POLITECNICO DI TORINO
Repository ISTITUZIONALE

Public Information Representation for Adversarial Team Games

Original

Public Information Representation for Adversarial Team Games / Carminati, Luca; Cacciamani, Federico; Ciccone,
Marco; Gatti, Nicola. - (2021). (Intervento presentato al convegno Cooperative Al Workshop - NeurlPS 2021 tenutosi a
Virtual nel 14 Dicembre 2021).

Availability:
This version is available at: 11583/2962291 since: 2022-04-29T16:57:56Z

Publisher:
Edward Hughes, Natasha Jaques, Jakob N. Foerster, Kalesha Bullard, Noam Brown

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

2201.10377v1 [cs.GT] 25 Jan 2022

arxXiv

Public Information Representation
for Adversarial Team Games

Luca Carminati, Federico Cacciamani, Marco Ciccone, Nicola Gatti
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
Piazza Leonardo da Vinci, 32, 20133, Milano, Italy
lucaS.carminati @mail.polimi.it, {federico.cacciamani, marco.ciccone, nicola.gatti} @polimi.it

Abstract

The study of sequential games in which a team plays against an adversary is
receiving an increasing attention in the scientific literature. Their peculiarity resides
in the asymmetric information available to the team members during the play which
makes the equilibrium computation problem hard even with zero-sum payoffs. The
algorithms available in the literature work with implicit representations of the
strategy space and mainly resort to Linear Programming and column generation
techniques. Such representations prevent from the adoption of standard tools for the
generation of abstractions that previously demonstrated to be crucial when solving
huge two-player zero-sum games. Differently from those works, we investigate
the problem of designing a suitable game representation over which abstraction
algorithms can work. In particular, our algorithms convert a sequential team-
game with adversaries to a classical two-player zero-sum game. In this converted
game, the team is transformed into a single coordinator player which only knows
information common to the whole team and prescribes to the players an action
for any possible private state. Our conversion enables the adoption of highly
scalable techniques already available for two-player zero-sum games, including
techniques for generating automated abstractions. Because of the NP-hard nature
of the problem, the resulting Public Team game may be exponentially larger than
the original one. To limit this explosion, we design three pruning techniques that
dramatically reduce the size of the tree. Finally, we show the effectiveness of the
proposed approach by presenting experimental results on Kuhn and Leduc Poker
games, obtained by applying state-of-art algorithms for two players zero-sum
games on the converted games.

1 Introduction

Research efforts on imperfect-information games customarily focus on two-player zero-sum (we refer
to these games with “2p0s” from here on) scenarios, in which two agents act in the same environment,
receiving opposite payoffs. In this setting, superhuman performances have been achieved even in
huge game instances, such as Poker Hold’em [4, 6l [19]] and Starcraft II [24]]. The customary approach
for 2p0s games is based on the generation of a game abstraction that is used offline to find a blueprint
strategy that is refined online during the play. Instead, the problem of solving games with multiple
players is far from being addressed and lacks well-assessed techniques.

In our work, we focus on adversarial team games in which a team of two (or more) agents cooperates
against a common adversary (interestingly, our result directly applies to the case in which even the
adversary is a team of players). In particular, we focus on the ex-ante coordination scenario in which
the team members agree on a common strategy beforehand and commit to playing it during the
game without communicating any further. Examples of such a scenario are collusion in poker games,
the defenders in the card-playing stage of Bridge, and a team of drones acting against an adversary.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Technically speaking, the team members share the same payoffs and coordinate against an adversary
having opposite payoffs, in face of private information given separately to each team member.

A natural way to characterize the desired behavior by each agent is the team-maxmin equilibrium
(TME) solution concept, defined by Von Stengel in [25]. In [10], this concept is extended to
extensive-form games considering different means of communication. The team-maxmin equilibrium
with correlation (TMECor) characterizes optimal rational behavior in the ex-ante coordination
scenario we consider in this work. While the existence and uniqueness of value of a TMECor are
guaranteed, the computation of an equilibrium corresponding to this solution concept is proven to be
an inapproximable, NP-hard problem [10]. Therefore, the main open challenge is to efficiently find a
strategy profile corresponding to a TMECor in a generic adversarial team game.

Related works. Two main classes of approaches are available in the literature to address adversarial
team games.

The first class of approaches is based on mathematical programming. These approaches commonly
resort to column generation. They constrain the team to play a probability distribution over a finite set
of correlated plans and iteratively add new correlated plans giving the maximum increase in value for
the team. This constraint allows a polynomial-time formulation of the TMECor problem, while the
plan to add is determined by using an oracle working in an implicit formulation of the normal-form
representation of the original game in which the private information of a team player can be ignored
during the selection of a plan. Hybrid Column Generation (HCG) [10] iteratively solves two linear
programs to determine the TMECor strategy profile of the team and the adversary considering the
limited set of plans available, while uses an integer linear program to find the best response joint plan
to add to the currently considered plans given the current strategy of the adversary. Fictitious Team
Play (FTP) [12] is instead a fictitious play 3] procedure running on a modified representation of the
original game; in this representation, one of the two team members selects a pure strategy at the start
of the game, while the other team member plays against the adversary in the original game considering
his teammate fixed as specified by their chosen plan. Faster Column Generation (FCG) [13] is a
column-generation algorithm similar to HCG, but working in a more efficient semi-randomized
correlated plans representation, prescribing a pure strategy for one team member and a mixed strategy
for the other. This representation also allows a cost-minimizing formulation of the best response
problem as a dual of the program to find a TMECor considering the restricted set of plans. Overall,
those procedures are general and simple to implement, but the use of integer linear programs strongly
limits the scalability of these exact formulations.

The second class of approaches is based on Multi-Agent Reinforcement learning (MARL). These
approaches avoid considering plans over the entire game, and instead explicitly model the correlating
coordination signal in the original extensive form adversarial team game. Soft Team Actor-Critic
(STAC) [11]] fixes a number of possible uniform signals at the start of the game and uses a modified
actor-critic procedure to converge to a strategy for each player for each signal. Signal Mediated
Strategies (SIMS) [9] works with a perfect-recall refinement of the original game, populates a buffer
of trajectories sampled from the optimal strategy for the joint team against the adversary in this
refined game, and learns a distributed strategy for each team member in the original game from
the trajectories in this buffer. Overall, RL techniques are more scalable than the mathematical
programming ones, but present convergence issues. Indeed, STAC does not have any guarantees
of converging to equilibrium, while SIMS is guaranteed to converge only on a particular class of
Adversarial Team Games.

The above approaches work with an implicit strategy space representation that does not allow the
adoption of the standard tools previously developed for 2p0Os games, including abstraction generation,
no-regret game solving algorithms, and subgame solving.

Original contributions. We propose an algorithmic procedure, called PUBLICTEAMCONVERSION,
to convert a generic instance of a team game into a 2p0s game, and provide three algorithms, each
returning an information-lossless abstraction of the converted game. Our conversion enables the
adoption of customary techniques for 2p0Os abstraction generation, no-regret game solving, and
subgame solving. Surprisingly, we prove that any state/action abstraction applied to the extensive-
form game can be captured by our representation, while the reverse does not hold, thus showing
that our game representation is more expressive than the extensive-form game. Furthermore, we
formally prove that a Nash Equilibrium in the converted game corresponds to a TMECor in the
original game. In addition, we present VEFG, an alternative description of extensive-form games

better suited for the characterization of public information. Our information-lossless abstractions
allow a dramatic reduction of the size of the game tree, producing an abstract game that, in most of
our experiments, has a size that is the square root of the size of the original game. Most importantly,
our algorithms directly produce the abstract version of the game tree without the need for the original
(non-abstracted) game.

Our work builds upon Nayyar et al. in [20]; similarly to our work, a shared coordinator, living in the
public information state of the team, prescribes an action to the team members for any possible private
state allowing the training of a common strategy for the team. This coordinator-based transformation
is recently employed in the fully cooperative setting of Hanabi [[14,122]. However, their transformation
applies to the context of decentralized stochastic control in a fully cooperative scenario, whereas we
generalize such coordinator transformation in an adversarial team game setting.

2 Preliminaries

In this section, we introduce the basic concepts and definitions that we need throughout this work
(for more details, we refer the interested reader to [21]).

Extensive-Form Games and Adversarial Team Games The basic model for sequential interac-
tions among a set N of multiple agents with private information is the Extensive-Form Game with
imperfect information (EFG). If chance is present in the game, we enrich the set of players with the
chance player ¢, and chance probabilities are denoted as o.. An EFG defines a tree where the set
of nodes is denoted by H and the leaves (terminal nodes of the game) are denoted by Z < H. The
player acting at a node h € H is identified by the function P(h) € A/, and the set of actions that
she can choose at h are A(h). Let u, : Z — R be the payoff function of player p that maps every
terminal node to a utility value. In order to account for imperfect information, we use information
sets (infosets). An infoset I < H is a partition of the nodes of the tree in which a player acts such
that they are indistinguishable to her. We denote the set of player p infosets as Z,,. With a slight abuse
of notation, we denote the player acting at infoset I as (/) and her available actions at that infoset
as A(I). Furthermore, the action space is defined as A = ¢ Ap, where A, = ;o7 A(1).

In this work, we are interested in Adversarial Team Games (ATGs). An ATG is a N-player EFG
in which a team T < N of players plays against a single opponent (N = T U {0}, where o is
the opponent). Here, the team is represented by a set of agents that share the same utility function.
Formally Vp € T, u, = w7 for some function u7. We restrict our analysis to zero-sum ATG, i.e.,
games in which v = —u,. For an EFG, a deterministic timing is a labeling of the nodes in H with
non-negative real numbers such that the label of any node is at least one higher than the label of its
parent. A deterministic timing is exact if any two nodes in the same information set have the same
label. An EFG is I-timeable if it admits a deterministic exact timing such that each node’s label is
exactly one higher than its parent’s label. Furthermore, we require that all the players are with perfect
recall, i.e., they never forget information they previously knew during the game.

Strategies and Nash Equilibrium There are several possible ways of representing strategies. A
behavioral strategy o, : I1,, — Al s a function that maps each infoset to a probability distribution
over available actions. A normal-form plan (or pure strategy) 7, € I, := X rez, A(I) is a tuple

specifying one action for each infoset, while a normal-form strategy 1, € Al»| s a probability
distribution over normal-form plans. A reduced normal-form strategy p, is obtained from a normal-
form strategy p,, by aggregating plans distinguished by actions played in unreachable nodes. With a
slight abuse of notation, Vp € N we write with o, z] (respectively 11,,[z]) the probability of reaching
terminal node z € Z when following strategy o, (resp. jt,). A strategy profile is a tuple associating a
strategy to each player in the game. We denote normal-form strategy profiles as ¢ and behavioral
strategy profiles as o. Given a strategy profile p, we denote with g, the strategy of player p € N/
and with p_,, the strategies of all the other players. With an abuse of notation, the expected utility
for player p when she plays strategy 1, and all the other players play strategy ft_y, is up (£, h—p)-
Furthermore, we define the best response of player p to strategy profile p1_,, as the strategy that
maximizes player p’s utility against strategy p_,,. Formally, BR,(pt—,) := arg max,, u, (i, p—p).
A strategy profile p is a Nash Equilibrium (NE) if it is stable to respect to unilateral deviations of a
single player. Formally, p is a NE if and only if Vp € N, p, € BR,(pp).

3 How to Enforce Coordination Between Team Members

When considering ATGs, the problem of computing optimal strategies for the team of agents becomes
inherently much more complex than with 2p0s games. This is basically due to team players’ need for
coordinating their strategies to maximize their utility. In practice, such a requirement on coordination
is translated into the formulation of an ad hoc solution concept for ATGs. Von Stengel and Koller,
in [235]], introduce the Team Maxmin Equilibrium (TME), which is defined as the NE in which the
team’s utility is maximized. The solution concept described by the TME exhibits some appealing
characteristics: (i) in some cases it can be arbitrarily more efficient in terms of payoffs for the team
with respect to a NE, (ii) it is unique (except for degeneracies), thus it does not suffer from equilibrium
selection issues [} [2, [10]. However, it is not easy to be computed as it does not admit a convex
mathematical formulation [[13]].

If the coordination of team’s strategies is done ex-ante{]_] (i.e., before the beginning of each game), a
new solution concept can be introduced, called Team Maxmin Equilibrium with a Correlation device
(TMEcor) [10]. Such coordination has the advantage to increase the expected utility of the team [10].
Moreover, differently from what happens with the TME, the TMEcor can be computed through a
Linear Program working with joint normal-form plans of the team players:

maxmin > pr[z] polz] ur(2)
z2eZ

KT Ho
S.t. nr € A(X Hp) (1)
peT
1o € A(IL,).

In general, the size of the strategy space of the team X II, grows exponentially in the number of
team members, thus increasing the complexity of solving the LP in Equation (I). There are, however,
some specific cases in which we can compute or approximate efficiently the TMEcor, simply by
considering all the team members as a unique meta-player T and applying state-of-the-art algorithms
for finding NE in 2p0s games. In order to use these techniques, we need that the meta-player has
perfect recall. The requirement of perfect recallness for the team is satisfied only when the information
available to the team players is symmetric, (i.e., when they all observe an action or none of them does).
Unfortunately, this is not usually the case. In principle, the sources of imperfect recallness for the
team can be severaﬂ (i) non-visibility over a team member’s actions, (ii) non-visible game structure,
(iii) private information disclosed only to a subset of team members. Mathematical programming
algorithms [[10} 12} |13]] address the problem of imperfect recallness for the team by considering the
space of joint strategies. When the support of the TMEcor strategy for the team is small, they can
efficiently converge to the equilibrium. On the other hand, MARL solutions, like SIMS [9]], are
capable of solving case (i), but fail to deal with the other sources of imperfect recallness. In this
work, exploiting the concept of public information, we introduce a method allowing us to deal with
all the three sources of imperfect recallness, thus opening to the possibility of using state-of-the-art
RL algorithms (e.g., Deep-CFR[7])) to solve ATGs. We do this first by defining a game formalism
that enriches EFGs with information on public observability of actions, and then by formulating a
method that casts the original ATG into an equivalent 2p0Os EFG.

4 vEFG Representation

In this section, we introduce the concept of Extensive Form Game with visibility (VEFG), a game
representation that overcomes the limits of EFGs, allowing the characterization of the information
common to a set of players. The VEFG is an EFG enriched with a visibility function Puby(a) : A —
{seen, unseen} that specifies whether an action a € A performed by any player has been observed
by player p. With abuse of notation, we define the Pub function also for a set of players P < N.

"Note that different forms of coordination are possible, (e.g., intra-play) but they require communication
capabilities between the team members that may not be allowed in arbitrary games.
2We refer the interested reader to Appendix [B|for a more detailed description of the aforementioned cases.

Formally, Pubp : A — {pub, priv, hidden} such that:

Pubp(a) = pub < Vpe P : Pub,(a) = seen
Pubp(a) = hidden < Vpe P : Puby(a) = unseen
Pubp(a) = priv otherwise.

The game tree S associated with the VEFG is called public tree. A state S € S is called public
state. Two game histories belong to the same public state if they share the same public actions
and differ only by their private actions. Formally, h, h’ belong to the same public state if and
only if (@) aeh: Pubyr(a)=pub = (@')areh’: Puby (a’)=pub- We also use S(h) to indicate the public state
associated with a history h. Moreover, given a subset of players X — A, we can define the public tree
for X as Sx such that it holds the following property (a)ach: Pubx (a)=pub = (@')a’en’:Pubx (a')=pub-

The information set structure Z = (Z,),ens can be recovered from Pub,, by considering in the
same infoset the histories corresponding to the same sequence of actions observed by a player.
Formally, Yh,h' € H : h,h' € I T, if and only if P(h) = P(h') = p and (a)aeh: Pub, (a)=scen =
(a")aren’: Pub, (a’)=scen- Note that in VEFGs we have no notion of forgetting actions, thus imperfect
recall situations in which an observation is forgotten by a player cannot be represented.

As the only assumption for our method, we restrict the class of games we consider, introducing the
concept of public turn-taking. This concept characterizes games in which the sequence of acting
players is common knowledge across all players. Intuitively, each player knows when other players
played an action in the past, even if the game has imperfect information and the specific action played
may be hidden. This is a refinement to the concept of 1-timeability, in which not only the length of
the history is identical but also the sequence of players.

Definition 1 (Public turn-taking property). A vEFG is public turn-taking if:
VIeZ,Vh,h el:(P(g))gch = (P(9))genw

Theorem 1 (Transformation into public turn-taking game). Any vEFG can be made public turn-
taking by adding player nodes with a single noop action. The size of the resulting game tree is

(V] + 1)[H[%
The proof is in Appendix

S Public Team Conversion Algorithm

We present the algorithmic procedure to convert an ATG into a 2p0Os game, in which a coordinator
player takes the strategic decision on behalf of the team. We assume that the ATG is a VEFG
with the public-turn-taking property. The pseudo-code is shown in Algorithm[I] The algorithm
recursively traverses the original game tree in a post-order depth-first fashion: for each traversed node,
corresponding nodes are instantiated in the converted game. The chance, terminal, and adversary
nodes are copied unaltered since the coordinator player ¢ has only access to the public information
visible to the team members. Each team member node is instead mapped to a new coordinator node,
in which he plays a prescription I' among the combination of possible actions for each information
state I belonging to the public team state. Given a public state S, the coordinator issues to the
players different recommendations for every possible information set belonging to .S. As an example,
consider to be in a state of the original game in which one of the team players has to choose between
the set of actions A = {a1,...,a,} and that her private state can be either S; or S;. Then, the
recommendation issued by the coordinator is a tuple that specifies one action for each possible private
state (e.g., a valid recommendation would be to play action a; when the private state is .S; and to play
action a; when the private state is S2). Once the original ATG has been transformed into a 2p0s game,
we solve the latter with state-of-the-art algorithms for this class of games (e.g., CFR, CFR+, MCCFR,
DeepCFR [26] 23} 16, [7]]). We show an example of a two-player team game and its converted game
in Appendix [D} To prove that our game transformation is effective, we need to show the equivalence
between a Nash Equilibrium in the converted game and the TMEcor in the original vVEFG. The proofs
can be found in Appendix [A]

Theorem 2. Given a public-turn-taking vEFG G, and the correspondent converted game G' =
CONVERTGAME(G), a Nash Equilibrium i} in G' corresponds to a TMECor p%- = o(uf) in G.

Consider now the specific case in which team
members have common external information,
that means that team members have the same
observation of the actions made by adversary 1 function CONVERTGAME(G)
and chance players, formally, fla € A, U A, : 2 initialize G’ new game

Algorithm 1 Public Team Conversion

Puby(a) = hidden. The only source of im- 3: N’ <« {t,0}
perfect recallness is the non-observation overa 4 hg < PUBTEAMCONV(hg, G, G)
team member’s action. To deal with this case, 5 return g’
we can resort to [[15], where the authors provide
a polynomial-time algorithm to find an equilib- ~ 6: function PUBTEAMCONV(h, G, G')
rium. As in their case, our conversion algorithm ~ 7: initialize b’ € H’
outputs a game tree that has a number of nodes 8: if i € Z then
comparable to the one of the original game, thus ~ 9: h' —neZz2
enabling efficient approximation of the equilib- 10: up (W) < up(h) VYpeN
rium. This happens because, at the decision 11: elseif P(h) € {o, c} then
nodes of the coordinator, we do not have the 12: P'(h') — P(h)
combinatorial explosion deriving from the pres- 13: A'(h') < A(h)
ence of different possible private states as play- 14: if i is chance node then
ers do not have private information. 15: ol (h') = o.(h)
16: for o’ € A'(h') do
6 Information-lossless 17: Puby(a’) « check Pubr(a’) = pub
. 18: Pub)(a") < Pub,(a’)
Abstractions ’0r° / /
19: h'a’ « PUBTEAMCONV(hd', G, G')
. 20: else
The conversion procedure presented above al- 21 DB =
lows us to prove the equivalence between the 22: AR < X A(I)
original ATG and its converted version. A cru- ~ J o desT(h)
cial question is whether we can produce a re- 23: for I ? 'A/ (') do
duced, more compact variant of our representa- 2+ P ub;(I’l) - seen
tion. The main reason is that, indeed, applying 2" P/“bo(I;) < unseen
Algorithm|[T]to a public state in the original game 26: a T [z g/h)] ,
with A actions for S possible private states re- 2/- 1n}t1a}/1ze h € H
sults in A prescriptions, producing a tree with 28: A (}}/) — {d'}
an exponentially large fan-out. 29: P(h") = c
30: Pubj(a") < seen
We propose three algorithms, each returning an 31: Pub/ (a') = Pub,(a’)
information-lossless abstraction of the converted 32: o’.(h") = play a’ with probability 1
game to attenuate the computational burden of 33: h"a’ «— PUBTEAMCONV(hd', G, G)
the converted game allowing the application of 34: RT «— B

existing algorithms for equilibrium computation 35 return b’
or approximation.

Pruned Representation. Whenever a prescription is issued to a team member that has to play a
public action, the played action can be used to exclude the private states for which a different action
has been given. This practice allows us to safely exclude a subset of the possible private states
reducing the number of possible prescriptions in successive nodes.

Such a representation can be obtained in a online fashion (i.e., without the need for generating
the complete tree and subsequently pruning it) by modifying Algorithm [T} In particular, we add a
parameter X in PUBTEAMCONYV storing the excluded private states for the team. Those private
states are the ones for which an action was prescribed but then a different action has been played. By
excluding every information set in &’ when building the prescription in Line[22] we can effectively
shrink the number of private states to be considered by the coordinator.

An algorithm to recursively convert an ATG into its pruned representation is presented in Appendix [C}

Folding Representation. Consider the case of the extraction of a specific chance outcome when this
is private information for a team member and unseen by the adversary (e.g., a private card in poker).
We can avoid adding this node to the converted game and instead maintain the probability that each
player is in a specific private state, given that some may be excluded as in the pruned representation.
Then, we modify the chance node h” after each prescription to sample an action according to the
sum of the probabilities of the private states for which that action has been prescribed. Overall, the

game size is reduced in case many private states for the players are sampled. Such a representation
is similar to the public belief state representation proposed in [8]. The name folding representation
derives from the fact that trajectories with the same public actions but different private states are
folded one over the other in the converted game.

Safe Imperfect Recallness. Whenever a team player is in a state with three or more actions available,
a specific action is played and some possible private states are excluded from the belief. The specific
actions prescribed for the excluded states are not important to describe the information state of the
player; we can therefore forget part of the prescription and have imperfect recall among different
prescriptions with different prescribed actions for excluded states. While this abstraction technique
does not directly reduce the number of nodes, it reduces the number of information sets, simplifying
the information structure of the game. This reduces the space requirements to represent the strategies
and makes the algorithms converge faster. This abstraction technique is theoretically sound, and the
convergence properties of CFR in this imperfect-recall setting have already been addressed by [17]].

Examples of the application of the techniques described above are shown in Appendix D}

7 Experimental Evaluation

In this section, we evaluate the benefits of the lossless abstraction techniques when applied to a toy
game, and present the application of our conversion procedure to multiplayer instances of Kuhn and
Leduc poker. Details on the experimental setting and further results are shown in Appendix [F]

7.1 Impact of Abstraction Techniques

To evaluate the impact of information-lossless abstraction techniques, we designed a simple parametric
game for which we are able to determine in closed-form the total number of nodes. For the sake of
simplicity, we can ignore the presence of an opponent (recall that opponent and chance nodes are
copied as they are, hence they do not have an impact on the increase in size of the converted game).
The game we considered is a two-player game G, with players P1 and P2, in which there are C'
chance outcomes at root, observed by P1 and not by P2. After observing the outcome of the chance

normal basic pruning folding normal basic pruning folding

H H
2 6.40E+01 2.70E+01 2.70E+01 7.50E+01 2 6.40E+01 8.10E+01 8.10E+01 7.50E+01
4 4
6 6

4.10E+03 1.76E+03 5.19E+02 1.46E+03 4.10E+03 5.26E+03 1.56E+03 1.46E+03
2.62E+05 1.12E+05 5.18E+03 1.48E+04 2.62E+05 3.37E+05 1.55E+04 1.48E+04

8 1.68E+07 7.19E4+06 3.92E+04 1.13E+05 8 1.68E+07 2.16E+07 1.17E+05 1.13E+05
10 1.07E+09 4.60E+08 2.55E+05 7.40E+05 10 1.07E+09 1.38E+09 7.65E+05 7.40E+05
12 6.87E+10 2.95E+10 1.51E+06 4.41E+06 12 6.87E+10 8.84E+10 4.53E+06 4.41E+06
14 440E+12 1.88E+12 8.40E+06 2.46E+07 14 440E+12 5.65E+12 2.52E+07 2.46E+07

(a) only P1 has private information (b) both P1 and P2 have private information

Table 1: Comparison of total number of nodes for C' = 3, A = 2.

ol
o

=)
o

N

'S

— value

— value
-=-- optimal TMECor value]
0 0 (

Team value

Team value
o
N

|
e
n

Team value
|
o
b
T

--- optimal TMECor value |
i L L i i L L

|

o

N
T

,,,,,,,,,,,,,,,,,,, -==optimal TMECor value 4
i h . i

o
<

o
3

10° | +

101} .|

=
5}
0

Exploitability

Exploitability
Exploitability

\\

i i i i i i
i i i I i 0 10000 20000 30000 40000 0 5000 1000015000200002500030000
0 1000 2000 3000 4000 Time [s] Time [s]

Time [s]

Peak RAM occupation: 96 MB Peak RAM occupation: 912 MB Peak RAM occupation: 599 MB

(b) 3-player Leduc poker, with 3 (c) 3-player Leduc poker, with 2
card ranks, 1 raise, and adversary card ranks, 2 raises, and adversary
playing first. playing first.

-
=)
d

(a) 3-player Kuhn poker, with 4 card
ranks and adversary playing first.

Figure 1: Performances of Linear CFR+ applied to Poker game instances.

node, P1 acts sequentially H times, each time choosing between A actions. P2 does not observe the
actions performed by P1 and acts at the last round of the game, choosing between A actions.

We evaluate the size of the games obtained by applying the basic algorithm and the sizes of the
games obtained through the abstraction techniques presented in Section [6|and denoted as pruning and
folding. Furthermore, as a baseline, we show the number of normal-form plans. Table 1| shows the
results for C' = 3, A = 2 and for various values of the parameter Hﬂ The derivation of the equation
that shows the total number of nodes is shown in Appendix [E]

We observe that the pruning technique is particularly effective at dampening the exponential factor
due to the combinatorial structure of prescriptions.Moreover, the folding technique combines the
benefits of the pruning technique, with the specific tradeoff imposed by the use of delayed chances.
Indeed, all the histories belonging to the same public state are represented in a single node, at the cost
of a chance node added after each prescription. This tradeoff is useful for game states in which many
private states are possible. On the other hand, when the possible private states are reduced to one or
two, the extra chance nodes increase the size of the game more than in the pruning representation.

7.2 Application to Team Poker Games

To test the effectiveness of our approach in a real case, we apply our conversion procedure to the
multiplayer versions of Kuhn poker and Leduc poker. The Kuhn instances we use are parametric in
the number of ranks available, and on whether the adversary plays first, second or third in the game.
Similarly, Leduc instances are parametric on the number of ranks, on the position of the adversary,
but also on the number of raises that can be made. Figures show the convergence
performances on the converted games of Linear CFR+ [5]. We adopted three-player versions of the
two games in which there are two players colluding against the other. The converted games were
implemented using the pure python API provided by Open Spiel [18]. We took advantage of the
already available 2p0s solvers. More details on the experimental setting are available in Appendix [F}
while Appendix [G]shows the sizes of the converted games for a varying number of ranks and raises.

We report a paired plot showing both the value and exploitability convergence, along with the optimal
value of a TMECor as computed by [13], represented as horizontal dashed lines in the team value
plot. The experimental performances are coherent with the theoretical result of Theorem [6} the Nash
Equilibrium returned by the algorithm has the same value of the TMECor of the original game in all
the tests while the exploitability values of the average strategy converge to 0, indicating convergence
to the equilibrium. We remark that the time spent by Linear CFR+ applied to our converted game
is higher than the running time required by the algorithm presented in [13]]. This is due to the use
of different programming languages for the two algorithms (as aforementioned, our algorithms are
coded in Python, whereas the algorithms in [13]] are coded in C++ and use commercial solvers), while
the question of whether even more efficient abstractions can be formulated is still open.

8 Conclusions

We presented a conversion procedure to transform an adversarial team game in a 2p0s game and
proved that a NE in the converted game corresponds to a TMECor in the original game. This
conversion procedure is based on the public information among team members, which allows to
remove each player’s private information in the converted representation at the cost of a exponential
increase in size due to the NP-hardness of computing a TMECor in a generic team game. We propose
three pruning techniques to obtain a resulting tree which is more computationally tractable.

This conversion retains the public structure of the original game, and allows the application of
more scalable techniques for the resolution of adversarial team games, such as abstractions and
continual resolving. Future works leveraging our techniques in the converted game have therefore
the opportunity to overcome current state of the art techniques on larger game instances. Another
direction is the development of a conversion procedure to produce a pruned or folded representation
in online fashion, avoiding the construction of the entire tree. Additionally, in principle, our method
can be adopted also in n players vs m players games. In such scenarios the support at the equilibrium
is no longer small and mathematical programming algorithms loose some efficiency. Solving team vs
team games with a public information approach could therefore be a very interesting future direction.

3The complete results are shown in Appendix

References

[1] N. Basilico, A. Celli, G. D. Nittis, and N. Gatti. Team-maxmin equilibrium: efficiency bounds
and algorithms, 2016.

[2] N. Basilico, A. Celli, G. D. Nittis, and N. Gatti. Computing the team-maxmin equilibrium in
single-team single-adversary team games. Intelligenza Artificiale, 11:67-79, 2017.

[3] G. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production and
Allocation, 13, 01 1951.

[4] N. Brown and T. Sandholm. Libratus: The superhuman Al for no-limit poker. In C. Sierra,
editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 5226-5228. ijcai.org, 2017. doi:
10.24963/ijcai.2017/772. URL https://doi.org/10.24963/ijcai.2017/772,

[5] N. Brown and T. Sandholm. Solving imperfect-information games via discounted regret
minimization. In AAAI, 2019.

[6] N. Brown and T. Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885-890, 2019. ISSN 0036-8075. doi: 10.1126/science.aay2400. URL https://science!
sciencemag.org/content/365/6456/885,

[7] N. Brown, A. Lerer, S. Gross, and T. Sandholm. Deep counterfactual regret minimization. In
ICML, 2019.

[8] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong. Combining deep reinforcement learning and
search for imperfect-information games. arXiv:2007.13544 [cs], Nov 2020. URL http:
//arxiv.org/abs/2007.13544, arXiv: 2007.13544.

[9] E. Cacciamani, A. Celli, M. Ciccone, and N. Gatti. Multi-agent coordination in adversarial
environments through signal mediated strategies. In AAMAS, 2021.

[10] A. Celli and N. Gatti. Computational results for extensive-form adversarial team games. In
AAAI 2018.

[11] A. Celli, M. Ciccone, R. Bongo, and N. Gatti. Coordination in adversarial sequential team
games via multi-agent deep reinforcement learning. ArXiv, abs/1912.07712, 2019.

[12] G. Farina, A. Celli, N. Gatti, and T. Sandholm. Ex ante coordination and collusion in zero-sum
multi-player extensive-form games. In NeurIPS, 2018.

[13] G. Farina, A. Celli, N. Gatti, and T. Sandholm. Connecting optimal ex-ante collusion in teams to
extensive-form correlation: Faster algorithms and positive complexity results. In /ICML, 2021.

[14] J. N. Foerster, H. F. Song, E. Hughes, N. Burch, I. Dunning, S. Whiteson, M. Botvinick, and
M. H. Bowling. Bayesian action decoder for deep multi-agent reinforcement learning. ArXiv,
abs/1811.01458, 2019.

[15] M. Kaneko and J. Kline. Behavior strategies, mixed strategies and perfect recall. International
Journal of Game Theory, 24:127-145, 1995.

[16] M. Lanctot, K. Waugh, M. A. Zinkevich, and M. Bowling. Monte carlo sampling for regret
minimization in extensive games. In NIPS, 2009.

[17] M. Lanctot, R. Gibson, N. Burch, M. Zinkevich, and M. Bowling. No-regret learning in
extensive-form games with imperfect recall. arXiv:1205.0622 [cs], May 2012. URL http:
//arxiv.org/abs/1205.0622. arXiv: 1205.0622.

[18] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, S. Srinivasan,
F. Timbers, K. Tuyls, S. Omidshafiei, et al. Openspiel: A framework for reinforcement learning
in games. arXiv preprint arXiv:1908.09453,2019.

[19] M. Moravcik, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard, T. Davis, K. Waugh, M. B.
Johanson, and M. H. Bowling. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, 356:508 — 513, 2017.

https://doi.org/10.24963/ijcai.2017/772
https://science.sciencemag.org/content/365/6456/885
https://science.sciencemag.org/content/365/6456/885
http://arxiv.org/abs/2007.13544
http://arxiv.org/abs/2007.13544
http://arxiv.org/abs/1205.0622
http://arxiv.org/abs/1205.0622

[20] A. Nayyar, A. Mahajan, and D. Teneketzis. Decentralized stochastic control with partial history
sharing: A common information approach. IEEE Transactions on Automatic Control, 58:
1644-1658, 2013.

[21] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, USA, 2008. ISBN 0521899435.

[22] S. Sokota, E. Lockhart, F. Timbers, E. Davoodi, R. D’Orazio, N. Burch, M. Schmid, M. H.
Bowling, and M. Lanctot. Solving common-payoff games with approximate policy iteration. In
AAAI 2021.

[23] O. Tammelin. Solving large imperfect information games using cfr+. ArXiv, abs/1407.5042,
2014.

[24] O. Vinyals, 1. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre,
T. Cai, J. Agapiou, M. Jaderberg, A. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama,
D. Wiinsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis,
C. Apps, and D. Silver. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pages 1-5, 2019.

[25] B. Von Stengel and D. Koller. Team-maxmin equilibria. Games and Economic Behavior, 21(1):
309 — 321, 1997.

[26] M. A. Zinkevich, M. B. Johanson, M. Bowling, and C. Piccione. Regret minimization in games
with incomplete information. In NIPS, 2007.

10

A Proofs

Theorem 1 (Transformation into public turn-taking game). Any vEFG can be made public turn-
taking by adding player nodes with a single noop action. The size of the resulting game tree is

(NT+ DR

Sketch of the Proof. A very simple procedure that allows us to prove the lemma is the following: we
can set for each level of the converted game a player, by cycling through all players (chance included).
Then, we can add all the histories of the original game one by one, while imposing that at each level
only the chosen player can play. If the history has no action assigned to the level’s player, then we
can add a dummy player node, with only a noop operation, and try to prosecute with the actions of
the original history in the next node. The visibility of the noop actions is unseen for all players apart
from the one playing.

This procedure guarantees to get a strategically equivalent game by adding at most O((|JN] + 1)|H|)
for any of the || histories in the original game. This proves that the number of histories in the
converted game is O((|N] + 1)|H|?) O

The following lemmas are instrumental to derive the main result. In the following, we make use of
reduced normal form plans, and we refer to them as plans and pure strategies for clarity. We also
drop the superscript “*” to simplify the notation.

Lemma 3. Given a public-turn-taking vEFG G, and the correspondent converted game G' =
CONVERTGAME(G), each joint pure strategy w1 in G can be mapped to a strategy w; in G', such
that the traversed histories have been mapped by PUBLICTEAMCONVERSION. Formally, Y 3y
such that Vr,, m.:

(PUBTEAMCONVERSION(R)) 4, reached by playing (770,70 in G

/
(h)h’ reached by playing (74,70 ,7c) in G+

Proof. We can prove Lemma [3| recursively by traversing both G and G’ while constructing the
equivalent pure strategy in the converted game. We start by hg and hi,. We know that hiy =
PUBLICTEAMCONVERSION(hg).

Let h and I’ be the nodes currently reached recursively in G and G’, such that A’ =
PUBLICTEAMCONVERSION(h), with the guarantee that correspondent histories in the trajecto-
ries traversed up to this point in the two games have such a property. We thus have the guarantee that
h and k' are both terminal or both share the same player. Then:

¢ Case team member node

Let a = w7[Z(h)] be the action specified by 7 to be taken at Z(h). We can construct
a prescription I' = (m7[I])es[n) equivalent to the pure strategy 77 in this public state.
We set m[Z'(h')] = T, and prosecute our proof from the two reached nodes h'T'a and ha.
The construction procedure PUBLICTEAMCONVERSION guarantees In fact that A'Ta =
PUBTEAMCONVERSION(ha).

* Case chance or opponent node

T, and . are common to both the traversals. This guarantees that the action a sug-
gested by the policy is equal, and by construction of the conversion procedure h'a’ =
PUBTEAMCONVERSION(ha). We can thus proceed with the proof considering h’a and ha.

¢ Case terminal node

By construction, they have the same value for all players. This concludes the recursive
proof.

O

11

Lemma 4. Given a public-turn-taking vEFG G, and the corresponding converted game G' =
CONVERTGAME(G), each coordinator pure strategy m; in G' can be mapped to a strategy w7 in
G, such that the traversed histories have been mapped by PUBLICTEAMCONVERSION. Formally,
V7, Ay such that Vr,, m.:

(PUBTEAMCONVERSION(h)) 4 reached by playing (770,70 in G

/
(h)h’ reached by playing (74,70 ,7c) in G+

Proof. We can prove Lemma [] recursively by traversing both G’ and G while constructing the
equivalent pure strategy in the original game. We start by hl, and hg. We know that hl, =
PUBLICTEAMCONVERSION(hg).

Let A’ and h be the nodes currently reached recursively in G’ and G, such that A/ =
PUBLICTEAMCONVERSION(R), and with the guarantee that correspondent histories in the tra-
jectories traversed in the two games have such a property. We thus have the guarantee that / and h’
are both terminal or both share the same player. Then:

¢ Case team member node

LetT' = m[Z(h')]] be the prescription specified by 7; to be taken at Z’'(h"). We can extract
the prescribed action a = T'[I] to be played in history h. We set 77-[Z(h)] = a, and prose-
cute our proof from the two reached nodes h'T'a and ha. The PUBLICTEAMCONVERSION
procedure guarantees In fact that ’'T'a = PUBTEAMCONVERSION(ha).

* Case chance or opponent node

T, and 7. are common to both the traversals. This guarantees that the action a sug-
gested by the policy is equal, and by construction of the conversion procedure h'a’ =
PUBTEAMCONVERSION(ha). We can thus proceed with the proof considering h'a and ha.

¢ Case terminal node

By construction, they have the same value for all players. This concludes the recursive
proof.

O

Thanks to Lemmas[3]and] we can define the following functions that are used to map strategies
from the original game to the converted game:

Definition 2 (Mapping functions among original and converted game). We define:

* p: Il — 11, is the function mapping each m to the m, specified by the procedure described
in the proof of Lemmal3]

* 0 : II; — 1Ly is the function mapping each m, to the w specified by the procedure described
in the proof of Lemma

Those two functions can also be extended to mixed strategies, by converting each pure plan and
summing the probability masses of the converted plans. Formally, we have:

Vur e AT cp(ur)m] =), prlrr),
nrplar)=me
Ve A co(p)[nr] = >0 pu(m).

Tyio(me)=mT

We can now show the payoff-equivalence between a game G and its converted version G’ =
CONVERTGAME(G):

12

Theorem 5. A public-turn-taking vEFG G and its converted version G' = CONVERTGAME(G) are
payoff-equivalent. Formally:

V’/TT V’l‘ro, Te - ’U,T(TFT, To, Wc) = Ut (p("TT)a To, 7TC),
Y7y Vo, Te 2 ug (0(m), Toy o) = g (g, To, e).

Proof. The proof follows trivially from Lemmas [3]and O

Furthermore, the correspondence between the strategies in the two games are then used to derive the
main result of this work that shows the equivalence between a NE of the converted 2p0s game and a
TMEcor of the original ATG, thus enabling the usage of a powerful set of tools to compute equilibria
for ATGs.

Theorem 6. Given a public-turn-taking vEFG G, and the correspondent converted game G' =
CONVERTGAME(G), a Nash Equilibrium i} in G' corresponds to a TMECor p%- = o(uf) in G.

Proof. By hypothesis that if is a NE, we have that:

py € arg max min Z 1t (78) oo (700 pre (e)t (08, 7oy)
peeAt poeAllo rocll,

To€ll,
we€ll.

We need to prove:

o(uf) earg max min > pr () po(To) e (T uT (7T, To, Te)
nreAIT poeAllo rrelly

ToEll,
weEll,.

Let mingas goor (17) and miny g (¢) be the inner minimization problem in the TMECor and NE
definition respectively.
Absurd. Suppose 3 i with a greater value than o (uf). Formally:

L
ravin, (A7) > win (u7)

In such a case, we could define fi; = p(fi7) having value:

C . _ . BYY ik
min(p) = min (A7) > min (o(47)) = min(uy),
where the equalities are due to the payoff equivalence. However this is absurd since by hypothesis z
is a maximum. Therefore necessarily:

o(uf) e arg max min .
(k) g max i (1)

This concludes the proof. O

B Information Structure in Team Games

The core problem of finding a TMECor in adversarial team games resides in asymmetric visibility
since team members have a private state that does not allow to create a joint coordination player.

In the following, we characterize the possible types of asymmetric visibility that may cause imperfect
recall for the joint player, and singularly address them.

* Non-visibility over a team member’s action. If a team member plays an action that is
hidden from another team member, the joint team player would have imperfect recall due
to forgetting his own played actions. This source of imperfect recallness can be avoided in
a TMECor by considering the shared deterministic strategies before the game starts. This
allows us to know a priori which are the exact actions played by team members in each node.
Thus it is safe to apply a perfect recall refinement in the original game, which corresponds
to always consider the chosen action of a team member as seen by other team members.

13

* Non-visible game structure. Consider two nodes in the same information set for a player
before which the other team member may have played a variable number of times, due to
a chance outcome non-visible to the team member of these nodes. In this case, a perfect
recall refinement is not applicable to distinguish the nodes, because it would give the joint
coordinator visibility not correspondent to the one of the players in the game. To solve this
edge case, we require the property of public turn-taking.

* Private information disclosed by chance/adversary to specific team members. It is the
most complex type of non-visibility, since in a TMECor we have no explicit communication
channels through which to share information, and therefore this type of joint imperfect recall
can only be addressed by considering a strategically equivalent representation of the game
in which at most one of the team players has private information.

C Pruned Public Team Conversion

In the following, we present a variation of Algorithm I]that directly produces an information-lossless
abstraction of the converted game. Modifications to Algorithm [I]are highlighted in bold.

Algorithm 2 Pruned Public Team Conversion

1: function CONVERTGAME(G)

2: initialize G’ new game

33 N {t, 0}

4: hjy; < PUBTEAMCONV(hy,G,G) = new game root
5: return G’

6: function PUBTEAMCONV(h, G, G’, X)

7. initialize b’ € H’

8: if h € Z then = terminal node
9: W—heZ
10: uy,(h') < up(h) YVpeN
11: elseif P(h) € {o, c} then = opponent or chance

12: P'(h') — P(h)
13: A'(W') — A(h)

14: if & is chance node then

15: oL(h) = o.(h)

16: fora’ € A'(h') do

17: Pub}(a") < check Pubr(a’) = pub

18: Pub)(a") < Pub,(a’)

19: h'a' — PUBTEAMCONV(hd/, G, G', X)

20: else = team member
21: P(h) =t

22: A'(I) — X ies, (hydrex matching 1 AU) & prescriptions
23: forIV e A'(h') do

24: Pub}(T") < seen, Pub, (I") < unseen

25: a’ — T'[Z(h)] = extract chosen action
26: X —Xu{I:T'(I) #a'} = update X’ with incompatible private states
27: initialize h” € H’

28: A'(h") « {d'}

29: Ph")=c

30: Pubj(a’) < seen

31 Pub)(a") = Pub,(a)

32: ol.(h") = play o’ with probability 1

33: h"a' < PUBTEAMCONV(hd', G, G', X)

34: WT <« n”

35: return b’

14

D Converted game representation

We present a complete game as an example to show the effects of different types of abstractions
applied to the converted game. To ease the visualization, we focus on a cooperative game with no

adversary.

10 11

12

. Chance
APlaycr 1
APlayer 2

13 14

1

5

Figure 2: Example of a cooperative game. Player 2 can see all actions apart from chance outcomes 0,
1. Nodes of a player with same number are in the same infoset.

ai gb a/ \b a/ \b ai gb a% :

10 11 8 9 10 11 12 13 14 15 12 13 14 15

9

a/ \b
10 11

a

8

9 10

11

12

13

@ chance
ACoordinaLor

/N
a/ \b a/ \b a/ \b

14

15

12

13 14 15

Figure 3: Example of Figure |2| converted. Nodes of a player with same number are in the same
infoset. For notational clarity, dummy chance nodes are not represented, prescriptions list the action
to take for private state 0 and 1, the action taken afterward is in bold in the prescription.

15

8 9

10 11 8

10 11 12 13 14

5 8 9 10

11 12

13

a/ \b
14 15

a

12 13 14

15

Figure 4: Example of Figure [2| converted using belief pruning. Nodes of a player with the same
number are in the same infoset. For notational clarity, dummy chance nodes are not represented,
prescriptions list the action to take for private state 0 and 1, the action taken afterward is in bold in
the prescription.

0\8 1\9 0 1 10 11 8 10 2 3 2|10 3\11

15 8 9 10 11

(=2}
-3

ot

2
—
ot
—

2

1

3

@ chance
ACnmrdinamr

U

o

6

DD

=

b
0\14 71

Figure 5: Example of Figure |2| converted using folded representation. For notational clarity, pre-
scriptions list the action to take for private state 0 and 1. Terminal nodes in the form x|y represent a
terminal node which has a weighted average value with respect to the outcomes = and y.

E Information-lossless abstraction evaluation

H normal basic pruning folding H normal basic pruning folding
1 8.00E+00 3.00E+00 3.00E+00 9.00E+00 1 8.00E+00 9.00E+00 9.00E+00 9.00E+00
2 6.40E+01 2.70E+01 2.70E+01 7.50E+01 2 6.40E+01 8.10E+01 8.10E+01 7.50E+01
3 5.12E+02 2.19E+02 1.35E+02 3.75E+02 3 5.12E+02 6.57E+02 4.05E+02 3.75E+02
4 4.10E+03 1.76E+03 5.19E+02 1.46E+03 4 4.10E+03 5.26E+03 1.56E+03 1.46E+03
5 3.28E+04 1.40E+04 1.72E+03 4.86E+03 5 3.28E+04 4.21E+04 5.16E+03 4.86E+03
6 2.62E+05 1.12E+05 5.18E+03 1.48E+04 6 2.62E+05 3.37E+05 1.55E+04 1.48E+04
7 2.10E+06 8.99E+05 1.46E+04 4.18E+04 7 2.10E+06 2.70E+06 4.37E+04 4.18E+04
8 1.68E+07 7.19E+06 3.92E+04 1.13E+05 8 1.68E+07 2.16E+07 1.17E+05 1.13E+05
9 1.34E+08 5.75E+07 1.01E+05 2.93E+05 9 1.34E+08 1.73E+08 3.04E+05 2.93E+05
10 1.07E+09 4.60E+08 2.55E+05 7.40E+05 10 1.07E+09 1.38E+09 7.65E+05 7.40E+05
11 8.59E+09 3.68E+09 6.27E+05 1.82E+06 11 8.59E+09 1.10E+10 1.88E+06 1.82E+06
12 6.87E+10 2.95E+10 1.51E+06 4.41E+06 12 6.87E+10 8.84E+10 4.53E+06 4.41E+06
13 5.50E+11 2.36E+11 3.59E+06 1.05E+07 13 5.50E+11 7.07E+11 1.08E+07 1.05E+07
14 440E+12 1.88E+12 8.40E+06 2.46E+07 14 440E+12 5.65E+12 2.52E+07 2.46E+07

(a) only P1 has private information

(b) both P1 and P2 have private information

Table 2: Comparison of total number of nodes for C' = 3, A = 2.

We proceed to analyze the size in total number of coordinator nodes of the converted game for player
P1 nodes, depending on the abstraction technique used. To formalize the total number of nodes, we

16

5

use a succession notation, where s;(c) indicates the number of nodes at level [in which P1 may be in
exactly c private states. Such a notation is particularly useful to represent the relation between private
states, abstraction, and the total number of nodes. Table 2] summarizes the results for C = 3, A = 2
and for various values of the parameter H.

Normal form representation. As a baseline comparison, we compute the number of normal form
plans in the game. The total number of plans for P1 can be computed as A",

Basic Representation. Each of the H levels has A€ actions, and we have C independent trees due
to the initial chance. Since we do not perform any belief pruning, all nodes have C' possible private
states.

The correspondent succession is:

xo(c) = { % gz i g initial C chance outcomes

(o0 ifesC o
xi(c) = { 2i1(c)- AC ife = C A% fanout at each level

Therefore:

tot(C, A, H)

Il
M=
Ma
k)
=

Il
=)
o
Il
—

I
Q
M=
N
)

-
Il
—

Pruning Representation. Given a node with a generic number [of private states, we can work by
induction to retrieve the number of generated nodes:

o children left with I possible infostates: A. They correspond to the nodes reached through a
prescription assigning the same action for all [states;

e children left with I — 1 possible infostates: A - (A — 1)! - (I — 1). They correspond
to the nodes reached through a prescription assigning any of the A actions to the state
corresponding to the card drawn in this subtree (defined by the chance outcomes) and to
other I — 2 states, and assign any of the remaining A — 1 actions to the remaining state;

» children left with I — 2 possible infostates: A-(A—1)2- (I gl) They correspond to the nodes
reached through a prescription assigning any of the A actions to the state corresponding to
the card drawn in this subtree (defined by the chance outcomes) and to other I — 3 states,
and assign any of the remaining A — 1 actions to the 2 remaining states;

» children left with 1 possible infostates: A-(A—1)¢~". (gj) They correspond to the nodes

reached through a prescription assigning any of the A actions to the state corresponding
to the card drawn in this subtree (defined by the chance outcomes) and assign any of the
remaining A — 1 actions to the / — 1 remaining states.

We can generalize this pattern. Children left with ¢ possible private states out of available I:

1
) forie [1,1]
(3

n(i,I)=A-(A—-1)"". (I

As a check:

Saten - R a- - (171 -
-4 % (17 - -

=A-[(A-1)+1)71 = 4!

17

which corresponds to the expected A prescriptions available in the current node.

Then repartition of each level’s nodes will depend on the number of nodes having a certain number
of private states in the previous state, according to the repartition indicated by n(i, I). In particular,
each of the b;_1(c) nodes will generate n(i, c) children with ¢ private states.

The correspondent succession is:

yo(C) = { OC i;g i g initial C chance outcomes

c
= Z bi—1(4) - n(c, 1)

Note that we do not count auxiliary chance nodes, since in practical implementation they can be
easily compacted with the previous coordinator nodes.

Therefore:

H
tot(C, A, H) Z

HMQ

Folding Representation. In this representation, we have no initial chance sampling, and each
coordinator node presents a chance node per prescription, each with a variable number of children
depending on the number of unique actions.

To compute the total number of nodes per level, we can acknowledge that each coordinator node
with ¢ private states corresponds to ¢ nodes (all with ¢ private states) in the pruning representation.
Therefore, at each level we have a number of coordinator node z;(c) = y;(c)/c

In this case, chance nodes have to be considered in the total nodes computed, since they cannot be
easily reduced. In particular, each coordinator node has associated a chance node per prescription
action available.

Therefore:

z(c

) =wui(c)/c
H
tot(C, A, H) Z

-(A°+1)

HMQ @

Moreover, such an analysis can be extended also to the case of 2 initial levels of chance nodes,
extracting one out of C' private states for P1 and P2 respectively. In this case, basic and pruning
representation have a different starting condition, with zo(C) = yo(C) = C?, while the folding
representation has no changes.

F Experimental settings

F.1 Poker instances

We refer to the three-player generalizations of Kuhn and Leduc poker proposed by [12].

Like all poker games, at the start of the game each player antes one to the pot, and receives a private
card. Then players play sequentially in turn. Each player may check by adding to the pot the
difference between the higher bet made by other players and their current bet (i.e. by matching the
maximum bet made by others). Each player may fold whenever a check requires putting more money
into the pot and the player instead decides to withdraw. Each player may raise whenever the maximum
number of raises allowed by the game is not reached, by adding to the pot the amount required by a
check plus an extra amount called raise amount. A betting round ends when all non-folded players
except the last raising player have checked.

In Kuhn poker, there are three players and k possible ranks with k different ranks. The maximum
number of raises is one, and the raising amount is 1. At the end of the first round, the showdown
happens. The player having the highest card takes all the pot as payoff.

18

In Leduc poker, there are three players, k possible ranks having 3 cards in the deck each, and 1 or 2
raises. The raise amount is 2 for the first raise and 4 for the second raise. At the end of the first round,
a public card is shown, and a new round of betting starts from the same player starting in the first
round. In the end, the showdown happens. Winning players are having a private card matching the
rank of the public card. If no player forms a pair, then the winning player is the one with the card

with the highest rank. In the case of multiple winners, the pot is split equally.

F.2 Implementation and execution details

We implemented the folded representation of both Kuhn and Leduc taking advantage of the OpenSpiel
[18]] framework. The framework allowed us to specify the game as an evolving state object and
provided the standard resolution algorithms for the computation of a Nash Equilibrium in the

converted game.

The implementation is in Python3.8 and the experiments have been performed on a machine running
Ubuntu 16.04 with a 2x Intel Xeon E5-4610 v2 @ 2.3GH CPU. The implementation is single-

threaded.

G Converted game size

In the following, we present additional details on the sizes of the game instances obtained by

converting Kuhn and Leduc poker games using PUBLICTEAMCONVERSION.

Number of ranks 3 3 4 4 4 5 5 5
Adversary position 0 1 0 1 2 0 1 2
Coordinator nodes 222 291 591 1560 2220 7412 8890 13025 66465

Adversary nodes 219 372 288 1996 5416 2656 12425 54040 16560

Terminal nodes 1320 1704 2436 16584 24536 51800 144740 235660 760520
Chance nodes 1129 1405 2461 10913 14641 40977 85521 119001 514681
Chances with one child only 936 1188 2184 5680 7944 25400 29840 43360 218940
Total number of nodes 2890 3772 5776 31053 46813 102845 251576 421726 1358226
Coordinator information sets 86 113 155 392 556 856 1738 2543 4093
Adversary information sets 12 12 12 16 16 16 20 20 20
Time taken for a full traversal | 2.0s 2.3s 3.36s 14.7s 18.1s 37.2s 68.6s 125s 447s
Table 3: Converted Kuhn game characteristics for varying parameters.
Number of ranks 3 3 3 4 4 4
Number of raises 1 1 1 2 2 2
Adversary position 0 1 2 0 1 2
Coordinator nodes 84243 117126 232950 57138 66268 76384
Adversary nodes 60543 98034 134196 32790 38622 46758
Terminal nodes 354999 476187 775233 163580 185994 213098
Chance nodes 284200 378928 694132 160395 184065 211437
Chances with one child only | 181020 250908 494544 137044 159202 184738
Total number of nodes 783985 1070275 1836511 413903 474949 547677
Coordinator information sets 7184 7232 7316 5624 5632 5650
Adversary information sets 228 228 228 630 630 630
Time taken for a full traversal 332s 322s 686s 220s 255s 183s

Table 4: Converted Leduc game characteristics for varying parameters.

19

	1 Introduction
	2 Preliminaries
	3 How to Enforce Coordination Between Team Members
	4 vEFG Representation
	5 Public Team Conversion Algorithm
	6 Information-lossless Abstractions
	7 Experimental Evaluation
	7.1 Impact of Abstraction Techniques
	7.2 Application to Team Poker Games

	8 Conclusions
	A Proofs
	B Information Structure in Team Games
	C Pruned Public Team Conversion
	D Converted game representation
	E Information-lossless abstraction evaluation
	F Experimental settings
	F.1 Poker instances
	F.2 Implementation and execution details

	G Converted game size

