (n=10 in M1), characterized
by mixed unpredictable accelerations and decelerations in
walking speed and superimposed twisting movements of the
trunk. These characteristics of gait patterns might generate
more harmonics in the spectrum of acceleration signals,
confusing the frequency-based cadence algorithm to find the
correct dominant frequency. For subjects with walking aids,
the RMSE increases up to an average RMSE of 14 and
20 steps/min on M1 and M2.

Considering all solutions for the cadence estimation, every
algorithm showed several advantages and limitations. Never-
theless, the combined approaches provided a stable perfor-
mance in all conditions. For instance, the cALL achieved an
RMSE of 3.4, 3.5, 3.4, and 13.7 steps/min for slow, normal,
fast, walking aids walkers on the M1 dataset. On M2 datasets,
the results are 5.8, 3.8, 1.1, 19.8 steps/min, respectively.

Only a few previous studies have reported cadence estima-
tion errors. In [17], the cadence estimation has been evalu-
ated on typically developed and children with cerebral palsy

where mean and std absolute errors vary between [0.5-2] and
[1.3-7.2] steps/min, respectively. The study [19] also has
reported a median [interquartile] of 0.15 [−1.95 2.27]
steps/min for the estimation of cadence on healthy subjects
and using wrist sensors. Note that the performance of cadence
estimation could be affected by target populations (degree of
gait impairment), in-lab or real-world situations, the definition
of cadence, and the definition of error.

Regarding the different training conditions indicated in
Table III, our observation was that training on a specific range
of speed might not be necessarily the best choice even when
testing was performed on the same speed range (e.g., training
on slow walkers and testing on the same group). The results
demonstrated that training on ALL (i.e., including people from
all speed ranges) led to better performance than other training
conditions. One main reason might be that more data with
higher diversity were fed into the algorithms during training
on ALL, resulting in more generalized models.

Considering the column of ‘training on ALL’ in Table III,
for the slow walkers, the BM-based algorithms showed slightly
better performance (RMSE around 0.04 m on M1 and 0.13 m
on M2). One reason might be that these algorithms are
more dependent on biomechanically-derived models than the
intensity or gait-related patterns of the acceleration signal
(as ML or DI). Therefore, even when the acceleration sig-
nal is weak or distorted due to the slow walking, they
could still satisfactory estimate the step length. DI-based
algorithms seemed to perform slightly better for the nor-
mal walkers, all approaches provided good performances
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(RMSE around 0.08 m). No big difference was observed
among different approaches for the fast walkers (RMSE
around 0.07 m and 0.05 m on M1 and M2). For the group
of subjects with walking aids, we noticed a significant per-
formance drop in all approaches (RMSE around 0.18 m).
Nevertheless, ML and BM approaches seemed to be more
appropriate for this type of walking since they offer a
high generalization ability, making them robust against the
body’s atypical movement that can cause problems for the
DI approach. As for cadence estimation, the combined step
length approaches (cALL) appeared to be more accurate and
robust for all speed categories and walking aids group. On the
M1 dataset, the combined approach (i.e., cALL) achieved
RMSE of 0.05, 0.08, 0.07, and 0.18 m for slow, normal, fast,
and walking aids walkers, respectively. On M2 datasets the
results are as 0.13, 0.07, 0.05, and 0.16 m, respectively.

Table IV shows promising results for estimating speed. Like
the step length, training on ALL walkers generally resulted
in a better performance. For slow walkers of dataset M1,
the choice of cBM (BM-based combined algorithm) or cALL
with any cadence algorithms (i.e., cTime, Frequency, or cALL)
achieved a better speed estimation (RMSE around 0.10 m/s).
However, on M2, all possible solutions resulted in the same
RMSE around 0.22 m/s. Furthermore, for the normal walkers
of M1, the combination of cDI or cBM with any cadence
algorithms led to better performance (RMSE around 0.12 m/s).
On M2, however, the selection of cDI or cML with any
cadence algorithms resulted in better performance (RMSE
around 0.12 m/s). Moreover, for the fast walkers, excluding
the combination of the frequency-based cadence approach with
any step length algorithms in M1, the rest of possible solutions
showed similar performance (RMSE of 0.14 and 0.10 m/s on
M1 and M2).

For the walking-aids group of M1, except the combina-
tion of DI with any cadence algorithms, other combinations
led to a similar RMSE around 0.32 m/s. However, on M2,
the combination of cBM with any cadence algorithms showed
better performance (RMSE around 0.27 m/s). Finally, results
in table IV demonstrates that the choice of cALL for both
step length and cadence led to a more robust and acceptable
estimation of speed in all conditions. This solution achieved
an RMSE of 0.10, 0.18, 0.15, and 0.32 m/s for slow, normal,
fast, and with walking aids walkers, respectively, on the M1
dataset. Besides, it reached RMSE of 0.22, 0.13, 0.10, and
0.32m/s on M2 dataset.

Looking at the literature, [7] achieved an RMSE of
[0.12-0.15] m/s to estimate speed on healthy and MS pop-
ulations. A median absolute error of less than 0.3m/s was
also reported in [34] to estimate walking speed in a healthy
population. In [14], a median [interquartile] error of 0.10 [0.07
0.12] m/s was obtained for the non-personalized wrist-based
speed estimation on healthy population in real-life situations.

For cadence, step length, and speed, a slight difference was
observed between the results obtained on dataset M1 (with the
instrumented walkway) and M2 (with the IMU-based reference
system). Generally speaking, dataset M2 seemed to be more
challenging for the algorithms than M1. One reason might be
that the IMU-based reference system of M2 had a higher error
than the instrumented walkway in M1. Another error source

might be using a fixed height value (i.e., 170 cm) in dataset
M2, which is needed for some algorithms. Besides, detecting
walking bouts of M1 is more reliable than M2 (because of
using the instrumented mat as a reference).

One limitation of this study is that the algorithms were
evaluated only on data recorded in controlled laboratory
settings and on straight walking (removing the turns at the
end of the walking path). The small sample size could be
another limitation. Moreover, for dataset M2, an IMU-based
reference system was used, which could introduce a degree of
error in the reference values. Another potential limitation is
that the error of step length estimation was isolated from the
potential error arising from the detection of ICs; in fact, all step
length estimation algorithms were evaluated by considering the
ICs detected by the reference system. Using the ICs detected
from the LB-mounted IMU-based algorithms might degrade
the performance of the presented algorithms. Nevertheless,
our analysis stays valid since the main goal was to compare
the performance of different algorithms/models rather than
reporting cumulated error from the data processing flow [8].

As future work, a similar analysis to the one presented
in this study could be performed on more extensive datasets
recorded for long durations in daily-life situations. Real-world
recorded data could reveal a wide variety of challenging con-
ditions (self-triggered, purposeful, and multitasking walking in
a rich behavioral context) to test and evaluate the algorithms’
performance. For further improvement, one possibility is to
deploy a weighted average instead of an equally-weighted
one to optimize the performance of the combined algorithms
by tuning the weights (giving more weights to more accurate
algorithms). For instance, it would be possible to use the linear
least square method to compute the optimal weights on a
tuning dataset. The results of this study suggest that future
work is necessary to address the challenge of impaired gait
patterns, especially when walking aids are used, by using more
elaborated signal processing approaches.

Furthermore, some of the time-based cadence algorithms
could be used for step demarcation (timing of ICs) in a fully
autonomous LB-based speed estimation pipeline. This paper
focused on evaluating speed estimation and its related para-
meters (i.e., cadence and step length). However, a prospective
study could be performed to evaluate the step demarcation
error to complete previous studies.

V. CONCLUSION

In this study, several state-of-the-art algorithms for cadence
and step length estimation, using data from a single IMU
on LB, were implemented and further improved. The proposed
improvements allowed a reduction of estimation error in the
range of 30-50 % for cadence and 10-16 % for step length.
Furthermore, the training of ML models on data from all
subjects, and so on a variety of gait patterns and preferred
speed, led to better performance.

In a systematic review [35], aiming to summarize infor-
mation on the minimal clinically significant difference for
change in comfortable gait speed measurements for patients
with pathology, it is reported that changes of 0.10 to 0.20 m/s
may be important across multiple patient groups. The study we
conducted demonstrated that some of the proposed algorithms,
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for instance, the combined approaches (cALL), achieved
to the estimation of gait speed with RMSE in the range
of 0.10 – 0.22 m/s, for slow, normal, and fast walking speed
and various pathologies (gait impairments). These results
appear promising and clinically meaningful. Nevertheless,
further improvement is necessary, and our future work will
focus on the challenge of very impaired gait patterns when
various walking aids are used, where the highest error was
observed.
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