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Virtual Element simulation of two-phase flow of
immiscible fluids in Discrete Fracture Networks

S. Berrone∗, M. Busetto∗, F. Vicini∗

Abstract

In this paper we propose a primal C0-conforming virtual element discretization for the
simulation of the two-phase flow of immiscible fluids in poro-fractured media modelled by
means of a Discrete Fracture Network (DFN). The fractures are assumed to be made of
the same isotropic rock type and to have the same width. The flexibility of the Virtual
Element Method (VEM) in handling general polygonal elements allows to obtain a global
conformity of the DFN mesh while preserving a fracture-independent meshing approach.
The effectiveness and the robustness of the proposed numerical method are tested on DFN
configurations of increasing complexity and characterized by challenging mesh geometry.

Keywords: Virtual element method, Two-phase immiscible flow, Porous media,
Discrete fracture networks, Polygonal mesh

AMS: 65M50, 65M60, 76S05, 76T99

1 Introduction
Natural rocks involve intrinsic discontinuities on different scales and of different geometries
called fractures. The presence of fractures strongly influences and complicates flow and transport
phenomena within the medium. Indeed, they can act either as channels or as barriers for
the flow of the fluids [1]. Understanding the behaviour of fluids flow and, in particular, of
two-phase flow of immiscible fluids, in fractured media, is of fundamental importance in various
geological engineering applications like enhanced oil recovery in fractured reservoir, geological
carbon sequestration and nuclear waste management in subsurface. However, the simulation
of this underground phenomenon is still very challenging due to both the complexity of the
computational domain and the stochasticity of the subsoil data [2, 3].

Different models for the representation of multiphase flow in fractured media exist [4]. On
the one hand, there are the continuum models and on the other hand, the discrete fracture
models. In the former the fractures are included in the model through homogenization [5],
whereas in the latter they are included individually. Discrete fracture models include both more
refined models that take into account the exchange between the fractures and the surrounding
medium, and simplified models that consider the flow outside the fractures negligible [6].

In this work, we consider the Discrete Fracture Network (DFN) model; in a DFN the porous
matrix is neglected, thus the flow of fractures do not communicate with the surrounding medium.
This approach provides acceptable results when the permeability of the surrounding medium is
much lower than the one of the fractures. Each fracture is dimensionally reduced to a planar
object in the three-dimensional space and coupling conditions are imposed at the intersections
between the fractures, named in what follows as traces [7]. The positions and the orientations of
the fractures are randomly generated according to different probability distribution laws. With
respect to the traditional DFN, in our model, we introduce an additional assumption. Indeed,
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we require that all the fractures have the same width and they are made of the same isotropic
rock type.

Despite its simplicity, the DFN model still retains complexity due to the presence of randomly
generated fractures that can lead to complex geometrical configurations involving small angles,
almost parallel fractures and traces characterized by different lengths. Consequently, numerical
techniques able to handle complicated domains are needed. Standard approaches involve
either the use of conforming meshes at the interfaces combined with standard finite element
or finite volume methods [8, 9, 10] or the use of non-conforming meshes at the interfaces
combined with XFEM based approximations or unconventional domain decomposition schemes
[11, 12, 13, 14, 15]. Obtaining a good globally conforming mesh can be very computationally
demanding. Since the need to simplify the process of construction of a locally and globally
conforming mesh, recently, methods based on general polygonal tessellations of the domain such
as Hybrid High Order (HHO) methods [16], Mimetic Finite Difference (MFD) methods [17] and
Virtual Element Methods (VEM) [18, 19, 20, 21] are gaining considerable interest.

The study of numerical methods for discrete fracture models for single phase flow in poro-
fractured media is well established in literature [3, 7, 8, 22, 23, 24]. Conversely, the study of
numerical discretization for discrete fracture models for two-phase flow of immiscible fluids in
porous media with fractures is still a very challenging issue. This is partially due to the difficulties
in the treatment of the two-phase flow equations that consist of a system of coupled non-linear
time-dependent partial differential equations [25, 26]. Examples of numerical discretizations can
be found in [27, 28, 29, 30].

In [31] a VEM based approach has been proposed by the authors for the solution of the
two-phase flow equations of immiscible fluids in porous media through an iterative IMplicit-
Pressure-Implicit-Saturation method coupled with a primal C0-conforming VEM. In this paper,
we further extend this formulation to DFN.

In the present work, we propose for the first time a VEM approach for the simulation of
two-phase flow of immiscible fluids in DFN assessing its potentialities in dealing with rather
complicated geometrical configuration arising from the construction of globally conforming
meshes. Starting from an originally regular globally non-conforming mesh, we construct a
globally polygonal conforming mesh not crossing the traces. Then we exploit the robustness
of the VEM in handling very general polygonal elements for the resolution of the two-phase
flow problem. At the fracture-fracture intersections, we require continuity of the pressure of the
non-wetting phase, balancing of the jumps of the normal components of the total Darcy velocity,
continuity of the capillary pressure and balancing of the jumps of the normal components of the
Darcy velocity of the wetting phase [32]. Since it is assumed that all the fractures of our DFN
model have the same width and that they are all made of the same isotropic rock type, then the
continuity of the capillary pressure implies the continuity of the saturation of the wetting phase
on the traces.

The structure of this work is as follows. In Section 2, we introduce the model and its related
equations. In Sections 3 and 4, we introduce the time and the space discretization of the
problem following the same ideas introduced in [31]. In Section 5, we describe the construction
of the global mesh and we present and discuss numerical results for DFN models of increasing
complexity. Finally, in Section 6, we draw some conclusions.

2 The continuous problem

2.1 Single fracture
Let us consider a fracture Ωf ⊂ R3 and a time interval IT := [0, T ], with T ∈ R+. The fracture
is supposed to be a porous medium; it is delimited above and below by two surfaces γ1 and γ2

and it has a width d that is very small compared to the size of Ωf . In particular, we suppose
that Ωf is of the form F × (−d2 , d2 ), where F is the intersection of a plane with Ωf so that each
one of its elements can be written uniquely as x + ζn with x ∈ F , ζ ∈ (−d2 , d2 ) and n is a
unit vector normal to F . Physically, the fracture Ωf is contained in a porous medium Ω ⊂ R3

that ideally can be divided into three non overlapping connected subdomains Ω1, Ω2 and Ωf ,
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where the subdomains Ω1 and Ω2 represent the surrounding rock matrices. We denote by Γf
the boundary of Ωf excluded the two surfaces γ1 and γ2, i.e., ∂Ωf := γ1 ∪ γ2 ∪ Γf ; moreover, we
assume that ∂Ωf ∩ ∂Ωi = γi, i = 1, 2, therefore, Γf ⊂ ∂Ω.

We suppose that a two-phase flow of immiscible fluids takes place in the fracture Ωf and we
assume that the fracture does not communicate with the porous matrices Ω1 and Ω2. In the
following, the index w will denote the wetting phase and the index n the non-wetting phase.
Each one of the two phases (α = {w, n}) is characterized by a pressure pα = pα(x, t) [Pa], a
saturation Sα = Sα(x, t) ∈ [0, 1] [−] and a Darcy velocity uα = uα(x, t) [m · s−1], i.e., volume
of fluid flowing per unit time through a unit cross-sectional area normal to the direction of the
flow. We assume both incompressibility of the fluids and time-independence of the porosity of
the medium. The governing equations involve the volume conservation equation that because of
the incompressibility of the two fluids is equivalent to the mass conservation equation, and the
generalized Darcy’s law

Φ
∂Sα
∂t

+∇ · uα = qα, in Ωf × IT ,

uα = −krα
µα

K(∇pα − ραg), in Ωf × IT ,

plus the following coupling conditions on the saturations and on the pressures

Sw + Sn = 1, in Ωf × IT ,
pc = pn − pw, in Ωf × IT .

The physical data appearing in the equations are: the porosity of the medium Φ = Φ(x) [−],
the absolute permeability of the medium K = K(x) ∈ R3×3 [m2] that is a symmetric and
positive definite tensor, the density for each phase ρα [Kg·m−3], the scalar source/sink terms
qα = qα(x, t) [s−1], the relative permeability for each phase krα = krα(Sα) [−], the dynamic
viscosity for each phase µα = µα(x, t) [Pa · s], the gravity acceleration vector g = (0, 0,−g) ∈
R3 [m · s−2] and the capillary pressure pc = pc(Sα) [Pa].

The capillary pressure function pc and the relative permeabilities krα depend on the physical
properties of the fluids and the rock, modelled as functions of the saturations Sα. In particular,
we adopt the Brooks-Corey empirical model [33] that is typically applied to model physical
systems in which the water represents the wetting phase and a liquid like oil represents the
non-wetting phase. Firstly, we define the effective saturations S̄w and S̄n as

S̄w :=
Sw − Swr

1− Swr − Snr
, S̄n :=

Sn − Snr
1− Swr − Snr

,

where Swr and Snr are the residual saturations of the wetting and of the non-wetting phase,
respectively. It can be noticed that S̄w, S̄n ∈ [0, 1] and S̄n + S̄w = 1 in Ωf × IT . Then, the
capillary pressure-saturation function pc and the relative permeabilities krw and krn are modelled
as

pc(Sw) = pdS̄
− 1
µ

w , krw(Sw) = S̄
2+3µ
µ

w , krn(Sn) = S̄2
n

(
1− (1− S̄n)

2+µ
µ

)
.

where pd is the entry pressure of the porous medium and µ is a parameter related to the size of
the pore distribution.

In what follows, we adopt the pressure-saturation formulation of the two-phase flow of
immiscible fluids in porous media [34]; in the considered formulation, the pressure of the
non-wetting phase pn and the saturation of the wetting phase Sw are the two primary variables.

We decompose the boundary Γf into disjoint sets ΓfNp and ΓfDp , and into disjoint sets ΓfNS
and ΓfDS such that

Γf := ΓfNp ∪ ΓfDp = ΓfNS ∪ ΓfDS with ΓfNp ∩ ΓfDp = ΓfNS ∩ ΓfDS = ∅,

where ΓfNp and ΓfDp refer to the Neumann and Dirichlet boundary related to pn, and ΓfNS
and ΓfDS refer to the Neumann and Dirichlet boundary related to Sw. We denote by nf the
exterior pointing unit normal vector on ∂Ωf .
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The problem of the two-phase flow of immiscible fluids can be formulated as

−∇·
{
Kλ∇pn −Kλw

dpc
dSw
∇Sw −K(λwρw + λnρn)g

}
= 0 in Ωf × IT , (1a)

Φ
∂Sw
∂t

+∇ ·
{
Kλw

dpc
dSw
∇Sw −Kλw∇pn + Kλwρwg

}
= 0 in Ωf × IT , (1b)

u · nf = 0 on γi × IT i = 1, 2, (1c)
uw · nf = 0 on γi × IT , i = 1, 2, (1d)
pn = g

Dp
on ΓfDp × IT , (1e)

u · nf = Q
Np

on ΓfNp × IT , (1f)

Sw = g
DS

on ΓfDS × IT , (1g)

uw · nf = Q
NS

on ΓfNS × IT , (1h)

Sw = Sw0 in Ωf , t = 0, (1i)

where λα := krα/µα [Pa · s]−1 is the mobility for each phase, λ := λn + λw [Pa · s]−1 is the
total mobility and fw := λw/λ [−] is the fractional flow of the wetting phase.

The total velocity u := uw + un and the Darcy velocity uw can be written as functions of
pn and Sw as follows

u = −Kλ∇pn + Kλw∇pc + K(λwρw + λnρn)g, (2a)
uw = fwu + Kfwλn∇pc + Kfwλn(ρw − ρn)g = Kλw∇pc −Kλw∇pn + Kλwρwg. (2b)

Conditions (1c) and (1d) represent the impermeability of the rock matrices Ω1 and Ω2. For
simplicity, we do not consider the presence of source/sink terms within the fracture, i.e. qα = 0.
Moreover, we point out that the derivative of the capillary pressure dpc

dSw
is negative; therefore,

the term ∇ ·
(
Kλw

dpc
dSw
∇Sw

)
is a stabilizing diffusive term.

We refer to Equation (1a) as the pressure equation, and to (1b) as the saturation equation;
the former is elliptic with respect to pn, whereas the latter is either a non-linear hyperbolic
equation with respect to Sw if capillary pressure pc = 0 or a parabolic convection-diffusion
equation if pc 6= 0.

We notice that given (2a) and (2b), we can rewrite Equations (1a) and (1b) as

−∇ · u = 0 in Ωf × IT , (3a)

Φ
∂Sw
∂t

+∇ · uw = 0 in Ωf × IT . (3b)

Now, we consider a reduced model in which the fracture is represented by a bi-dimensional
surface [32]; to this aim, we collapse the fracture domain Ωf onto its central axis F . Consequently,
the boundary ΓF := ∂F of the new domain is obtained collapsing Γf on F as well; again the
boundary consists of the union of disjoint sets ΓFNp and ΓFDp , and disjoint sets ΓFNS and ΓFDS .
In this setting, we assume small variations of the physical quantities of interest along the normal
direction of the fracture.

The equations on F are obtained integrating the equations of Ωf over its transversal cross
section in the direction normal to the fracture. To this aim, we introduce the tangential and the
normal components to the fracture of the gradient operator ∇

T
and ∇

N
. We assume that the

absolute permeability K can be written as the sum of a normal component K
N

and a tangential
component K

T
that are both invariant in the normal direction. Moreover, we decompose

u and uw into their normal and tangential components to the fracture, i.e., u = u
T

+ u
N

with u
N

:= (u · n)n and u
T

:= u − u
N
, and uw = uwT

+ uwN
with uwN

:= (uw · n)n and
u

T
:= uw − uwN

. We denote by g
T
the tangential component of the gravity vector.

In the reference system defined on the fracture Ωf , Equation (3a) can be rewritten as

∇
T
· u +∇

N
· u = 0 in Ωf × IT .
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Integrating along the cross-section of Ωf and considering (1c), we obtain on F

∇
T
·
∫ d

2

− d2
u

T
dn = 0, (4)

where
u

T
= −K

T
λ∇

T
pn + K

T
λw∇T

pc + K
T

(λwρw + λnρn)g
T
. (5)

We set u
F

:=
∫ d

2

− d2
u

T
.

Similarly, in the reference system defined on the fracture Ωf , Equation (3b) can be rewritten
as

Φ
∂Sw
∂t

+∇
T
· uw +∇

N
· uw = 0 in Ωf × IT .

We assume that the porosity Φ is either invariant in the normal direction or averaged over the
cross-section of Ωf . Integrating along the cross-section of Ωf and considering (1d), we obtain
on F

Φ
∂

∂t

∫ d
2

− d2
Swdn+∇

T
·
∫ d

2

− d2
uwT

dn = 0, (6)

where
uwT

= K
T
λw∇T

pc −K
T
λw∇T

pn + K
T
λwρwgT

. (7)

We set u
Fw

:=
∫ d

2

− d2
uwT .

We introduce the pressure pnF and the saturation SwF , that represent the pressure of the
non-wetting phase pn and the saturation of the wetting phase Sw averaged over the cross-section
of Ωf , i.e.,

pnF :=
1

d

∫ d
2

− d2
pndn, SwF :=

1

d

∫ d
2

− d2
Swdn.

For what concerns the functions characterizing the fractured medium we adopt the notation
λ
F

:= λ(SwF ), λwF := λw(SwF ) and pcF := pc(SwF ) and we set K
F

:= d K
T
, Φ

F
:= d Φ.

Integrating Equations (5) and (7) over the cross-section of the fracture Ωf and substituting
back into Equations (4) and (6) we obtain the reduced model equations. Consequently, the
problem of the two-phase flow of immiscible fluids can be formulated as

−∇
T
·
{
K

F
λ
F
∇

T
pnF −K

F
λwF

dpcF
dSwF

∇
T
SwF −K

F
(λwF ρw + λnF ρn)g

T

}
= 0 in F × IT ,

(8a)

Φ
F

∂SwF
∂t

+∇
T
·
{
K

F
λwF

dpcF
dSwF

∇
T
SwF −K

F
λwF∇pnF + K

F
λwF ρwgT

}
= 0 in F × IT ,

(8b)

pnF = ḡ
Dp

on ΓFDp × IT , (8c)

u
F

= Q̄
Np

on ΓFNp × IT , (8d)

SwF = ḡ
DSw

on ΓFDS × IT , (8e)

uwT = Q̄
NS

on ΓFNS × IT (8f)

SwF = S̄w0 in F, t = 0, (8g)

where ḡ
Dp

:= 1
d

∫ d
2

− d2
g
Dp

, ḡ
DSw

:= 1
d

∫ d
2

− d2
g
DSw

, S̄w0 := 1
d

∫ d
2

− d2
Sw0 and Q̄

Np
:=
∫ d

2

− d2
Q
Np

, Q̄
NS

:=∫ d
2

− d2
Q
NS

.
In the following section, we extend this model to a system consisting of a network of

bi-dimensional fractures.
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2.2 Discrete Fracture Network
Let us consider a space-time domain Ω× IT , where now Ω denotes the DFN and IT := [0, T ],
with T ∈ R+, is the time interval. The DFN is the union of fractures, i.e., Ω :=

⋃
i Fi, where

Fi ⊂ R3, i ∈ F = {1, . . . , NF } are planar polygons that can have arbitrary orientation in space.
When fractures intersect, they form segments called traces Tm, m ∈ T = {1, . . . , NT }. In
particular, we assume that each trace is given by the intersection of exactly two fractures, i.e.
Tm = F̄i ∩ F̄j ; therefore, an injective map σ : T → F × F is defined between a trace index and
a pair of fracture indices, thus σ(m) = {i, j}. Furthermore, we denote by Ti ⊂ T the subset
of trace indices corresponding to traces lying on the fracture Fi. We assume that there is no
one-dimensional flow along the traces.

We denote by F̃i the fracture Fi without the traces Tm with m ∈ Ti; therefore, the traces
coincide with portions of the boundary of F̃i and we denote by T±m , m ∈ Ti the two sides of
these portions. Being niTm the outward pointing unit normal vector to each trace Tm on the
fracture Fi, in what follows we define the jump of a vector quantity wi across a trace Tm ∈ Ti
on the fracture Fi as

JwiKTm := wi|
T

+
m

· niTm −wi|
T
−
m

· niTm .

and we denote by ∇
T i

the tangential component of the gradient on the plane defined by the
fracture Fi.

We adopt the following assumption on the fractures that define the DFN:
A1. In this model we assume that every fracture Fi, i ∈ F has the same width d and it consists
of the same isotropic rock type, i.e. the porosity Φ

Fi
, the absolute permeability K

Fi
:= K

Fi
I =

dKI, K
Fi
,K ∈ R (where I denote the identity tensor), the capillary pressure curve pcFi and

the relative permeability curves krnFi and krwFi are the same for all the fractures Fi, i ∈ F .
By virtue of Assumption 1, we do not need to use the subscript i when denoting the rock

properties. Therefore, in what follows, we will simply write Φ
F
, K

F
, λ

F
, λwF , λnF , pcF instead

of Φ
Fi
, K

Fi
, λ

Fi
, λwFi , λnFi , pcFi .

Now we specify the coupling conditions at the fracture-fracture intersections. For the pressure
equation, we require the balance of the jump of the normal component of the total velocities uFi ,
uFj with respect to the fracture intersection Tm, m ∈ T , {i, j} = σ(m); moreover, we impose
the continuity of both the phase pressures pαFi , pαFj at each trace Tm, m ∈ T , {i, j} = σ(m).
For the saturation equation, we require the balance of the jump of the normal component of
the wetting phase velocities uwFi , uwFj at each trace Tm, m ∈ T {i, j} = σ(m); moreover,
we impose the continuity of the saturation of the wetting phase SwFi , SwFj at each fracture
intersection Tm, m ∈ T . We underline that the continuity of the saturation can be imposed
only under Assumption 1. Indeed, the continuity of the phase pressures on the trace Tm implies
the continuity of the capillary pressure. Therefore, the saturations Swi|Tm and Swj |Tm

must be
such that the capillary pressures pci|Tm and pcj |Tm

are the same. If the two fractures Fi and Fj
consist of different rock types, then the capillary pressure curves pci(SwFi ) and pcj (SwFj ) are
in general different. Consequently, the same capillary pressure value corresponds to different
saturation values Swi|Tm and Swj |Tm

[32]. Whereas, if the two fractures Fi and Fj consist of the
same rock type, the capillary pressure curves coincide and consequently, we can simply require
Swi|Tm

= Snj |Tm
.

The boundary of Ω is given by the union of the boundary of each fracture Fi, i.e. ∂Ω :=⋃NF
i=1 ∂Fi. For simplicity, we consider only homogeneous Dirichlet boundary conditions for

both the pressure of the non-wetting phase and the saturation of the wetting phase; therefore,
ΓD := ∂Ω.

Under Assumption 1, the problem of the two-phase flow of immiscible fluids in Ω× IT for
the pressure of the non-wetting phase pnFi and the saturation of the wetting phase SwFi in each
fracture Fi, i = 1, . . . , NF can be formulated as

−∇
T i
·
{
K
F
λ
F
∇

T i
pnFi −KF

λwF
dpcF
dSwFi

∇
T i
SwFi −KF

(λwF ρw + λnF ρn)g
T i

}
= 0 in F̃i × IT ,

(9a)
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Φ
F

∂SwFi
∂t

+∇
T i
·
{
K
F
λwF

dpcF
dSwFi

∇
T i
SwFi −KF

λwF∇pnFi +K
F
λwF ρwgT i

}
= 0 in F̃i × IT ,

(9b)

pnFi |Tm
= pnFj |Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT (9c)

SwFi |Tm
= SnFj |Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT (9d)

JuFiKTm = −JuFj KTm m ∈ T , {i, j} = σ(m) ∀t ∈ IT , (9e)
JuwFi KTm = −JuwFj KTm m ∈ T , {i, j} = σ(m) ∀t ∈ IT , (9f)

pnFi = 0 on ∂Fi ∈ ΓD ∀t ∈ IT , (9g)

SwFi = 0 on ∂Fi ∈ ΓD ∀t ∈ IT , (9h)

SwFi = S̃wFi0 in Fi, t = 0, (9i)

where

u
Fi

= −K
F
λ
F
∇

T i
pnFi +K

F
λwF∇T i

pcFi +K
F

(λwF ρw + λnF ρn)g
T i
,

u
Fwi

= K
F
λwF∇T i

pcFi −KF
λwF∇T i

pnFi +K
F
λwF ρwgT i

.

In what follows, we discretize the problem in time and in space following an approach similar
to the one proposed by the authors in [31].

We will write the discrete formulation on a two-dimensional reference system of coordinates
x̂ = (x̂, ŷ) tangential to the fracture Fi. We denote by ∇̂i and by ĝi, respectively, the operator
corresponding to the tangential gradient ∇

T i
and the vector corresponding to the tangential

component of the gravity vector g
T i

related to the fracture Fi in the new two-dimensional
reference system.

3 Time discretization
Given the time interval IT , we subdivide it as 0 = t0 < t1 < · · · < tC = T with ∆tn := tn− tn−1,
n = 1, . . . , C. Then, we consider a sub-interval [tn, tn+1]. Moreover, we consider the function
space H1

0,ΓD
(Fi) that represents the subspace of H1(Fi) of functions that have zero trace on

∂Fi∩ΓD. We assume that pnFi (t
n), SwFi (t

n) ∈ H1
0,ΓD

(Fi) are given ∀i ∈ F and that they satisfy
the following continuity requirements

pnFi (t
n)|Tm = pnFj (tn)|Tm m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,

SwFi (t
n)|Tm = SwFj (tn)|Tm m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,

JuFi(t
n)K

Tm
= −JuFj (t

n)K
Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,
JuwFi (t

n)K
Tm

= −JuwFj (tn)K
Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT .

(10)

In what follows, we denote by γ
Tm

the trace operator related to the segment Tm ⊂ Fi and the

symbol 〈·, ·〉 denotes the duality pairing between H−
1
2 (Fi) and H

1
2 (Fi). The weak formulation

on a two-dimensional reference system tangential to the fracture Fi reads: given pnFi (t
n),

SwFi (t
n) ∈ H1

0,ΓD
(Fi) ∀i ∈ F that satisfy (10), find pnFi (t

n+1), SwFi (t
n+1) ∈ H1

0,ΓD
(Fi) such

that for all vpFi , vSFi ∈ H1
0,ΓD

(Fi), for m ∈ Ti

aFi(SwFi (t
n+1); pnFi (t

n+1), vpFi ) = FP,Fi(SwFi (t
n+1), vpFi ) + 〈JuFi(tn+1)K

Tm
, γ

Tm
vpFi 〉,

(11a)

cFi(SwFi (t
n+1), vSFi )− cFi(SwFi (tn), vSFi )

∆t
= (11b)

1

2
FS,Fi(SwFi (t

n+1), SwFi (t
n+1), pnFi (t

n+1), vSFi )−
1

2
〈JuwFi (t

n+1)K
Tm
, γ

Tm
vSFi 〉

+
1

2
FS,Fi(SwFi (t

n), SwFi (t
n), pnFi (t

n), vSFi )−
1

2
〈JuwFi (t

n)K
Tm
, γ

Tm
vSFi 〉,

7



with the coupling conditions

pnFi (t
n+1)|Tm = pnFj (tn+1)|Tm m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,

SwFi (t
n+1)|Tm = SwFj (tn+1)|Tm m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,

JuFi(t
n+1)K

Tm
= −JuFj (t

n+1)K
Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT ,
JuwFi (t

n+1)K
Tm

= −JuwFj (tn+1)K
Tm

m ∈ T , {i, j} = σ(m) ∀t ∈ IT .

(12)

We have defined FP,Fi(·, ·) and FS,Fi(·, ·, ·, ·) as

FP,Fi(z, w) := −bFi(z, w)− gFi(z, w),

FS,Fi(z1, z2, v, w) := −dFi(z1; z2, w)− eFi(z1, v, w)− fFi(z1, w).

The quantities appearing in Equation (11) are defined as follows.
Let aFi(·; ·, ·) be the global form bilinear and symmetric in its second and third arguments

defined as

aFi(z; v, w) :=

∫
Fi

∇̂ivTKF
λ
F

(z)∇̂iw dx̂.

Moreover, bFi(·, ·) and gFi(·, ·) are defined as

bFi(z, w) := −
∫
Fi

∇̂izTKF
λwF (z)

dpcF (z)

dSwFi
∇̂iw dx̂,

gFi(z, w) := −
∫
Fi

ĝTi KF
(λwF (z)ρw + λnF (z)ρn)∇̂iw dx̂.

cFi(·, ·) is a global symmetric and bilinear form and d(·; ·, ·) is a global form symmetric and
bilinear in its second and third arguments defined as

cFi(v, w) :=

∫
Fi

Φ
F
v w dx̂,

dFi(z1; z2, w) := −
∫
Fi

∇̂izT2 KF
λwF (z1)

dpcF (z1)

dSwFi
∇̂iw dx̂.

Moreover, eFi(·; ·, ·) and fFi(·, ·) are defined as

eFi(z1; v, w) :=

∫
Fi

∇̂ivTKF
λwF (z1)∇̂iw dx̂,

fFi(z1, w) := −
∫
Fi

ĝTi KF
λwF (z1)ρw∇̂iw dx̂.

We introduce the function space

V =
{
v ∈ H1

0,ΓD (Fi) ∀i ∈ F : γ
Tm
v
Fi

= γ
Tm
v
Fj
∀m ∈ T , {i, j} = σ(m)

}
.

Functions in V automatically satisfy the coupling conditions. We remark that in what follows
to lighten the notation, we adopt the symbols pn, Sw ∈ V to indicate the global pressure of the
non-wetting phase and the global saturation of the wetting phase in the whole DFN. Therefore,
the weak formulation reads: given pn(tn), Sw(tn) ∈ V , find pn(tn+1), Sw(tn+1) ∈ V such that
for all vp, vS ∈ V , for m ∈ Ti and i ∈ F .

NF∑
i=1

aFi(SwFi (t
n+1); pnFi (t

n+1), vpFi ) =

NF∑
i=1

FP,Fi(SwFi (t
n+1), vpFi ), (13a)

NF∑
i=1

cFi(SwFi (t
n+1), vSFi )− cFi(SwFi (tn), vSFi )

∆t
= (13b)

8



1

2

NF∑
i=1

FS,Fi(SwFi (t
n+1), SwFi (t

n+1), pnFi (t
n+1), vSFi )

+
1

2

NF∑
i=1

FS,Fi(SwFi (t
n), SwFi (t

n), pnFi (t
n), vSFi ).

System of equations (13) is fully implicit and coupled; moreover, it cannot be solved directly
because of its non-linearity. Firstly, we linearize Equation (13b) with respect to the saturation
using Newton-Raphson method and then we adopt an iterative IMPIS formulation for solving
equation (13a) and the linearized version of equation (13b).

Given the initial iterates pn(tn+1, 0) := pn(tn) and Sw(tn+1, 0) := Sw(tn), we construct a
sequence Sw(tn+1, r + 1) := Sw(tn+1, r) + δSw(tn+1, r + 1), r ≥ 0, by solving at each iteration
sequentially the linearized problems (1) and (2) that follow.

1. Given Sw(tn+1, r), pn(tn+1, r) ∈ V , find δSw(tn+1, r+1) ∈ V , r ≥ 0 such that the following
holds true ∀vS ∈ V

NF∑
i=1

cFi(δSwFi (t
n+1, r + 1), vSFi ) (14)

+
∆t

2

NF∑
i=1

F̃S,Fi(SwFi (t
n+1, r), δSwFi (t

n+1, r + 1), pnFi (t
n+1, r), vSFi ) =

−
NF∑
i=1

cFi(SwFi (t
n+1, r), vSFi )

+
∆t

2

NF∑
i=1

FS,Fi(SwFi (t
n+1, r), SwFi (t

n+1, r), pnFi (t
n+1, r), vSFi )

+

NF∑
i=1

cFi(SwFi (t
n), vSFi ) +

∆t

2

NF∑
i=1

FS,Fi(SwFi (t
n), SwFi (t

n), pnFi (t
n), vSFi ),

where

F̃S,Fi(z1, z2, v, w) := dFi(z1; z2, w) + lFi(z1; z2, w) +mFi(z1; v; z2, w) + nFi(z1; z2, w),

lFi(z1; z2, w) := −
∫
Fi

z2 (∇̂iz1)TKF bF (z1)∇̂iw dx̂,

mFi(z1; v; z2, w) :=

∫
Fi

z2 (∇̂iv)TKF rF (z1) ∇̂iw dx̂,

nFi(z1; z2, w) := −
∫
Fi

z2 ĝTi KF rF (z1)ρw ∇̂iw dx̂,

bF :=
d

dSwFi

(
λwF

dpcF
dSwFi

)
, rF :=

dλwF
dSwFi

.

2. Given Sw(tn+1, r + 1) = Sw(tn+1, r) + δSw(tn+1, r + 1), find pn(tn+1, r + 1) ∈ V , r ≥ 0,
such that the following holds true ∀vp ∈ V

NF∑
i=1

aFi(SwFi (t
n+1, r + 1); pnFi (t

n+1, r + 1), vpFi ) =

NF∑
i=1

FP,Fi(SwFi (t
n+1, r + 1), vpFi ).

(15)
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4 Space discretization
Let Tδ be a globally conforming tessellation of Ω that satisfies all the regularity requirements
needed by the virtual element method [35] and such that the diameter δE of each element
E ∈ TE is bounded by a finite constant δ > 0. We denote by P̂k(E) the space of polynomials
of degree k ∈ N with respect to the reference system tangential to the fracture F to which the
element E belongs.

We introduce the elementwise H1(E)-orthogonal projection operator Π̂∇k,E : H1(E)→ P̂k(E),
defined in the bi-dimensional reference system tangential to E as follows∫

E

∇Π̂∇k,Ev · ∇̂p dx̂ =

∫
E

∇̂v · ∇̂p dx̂ ∀p ∈ P̂k(E), v ∈ H1(E),

and ∫
∂E

Π̂∇k,Ev ds =

∫
∂E

v ds if k = 1,∫
E

Π̂∇k,Ev dx̂ =

∫
E

v dx̂ if k > 1,

where the differential operator ∇̂ is defined with respect to a two-dimensional reference system
tangential to the fracture F to which the element E belongs. Moreover, we denote by Π̂0

k,E the
elementwise L2(E)-orthogonal projection operator on P̂k(E) and by Π̂0

k−1,E∇̂ the elemetwise
L2(E)-orthogonal projection operator of the gradient on P̂k−1(E)× P̂k−1(E). Let Π̂∇k , Π̂0

k and
Π̂0
k−1∇̂ be the corresponding global projection operators.
Given k ≥ 1 the order of the virtual element method, we consider the spaces:

B̂k(∂E) :=
{
v ∈ C0(∂E) : v|e ∈ P̂k(e) ∀e ∈ Eδ,E

}
,

M̂∗k(E) :=
{
m̂ : m̂(x̂, ŷ) =

(x̂− x̂E)αx̂(ŷ − ŷE)αŷ

δ
αx̂+αŷ
E

, αx̂ + αŷ = k
}
,

where P̂k(e) denotes the space of polynomials of degree k on each edge e in the set of the
boundary edges Eδ,E of the element E in the tangential reference system and (x̂E , ŷE) are the
coordinates of the centroid of E.

Then, the local two-dimensional virtual element space V̂k,Eδ on the plane tangential to the
element E of dimension Nk,E

dof is defined as

V̂k,Eδ :=
{
v ∈ H1(E) : v|∂E ∈ B̂k(∂E), ∆̂v|E ∈ P̂k(E),∫
E

v p dx̂ =

∫
E

Π̂∇k,Ev p dx̂ ∀p ∈ M̂∗k−1(E) ∪ M̂∗k(E)
}
.

(16)

Again, the differential operators are defined with respect to the bi-dimensional reference system
tangential to E.

On each element E, we select the set of scaled monomials M̂k(E) as a basis for the local
polynomial space P̂k(E)

M̂k(E) :=
{
m̂ : m̂(x̂, ŷ) =

(x̂− x̂E)αx̂(ŷ − ŷE)αŷ

δ
αx̂+αŷ
E

, 0 ≤ αx̂ + αŷ ≤ k
}
.

Given, v ∈ V̂k,Eδ , we choose the following standard set of degrees of freedom

• values of v at the vertices of the polygon E;

• for k > 1, the values of v at the k−1 internal points of the k+1 points of the Gauss-Lobatto
quadrature rule on each edge e ∈ Eδ,E ;

10



• for k > 1, the momentum up to order k− 2 of v in E, i.e., 1
|E|
∫
E
v m̂ dx̂, m̂ ∈ M̂k−2(E).

We point out that Nk,E
dof equals the total number of the selected degrees of freedom; moreover,

thanks to the particular choice of the local virtual element space (16) and of the set of degrees of
freedom defined above, the projection operators Π̂∇k,Ev, Π̂

0
k,Ev and Π̂0

k−1,E∇̂v are all computable.
As a basis for the local virtual element space, we choose the Lagrangian basis function with

respect to the degrees of freedom.
We denote by Tδ,i the restriction of the tessellation Tδ to the fracture Fi. Then, the virtual

element space on Tδ,i is obtained from the local spaces V̂k,Eδ as follows

V̂ kδ,i :=
{
v ∈ H1

0 (Fi) : v|E ∈ V̂k,Eδ ∀E ∈ Tδ,i
}
.

Since the tessellation Tδ is globally conforming, we can define the global discrete space V kδ as

V kδ = {v ∈ V : v|Fi ∈ V̂ kδ,i}.

For generality, we select two distinct virtual element spaces for the pressure of the non-wetting
phase and for saturation of the wetting phase, denoting as kp and as kS the selected values of the
integer k for the pressure and the saturation, respectively. As a consequence, the related global
virtual element spaces are denoted by V kpδ and V kSδ , respectively. In the numerical examples,
we will only consider the case kp = kS = k.

Given a generic vδ ∈ V kδ , we denote its restriction on the fracture Fi with vδFi . Following
the approach presented by the authors in [31], the fully discrete virtual element variational
formulation of (14) and (15) reads:

1. Given Swδ (tn), Swδ (t
n+1, r) ∈ V kSδ and pnδ (tn), pnδ (t

n+1, r) ∈ V kpδ , find Swδ (tn+1, r+1) ∈
V kSδ , r ≥ 0, such that the following relation holds true ∀vSδ ∈ V kSδ

NF∑
i=1

cFiδ (δSwδFi (t
n+1, r + 1), vSδFi ) (17)

+
∆t

2

NF∑
i=1

F̃S,Fiδ (SwδFi (t
n+1, r), δSwδFi (t

n+1, r + 1), pnδFi (t
n+1, r), vSδFi )

= −
NF∑
i=1

cFiδ (SwδFi (t
n+1, r), vSδFi )

+
∆t

2

NF∑
i=1

FS,Fiδ (SwδFi (t
n+1, r), SwδFi (t

n+1, r), pnδFi (t
n+1, r), vSδFi )

+

NF∑
i=1

cFiδ (SwδFi (t
n), vSδFi ) +

∆t

2

NF∑
i=1

FS,Fiδ (SwδFi (t
n), SwδFi (t

n), pnδFi (t
n), vSδFi ),

where Swδ(tn+1, 0) := Swδ(t
n), pnδ(tn+1, 0) := pnδ(t

n) and

FS,Fiδ (z1, z2, v, w) := −dFiδ (z1; z2, w)− eFiδ (z1, v, w)− fFiδ (z1, w),

F̃S,Fiδ (z1, z2, v, w) := dFiδ (z1; z2, w) + lFiδ (z1; z2, w) +mFi
δ (z1; v; z2, w) + nFiδ (z1; z2, w).

2. Given Swδ (tn+1, r + 1) ∈ V kSδ , find pnδ (t
n+1, r + 1) ∈ V kpδ , r ≥ 0, such that the following

holds true ∀vpδ ∈ V
kp
δ

NF∑
i=1

aFiδ (SwδFi (t
n+1, r + 1); pnδFi (t

n+1, r + 1), vpδFi ) =

NF∑
i=1

FP,Fiδ (SwδFi (t
n+1, r + 1), vpδFi ),

(18)
with

FP,Fiδ (z, w) := −bFiδ (z, w)− gFiδ (z, w).
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The global quantities appearing in (17) and (18) are locally defined according to the choices
discussed in [31] and they can be constructed elementwise using the projection operators
previously defined. In particular, the local form aE,Fiδ (·; ·, ·), bE,Fiδ (·; ·, ·) and cE,Fiδ (·, ·) must
satisfy polynomial consistency and stability defined as in [31].

First of all we focus on the variational formulation (18) related to the pressure of the
non-wetting phase.

The local form aE,Fiδ is defined as

aE,Fiδ (z; v, w) :=

∫
E

[Π̂0
kp−1,E∇̂iv]T K

F
λ
F

(Π̂0
kS ,Ez) [Π̂0

kp−1,E∇̂iw] dx̂

+ SE,Fi
(
z; (I − Π̂∇kp,E)v, (I − Π̂∇kp,E)w

)
,

with the admissible stabilizing form SE,Fi

SE,Fi
(
z; (I − Π̂∇kp,E)v, (I − Π̂∇kp,E)w

)
:=

||K
F
λ
F

(Π̂0
kS ,Ez)||L∞(E)

N
kp,E

dof∑
l=1

dofkpl
(

(I − Π̂∇kp,E)v
)
dofkpl

(
(I − Π̂∇kp,E)w

)
,

where I denotes the identity operator and dofkpl (·) is the operator selecting the l-th degree of
freedom of v ∈ Vkp,Eδ .

The terms bE,Fiδ (·, ·) and gE,Fiδ (·, ·) are defined as follows

bE,Fiδ (z, w) := −
∫
E

[Π̂0
kS−1,E∇̂iz]T K

F
λwF (Π̂0

kS ,Ez)
dpcF (Π̂0

kS ,E
z)

dSwFi
[Π̂0
kp−1,E∇̂iw] dx̂,

gE,Fiδ (z, w) := −
∫
E

ĝTi K
F

(
λwF (Π̂0

kS ,Ez)ρw + λnF (Π̂0
kS ,Ez)ρn

)
[Π̂0
kp−1,Ew] dx̂.

Now, we focus on the variational formulation (17) related to the saturation of the wetting phase.
The local form cE,Fiδ is defined as

cE,Fiδ (v, w) :=

∫
E

Φ
F

Π̂0
kS ,Ev Π̂0

kS ,Ew dx̂ +ME,Fi
(

(I − Π̂0
kS ,E)v, (I − Π̂0

kS ,E)w
)
,

with the stabilizing bilinear form ME,Fi

ME,Fi
(

(I − Π̂0
kS ,E)v, (I − Π̂0

kS ,E)w
)

:=

||Φ
F
||L∞(E)δ

2
E

N
kS,E

dof∑
l=1

dofkSl
(

(I − Π̂0
kS ,E)v

)
dofkSl

(
(I − Π̂0

kS ,E)w
)
,

where dofkSl (·) is the operator selecting the l-th degree of freedom of v ∈ VkS ,Eδ .
Moreover, the local form dE,Fiδ is defined as

dE,Fiδ (z1; z2, w) :=

−
∫
E

[Π̂0
kS−1,E∇̂iz2]T K

F
λwF (Π̂0

kS ,Ez1)
dpcF (Π̂0

kS ,E
z1)

dSwFi
[Π̂0
kS−1,E∇̂iw] dx̂

+DE,Fi
(
z1; (I − Π̂∇kS ,E)z2, (I − Π̂∇kS ,E)w

)
,

with the stabilizing bilinear form DE,Fi

DE,Fi
(
z1; (I − Π̂∇kS ,E)z2, (I − Π̂∇kS ,E)w

)
:=
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∣∣∣∣∣∣KF
λwF (Π̂0

kS ,Ez1)
dpcF (Π̂0

kS ,E
z1)

dSwFi

∣∣∣∣∣∣
L∞(E)

N
kS,E

dof∑
l=1

dofkSl
(

(I − Π̂∇kS ,E)z2

)
dofkSl

(
(I − Π̂∇kS ,E)w

)
.

The terms eE,Fiδ (·; ·, ·), fE,Fiδ (·, ·), lE,Fiδ (·; ·, ·), mE,Fi
δ (·; ·; ·, ·) and nE,Fiδ (·; ·, ·) are defined as

follows

eE,Fiδ (z1; v, w) :=

∫
E

[Π̂0
kS−1,E∇̂iv]T K

F
λwF (Π̂0

kS ,Ez1) [Π̂0
kS−1,E ∇̂iw] dx̂,

fE,Fiδ (z1, w) := −
∫
E

ĝTi K
F
λwF (Π̂0

kS ,Ez1)ρw [Π̂0
kS−1,E∇̂iw] dx̂,

lE,Fiδ (z1; z2, w) := −
∫
E

z2 [Π̂0
kS−1,E∇̂iz1]TK

F
b
F

(Π̂0
kS ,Ez1)[Π̂0

kS−1,E∇̂iw] dx̂,

mE,Fi
δ (z1; v; z2, w) :=

∫
E

z2 [Π̂0
kp−1,E∇̂iv]TK

F
r
F

(Π̂0
kS ,Ez1) [Π̂0

kS−1,E∇̂iw] dx̂,

nE,Fiδ (z1; z2, w) := −
∫
E

z2 ĝTi KF
r
F

(Π̂0
kS ,Ez1)ρw [Π̂0

kS−1,E∇̂iw] dx̂.

Remark 1. One of the key features of the virtual element approach is the possibility to easily
enforce continuity conditions at the fracture-fracture interface. Indeed, since the tessellation
Tδ is globally conforming, the continuity conditions are automatically satisfied by the selected
functional spaces. In particular, the use of unique degrees of freedom across the various domains
avoid the use of Lagrangian multipliers to impose the matching conditions.

5 Numerical results
In this section, firstly, we describe the procedure adopted to construct a globally conforming
mesh and then we present numerical results in order to validate the method. In particular,
we consider several discrete fracture networks of increasing complexity and characterized by
different features.

5.1 Mesh construction
In order to construct a globally conforming mesh Tδ, we perform the following three steps.

1. (Local mesh) We generate a polygonal tessellation T loci on each fracture Fi independently.
This mesh is not necessarily conformed with respect to the traces of the considered fracture.
Indeed, we do not take into account the trace positions or any conformity requirement.

2. (Local conformity) On each fracture, we create a new node both when a trace intersect
an element edge and at the trace tips. If the trace tip lies inside an element, we extend
the trace segment until it intersects the edge of the mesh element. We remark that in
the extension process, no changes are made to the geometry of the fracture intersections.
Finally, we split the elements that intersect the traces generating new elements. In this
way, we obtain a locally conforming mesh T cnfi with respect to the fracture traces in which
all traces are covered by element edges.

3. (Global conformity) On each trace Tm, {i, j} = σ(m), we take from T cnfi and T cnfj the
union set of mesh nodes lying on the trace segment. From this set we take the local missing
nodes in each T cnfi and T cnfj , and we add them on the trace mesh edges of T cnfi and
T cnfj , respectively. In this way, we generate a globally conforming tessellation. We recall
that the VEM allows elements having aligned edges and an arbitrary number of edges.

A more detailed explanation of this approach can be found in [19].
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5.2 Test 1: 2-fracture DFN with known analytical solution
In Test 1, we analyse the convergence of the proposed method on a two-fracture DFN in a
problem with a known solution. In particular, we focus on the non degenerate case in which the
saturation equation is a parabolic convection-diffusion equation with respect to the saturation of
the wetting phase. As done in [31], given the parabolic nature of the coupled non-linear problem
(9), we evaluate the spatial discretization errors for both the pressure and the saturation at
the end of the time interval by means of the L2-norm and the H1-seminorm. As explained in
[31], given that the time integration error is sufficiently small, on the basis of the convergence
estimates in [35] and [36] on a simpler problem and on the basis of the best interpolation
estimates for VEM spaces of order k, the best order of convergences that can be expected
with respect to the number of elements Nδ of the tessellation are O(Nδ)−

k+1
2 and O(Nδ)−

k
2 in

L2-norm and in H1-seminorm, respectively. We underline that, since the VEM solutions for the
pressure of the non-wetting phase pnδ and for the saturation of the wetting phase Swδ cannot be
evaluated in arbitrary points inside each element, in the computation of the errors we consider
their polynomial projections Π̂0

kp
pnδ and Π̂0

kp
Swδ .

In this test, we consider a time interval IT = [0, 1] [s] and a simple DFN Ω consisting of two
fractures F1 and F2 and one trace T defined as

F1 = {(x, y, z) ∈ R3 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, z = 0},
F2 = {(x, y, z) ∈ R3 : −1 ≤ x ≤ 1,−1 ≤ z ≤ 1, y = 0},
T = {(x, y, z) ∈ R3 : y = 0, z = 0,−1 ≤ x ≤ 1}.

The exact solutions are given by the following analytical expressions

pnex,1(x, y, z, t) = 105 ·
( t

100
(|y|+ x4) +

1

2

)
[Pa],

Swex,1(x, y, z, t) =
1

2
+

1

6
tx4 [−],

pnex,2(x, y, z, t) = 105 ·
(
− g

100
z +

t

100
(−|z|+ x4) +

1

2

)
[Pa],

Swex,2(x, y, z, t) =
1

2
+

1

6
tx4 [−].

In particular, we notice that the saturations Swex,1 and Swex,2 attain values within the interval
[0, 1] in the given space-time domain and the pressures pnex,1 and pnex,2 have a realistic magnitude
of 105[Pa]. It can also be easily seen that at the interface T the pressures and the saturations
satisfy the coupling conditions (9c) and (9d), respectively. Moreover, the coupling conditions on
the total velocity (9e) and on the velocity of the wetting phase (9f) are satisfied as well.

The physical data of the problem are reported in Table 1; the data are taken from [25] and
they are selected to be close to realistic values.

Porosity Φ = 0.3 [−]

Absolute permeability K = 10−10 [m2]

Residual saturations Swr = 0, Snr = 0 [−]

Viscosities µw = 0.001, µn = 0.001 [Pa · s]
Densities ρw = ρn = 1000 [Kg/m3]

Brooks-Corey parameters µ = 1.0 [−], pd = 5000 [Pa]

Table 1: Test 1: porous medium and fluids data.

We impose Dirichlet boundary conditions; since it is not easy to construct an analytical
solution having zero source/sink term, in this Test 1 we consider the presence of the terms
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q(x, y, z, t) and qw(x, y, z, t) in (9). Therefore, given the exact solutions of the pressures and of
the saturations and the parameters of the porous medium and of the two fluids, we compute the
source/sink terms q(x, y, z, t) and qw(x, y, z, t).

For convergence study, we consider four different meshes; they are generated according to the
procedure explained in Section 5.1 starting from locally conforming tessellation on each fracture
consisting of triangles (TδT ), squares (TδS ), polygons (TδP ) and Voronoi cells with no Lloyd
iterations (TδV ), respectively. In particular, the single-fracture triangle mesh is constructed using
the Triangle library [37], whereas the single-fracture polygonal and Voronoi grids are generated
using the mesh generator PolyMesher [38]. A representative of each family of meshes is shown
in Figure 1.

(a) Triangle (TδT ) (b) Square (TδS ) (c) Polygon (TδP ) (d) Voronoi (TδV )

Figure 1: Test 1: meshes.

In particular, we evaluate the errors at the end of the prescribed time interval for four
different refinements of each tessellation having Nδ1 , Nδ2 , Nδ3 and Nδ4 elements, respectively.
More precisely, Nδ1 = 80, Nδ2 = 338, Nδ3 = 1314 and Nδ4 = 5068 for the tessellation TδT ,
Nδ1 = 72, Nδ2 = 288, Nδ3 = 1300 and Nδ4 = 5000 for the tessellation TδS , Nδ1 = 86, Nδ2 = 314,
Nδ3 = 1308 and Nδ4 = 5112 for the tessellation TδP , and Nδ1 = 88, Nδ2 = 316, Nδ3 = 1326
and Nδ4 = 5116 for the tessellation TδV . For each one of the four refinements we consider the
following time steps: ∆t1 = 0.2 [s], ∆t2 = 0.1 [s], ∆t3 = 0.05 [s] and ∆t4 = 0.025 [s]. As already
specified in [31], even if we have considered the Crank-Nicolson scheme that is unconditionally
stable for the time discretization, we cannot choose an arbitrary time step. Indeed, we need
to guarantee that the initial guess of the Newton-Raphson scheme is sufficiently close to the
solution for the convergence of the method.

In Figures 2-3 we show the convergence curves of the relative error in the L2-norm (below)
and in the H1-seminorm (above) a t = 1 [s] in a log-log scale for the VEM of order k = 1 and
k = 3 for both the pressure of the non-wetting phase and the saturation of the wetting phase,
respectively. We observe that the slopes of the dotted lines follow the expected convergence rate
for both the pressure and the saturation. Consequently, we conclude that the method behaves as
expected. Furthermore, the method proves to be stable with respect to the different considered
element shapes.
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(a) Pressure pn, k = 1
L2-norm and H1-seminorm relative

error

(b) Saturation Sw, k = 1
L2-norm and H1-seminorm relative

error

Figure 2: Test 1: Pressure and Saturation, k = 1.

(a) Pressure pn, k = 3
L2-norm and H1-seminorm relative

error

(b) Saturation Sw, k = 3
L2-norm and H1-seminorm relative

error

Figure 3: Test 1: Pressure and Saturation, k = 3.

5.3 Test 2: Stair DFN for the McWhorter and Sunada bidirectional
problem

In Test 2 we consider the bidirectional McWhorter and Sunada problem [39]. This is a well
known problem for the two-phase flow of immiscible fluids in porous media in which a non-
wetting phase fluid (oil) is horizontally displaced by a wetting phase fluid (water) pumped at
one side of a one-dimensional horizontal domain representing a reservoir. In this problem the
saturation equation has a parabolic nature, because the capillary pressure pc is not neglected.
Nevertheless, the diffusive term can vanish when the saturation approaches either the value
zero or one. Consequently, the saturation equation can be “doubly” degenerate parabolic [40].
The McWhorter and Sunada problem can be subdivided into the bidirectional flow problem
and the unidirectional flow problem. The former is a degenerate diffusive dominated problem,
whereas the latter is a degenerate diffusive-convection dominated problem. In particular, we
focus on the bidirectional case. In this originally mono-dimensional problem the flow occurs in
a one-dimensional horizontal reservoir, x ∈ (0,+∞), initially filled by the non-wetting phase
(oil), i.e. Sw(x, 0) = S0

w = 0,∀x > 0. The saturation of the wetting phase (water) at the
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left end of the domain (x = 0) is kept equal to Sw0 (with Sw0 > S0
w), while the right end is

impermeable. Neither sources nor gravity terms are considered. This gives rise to a bidirectional
displacement in which the non-wetting phase (oil) is draining only at x = 0. As pointed out,
this problem is originally mono-dimensional. However, it is possible to solve a 2D version of this
problem in a domain (xi, xf )× (yi, yf ) assuming a constant solution on the y direction. In [31],
using the proposed VEM approach, the authors have solved this particular problem (hereafter
referred to as MS problem) on a bi-dimensional rectangular domain ΩMS = (0, 0.3)× (0, 1) [m2]
and in the time interval IT = [0, 1000] [s] imposing the boundary and the initial conditions
reported in Table 2, where nΩMS

denotes the unit normal pointing outward associated with the
boundary of the domain ΩMS . Then, the author have compared the numerical solution with
the semi-analytical solution computed by means of the approach proposed in [41].

y = 0 and y = 1 [m] u · nΩMS
= 0 [m · s−1], uw · nΩMS

= 0 [m · s−1]

x = 0 [m] pn = 2 · 105 [Pa], Sw = 0.8 [−]

x = 0.3 [m] u · nΩMS
= 0 [m · s−1], Sw = 0 [−]

x ∈ ΩMS , t = 0 [s] Sw(x, 0) = 0 [−]

Table 2: Test 2: boundary and initial conditions for the bidirectional McWhorter and Sunada
problem (MS).

In this work, we consider the same time interval IT and we start from the bi-dimensional
rectangular domain ΩMS to construct a simplified version of a DFN. This will be the new
considered space domain for the resolution of the bidirectional McWhorter-Sunada problem.
More precisely, we proceed as follows. We subdivide the bi-dimensional rectangular domain
ΩMS into six rectangles having dimension 0.05 [m]× 1 [m]. Then, we fold the domain in the
3D space to construct a three-step stair that geometrically can be interpreted as a 6-fracture
DFN in which each fracture consists of a rectangle of dimension 0.05 [m] × 1 [m]. The total
rise of the stair along the z-axis is 0.15 [m]. In this way, the original bidirectional McWhorter
and Sunada problem describing a two-phase flow of immiscible fluids in a rectangular porous
media turns into a problem describing a two-phase flow of immiscible fluids in a poro-fractured
media modeled through a discrete fracture network involving 6 fractures (hereafter referred to as
MSDFN problem). We denote by ΩMSDFN this DFN domain. In Figure 4, we show the original
rectangular domain ΩMS and the new DFN domain ΩMSDFN . The fractures are numbered
from 1 to 6 starting from the origin of the axis.

(a) MS (b) MSDFN

Figure 4: Test 2: example of domains and meshes for the MS problem and the MSDFN problem.

The purpose of this test is to compare the results obtained for the three-dimensional domain
ΩMSDFN with the ones obtained for the bi-dimensional domain ΩMS . We proceed as follows: on
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each of the six fractures in the 3D space and on each of the six rectangles in the bi-dimensional
rectangular domain, we generate a locally conforming tessellation so that there is a one-to-one
correspondence between the mesh in the i-th fracture of ΩMSDFN and the mesh in the i-th
rectangle of ΩMS . Then, using the technique explained in Section 5.1, we generate a globally
conforming tessellation both on the DFN and on the bi-dimensional rectangular domain. In
this way, we obtain the same mesh for both the MS problem and MSDFN problem and this
allows us to compare both the numerical solutions. In Figure 4 we report an example of globally
conforming mesh of 618 elements constructed from six different locally conforming meshes
consisting of polygonal elements for both the MS problem and the MSDFN problem.

We select the same boundary and initial conditions reported in Table 2 for the MS problem,
but properly adapted to the new DFN configuration ΩMSDFN . We denote by n

ΩMSDFN

the unit normal pointing outward associated with the boundary of the domain ΩMSDFN .
The DFN domain ΩMSDFN is initially completely filled by the non-wetting phase fluid, i.e.
Sw(x, y, z, t) = 0 [−], (x, y, z) ∈ ΩMSDFN , t = 0 [s]. Moreover, we set Dirichlet boundary
conditions pn(x, y, z, t) = 2·105 [Pa] and Sw(x, y, z, t) = 0.8 [−], for x = 0 [m], 0 ≤ y ≤ 1 [m] and
z = 0.15 [m] (starting edge), t ∈ IT and Dirichlet boundary condition Sw(x, y, z, t) = 0 [−] and
Neumann boundary condition u(x, y, z, t)·n

ΩMSDFN
= 0 [m·s−1], for x = 0.15 [m], 0 ≤ y ≤ 1 [m]

and z = 0 [m] (ending edge), t ∈ IT . On all the remaining edges, we set homogeneous Neumann
boundary conditions u · n

ΩMSDFN
= 0 [m · s−1] and uw · nΩMSDFN

= 0 [m · s−1]. Furthermore,
we set q(x, y, z, t) = qw(x, y, x, t) = 0 [s−1], for (x, y, z) ∈ ΩMSDFN , t ∈ IT as in the model
equations (9).

We notice that the initial saturation of the wetting phase equals zero. Consequently, in the
temporal evolution of the numerical solution, it can happen that the numerical saturation of the
wetting phase attains small negative values in certain points of the domain that are very close
to points where it attains zero values. Since this is not acceptable neither from a mathematical
point of view nor from a physical point of view, we have adopted a local correction. In particular,
as better explained in [31], we force to zero only the values of the saturation that are negative
on the quadrature nodes used to evaluate the different physical parameters in the computation.
However, we do not change the global solution. As a result we accept small negative values of
the numerical saturation near the front.

In what follows, we consider five different tests. In the first test (MSDFN1) we neglect the
gravity term (g = 0 [m · s−2]), whereas in the remaining ones, unlike the original McWhorter
and Sunada problem, we activate the gravity term (g 6= 0 [m · s−2]). Moreover, in the second
test (MSDFN2) we set ρw,MSDFN2 = 1000 [Kg/m3] and ρn,MSDFN2 = 400 [Kg/m3], in the
third test (MSDFN3) we set ρw,MSDFN3 = 400 [Kg/m3] and ρn,MSDFN3 = 1000 [Kg/m3], in
the fourth test (MSDFN4) we set ρw,MSDFN4 = ρn,MSDFN4 = 1000 [Kg/m3] and, finally, in
the fifth test (MSDFN5) we set ρw,MSDFN5 = ρn,MSDFN5 = 400 [Kg/m3].

The parameters that describe the properties of the porous medium and of the two fluids
are reported in Table 3 for the MS problem and for all the other five test problems MSDFN1,
MSDFN2, MSDFN3, MSDFN4 and MSDFN5.

Porosity Φ = 0.3 [−]

Absolute permeability K = 10−10 [m2]

Residual saturations Swr = 0, Snr = 0 [−]

Viscosities µw = 0.001, µn = 0.020 [Pa · s]
Brooks-Corey parameters µ = 2.0 [−], pd = 1000 [Pa]

Table 3: Test 2: porous medium and fluids data for the MS problem and the MSDFN(1-5)
problems.

In the MSDFN1 problem, since the gravity equals zero, we expect that both the numerical
pressure of the non-wetting phase and the numerical saturation of the wetting phase coincide
with the ones computed in the MS problem. This check allows us to verify if the proposed
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method is working properly. In the MSDFN4 and MSDFN5 problems, we expect that the
saturations of the wetting phase coincide with the one computed in the MS problem since g 6= 0,
but ρw = ρn. Nevertheless, we expect the pressure of the non-wetting phase to be different.
Instead, in the MSDFN3 and MSDFN4 problems, we expect different behaviour for both the
saturation and the pressure with respect to the MS problem g 6= 0, but ρw 6= ρn. In particular,
in case ρw > ρn, we expect the saturation front to move faster with respect to the reference
MSDFN1 problem, whereas, in case ρn > ρw, we expect the opposite behaviour.

In Figures 5-6, we compare qualitatively the graph of the numerical solutions for the pressure
of the non-wetting phase and the saturation of the wetting phase computed for the MS problem
and the MSDFN(1-5) problems. In particular, we show the numerical solutions obtained at
T = 1000 [s] with a time step ∆t = 1.25[s] using a VEM spatial discretization of order k = 1
and a globally conforming mesh of 9600 elements (19184 nodes) constructed from six different
locally conforming meshes consisting of polygonal elements as shown in Figure 4. In Figure 5
the colouring is proportional to the values of the pressure and in Figure 6 the colouring is
proportional to the values of the saturation. We can see that, as explained above, the numerical
saturations exhibit slightly negative values close to the points in the region of transition from high
gradients to zero gradients. Comparing Figures 5a-5b and Figures 6a-6b we can see qualitatively
that both the pressure and the saturation solutions are the same for the MS and the MSDFN1
problems. We underline that the results reported in Figures 5a-6a for the MS problem have been
already verified by the authors in [31]. Moreover, comparing Figures 6e-6f and Figures 5e-5f
we can see qualitatively that the saturation solutions are the same for the MSDFN4, MSDFN5
and MS problems, whereas the pressure solutions differ. Finally, comparing Figure 6b and
Figure 6c, as expected we can see that the saturation front moves faster in MSDFN2 problem
than in MSDFN1 problem due to the gravity assisting effect; whereas comparing Figure 6b
and Figure 6d, we can see that the saturation front moves slower in MSDFN3 problem than in
MSDFN1 problem due to the gravity opposing effect [42, 43].

(a) MS problem (b) MSDFN1 problem (g = 0)

(c) MSDFN2 problem (g 6= 0)
ρw > ρn, with ρw = 1000 Kg/m3 and

ρn = 400 Kg/m3

(d) MSDFN3 problem (g 6= 0)
ρn > ρw, with ρn = 1000 Kg/m3 and

ρw = 400 Kg/m3
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(e) MSDFN4 problem (g 6= 0)
ρw = ρn = 1000 Kg/m3

(f) MSDFN5 problem (g 6= 0)
ρn = ρw = 400 Kg/m3

Figure 5: Test 2: pressure of the non-wetting phase pn [bar] for MS problem and MSDFN(1-5)
problems.

(a) MS problem (b) MSDFN1 problem (g = 0)

(c) MSDFN2 problem (g 6= 0)
ρw > ρn, with ρw = 1000 Kg/m3 and

ρn = 400 Kg/m3

(d) MSDFN3 problem (g 6= 0)
ρn > ρw, with ρn = 1000 Kg/m3 and

ρw = 400 Kg/m3
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(e) MSDFN4 problem (g 6= 0)
ρw = ρn = 1000 Kg/m3

(f) MSDFN5 problem (g 6= 0)
ρn = ρw = 400 Kg/m3

Figure 6: Test 2: saturation of the wetting phase Sw [−] for MS problem and MSDFN(1-5)
problems.

In Figure 8, we plot the profile of the pressure of the non-wetting phase and of the saturation
of the wetting phase along a line given by the intersection of the domain with a plane close to
y = 0.5. This allows us to compare more quantitatively the pressure and the saturation profiles
displayed qualitatively in the previous Figures 5-6. In Figures 7-8, we can see that in case the
gravity is neglected the profiles of the pressure of the non-wetting phase and the profiles of the
saturation of the wetting phase of the MS problem and the MSDFN1 problem coincide. The
same holds true for the saturation profiles of the MSDFN4 and MSDFN5 problems; whereas, the
same does not hold true for their pressure profiles as expected. Indeed, in both the two cases, the
pressure of the non-wetting phase achieves higher values with respect to the ones achieved in the
MSDFN1 problem. From Figures 7b, 7d and 7f, we can notice that in fractures 2, 4 and 6, since
ρw = ρn and the tangential component of the gravity acceleration vector gives no contribution,
the pressure profile of the MSDFN4 and MSDFN5 problems are parallel to the pressure profile
of the MSDFN1 problem. For what concerns, the MSDFN2 and the MSDFN3 problems, from
Figures 8a, 8b and 8c, we can see that the saturation of the wetting phase profile achieves
higher values and lower values, respectively, than in the MSDFN1 problem. Furthermore, from
Figures 7d, 7e and 7f, we notice that in fractures 4 and 6, where the saturation equal zero
and the tangential component of the gravity acceleration vector gives no contribution, all the
pressure profiles are constant. Whereas, in fracture 5, where the saturation equal zero but the
tangential component of the gravity acceleration vector gives contribution, the pressure profiles
of the MSDFN3 and MSDFN4 are parallel since ρn,MSDFN3 = ρn,MSDFN4. However, the one
of the MSDFN4 achieves higher values since ρw,MSDFN4 > ρw,MSDFN3. Similarly, the pressure
profiles of the MSDFN2 and MSDFN5 are parallel since ρn,MSDFN2 = ρn,MSDFN5, but the one
of the MSDFN2 achieves higher values since ρw,MSDFN2 > ρw,MSDFN5.
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(a) pn [bar], fracture 1
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(c) pn [bar], fracture 3
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(d) pn [bar], fracture 4

0.0 0.025 0.05

·10−2

2.005

2.010

2.015

2.020

MS MSDFN1 MSDFN2
MSDFN3 MSDFN4 MSDFN5

(e) pn [bar], fracture 5
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(f) pn [bar], fracture 6

Figure 7: Test 2: profile of the pressure of the non-wetting phase pn [bar] along a line given by
the intersection of the first three fractures with a plane close to y = 0.5 for the MS problem and

the MSDFN(1-5) problems.
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Figure 8: Test 2: profile of the saturation of the wetting phase Sw [-] along a line given by the
intersection of the first three fractures with a plane close to y = 0.5 for the MS problem and the

MSDFN(1-5) problems.

5.4 Test 3: 6-fracture DFN
In Test 3, we generalize the McWhorter and Sunada bidirectional problem discussed in Test 2
to the simulation of counter-current imbibition problems in a DFN.

Imbibition is a mechanism used to enhance oil recovery in fractured reservoir [43]. It involves
the inflow of the wetting phase in the porous medium and the consequent displacement of the
non-wetting phase under the forces of the capillary pressure and the gravity. According to the
flow direction the imbibition can be co-current or counter-current; in the former, the wetting
phase pushes the non-wetting phase in the same direction, whereas in the latter, the wetting
phase pushes the non-wetting phase in the opposite direction. The co-current imbibition is
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typically faster and more efficient with respect to the counter-current imbibition, however the
latter is often the only possible imbibition mechanism if the reservoir is exposed only from one
side to the wetting phase filling it.

In this test, we focus on the simulation of the counter-current imbibition problem in fractured
reservoir modeled as a 6-fracture DFN. The domain description is reported in Figure 9a. Fracture
areas are in the range of 0.35 and 0.78 m2, and the six fracture intersection lengths are in the
interval of 0.48-0.65 m. Consequently, even if the number of fractures coincides with the one
used in Test 2, this problem is characterized by a higher geometric complexity. Two globally
conforming meshes are used and reported in Figure 9: a mesh consisting of 6326 elements (11746
nodes) constructed from six different locally conforming meshes made of non-uniform polygons
(Figure 9a) and a mesh consisting of 6700 elements (3834 nodes) constructed from six different
locally conforming meshes made of triangles (Figure 9b). The test performed on the latter mesh
can be considered comparable to a classic Finite Element simulation, since the resulting number
of non-triangular mesh cells is around 10% after the generation of the globally conforming mesh.

F1

F2

F3

F4

F5

F6

A1

A2

e1

e6

(a) (b)

Figure 9: Test 3: spatial distribution of fractures and two examples of globally conforming
meshes for the 6-fracture DFN; each colour denotes a different fracture index i.

The DFN domain Ω is initially completely filled by the non-wetting phase fluid; consequently,
we set Sw = 0 [−], x ∈ Ω, t = 0 [s] as initial condition for the saturation of the wetting
phase. Moreover, we consider the following boundary conditions: we set constant Dirichlet
boundary conditions pn = 2 · 105 [Pa] and Sw = 0.8 [−] on the top edge of F1 (edge e1) and
a homogeneous Dirichlet boundary condition Sw = 0 [−] and a Neumann boundary condition
u · n

Ω
= 0 [m · s−1] on the bottom edge of F6 (edge e6), see Figure 9a. On all the remaining

edges of the DFN we prescribe homogeneous Neumann boundary conditions u ·n
Ω

= 0 [m · s−1]
and uw ·nΩ

= 0 [m · s−1], denoting by n
Ω
the unit normal pointing outward associated with the

boundary of the domain Ω. Moreover, we set q = qw = 0 [s−1] as in the model equations (9).
The porous medium and the fluids data used in the simulation are reported in Table 4;

moreover, the gravity term is taken into account.

Porosity Φ = 0.3 [−]

Absolute permeability K = 10−10 [m2]

Residual saturations Swr = 0, Snr = 0 [−]

Viscosities µw = 0.001, µn = 0.020 [Pa · s]
Densities ρw = 5000, ρn = 200 [Kg/m3]

Brooks-Corey parameters µ = 2.0 [−], pd = 5000 [Pa]

Table 4: Test 3: porous medium and fluids data.

In order to speed up the bidirectional displacement process, we increase both the value of
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the density of the wetting phase ρw and the value of the entry pressure pd with respect to Test
2; moreover, we decrease the value of the density of the non-wetting phase ρn. Due to the
gravity effect, this implies that in a relatively small time interval the saturation of the wetting
phase achieves values close to one in some parts of the DFN domain. As in Test 2, the capillary
pressure pc is not neglected; consequently, the saturation equation has a parabolic nature, but
degenerate parabolic. Indeed, similarly to what was explained in Subsection 5.3, the diffusive
term tends to vanish when the saturation approaches either zero or one. While the saturation of
the wetting phase close to zero seems to not affect too much the proposed numerical scheme,
values close to one can generate instabilities that reduce the physical validity of the numerical
solution. Indeed, when the saturation reaches one, instead of preserving this physical upper
bound, it tends to further increase; furthermore, it can also exhibit an oscillatory behaviour.
To cope with this unphysical behaviour and stabilize the method, we combined three different
strategies. Firstly, we adopt a local correction on the numerical saturation; in particular, we set
to 0.99 the values of the saturation that are greater than one on the quadrature nodes and that
are employed in the quadrature formula used to numerical approximate the integrals. Secondly,
we change the global solution provided by the Newton method setting to 0.99 the values above
one. Thirdly, we add an artificial stabilization term proportional to the saturation of the wetting
phase, namely

(β̃(Swδ) KF Π̂0
kS−1∇̂Swδ , Π̂0

kS−1∇̂vSδ), β̃(Swδ) = β (Π̂0
kSSwδ)

2, (19)

with β a suitable selected constant. The dependency of the coefficient β̃ on the saturation
implies that the artificial stabilization contributes more when the saturation is relatively close
to one. This allows us to stabilize the numerical saturation solution only when it reaches values
close to one without affecting the solution globally. We underline that we have decided to
combined all the three strategies previously described because the results obtained applying
them separately were unsatisfactory.

In the numerical simulation, we consider a time step ∆t = 5 [s] and a VEM order k = 1. In
Figures 10-11, we report the saturation of the wetting phase and the pressure of the non-wetting
phase at three different times. In the figures the colouring is proportional to the values of the
saturation and of the pressure, respectively. Since edge e1 is located in the upper part of the
domain, edge e6 is located in the lower part and the other edges are impervious (Figure 9a) the
wetting phase fluid moves rapidly toward the bottom part of F1 where it starts to accumulate
(Figure 10b). Then, the wetting phase enters F2 and so it reaches also F3. Here it start to
accumulate in the bottom part until it reaches the intersection with F4. Finally, through F4,
the wetting phase fluid arrives in F6 (Figure 10c). The wetting phase fluid does not enter F5

that remains completely filled by the non-wetting phase fluid. As expected, we can observe that
when the gravity acts in the same direction of the wetting phase fluid, it assists the imbibition
of the wetting phase fluid.

In Figure 11, we notice that, at a fixed time instant, the pressure is constant along the
horizontal fractures F2 and F5, whereas it is clearly not constant along the vertical fractures F1

and F3 (Figures 11b and 11c).

(a) t = 0 [s] (g 6= 0) (b) t = 701 [s] (g 6= 0) (c) t = 5351 [s] (g 6= 0)

Figure 10: Test 3: saturation of the wetting phase Sw [−] at three different time instants,
gravity activated (g 6= 0) and VEM order k = 1.
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(a) t = 0 [s] (g 6= 0) (b) t = 701 [s] (g 6= 0) (c) t = 5351 [s] (g 6= 0)

Figure 11: Test 3: pressure of the non-wetting phase pn [bar] at three different time instants,
gravity activated (g 6= 0) and VEM order k = 1.

To better understand the behaviour of the saturation of the wetting phase when it reaches
values close to one, we analyse the saturation profile along two vertical lines displayed in
Figure 9a and denoted as A1 and A2, respectively. The results are reported in Figure 12 and in
Figure 13 for A1 and A2, respectively.

Firstly, we focus on the mesh reported in Figure 9b and we analyse the case in which none
of the stabilizing strategies described above is applied. When the saturation approaches one, it
starts to exhibit strong oscillations and eventually it exceeds one. This behaviour is described by
the black dotted line reported in Figure 12c. Therefore, to mitigate the unphysical behaviour of
the solution, we adopt the three strategies previously described. In particular, we consider the
behaviour of the solution for a value of the parameter β = −0.2. The related saturation profile
along A1 (Figure 12) and along A2 (Figure 13) is described by the rounded blue continuous
lines. Comparing Figures 12a-12c and Figures 13a-13c we can see that, as expected, the artificial
stabilization term contributes more when the saturation is relatively close to one. Indeed, in
the other cases, the black dotted and the rounded blue saturation profiles exhibit the same
behaviour.

Finally, we apply the same stabilization strategies to the mesh reported in Figure 9a choosing
the same value of the parameter β. The saturation profiles along A1 (Figure 12) and A2

(Figure 13) are described by the squared red continuous lines.
In Figure 12c, we can see that the three saturation profiles exhibit slightly different behaviours

close to s = 0.0 and close to s = 0.6 where s is the curvilinear coordinate along A1. Indeed, near
those two regions of the domain the saturation solution is characterized by strong gradients. In
the first case they are related to the discontinuity due to the fixed boundary condition on edge
e1, while in the second case they are related to jump due to the presence of the intersection
between F1 and F2.
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Figure 12: Test 3: profile of the saturation of the wetting phase Sw [−] at three different time
instants along A1 (Figure 9a); Profiles are measured on the triangular mesh with no

stabilization [(T )], on the triangular mesh with stabilization [β (T )] and on polygonal mesh
with stabilization [β (P )].
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Figure 13: Test 3: profile of the saturation of the wetting phase Sw [−] at three different time
instants along A2 (Figure 9a); Profiles are measured on the triangular mesh with stabilization

[β (T )] and on polygonal mesh with stabilization [β (P )].

In Figures 14 and 15, we show the pressure profiles related to the saturation profiles of
Figures 12 and 13, respectively. We can observe that the variations on the saturation solution
do not significantly impact on the pressure solution.
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Figure 14: Test 3: pressure of the non-wetting phase pn [bar] at three different time instants
along A1 (Figure 9a); Profiles are measured on the triangular mesh with no stabilization [(T )],
on the triangular mesh with stabilization [β (T )] and on polygonal mesh with stabilization

[β (P )].
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Figure 15: Test 3: pressure of the non-wetting phase pn [bar] at three different time instants A2

(Figure 9a); Profiles are measured on the triangular mesh with stabilization [β (T )] and on
polygonal mesh with stabilization [β (P )].
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5.5 Test 4: 20-fracture realistic DFN
In Test 4 we propose a validation of our approach simulating a counter-current imbibition
problem on a complex DFN domain involving 20 rectangular fractures, each one of area ≈ 2
m2. The spatial distribution of the fractures is shown in Figure 16 together with the globally
conforming mesh consisting of 18140 elements (15054 nodes) and constructed from 20 locally
conforming meshes made of triangles. We start from local triangular meshes on each domain
since they are more frequently encountered in engineering applications. However, we point out
that, due to the high complexity of the network (see Figure 16), the final global conforming mesh
counts almost 70% of non-triangular cells, making the VEM approach proposed necessarily. The
selected DFN structure shows complexities typically present in problems of interest for practical
applications; in particular, it involves an intricate network of fractures that intersect each other
giving rise to very narrow angles (see Figure 16b). In Figure 17 and Table 5 we report some
statistics on the network and mesh data. In Figure 17 the lengths [m] distribution of the 182
fracture intersections of the network is presented ordered from the smallest to the largest length;
from the plot we can see that the DFN structure presents a wide range of random intersections
from 0.1 to 2.0 meters. In Table 5 we report the statistic data on the mesh edge lengths |e| [m],
the mesh cells areas |E| [m2] and the mesh cell aspect ratios η, defined for each mesh cell E as
the ratio between the radius of the circumscribed and inscribed polygon circumference. From
the minimum and maximum area values we can see that elements as small as 10−13 m2 are
present in the global conforming mesh together with elements ten orders larger in magnitude;
moreover, from the aspect ratio data we can observe that distorted elements are present as well,
as the ones highlighted in Figure 16b.

(a) Spatial DFN distribution with globally
conforming mesh; each colour denotes a different

fracture index i.

(b) Fracture i = 5 rotated in its tangential system.
Fracture intersections are reported (blue segments)
and some bad shapes elements are enlighted (red

cells).

Figure 16: Test 4: DFN with 20 fractures.

We consider the same parameters of the porous medium and the same fluids data reported in
Table 4 for Test 3 expect for the densities (ρw = 1000, ρn = 400 [Kg/m3]) and the same initial
and boundary conditions described in Test 3. In particular, we set constant Dirichlet boundary
conditions pn = 2 · 105 [Pa] and Sw = 0.8 [−] on the upper part of the domain (edge ei) and
homogeneous Dirichlet boundary condition Sw = 0 [−] and homogeneous Neumann boundary
condition u · n

Ω
= 0 [m · s−1] in the lower part of the domain (edge ef ), t ∈ IT , see Figure 18.

Moreover, we set q = qw = 0 [s−1] and we consider both a case in which the gravity is neglected
and a case in which it is activated. We set a time step ∆t = 10 [s] and a VEM order k = 1.

In Figures 19-20 we show the numerical solution for the saturation of the wetting phase for
three different time instants. In the figures the colouring is proportional to the values of the
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Figure 17: Test 4: fracture intersection
length [m] distribution ordered from the
smallest to the largest length.

min max avg
|e| 6.10E-07 2.03E-01 4.15E-02
|E| 7.16E-13 9.95E-03 2.31E-03
η 1.49E+00 1.37E+02 4.64E+00

Table 5: Test 4: minimum, maximum and
average mesh edge length (|e|), mesh cell area
(|E|) and mesh cell aspect ratio (η) are re-
ported.

saturation. In particular, Figure 20 displays the solutions in case the gravity is considered for
the back of the DFN domain; whereas, Figure 19 displays the solutions in case the gravity is
neglected. We can observe that if the gravity is not activated what matters most is the connection
among the fractures in the network rather than their location. Indeed, at the beginning the
wetting fluid tends to spread throughout the network and only later it starts to accumulate. We
can also observe the complexity of the resulting globally conforming mesh that turns out to
be challenging. The qualitative analysis of the solutions shows that the proposed approach is
capable of handling these types of meshes producing reliable physical solutions.

In Figures 22-21 we report the numerical solution for the pressure of the non-wetting phase
for three different time instants. In the figures the colouring is proportional to the values of the
pressure. Figure 22 displays the solution in case the gravity is considered; on the other hand,
Figure 21 displays the solution in case the gravity is neglected. In case gravity is activated the
pressure achieves higher values.

(a) Pressure of the non-wetting phase pn [bar]
(Front)

(b) Saturation of the wetting phase Sw [−]
(Back)

Figure 18: Test 4: Initial condition at t = 0 [s] and VEM order k = 1.
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(a) t = 2301 [s] (b) t = 12301 [s] (c) t = 21401 [s]

Figure 19: Test 4: saturation of the wetting phase Sw [−] at three different time instants in
case gravity is neglected (g = 0) and VEM order k = 1 (Back).

(a) t = 2301 [s] (b) t = 12301 [s] (c) t = 21401 [s]

Figure 20: Test 4: saturation of the wetting phase Sw [−] at three different time instants in
case gravity is activated (g 6= 0) and VEM order k = 1 (Back).

(a) t = 2301 [s] (b) t = 12301 [s] (c) t = 21401 [s]

Figure 21: Test 4: pressure of the non-wetting phase pn at three different time instants in case
gravity is neglected (g = 0) and VEM order k = 1 (Front).
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(a) t = 2301 [s] (b) t = 12301 [s] (c) t = 21401 [s]

Figure 22: Test 4: pressure of the non-wetting phase pn [bar] at three different time instants in
case gravity is activated (g 6= 0) and VEM order k = 1 (Front).

6 Conclusion
In this work we have proposed a virtual element approach to the simulation of two-phase
flow of immiscible fluids in poro-fractured media. The fractured media has been modelled
via a Discrete Fracture Network. With respect to the classical DFN model, we have further
assumed that all the fractures are characterized by the same isotropic rock type and the same
width. This guarantees the continuity of the saturation of the wetting phase on the traces. The
proposed method has been tested on different DFN models of increasing complexity from a
simple two-fracture network having known analytical solution to a more complex and realistic
twenty-fracture network characterized by challenging features. The numerical results reported
prove the robustness of the approach with respect to the geometrical complexity of the underlying
grid. A local artificial stabilization term is introduced to manage extreme situations for the
saturation of the wetting phase.
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