POLITECNICO DI TORINO
Repository ISTITUZIONALE

Speeding up Heterogeneous Federated Learning with Sequentially Trained Superclients

Original

Speeding up Heterogeneous Federated Learning with Sequentially Trained Superclients / Zaccone, Riccardo; Rizzardi,
Andrea; Caldarola, Debora; Ciccone, Marco; Caputo, Barbara. - (2022), pp. 3376-3382. (Intervento presentato al
convegno 26th International Conference on Pattern Recognition (ICPR) tenutosi a Montréal, Québec (Canada) nel 21-25
August 2022) [10.1109/ICPR56361.2022.9956084].

Availability:
This version is available at: 11583/2962198 since: 2022-04-28T18:28:06Z

Publisher:
IEEE

Published
DOI:10.1109/ICPR56361.2022.9956084

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

25 April 2024

arXiv:2201.10899v1 [cs.LG] 26 Jan 2022

Speeding up Heterogeneous Federated Learning
with Sequentially Trained Superclients

Riccardo Zaccone”, Andrea Rizzardi®, Debora Caldarola, Marco Ciccone, Barbara Caputo
Politecnico di Torino, Turin, Italy
“Equal contributors and corresponding authors: {name.surname} @studenti.polito.it

Abstract—Federated Learning (FL) allows training machine
learning models in privacy-constrained scenarios by enabling
the cooperation of edge devices without requiring local data
sharing. This approach raises several challenges due to the
different statistical distribution of the local datasets and the
clients’ computational heterogeneity. In particular, the presence
of highly non-i.i.d. data severely impairs both the performance of
the trained neural network and its convergence rate, increasing
the number of communication rounds requested to reach a
performance comparable to that of the centralized scenario. As
a solution, we propose FedSeq, a novel framework leveraging
the sequential training of subgroups of heterogeneous clients, i.e.
superclients, to emulate the centralized paradigm in a privacy-
compliant way. Given a fixed budget of communication rounds,
we show that FedSeq outperforms or match several state-of-the-
art federated algorithms in terms of final performance and speed
of convergence. Finally, our method can be easily integrated
with other approaches available in the literature. Empirical
results show that combining existing algorithms with FedSeq
further improves its final performance and convergence speed.
We test our method on CIFAR-10 and CIFAR-100 and prove its
effectiveness in both i.i.d. and non-i.i.d. scenarios.

I. INTRODUCTION

In 2017, McMabhan et al. [23]] introduced Federated Learn-
ing (FL) to train machine learning models in a distributed fash-
ion while respecting privacy constraints on the edge devices.
In FL, the clients are involved in an iterative two-step process
over several communication rounds: (i) independent training
on edge devices on local datasets, and (ii) aggregation of the
updated models into a shared global one on the server-side.
This approach is usually effective in homogeneous scenarios,
but fails to reach comparable performance against non-i.i.d.
data. In particular, it has been shown that the non-iidness of
local datasets leads to unstable and slow convergence [21]],
suboptimal performance [[19]], [38|] or even model divergence
[23]]. Several lines of research emerged to address the statistical
challenges of FL: client drift mitigation aims at regularizing
the local objective in order to make it closer to the global one
[Lf], [14], [21]; multi-task approaches treat each distribution
as a task and focus on fitting separate but related models
simultaneously [[30]]; FCL integrates Continual Learning (CL)
in the FL setting by allowing each client to have a privately
accessible sequence of tasks [32]; data sharing approaches use
small amounts of public or synthesized i.i.d. data to help build
a more balanced data distribution [38]].

In this work, we tackle the problems of i) non identical
class distribution, meaning that for a given pair instance-label

Clients pre-training Building superclients

Fig. 1: Building superclients with FedSeq. i) The initial
model fp, is sent to all K clients, where is trained to fit
the local distributions Dy. ii) On the server-side, according
to an approximator), the trained models fgg are used to

obtain an estimate of the clients’ distributions Dy,. ¢ builds
the superclients, grouping together clients having different
distributions (A and C), while dividing similar ones (A and
B).

(z,y) ~ Py(z,y), Pi(y) varies across edge devices k while
P(y|x) is identical, and ii) small local dataset cardinality.
Inspired by the differences with the standard centralized
training procedure, which bounds any FL algorithm, we intro-
duce Federated Learning via Sequential Superclients Training
(FedSeq), a novel algorithm that leverages sequential training
among subgroups of clients to tackle statistical heterogeneity.
We simulate the presence of homogeneous and larger datasets
without violating the privacy constraints: clients having dif-
ferent distributions are grouped, forming a superclient based
on a dissimilarity metric. Then, within each superclient, the
global model is trained sequentially, and the updates are finally
combined on the server-side. Intuitively, this scheme resembles
the training on devices having larger and less unbalanced
datasets, falling into a favorable scenario for FL. To the best
of our knowledge, this is the first federated algorithm to
employ such a sequential training on clients grouped by their
dissimilarity. To summarize, our main contributions are:

« We introduce FedSeq, a new federated algorithm which
learns from groups of sequentially-trained clients, namely
superclients.

o We introduce two lightweight procedures to estimate the
probability distribution of a client and analyze how they
affect the ability of grouping algorithms to produce better

superclients. We evaluate two strategies, comparing them
with the naive random assignment, showing the impact
of groups quality on the algorithm convergence.

o We show that our method outperforms the state-of-the-art
in terms of convergence performance and speed in both
i.i.d. and non-i.i.d. scenarios

II. RELATED WORKS

Recent years have seen a growing interest in Federated
Learning [13]], [20]], [37]. In realistic federated scenarios, a
major challenge is posed by the non-i.i.d. and highly unbal-
anced distribution of the clients’ data, also known as statistical
heterogeneity [10]], [22]].

FedAvg [23] defines the standard optimization method in
FL, where a global model is obtained as a weighted average
of local models trained on clients’ private data. However,
in heterogeneous settings, the local optimization objectives
drift from each other, leading to different local models which
are hard to be aggregated [14f]. Several works demonstrate
how the convergence rates of FedAvg get worse with the
increase of clients heterogeneity [[11]], [15], [21], [22f], [35].
SCAFFOLD [14] tries to mitigate this issue by introducing
control variates, while FedProx [21] adds a proximal term
to the local loss function. FedDyn [1] dynamically updates
the local objective to ensure the asymptotic alignment of the
global and devices solutions. Server-side optimizers [11[], [27]
have been also introduced for coping with FedAvg lack of
adaptivity. In [24]], it is showed how fair model aggregation is
beneficial when clients observe non-i.i.d. data. While referring
mainly to [23] for the aggregation scheme, our work revises
the standard framework to account for statistical heterogeneity.

As the learned local model under-represents the deducible
patterns from the missing classes, [38] shows how sharing a
small set of public data among the clients leads to notable
improvements. A similar approach is followed by [18]], where
the public data enables knowledge distillation. Similarly to
[18]], we keep the public data on the server-side, with the
different purpose of using them to estimate the clients’ data
distribution in a privacy-compliant way. Unlike [18]], [38], such
data is never used at training time.

Another line of work tackles the problem from a multitask
perspective [6]], where each client is treated as a different task
(71, 1301. In [4], 51, [29], 136, [16] clients with similar tasks
are clustered together and a specialized model is assigned
to each cluster. In [5], tasks are identified using a domain
classifier learned via knowledge distillation and then addressed
by the means of a graph, while in our method, following the
same approach of [4]], [29], [36], the locally trained model
are used to approximate the clients’ data distribution. Unlike
those works, FedSeq exploits clustering methods to group
together clients having distant distributions, in order to obtain
an underlying homogeneous dataset within each group, i.e.
superclient. Our approach also relates to the “anti-clustering”
literature [25]], [26], where the goal is to build similar groups
from dissimilar elements [33]]. From here on we will refer to
such techniques as “grouping algorithms”.

Finally, FedSeq also relates to peer-to-peer (P2P) methods
for FL [12], [28]] by sharing models between clients belonging
to the same superclient. Unlike such works, we keep the
central server as a proxy between clients and prioritize FL’s
statistical challenges rather than communication costs.

III. METHOD
A. Problem formulation

In the FL setup, the goal is to learn a global model fy : X —
Y, parametrized by 6, on data distributed among K clients
without sharing local information. Each device k € [K] has
access to ny samples from a local dataset Dy, = {x;, y; .5y
where z € X is the input and y € Y its corresponding label.

FedAvg [23] follows an iterative approach based on T
communication rounds with the goal of solving

(1

arg min
feRd —
keC

%Lk(e), de Nt

where Ly, (0) = E(,), [lk(fo; (x,y))] is the local empirical
risk, ¢ the cross-entropy loss, and n = Zk ny the total
amount of training data. At each round ¢ € [T}, the server
sends 6, to a fraction of C randomly selected clients. Each
clientk € C computes its update 6F "1 using Dy, by minimizing
the local objective and sends it back to the server. The updated
weights are then aggregated by the server into a new global

model fy, , as:
nk k
Opy1 < Z o i1

keC

2

However, in realistic scenarios, there is no guarantee that
local datasets from different clients are drawn independently
from the same underlying distribution. , i.e. given two clients
i and j, P(D;) # P(Dj;). More in general, fox # fo Vk
clients [4]. In this work, we mitigate the issue of statistical
heterogeneity in classification tasks by introducing FedSeq,
an algorithm for FL that leverages sequential training among
a sub-sample of clients C's, grouped together according to their
data distribution. Specifically, clients observing different data
are grouped into a superclient S obtaining an approximation
of the underlying uniform distribution over all N, classes,
ie. Uke(fs Dy ~ Un,)- Intuitively, thanks to the sequen-
tial training inside superclients, local models can accumulate
knowledge on the majority of the classes even if single clients
heavily heterogeneous.

B. Building superclients

Our goal is to build a superclient S from users having
different local distributions without breaking the privacy con-
straints, i.e. without directly accessing the clients’ data (Figure
[I). We propose different grouping criteria G'g as an ensemble
of i) a client distribution approximator 1)y providing statistics
regarding the local distribution in a privacy-preserving way, ii)
a metric T for evaluating the distance between the estimated
data distributions and iii) a grouping method ¢ to assemble
dissimilar clients, i.e. G5 := {{(); 759}

1) Client distribution approximator: We split the model
fo into a deep feature extractor hy,, : X — Z and a classifier
9oy Z — Y, where 0 = (Ofear, air) is the entire set of model
parameters. The classification output is given by goh : X —
Y, where we drop the subscripts to ease the notation.

FedSeq exploits a pre-training stage to estimate the clients’
data distribution, during which each client £ produces a model
f(,g by training on its local dataset for e epochs starting from
the same random initialization 6. We propose two strategies
based on i) the parameters of the local classifier 0301f or ii)
its predictions on a server-side public dataset Dy, {f*(2) =
gk (hk (2)), z € Dpub}’ respectively 1 and eont.

For ¢, we hypothesize the weights of the classifier can be
representative of the local distribution [2] of each client and
directly feed them to the grouping method ¢,).

For tcont, We test each fek on a public “exemplar set”

Dpup = Uc . D¢, where D, contains J samples for class
¢ € [N¢]. Then, we average the predictions by class as
Dke = %erDc for (), and define the k-th client’s confi-
dence vector as:

.Y @3

pr = softmax({px.1, ..., Pk, No }) €

In the following sections, we indicate as ij the estimate
provided by 1 for the k-th device’s data distribution.

2) Grouping metrics: Starting from client £’s data approx-
imation Dj,, we build similar superclients from users having
different distributions, i.e. we aim at minimizing the inter-
superclients distance while maximizing the intra-superclient
one. To do so, given D; and D;, we need a metric 7(D;, D;) :
RNexNe 5 R to measure the distance between the two
distribution estimates. We compare the weights of the clients’
classifier using the cosine and Euclidean distance, but other
popular metrics can be used [34]. When ﬁk as the form of an
actual probability distribution given by the confidence vector,
we also adopt two disomogeneity measures, the Gini index [8]]
and the Kullback-Leibler (KL) divergence [17].

3) Grouping method: We first define Dg = Ukedg Dy,
as the union of the data from the clients Cs belonging to
a superclient S. Our aim is to find the maximum amount
of superclients Ng satisfying the following constraints: 1)
minimum number of samples |Dg|min, and ii) maximum
number of clients Kg 4. We introduce three strategies to
find an approximation of the maximization problem, given the
chosen () and 7. The first, ¢ng, iS a naive yet practical
approach where clients are randomly assigned to superclients
until the defined stopping criterion is met. The second one,
@kmeans, 1S based on the K-means algorithm [31]: first, K-
means is applied to obtain Ng homogeneous clusters; then,
each superclient is formed by iteratively extracting one client
at a time from each cluster, until the number of samples |Dg|
in each superclient S is at least |Dg|min and the number
of clients Kg < Kgma, (detailed algorithm in Appendix
@). Lastly, ¢greedy follows a greedy methodology to produce
superclients. Initially, one random client k; is assigned to
the current superclient S, ¢ € [K]. Then, the second client

Algorithm 1: FEDSEQ and FEDSEQINTER

Require: fg,, G5, K5 mazs |Ds|min. Epochs e, Ej, Eg. T rounds.
Clients K. Fraction C' of superclients selected at each round.

1: S <= CREATESUPERCLIENTS(fg,. G5, €, K3 max-> |Ds|min, K)
2 Ng «+ |S]
3 © <« [0o,.. .,00]1><CNS, w <+ [0,...
4+ fort=0to T do
5. St < Subsample fraction C of Ng superclients
¢ for S; € St in parallel do

,0l1xCNg

7 Shufﬂe clients 1n S

8: 6’1 <—9t0“ +— O[i]

9: foreSg_lto Eg do

10: 11— SEQUENTIALTRAINING(@S“O Ey)
1: end for

12: @[l] +— th_l, w; — w; + |'Dsl|

13: end for
1 Op1 < FEDAVG({0}],, VS; € S}
1s: if { mod Ng = 0 then

16: 0t+1 = Zz %@[Z}, w = Zz w;

17: @(—[9t+1,...0t+1],w<—[0,‘..,0]
18: end if

19: end for

k; is chosen so as the distance between k; and kj is max-
imized, i.e. maxje[K]T(Dk Dk) The process is repeated
until the established maximum number of clients Kg ,,q, and
the minimum number of samples |Ds|min are reached by
iteratively maximizing 7(D;, & 5] >iels) Di), with |S| being
the cardinality of S until that point (see Appendix [A).

C. Sequential training

1) FedSeq: Within each superclient S;, with ¢ € [Ng],
training is performed in a sequential way, meaning that .S; is
considered as a sequence of clients k; 1, ..., k; |s,|- The server
sends the global model fy, to the first device k; 1, which trains
it for Ej, epochs on Dy, ,. The obtained parameters Hfjri are
sent to the next client k; ». Such training procedure continues
until the last client kg, updates the received model, possibly
repeating for Eg times following a ring communication strat-
egy. Then, the last client sends its update to the server, where
all the superclients updates are averaged according to Eq. [I]
The details of FedSeq are summarized in Algorithm [T}

2) FedSeqlnter: Sequentiality can be also exploited at a
superclient level. At each round ¢, every selected superclient
S; receives the model 6; 5/ from another previously involved
superclient .S, initially 90. Every Ng rounds the models are
averaged, weighted by the number of examples on which each
model was trained on. The insight behind this approach is that
it might be useful to merge models only after they have been
trained on a larger portion of the dataset. Statistically, after
Ng rounds, each model is likely to have been trained on the
entire dataset, thus getting closer to a centralized scenario. This
strategy requires far fewer aggregation and synchronization
steps with the server: the possibility to go out of sync accounts
for variance in clients’ delays, allowing faster superclients not
to be slacken by slower ones.

Dataset Algorithm a=0 «a=02 «a=0.5 Centr.
FedAvg 71.41 76.82 77.98
FedProx 71.41 76.84 77.98
SCAFFOLD 79.02 76.47 78.25
FedDyn 83.26 81.74 82.41
CIFAR-10 FedSeq 82.21 82.20 82.23 85.72
FedSeqlInter 82.65 82.79 83.32
" FedSeq + FedProx 8214~ '82.16 8249
FedSeq + FedDyn 82.90 83.55 83.95
FedSeqInter + FedProx 82.95 82.95 83.52
FedSeqInter + FedDyn 83.11 83.06 83.33
FedAvg 42.66 48.02 48.89
FedProx 42.66 48.20 48.88
SCAFFOLD 42.04 51.04 51.20
FedDyn - 54.41 54.99
CIFAR-100 FedSeq 46.00 49.55 49.82 55.13
FedSeqlInter 50.27 51.60 51.94
" FedSeq + FedProx ~ 46.02 4971 49.62
FedSeq + FedDyn 50.45 50.23 50.80
FedSeqInter + FedProx 51.13 51.54 52.33
FedSeqInter + FedDyn 51.06 51.04 52.68

TABLE I: Comparison with SOTA FL algorithms and central-
ized scenario.

IV. EXPERIMENTS

We evaluate FedSeq on image classification tasks from
CIFAR-10 and CIFAR-100, widely used as benchmarks in
FL. In order to set up a heterogeneous scenario, the local
class distribution is sampled from a Dirichlet distribution with
a € {0,0.2,0.5} [10]. Implementation details can be found
in Appendix We evaluate our results in terms of global
accuracy on the test set (Tables [I] and and convergence
rates (Table [[I)). All reported results are averaged over the last
100 rounds.

A. Comparison with state-of-the-art FL algorithms

We compare our method with the state-of-the-art (SOTA)
algorithms FedAvg [23]], FedProx [21], SCAFFOLD [14] and
FedDyn [1]]. The analysis is presented both in terms of conver-
gence performance (Figure [2} Table [[) and speed (Table [II).
Taking into account both the convergence performance and
rates, the best configuration chosen for FedSeq is based on
the greedy grouping algorithm with KL-divergence applied on
confidence vectors, i.e. Gs = {Ycont, Pereedy, Tir }- In addi-
tion, all results are compared with FedSeqInter, which adds
the inter-superclient sequential training to this configuration,
and is shown to outperform any configuration of FedSeq.

1) Results at convergence: Table shows how
FedSeq reaches consistently better results than other methods
not only when addressing extreme data heterogeneity, but also
when faced with less severe conditions. This behavior reflects
equally on both datasets. In particular, FedProx seems unable
to address extreme scenarios, maintaining performances
comparable to FedAvg. SCAFFOLD proves itself effective in
addressing the most unbalance case (o = 0), with +7% at
convergence on CIFAR-10, but fails at improving the results
achieved by FedAvg both in more moderate scenarios and
on CIFAR-100. We found FedDyn to be the best current
state-of-the-art algorithm, reaching the target accuracies
for all configurations except CIFAR-100 with a = 0.

FedSeq successfully address the challenge of extremely
unbalanced clients on both datasets, outperforming FedAvg,
FedProx and SCAFFOLD both in terms of final performance
and convergence speed, being on par with FedDyn in the
average case (Figure [2). FedSeqlnter - although initially
slower - reaches the highest accuracy value, close to that of
the centralized scenario AccCeent-: in the most challenging
setting, the achieved value corresponds to 96.4% - Acceenir
on CIFAR-10 and 91.2% - Acceentr on CIFAR-100. That
tells us that aggregating every Ng rounds not only leads
to less frequent synchronization between clients and server
with a consequent speed up of the training process, but also
improves the accuracy reached.

2) Integrating FedSeq with state-of-the-art: Since FedSeq
keeps the same logic of FedAvg both in the local training
and the server-side aggregation, it can be easily integrated
with other approaches modifying those parts of the algorithm.
In particular, we evaluate the performance of FedProx [21]
and FedDyn [1] on top of FedSeq, since changes to the
local objective are straightforward to transfer in our sequential
training framework. FedProx adds a proximal term p to the
local objective to improve stability and regularize the distance
between the local and global models. We can repurpose
FedProx to be used in our sequential framework by adding a
proximal term to retain the information learned by the previous
client rather than the global model, with potential benefits
in the most challenging settings. Similarly FedDyn can be
integrated in FedSeq by adding both linear and quadratic
penalty terms to the loss function, using the model trained
by the previous client in place of the server’s last model
(see Appendix [H for the details). Results in Table [[] show
that integrating FedSeq with FedProx makes the algorithm
converge slightly faster only in the most unbalanced scenario,
while performances are on par in the remaining the cases.

3) Convergence speed analysis: In Table we report
the time (indicated as number of rounds) needed by our
best configurations and SOTAs to reach respectively the 70%,
80% and 90% of the centralized accuracy, also indicating the
speedup relative to FedAvg. Considering the most challenging
situations, on CIFAR-10, FedSeq based on the KL divergence
on confidence vectors is 7 times faster than FedAvg and
successfully reaches the 90% of the centralized accuracy in
less than a third of rounds budget; on CIFAR-100, FedSe-
gInter is the only algorithm able to reach the 90% of the
centralized accuracy, in less than half of the available rounds.
Unfortunately, our experiments running FedDyn on CIFAR-
100 with @ = 0 failed to converge, probably due to the
extreme imbalance combined with the difficulty of the task.

B. Ablation study

In this Section, we provide information on the ablation stud-
ies performed on FedSeq. Specifically, the details regarding
the pre-training phase and the construction of superclients are
shown, together with the analysis of the different configura-
tions available for FedSeq which led to the choice presented

in Section [V-Al

CIFAR-10 alpha 0

CIFAR-10 alpha 0.2

CIFAR-10 alpha 0.5

751 751 75
® X S
£ 501 & 50 g50
g E] E]
o] 3 S
< 254 < 25 = 25
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of rounds Number of rounds Number of rounds
CIFAR-100 alpha 0 CIFAR-100 alpha 0.2 CIFAR-100 alpha 0.5
X 401 = 40 =40
> - — —W- FedAvg
g g g FedSeqlnter
= 4 E}] E] —— FedSeq
8 2 ? 20 § 20 = FedProx
< < < —¥— SCAFFOLD
—— FedDyn
0415 : T T T 015 T T r T 0 T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

Number of rounds

Number of rounds

Number of rounds

Fig. 2: Comparison between the results of SOTAs and the best configurations of FedSeq and FedSeqlnter by varying « and
dataset. FedSeqInter performs on par with FedDyn and both outperform the other approaches. Best viewed in color.

Dataset Method a=0 =02 a=05
70% 80% 90% 70% 80% 90% 70% 80% 90%

FedAvg 4036 (1x) 7649 (1x) -(-) 2384 (1x) 4507 (1x) -(-) 1945 (1x) 3749 (1x) 8791 (1x)
FedProx 4036 (1x) 7649 (1x) -(-) 2384 (1x) 4507 (1x) -2 1946 (1x) 3753 (1x) 8786 (1x)
SCAFFOLD 2229 (1,81x) 3914 (1,95x) 8043 (-) 2554 (0,93x) 4771 (0,94x) -2 1934 (1,01x) 3761 (1x) 8453 (1,04x)
FedDyn 563 (7,17x) 954 (8,02x) 2131 (=) 450 (5,3x) 797 (5,65x) 2059 (-) 374 (5,2x) 634 (5,91x) 1648 (5,33x)

CIFAR-10 FedSeq! 594 (6,79x) 991 (7,72x) 2047 (=) 407 (5,86x) 746 (6,04x) 1682 (-) 325 (5,98x) 619 (6,06x) 1358 (6,47x)
FedSeq? 873 (4,62x) 1502 (5,09x) 3677 () 387 (6,16x) 720 (6,26x) 1543 (=) 323 (6,02x) 620 (6,05x) 1409 (6,24x)
FedSeq! + FedProx 594 (6,79x) 991 (7,72x) 2046 (=) 407 (5,86x) 746 (6,04x) 1682 (-) 325 (5,98x) 619 (6,06x) 1358 (6,47x)
FedSeq' + FedDyn 345 (11,7x) 581 (13,17x) 1341 (-) 253 (9,42x) 447 (10,08x) 1113 (-) 232 (8,38x) 403 (9,3x) 933 (9,42x)
FedSeqnter! 762 (5,3x) 1305 (5.86x) 2492 (-) 538 (4,43x) 1004 (4,49x) 2099 (-) 433 (4,49x) 814 (4,61x) 1805 (4,87x)
FedSeglInter' + FedProx 735 (5,49x) 1264 (6,05x) 2388 (-) 544 (4,38x) 1000 (4,51x) 2084 (-) 436 (4,46x) 825 (4,54x) 1747 (5,03x)
FedSegInter' + FedDyn 733 (5,51x) 1262 (6,06x) 2344 (-) 533 (4,47x) 959 (4,7x) 2061 (-) 425 (4,58x) 796 (4,71x) 1750 (5,02x)
FedAvg 14412 (1x) -2 -2 6409 (1x) 10253 (1x) -2 5879 (1x) 9331 (1x) -2
FedProx 14412 (1x) -(-) -(-) 6363 (1,01x) 10277 (1x) - (= 5918 (0,99x) 9250 (1,01x) - ()
SCAFFOLD 14483 (1x) -(-) -(-) 7088 (0,9x) 10191 (1,01x) 17200 (=) 6951 (0,85x) 10373 (0,.9x) 16744 (-)
FedDyn -2 -2 -2 1031 (6,22x) 1603 (6,4x) 2634 (-) 868 (6,77x) 1433 (6,51x) 3018 (-)

CIFAR-100 FedSeq' 3009 (4,79x) 5780 (-) -2 901 (7,11x) 1421 (7,22x) 3436 (-) 854 (6,88x) 1264 (7,38x) 2812 ()
FedSeq? 3968 (3,63x) 9378 (-) -2 922 (6,95x) 1396 (7,34x) 3924 (-) 843 (6,97x) 1266 (7,37x) 2713 (-)
FedSeq! + FedProx 2946 (4,89x) 6005 (-) -2 898 (7,14x) 1397 (7,34x) 3033 (-) 843 (6,97x) 1298 (7,19x) 2833 ()
FedSeq! + FedDyn 1914 (7,53x) 3293 (-) 7511 (<) 556 (11,53x) 987 (10,39x) 2014 (-) 541 (10,87x) 957 (9,75x) 1912 (-)
FedSeglnter' 3028 (4,76x) 4333 (o) 8494 () 1177 (5,45x) 1734 (5,91x) 3004 (-) 1034 (5,69x) 1524 (6,12x) 2675 (-)
FedSegInter' + FedProx 3027 (4,76x) 4310 (-) 7149 (-) 1163 (5,51x) 1721 (5,96x) 2915 (-) 1033 (5,69x) 1525 (6,12x) 2616 (-)
FedSegInter' + FedDyn 2964 (4,86x) 4183 (-) 7539 (=) 1180 (5,43x) 1757 (5,84x) 3018 (-) 1031 (5,7x) 1538 (6,07x) 2547 (-)

TABLE II: Convergence rates for the best configurations of FedSeq (1: {tconf, Gerecdys T L }> 2¢ {tcifall; Pereedys Teosine) and
SOTAs. We report the round in which the 70%, 80% and 90% of centralized accuracy is reached (“—" if the target accuracy

was not reached), together with the speedup relative to FedAvg (“—

1) Clients pre-training: All the grouping criteria intro-
duced in Section [[II-B| rely on the clients’ data approximation
Dy, produced by the approximator 1. Regardless of the choice
of 1, the first step required for building superclients is a pre-
training phase, local to every client. The randomly initialized
model fy, is trained by each device for e epochs and is
then exploited for estimating the data distribution without
breaking the privacy constraints. Intuitively, e should be large
enough for the model to fit the local training set and at
the same time as small as possible so as not to cause a
computational burden on the clients. Hence we expect models
trained on similar distributions to be more alike than those that
have seen different ones. We tested e € {1, 5, 10, 20, 30,40}.

TR

if FedAvg did not reach the target accuracy).

For each of those values, we obtain the similarity matrix
e ._ e _ 667
b= {Dj; = 6211 1162]] , .
between fyi and fp;, where 0 and 6] are respectively the
parameters of client ¢+ and j models trained for e local epochs,
V(i,j) € (K x K). Figure [a| shows those matrices as
heatmaps for CIFAR-100 (see Appendix [B] for CIFAR-10). In
Figure [4b] the trend of || D¢|| for each value of e is reported:
we can notice how 5 epochs are sufficient for the models to
be significantly different and after 10 epochs of pre-training
the change rate of the models is reduced. Therefore, looking
for the trade-off between the informative value of the trained
models and the performance overhead, we choose e = 10 as

}, representing the cosine distance

Method P) T a=0 a=02 a=05
CIFAR-10
- random - 81.90 82.09 82.12
clf K-means Euclidean 82.30 81.78 82.48
conf K-means Euclidean 82.04 81.99 82.37
FedSeq conf greedy KL 82.21 82.20 82.22
conf greedy Cosine 82.09 81.85 82.71
clf greedy Cosine 79.95 82.06 82.83
FedSeqInter ~conf ~greedy KL 8265 8279 83.32
CIFAR-100
- random - 46.39 48.62 49.44
clf K-means Euclidean 4491 48.74 49.60
conf K-means Euclidean 43.55 49.43 49.79
FedSeq conf greedy KL 4597 49.56 49.82
conf greedy Cosine 45.79 48.98 49.61
clf greedy Cosine 45.22 48.92 49.62
FedSeqInter ~conf ~greedy KL 5027 5160 51.94

TABLE III: FedSeq baselines: comparison of grouping criteria
by varying ¢, 1 and 7. Results in terms of accuracy (%).

0.7799

.

0.004

0 20 40

(@) (b)

Fig. 3: Effect of pre-training K = 500 local models for e €
{1,5,10,20, 30,40} epochs on CIFAR-100. (a) Heatmaps of
the similarity matrix D®. (b) Trend of ||D¢||. After e = 10
the slope of the curve decreases.

default value for the clients pre-training.

2) Estimating clients’ data distribution: We can extract an
estimate of the distribution of local datasets from the clients’
pre-trained models via an approximator ¢ (see Sec. [II-B1]
We compare 1 and t.ons, based respectively on the pre-
trained classifier weights and on the confidence vectors (Eq.
B). As for the classifier approximator, we test three different
scenarios: we use all three fully connected layers of the
network, the last two or only the last. To mitigate the curse
of dimensionality 3], we apply PCA [9] on the parameters,
keeping 90% of the explained variance. Our key findings are
that the percentage of preserved components: i) decreases
with the complexity of the dataset, i.e. less components are
needed for CIFAR-10, and ii) increases directly proportional
to e, except for o = 0 (more details in Appendix [C). We
deduce that 10 local epochs are already sufficient to capture
the polarization of the dataset in its extreme imbalance. As
for tconr, we retain 10 images per class from the test set
on the server-side (D,,;) for testing the pre-trained models
and computing the confidence vectors as described in Section
Once D,y has served its purpose, it is not used again.

3) Comparison of grouping criteria: Here we provide the
experimental results of the different combinations of grouping
criteria Gg. As for the implementation of the grouping method
QPkmeans» & reasonable value of K is the number of classes of the
dataset. In order to evaluate how homogenous the superclients’
overall data distribution is, we use the following measures:

mincE[NC] NC

e balance ratio = where N, is the number

maXce[Ng] N.’
of samples for the class ¢

1 N¢
o covered classes := 5= > .5 Lp(y=c)>o0-

It should be noted that the percentage of classes covered is a
less discriminatory measure, as the class is accounted for as
present even if only one of its samples is in the superclient,
while a low deviation from the mean of the samples per
class is necessary to have a higher balance ratio, making
the latter more reliable. In Appendix [C| Table I shows the
results varying by v, ¢ and 7. The first consideration is that
the random assignment strategy (¢rana) has surprisingly good
indices, especially if compared with more clever algorithms.
The reason lies in statistical considerations on the setting:
when o = 0, there are multiple clients (i.e. 50 clients in
CIFAR-10 and 5 in CIFAR-100) having samples belonging
to the same class; therefore, a random choice in unlikely to
group only those clients with the same data distribution. As
a grows, each client has a more homogeneous distribution,
so every clustering criterion leads to a similar result. ¢gmeans
is the best performing algorithm when o = 0, with zero
variance on the number of clients in the same set. Pgreedy
shows better performances in most cases, hence it is our
algorithm of choice. Figures in Appendix [D]show examples of
superclients built with different ¢. As for the approximators, it
is possible to see that, fixed the choice of @greedy, the use of Ve
mostly leads to higher balance ratio, especially when T.gsine
is adopted, while Table shows that cons brings towards
higher accuracy. As for the metrics, the speedup with g is
more prominent (Table [I). So our approximator of choice is
’lpconf with TKL-

V. CONCLUSION

In this work we address statistical heterogeneity in FL
introducing FedSeq, the first approach exploiting sequential
training of clients grouped by data dissimilarity (superclients).
We evaluate different stategies for grouping clients, based on
privacy-preserving approximations of their local distributions,
and show that FedSeq is robust to suboptimal solutions. We
extend sequential training to superclients to reduce the impact
of slow devices (FedSeqlnter) and find that the convergence
performances improve. Our comparative analysis with the
state-of-art shows that FedSeq largely outperforms FedAvg,
FedProx and SCAFFOLD in terms of convergence accuracy
and speed on both extreme and less severe non-i.i.d. scenarios,
while performing on par with FedDyn on average. Finally,
empirical results show that combining existing algorithms with
FedSeq further improves its final performance and conver-
gence speed.

(1]

(2]

(3]
(4]

[5]

(6]

(71

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew
Mattina, Paul N Whatmough, and Venkatesh Saligrama. Federated
learning based on dynamic regularization. International Conference on
Learning Representations, 2021.

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,
Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona.
Task2vec: Task embedding for meta-learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6430—
6439, 2019.

Richard Bellman. Dynamic programming. Science, 153(3731):34-37,
1966.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning
with hierarchical clustering of local updates to improve training on non-
iid data. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1-9. IEEE, 2020.

Debora Caldarola, Massimiliano Mancini, Fabio Galasso, Marco Ci-
ccone, Emanuele Rodola, and Barbara Caputo. Cluster-driven graph
federated learning over multiple domains. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2749-2758, 2021.

Rich Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personal-
ized federated learning: A meta-learning approach. arXiv preprint
arXiv:2002.07948, 2020.

Frank A Farris. The gini index and measures of inequality. The American
Mathematical Monthly, 117(10):851-864, 2010.

Karl Pearson FR.S. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559-572, 1901.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the ef-
fects of non-identical data distribution for federated visual classification.
NeurIPS Workshop, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual
classification with real-world data distribution. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part X 16, pages 76-92. Springer, 2020.

Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized fed-
erated learning: A segmented gossip approach. arXiv preprint
arXiv:1908.07782, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.
Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International Conference
on Machine Learning, pages 5132-5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. First anal-
ysis of local gd on heterogeneous data. arXiv preprint arXiv:1909.04715,
2019.

Kavya Kopparapu and Eric Lin. Fedfmc: Sequential efficient federated
learning on non-iid data. arXiv preprint arXiv:2006.10937, 2020.
Solomon Kullback and Richard A Leibler. On information and suffi-
ciency. The annals of mathematical statistics, 22(1):79-86, 1951.
Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning
via model distillation. arXiv preprint arXiv:1910.03581, 2019.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learn-
ing on non-iid data silos: An experimental study. CoRR, abs/2102.02079,
2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. [EEE
Signal Processing Magazine, 37(3):50-60, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems, 2:429-450,
2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

networks from decentralized data. In Artificial intelligence and statistics,
pages 1273-1282. PMLR, 2017.

Umberto Michieli and Mete Ozay. Are all users treated fairly in
federated learning systems? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2318-2322, 2021.
Sai Lokesh Reddy Y. Srijayanthi Subramanian Sakthivel Ravichandran
Mohammed Fayaz A., Neethimani S. M. Comparative analysis of
anti-clusters formed using various distance metrics and k-medoids
algorithm. International Journal of Advanced Science and Technology,
29(06):7705-7717, Jun. 2020.

Martin Papenberg and Gunnar W Klau. Using anticlustering to partition
data sets into equivalent parts. Psychological Methods, 26(2):161, 2021.
Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Kone¢ny, Sanjiv Kumar, and H Brendan McMahan.
Adaptive federated optimization. International Conference on Learning
Representations (ICLR), 2021.

Abhijit Guha Roy, Shayan Siddiqui, Sebastian Polster]l, Nassir Navab,
and Christian Wachinger. Braintorrent: A peer-to-peer environment
for decentralized federated learning. arXiv preprint arXiv:1905.06731,
2019.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered
federated learning: Model-agnostic distributed multitask optimization
under privacy constraints. [EEE transactions on neural networks and
learning systems, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar.
Federated multi-task learning. arXiv preprint arXiv:1705.10467, 2017.
Douglas Steinley. K-means clustering: a half-century synthesis. British
Journal of Mathematical and Statistical Psychology, 59(1):1-34, 2006.
Anastasiia Usmanova, Frangois Portet, Philippe Lalanda, and Ger-
man Vega. A distillation-based approach integrating continual learn-
ing and federated learning for pervasive services. arXiv preprint
arXiv:2109.04197, 2021.

Ventzeslav Valev. Set partition principles revisited. In Adnan Amin, Dov
Dori, Pavel Pudil, and Herbert Freeman, editors, Advances in Pattern
Recognition, pages 875-881, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

Cédric Villani. Optimal transport: old and new, volume 338. Springer,
2009.

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung,
Christian Makaya, Ting He, and Kevin Chan. Adaptive federated
learning in resource constrained edge computing systems. IEEE Journal
on Selected Areas in Communications, 37(6):1205-1221, 2019.

Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing
Jiang, and Chengqi Zhang. Multi-center federated learning. arXiv
preprint arXiv:2108.08647, 2021.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian,
and Fei Wang. Federated learning for healthcare informatics. Journal
of Healthcare Informatics Research, 5(1):1-19, 2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

APPENDIX
A. GROUPING ALGORITHMS

Here, we provide details on the grouping algorithms described in Section [II}

Algorithm 2: K-means grouping method ¢xmeans

Require: K clients, {ﬁl, e ,D}} clients” approximated distributions, |Dg|,i, minimum number of samples per
superclient, Kg 4, maximum number of clients per superclient, grouping metric 7, n, number of images on kth device

1: N = number of classes

2: Cp,...,Cy = K—MEANS({ﬁl, e ,D~K},7, N) {K-means algorithm with K = N returns N homogeneous clusters}
3 240, S=1[], =0 {with S being the set of superclients and z its index}
4: while | JY, C;| > 0 do

55 S« [, N,+0

6. while N, < |Dgl|min and |S;| < Kg mqz do

7: k < rRANDOM(C})

8 S;.ADD(k), C; .REMOVE(k)

9: j+ ((j+1) modN)

10: N, < N, +ng

11: end while

12 S.ADD(S;)
13: z4+2z+1
14: end while
15: return S

Algorithm 3: Greedy grouping method @grecdy

Require: K clients, {751, . ,D}g} clients’ approximated distributions, |Dg |, minimum number of samples per
superclient, K g ,q, maximum number of clients per superclient, grouping metric 7, n;, number of images on kth device
IIZFO,S:[],K%[kl,...kK]
2: while |K| > 0 do
33 S, <[], N,+0
4 k; < RANDOM(K)
5. S..ADD(k;), K.REMOVE(k;)
6]N)Sz%@i, N, + N, +n;
7. while N, < |Dg|min and |S;| < Kg mqy do
8 kj < argmaxj(T(?j,ﬁSz))
9: Dg, + %'Dsz + %Dj
10: N, < N, +n;
11 S,.ADD(k;), KX.REMOVE(k;)
12: end while
13: S.ADD(S,)
14 z4 241
15: end while
16: return S

B. CLIENTS’ PRE-TRAINING ON CIFAR-10

Figure [] shows the effect of pre-training local models varying the number of local epochs e for CIFAR-10. As shown for
CIFAR-100 in the main paper, we find a trade-off between the informative value of the trained models and the performance
overhead with e = 10. The results obtained are consistent across both datasets, showing that the chosen network is able to
correctly fit both of them.

C. COMPARISON OF GROUPING CRITERIA

Table shows experimental results of the different combinations of grouping criteria Gg. We remind that the goal of
our approach is to group clients with different distributions in the same superclient, in order to obtain heterogeneous ones.

e=>5H

(a)

De|

0.62274
0.5961 4
—0.5533
—0.4462

(0.15134

0.0041

20

40

Fig. 4: Effect of pre-training K = 500 local models for e € {1,5, 10,20, 30,40} epochs on CIFAR-10. (a) Heatmaps of the

similarity matrix D®. (b) Trend of ||D¢||. After e = 10 the slope of the curve decreases.

To this end, our evaluation metrics are the balance ratio and covered classes (see Section [[V-B3| of the main paper), as a
way to reflect the heterogeneity of superclient’s dataset. The approximators classifierAll, classifierLast2 and classifierLast refer
respectively to extracting the weights of all, the last two or only the last fully connected layer from our network of choice,
LeNet-5. In practice, since we apply PCA on the network parameters (Figure [3)), extracting all the classifier’s weights does
not introduce much additional computational burden. Moreover, classifierAll achieves the best performance among the three
options. Therefore we choose to always extract all the weights. Results are consistent across the dataset and show that the
best combinations are G% = {¥cif, Pgreedy, Teosine } and G% = {Yconf, Pareedy; Tcosine ;- EXperimental results on the performance
of FedSeq given such grouping criteria show that on the average case G§ = {con, Dareedy, TK 1} leads to best results (see

Section [[V-B3).

. . CIFAR-10 CIFAR-100

Approximator v Method ¢ Metric = Balance Ratio Covered Classes Balance Ratio Covered Classes

Greed Cosine distance 0.334 0.886 0.028 0.667

classifierAll reedy Wasserstein distance 0.081 0.759 0.011 0.651

K-means Euclidean distance 0.207 0.902 0.009 0.655

Greed Cosine distance 0.275 0.871 0.034 0.668

classifierLast2 reedy Wasserstein distance 0.090 0.746 0.009 0.652

K-means Euclidean distance 0.203 0.900 0.009 0.654

Greed Cosine distance 0.266 0.880 0.043 0.668

classifierLast y Wasserstein distance 0.085 0.755 0.010 0.650

K-means Euclidean distance 0.204 0.902 0.009 0.655

Cosine distance 0.311 0.886 0.014 0.658

fid Greed Wasserstein distance 0.077 0.784 0.009 0.654

vectors y KL divergence 0.271 0.870 0.011 0.656

Gini index 0.298 0.876 0.012 0.657

K-means Euclidean distance 0.173 0.894 0.009 0.656

- Random - 0.068 0.835 0.009 0.655

TABLE IV: Comparison between different clustering methods. Each result is the average of the scores obtained for o €

0,0.2,0.5].

D. SUPERCLIENTS ANALYSIS

Figures [6][78] show superclients distributions in different settings. Figure [6] represents the distribution of 10 superclients
built, from left to right, with ¢grcedy, Prmeans and @rang on CIFAR-10. It is clear that the first two methods are able to build
perfectly homogeneous superclients, while ¢,qnq struggles in doing so. Figure [7] shows the same configuration on CIFAR-100:

§ 2.5] —@— cifar10-10 epochs

s —o— cifar10-20 epochs

bt 2.0 —8— cifar100-10 epochs

£ 7| —e— cifar100-20 epochs

[

g157 Y

g | = M -0

© 1.0

T

e

2 0.5 / *

o o *

£ °

0.0 +— r .
0.0 0.2 0.5
Alpha

Fig. 5: Ratio of the preserved components after applying PCA with 90% of explained variance.

in this case, the advantage of using @grcedy OF Prmeans OVEr Prang is NOt as evident, but the superclient distributions created
with the first two clustering methods are still spread more homogeneously over the classes. Figure [8] demonstrates the effect of
o (from left to right: 0, 0.2 and 0.5) in the construction of the superclients: the bigger the value of «, the more homogeneous

the superclients distributions are, regardless of the clustering method.

IDs of superclients built with Greedy Clustering IDs of superclients built with KMeans Clustering IDs of superclients built with Random Clustering

10 10

class

class
ok N W & U o v ® ©

class
ok N W & U o0 N ® ©

Fig. 6: Example of superclient distributions produced by different grouping algorithms on CIFAR-10 and o = 0.

AR L

IDs of superclients built with Greedy Clustering IDs of superclients built with KMeans Clustering IDs of superclients built with Random Clustering

class
N W oE U o2 N ® @
s & &8 & 383 3 8 8
class
g
class
o
B

Fig. 7: Example of superclient distributions produced by different grouping algorithms on CIFAR-100 and o = 0.

E. IMPLEMENTATION DETAILS

We evaluate FedSeq on image classification tasks on two synthetic datasets widely used as benchmarks in FL, namely
CIFAR-10 and CIFAR-100. As for the data partitioning, we follow the protocol described in [I0]: the class distribution of
every client is sampled from a Dirichlet distribution with varying concentration parameter «. Since our method addresses
statistical heterogeneity, in our experiments we use « € {0,0.2,0.5} that, combined with the number of clients K among
which the dataset is split (K = 500), sets up a realistic scenario in which clients have small and very unbalanced datasets.

Accounting for the difficulty of the task, we run the experiments for 7' = 10k rounds on CIFAR-10 and 20k on CIFAR-100.
The fraction of clients selected at each round is C' = 0.2. Following the setup of [[I1]], our model is their proposed version of
LeNet-5, with a client learning rate of 0.01, weight decay set to 4 - 104, momentum 0 and batch size 64. As for the centralized
scenario, we add a momentum of 0.9 and a cosine annealing schedule for the learning rate, training the model for 300 epochs.

s v 9 N @ ©
& &8 8 3 &8 8
2 v o N @ ©
8 &8 8 3 8 8

w
&
g

N
S
S

s
S

100 M 100 00
A \
90 A\
\ [
\] [
80 y
70 A\
\ |
60)
£ s0 (& [g
40
30 |
\/
20 \
10 |
0 0 . o
o 1 2 3 4 5 6 7 8 9 7 8 9 0 1 2 3 4 5 7 8 9

6
1Ds of superclients built in a=0 setting IDs of superclients built in a=0.2 setting 1Ds of superclients built in a=0.5 setting

Fig. 8: Example of superclient distributions in different « settings with @,.qn4.

As for the clustering methods, we fix |Dg|min = 800 and Kg e = 11. In FedSeq, we fix E, = Eg = 1 and similarly £ = 1
for FedAvg and the other SOTAs. An analysis on the choice of Fg can be found in Appendix F: we show it is not convenient
to perform more than one epoch through a superclient. For FedProx we evaluate ;2 € [107%,1073,1072] and choose ;1 = 0.01,
while for FedDyn a4y, = 0.1 is chosen from the finetuning interval [1073,1072,1071].

Regarding FedDyn, we were unable to obtain the results for CIFAR-100 with a = 0: we conjecture that in our setting the
amount of local update was not enough to calculate the appropriate h' server side, and the model diverged. To confirm this
intuition we successfully ran the same case using a learning rate of 0.1; the same happens when integrating FedDyn with
FedSeq, in which case the models has more updated before returning to the server for the aggregation.

When integrating FedProx in FedSeq, we use p = 0.01 chosen from [10~%,1073,1072]; when instead we integrate in
FedSeqInter, we choose p = 1 chosen from [1072,1071,1,10]: the rationale behind having selected higher values is that in
a sequential training with loose aggregation it can be beneficial to try to retain more knowledge from the previous client’s
training. The experimental results in section [IV] of the main paper confirm this intuition. Similarly when integrating FedDyn
in FedSeq, we use agy, = 0.1 chosen from [1073,1072,10~!], while when integrating in FedSeqInter we choose a gy, = 1
from [1072,1071, 1].

F. DETAILS ON THE INTEGRATION OF FEDSEQ WITH STATE-OF-THE-ART

FedProx

As pointed out in section FedProx adds a proximal term to the local objective to improve stability and regularize
the distance between the local and global models, modifying the local objective function as follows:

01 = argemin(Rk(@; 0'Y) = Li(0) + %HO -0)

In our setting, incorporating FedProx objecting function into the sequential training means trying to retain the information
learned by the previous client rather than the global model, with potential benefits in the most challenging settings. In fact,
because when o = 0 clients have local dataset with samples belonging only to one class, adding a proximal term could help
avoiding the model shift towards the new learned task. In such a case, the objective function becomes:

0

k,j

= argmin(Rs, ,(6:0%, ,_,) = Lo, () + 5110 = 65, I 5)

where Htsk i is the model after the training of client j — 1 belonging to superclient S.

FedDyn

In FedDyn the proposed risk objective dynamically modifies local loss functions, so that, if in fact local models converge
to a consensus, the consensus point is consistent with stationary point of the global loss [I]. Namely, each device computes:

0} = arg min(Ry(; 9271,0“1) = Ly(0) + <VLk(9;t;1) ,0) + %H@ -0 (6)
0

FedDyn authors point out that for the first order condition for local optima to be satisfied, as 6} — 67° and VL (0}) —
VL(07°), 0" — 67° which implies 67° — 0°°. Then the server side aggregation updates the model such that:

1 1 _
HtZWZ%—EZ(%—et Y (7N
t gep, keP,

being P; the subset of client selected at round t. In this way 6% convergence implies ht — 0.

When incorporating it in FedSeq, the dynamic regularizer and the first order condition for local optima become:

Rs, ;(6; ets;l.ﬁt) £ Ls,,(0) — <VLSk}j(9g;,1j),g>+ ozdun”e st, AP ®)
VRs,,(0:05,",05,) = Ls,j(05,) = Vs, ;05") + aayn(6 — 05,)

Applying the same reasoning of FedDyn, as 65, =~ — 0% = and VLs, ;(05,) — VLs,;(63), this implies 6° — 0% .
Analogously the server side aggregation becomes

= O = > (0, — 07 ©)
keP, kePt

Because of the sequential training of the models, the term Qtsk can be rewritten as the sum of the gradients computed by each
client inside a superclient, leading to the following equation:

[Sk| EN
ag’c =07+ ZVLS'H‘ (gtsk)j) = Z (etsk -0 1 Z Z VLSk J QSk d
J keP, keP, j o (10)
|P| Z S — Z VLs,(0s,) where VL, (05, ZVLSk J(05,
keP, kEPt

In this way 6" convergence implies Y, p, VLs, (05) — 0: indeed the definitions of h* £ 37, VL (6}) in FedDyn and
ht £, Vis, (05,) in FedSeq are analogous.

G. ANALYSIS ON THE SUPERCLIENTS’ LOCAL EPOCHS FJg

In analogy with the number of client’s local epochs Ej, we analyse what happens increasing the superclient’s epochs Fg.
The intuition behind this study is that, since superclients are built on top of heterogeneous data distributions, more loops on
their dataset could produce more robust models, not biased towards a single class. Increasing E's while decreasing the global
round number 7' does not impact the communication steps, but reduces the number of aggregations and accounts for a more
loose synchronization. To compare fairly, Figure @] shows the results for Eg € {1,2,4}, and T decreased by the corresponding
factor: to ease the visulization we compare the accuracies along equivalent rounds, meaning that the actual round r,,s for each
line in the graph is scaled by the number of Eg, formally 7.q = E—"S It is possible to notice that, comparing models with
the same amount of training, increasing the number of sequential rounds among superclients’ clients does not improve the
performance accordingly. As increasing E's does not decrease communication cost, there is no advantage performing more
than one epoch. Differently, using the strategy of FedSeqInter, we obtain a similar effect in that models are more trained before
the aggregation step, but:

o The dataset the model is sequentially trained on is broader: indeed the aggregation period Ng is choosen such that

statistically the models encounters the whole global dataset before the aggregation step;

+« We do not add any computation per round: even better, aggregation every Ng rounds requires less sync.

In Section of the main paper we empirically demonstrate that the latter approach ultimately leads to better convergence
performances.

CIFAR-10 alpha 0 CIFAR-10 alpha 0.2 CIFAR-10 alpha 0.5

. 75 7
Z 2 50 2 50
2 z g
=] = =
|5} o i}
= 225 22
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of equivalent rounds Number of equivalent rounds Number of equivalent rounds
CIFAR-100 alpha 0 CIFAR-100 alpha 0.2 CIFAR-100 alpha 0.5
— 40 — —_
s x40 =
> > =
g 3 g
£ 20 2 20 g
g g 8 B FedSeq-Eg = 1
< < < ~@— FedSeq-Eg =2
—h— FedSeq-Eg =4
0 0 0
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of equivalent rounds Number of equivalent rounds Number of equivalent rounds

Fig. 9: FedSeq varying Es € {1,2,4}. Results show that, on equal effort, increasing the amount of computation through
superclients’ clients does not improve the performance. Best viewed in color.

	I Introduction
	II Related works
	III Method
	III-A Problem formulation
	III-B Building superclients
	III-B1 Client distribution approximator
	III-B2 Grouping metrics
	III-B3 Grouping method

	III-C Sequential training
	III-C1 FedSeq
	III-C2 FedSeqInter

	IV Experiments
	IV-A Comparison with state-of-the-art FL algorithms
	IV-A1 Results at convergence
	IV-A2 Integrating FedSeq with state-of-the-art
	IV-A3 Convergence speed analysis

	IV-B Ablation study
	IV-B1 Clients pre-training
	IV-B2 Estimating clients' data distribution
	IV-B3 Comparison of grouping criteria

	V Conclusion
	References
	Appendix
	A Grouping Algorithms
	B Clients' pre-training on Cifar-10
	C Comparison of grouping criteria
	D Superclients analysis
	E Implementation details
	F Details on the integration of FedSeq with state-of-the-art
	G Analysis on the superclients' local epochs ES

