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ABSTRACT

The main objective of this paper is to identify the potential of electric vehicles in current car mobility
scenarios. Firstly, distances traveled daily are analyzed to understand if the car usage observed can
be satisfied by the expected range of electric vehicles. Secondly, idle times between trips are studied
to assess vehicle needs and identify the requirements for electric charging stations to support the
trip-chains observed. The datasets were derived from floating car data recorded for 365 days and
include more than 30 million trips crossing the Metropolitan City of Turin (Italy). Approximately
70,000 km were observed daily for more than 10,000 vehicles for 400 different vehicle models to
identify their activities over 24 hours. This daily activity in the observation period can be considered a
reference scenario, in synergy with the battery range, to plan charging points in road networks.
Results show that 98% of daily VKT (vehicle kilometers traveled) are lower than 300 km, over a year
of observation. Cars are also classified according to their market segment to identify specific vehicle
usage, defining a data dictionary to relate the models and segments. For instance, daily VKT values
estimated for segment A (city cars) average 34 km, whereas for segment E (executive cars) the aver-
age is 75 km. The spatial analysis of idle times reveals a higher number of shorter breaks in the city
center compared to peripheral districts, suggesting that recharging solutions should be adapted to
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zones according to how they are used for parking.

1. Introduction
1.1. Electric mobility overview

Increasing environmental consciousness, reduction of elec-
tric vehicles (EVs) purchase prices, savings on fuel expenses,
increasing experience and awareness about electric mobility,
are some of the reasons why EVs are becoming increasingly
popular. In (ACI et al, 2019) current and future scenarios
are analyzed in the Italian context, where currently diesel-
powered vehicles are still more cost-effective than battery
electric vehicles (BEVs), which are only cost-comparable to
hybrid electric vehicles (HEVs) (Danielis et al., 2018). This
situation may change if significant subsidies are introduced,
batteries become less expensive, or if the cost of traditional
fuels rises.

EVs range from HEVs to BEVs, including plug-in hybrid
EVs (PHEVs), which can switch between the two power-
trains. The distances BEVs travel using an electric engine
are greater than for PHEVs, making the former more chal-
lenging and statistically interesting, since these vehicles only
rely on electric traction, allocating a crucial role to the bat-
tery. HEVs are predominantly powered by gasoline since the
battery is only used for recovering kinetic energy from the

motion of the vehicle and for providing some slight help in
traction. PHEVs still have a traditional engine as well, but
can be fully electric powered, though with a significantly
smaller range than BEVs. Unlike HEVs, PHEVs and BEVs
can be directly recharged at specific ECSs (Electric charging
stations) thanks to their plug-ins. The time required for
charging operations depends upon the electric power of the
stations. The most common but slowest ECS options are
rated at 3 and 7kW, and are intended for recharges at home
and at workplaces or whenever a lot of time is available
(however, they might be not effective for shorter time win-
dows). There are faster solutions rated at 22 kW and 43 kW,
but they are more expensive (Chen et al., 2020). They are
not intended for private use, but for strategic public loca-
tions such as big parking areas, malls, and workplaces. Even
faster charging solutions are available, but these exceed the
100-kW threshold (e.g., 135 and 450kW), and may not be
supported by all EVs, or specific charging methods and
models may be required in order not to influence the state
of health of the battery and its lifecycle (Brenna et al., 2020).
ECS operations can be significant factors from the electricity
grid perspective, especially during times of peak demand.
Special charging strategies can be adopted to deal with that,
such as only charging when the battery SOC (state of
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Table 1. Summary of comparable studies in bibliography.

Authors Area Data source Observation Period Population
(Greaves et al., 2014) Sydney GPS data 5 weeks 166 vehicles
(Tamor et al., 2013) Minneapolis Vehicle usage data 1year 133 vehicles
(Pearre et al., 2011) Atlanta Vehicle usage data 18 months 484 vehicles
(Franke & Krems, 2013) DEU Survey (panel) 6 months 79 responses
(Dalla Chiara et al., 2019) Italy Vehicle usage data 16 months 1085 vehicles
(Dong et al., 2014) Seattle GPS data 18 months 445 vehicles
(Lindsey et al., 2011) Chicago Survey 1year 9258 households
(Anderson et al., 2018) Germany Survey 763 EV owners
(Plotz et al., 2017) Germany Survey 7 days/veh 6339 vehicles
Sweden GPS data 51-64 days/veh 429 vehicles
Winnipeg GPS data 108-325 days/veh 75 vehicles
Seattle Survey 270-276 days/veh 420 vehicles
(Jakobsson et al., 2016) Germany Survey 7 days/veh 6339 vehicles
Sweden GPS data 51-64 days/veh 429 vehicles
(Khan & Kockelman, 2012) Washington (State) GPS data 1year, 6 months 264 households/ 445vehicles

charge) is extremely low or offering short recharges more
frequently (Duoba & Fernandez Canosa, 2019). Both in (Sun
et al., 2015) and (Sun et al., 2018) user behaviors were eval-
uated. The main variables affecting recharge decisions include:
the SOC after the last trip; the number of days until the next
trip and its expected length; previous experience with fast
charging; whether the following day is a working day or not;
and how the cost of electricity changes during the day.

The focus of this research is not on modeling the
demand, but on extracting information from trip-chains as
observed in a real-life dataset for cars, to understand the
main features of the different market segments for identify-
ing electric mobility needs. Given that no specific informa-
tion about users and their activities between trips is
included in the dataset, it is beyond the scope of this work
to build a model for describing user behavior. The principal
value of this study regards the extended period of observa-
tion (1year) and the number of vehicles observed (15,000/
day on average), which can be classified according to their
market segment to obtain more tailored information. This
study has two main objectives:

e To analyze vehicles observed over the whole year, especially
their daily vehicle kilometers traveled (VKT), and estimate
if these are compatible with expected ranges of electric
vehicles. Starting from the hypothesis that switching to EVs
will not dramatically change people’s driving ranges, the
analysis results will detect how frequent long-distance daily
usage of vehicles is, which can be critical for BEVs.

e To identify and classify idle times (ITs) in terms of duration
and relate them to cumulative distance traveled before
parking. This analysis can support decisions on the power
required for electric recharge stations (ECSs) according to
the time users spend between trips. This is consistent with a
demand density-based strategy (Pagany et al., 2019): dis-
tance and idle times make a possible location more attract-
ive for locating a recharge station. A spatial analysis is also
performed on idles, to identify possible differences in idle
duration for the various zones in the study area.

1.2. Literature review

Electric mobility has become an important field of research
in the last decade from several perspectives including

transportation, chemistry, automotive, and the electric net-
work. The network may need several adjustments to allow
ECS infrastructure optimization (Suganya et al., 2017).
Technical and functional analyses are tightly coupled to the
psychological evaluation of user behaviors. (Krupa et al.,
2014) surveying potential car buyers observed that from
their point of view, economic reasons were more important
than environmental ones. The reduction of fuel expenses
and lower dependence on imported oil seemed to stimulate
the EV market more than the reduction in greenhouse gas
emissions. This evaluation is somewhat complex because it
depends on both the energy mix adopted for electricity pro-
duction (well-to-tank emissions) as described by (ACI et al,,
2019), and the tank-to-well emissions, which vary by vehicle
type/segment (Lindsey et al., 2011). In the previously men-
tioned survey by (Krupa et al., 2014), as well as in (Egbue &
Long, 2012) and (Axsen & Kurani, 2013), it was observed
that most common negative factors perceived by users were
the high purchase prices of EVs compared to corresponding
ICEVs, the lack of a widespread recharge network (as
opposed to home charging), and the limited range of BEVs.
On the other hand, factors that may make people consider
the purchase of an EV are collected in (Jenn et al., 2018).
Another surveying strategy was proposed by (Franke &
Krems, 2013), who compared range preferences and range
needs of users, before and after an EV trial period lasting
several months. Preferences almost always exceeded the
actual needs, even though the gap decreased after the trial.
(Anderson et al., 2018) directly indagated about people pref-
erences thanks to their survey, showing that people in
Germany would prefer 22kW ECS in suburban areas, and
especially at work, leisure and shopping mobility poles. A
non-neglectable minority of respondents chose even faster
charging solutions, located along freeways. Analyzing ITs,
(Dalla Chiara et al., 2019) showed how 3kW recharge sta-
tions may be not sufficient to recover the energy expended
on a long trip. Despite this, home charging is the most
widespread solution for charging operations, whereas the
share provided by public infrastructures, which can be pow-
ered by DC (direct current) unlike private charging solu-
tions, increases in highly populated areas, where there is not
always room for private stations (Funke et al., 2019).

Many studies on mobility patterns (Table 1) aim to com-
pare current mobility scenarios with ranges that can be



Table 2. Information contained in database.

Database Column

Trip_ID
Device_ID

Description

Code (10 digits) for identifying the specific trip

Code (7 digits) for identifying the specific vehicle in
which trip is made

Date and time of departure (dd/mm/yyyy hh24:mm)

Date and time of arrival (dd/mm/yyyy hh24:mm)

Datetime_Dep
Datetime_Arr

Lat_Dep Latitude of departure point (WGS84 EPSG:4326)
Lon_Dep Longitude of departure point (WGS84 EPSG:4326)
Lat_Arr Latitude of arrival point (WGS84 EPSG:4326)
Lon_Arr Longitude of arrival point (WGS84 EPSG:4326)
VKT Vehicle Kilometers traveled [km]

Speed Speed [km/h]

Veh_Mak Vehicle manufacturer

Veh_Mod Vehicle model

guaranteed by EVs in different metropolitan areas. Studies
in areas such as Minneapolis-Saint Paul (MN, USA) (Tamor
et al., 2013), Atlanta (GA, USA) (Pearre et al., 2011), and
Sydney (AUS) (Greaves et al., 2014), agree that a conserva-
tive BEV range of 100 miles (161 km) would meet the needs
of more than 95% of single trips, assuming one full recharge
per day and no habit changes. In terms of total distance
traveled daily, the percentage decreases to approximately
90%. The number of days in which the battery range thresh-
old was exceeded is slightly lower. (Pearre et al, 2011)
counted the days on which adaptations were needed to meet
mobility needs and reported that by changing their own
habits on about 20 days over a year, people could satisfy at
least 80% of their needs with a single charge. This number
changes if the vehicle in question is the only one owned by
a household or if there is more than one (Jakobsson et al.,
2016). Unlike the aforementioned studies, (Arslan et al.,
2014) suggested an evaluation of how electric mobility can
deal with longer trips in a wider network, such as in
California. In this case, analyzing exogenous data concerning
ICEVs is not as accurate as for an urban network. (Pearre
et al,, 2011) also analyzed parking patterns, showing that the
number of parked vehicles was always high, and was rarely
less than 75%. ITs were analyzed by (Dong et al, 2014),
who proposed a model for optimally locating recharge sta-
tions depending on the available time for recharging, and
on the trip routes.

The main contribution of this paper is to identify the
structure of a large set of trips and the feasibility of adopting
electric cars for those trips, rather than to measure people’s
interest in electric mobility. Indeed, this paper basically aims
at capturing mobility patterns in terms of traveled distances
and idles, even if most of the trips are performed by trad-
itional vehicles. It should be remembered that the real
energy consumption not only depends upon traveled distan-
ces, but also upon many other factors, such as speed and
acceleration profiles, vehicle mass and engine size. Thus, dif-
ferent and more accurate data would be required to perform
this assessment, which goes beyond the current goal.

Although the analysis period is similar, the volume of
data used here is somewhat larger than that employed in the
abovementioned studies. In this study, the dataset includes
more than 30 million observations and every day more than
10,000 vehicles were observed. However, even larger datasets
are used in other studies, such as in (Hu et al., 2018), where
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the data collection process was focused on taxi travel pat-
terns. Nevertheless, in this study one of the objectives is to
identify possible correlations between vehicle segmentation
and distance traveled distributions. For this reason, large
datasets in terms of number and models of vehicles observed
help to detect the different usage of vehicles for various
travel purposes (e.g., work, leisure, vacations) and the conse-
quent distance traveled.

Moreover, large datasets aid understanding of travel
behavior because observing trips for a whole year reduces
the bias for seasonal variations and allows the identification
of rare events, such as long trips, which are critical for the
range of electric vehicles. Indeed, long trips may occur with
a low frequency, typically once or twice a year, and shorter
observation periods may not be adequate for this type of
analysis. Also, the vehicle segmentation applied to passenger
cars according to their market segment reveals a specific
usage, which may be correlated also to vehicle characteristics
(e.g., consumption). On the other hand, due to the lack of
information about trip scope, it is not possible to properly
define trip chains as in (Schneider et al., 2021), and to per-
form an analysis of people behavior with that level of aggre-
gation, as in (Kopp et al., 2015).

2. Database Description and operations
2.1. Database structure

Mobility information is available in the form of floating car
data (FCD). The available FCD datasets originate from black
boxes installed in vehicles for insurance-related reasons,
which recorded trip characteristics for an observation period
equal to lyear (from 15" January 2019 to 14™ January
2020), namely one year of observations. The data were
obtained by a service provider, which collects data and pro-
vides them under a commercial agreement. Therefore, the
data are not public, but are available as a commercial ser-
vice. The dataset covers cities and towns within this area
that feature as origin, destination, or as crossing points for
trips between zones outside the Metropolitan City of Turin.
No information such as income and household size are
available about the people who were traveling. Hence, there
is no possibility of defining specific models for multiple-
vehicle households (Jakobsson et al., 2016), eventually distin-
guishing PHEVs from BEVs (Khan & Kockelman, 2012). Trips
are described by the information shown in Table 2. More
exactly, a database for each day is available in .csv format, and
after merging all 365 tables, the database obtained had
35,539,940 rows, some of which contain undefined values.

In the data cleaning operations, summarized in Appendix
II, comparisons between the computed and recorded travel
time, speed and distance are used to check if any discrepan-
cies occurred, and led to a reduction of the database size
(Table 3). One of the performed operations dealt with
vehicle models: some of them were reported with different
names, according to their versions. This level of detail is not
significant in terms of the scope of the analysis because the
information about the model is just used for determining
the vehicle market segment. Meanwhile, data with invalid
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Table 3. Comparison of dataset before and after the cleaning.

Database content Original database Updated database

Rows 35,539,940 31,340,852 -11.8%
Unique elements in ‘Device_ID’ 364,617 305,416 -16.2%
Unique elements in ‘Veh_Mak'’ 241 51 -78.8%
Unique elements in ‘Veh_Mod’ 6,394 398 -93.8%

model information were excluded since it was impossible to
match them with a market segment. Moreover, some trips
did not include any arrival or departure location name, so a
spatial join operation was necessary to find the Country,
Region, Province and Municipality in which the points fell.
Data were dropped when the map matching was not valid.

2.2. Data screening

To summarize the sample size, the global VKT and TT, the
number of unique device IDs (equivalent to the number of
vehicles attributable to the number of users), and the num-
ber of unique models were plotted against time. On average,
approximately 800,000 km were traveled daily by the moni-
tored vehicles in 25,000h. The number of vehicles moni-
tored daily was in the range of 10,000 to 20,000 vehicles,
among which 150-400 different models can be identified. A
cyclic trend was observed in each graph (Figure 1) consist-
ing of a flat section before a high peak, which is immedi-
ately followed by a low one. This pattern occurs about 50
times in the 12-month period of analysis, implying that
these sequences describe a weekly cycle. The flat section rep-
resents weekdays, whereas the two peaks are Friday (high
peak) and Sunday (low peak). The low peaks are clear in
almost every graph, with consistent observable reductions.
The time spent traveling (Figure 1b), and the number of IDs
(Figure 1c) decreased by one third and one quarter, respect-
ively, compared to the flat sections. On the other hand, the
high peaks are clearer in the distance graph (Figure la),
when the values increased up to 1,000,000 km, probably due
to trips made by commuters. Anomalies are observed in
April, August, and December, showing that mobility
demand decreased during the Easter Holidays (which fell on
21°" April in 2019, very close to another national holiday,
25" April), summer holidays (when many residents are not
in Turin for the vacation period), and Christmas holidays.
The lowest values in each graph were recorded on the week-
end before the Christmas holidays (14™ and 15™ December
2019), while Christmas Day ranked as only the 9™ in the clas-
sification of the days with lowest distance traveled. Further sta-
tistics are collected and reported in the Appendix IL

3. Methodology for data analysis and
indicator estimation

3.1. Data integration

Additional variables are included to facilitate the extraction
of specific information from the dataset. For each trip, its
travel time (TT) was computed as the difference between
the trip arrival and departure times. Idle times (ITs) were
estimated as the difference between the trip arrival time and
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Figure 1. Daily distance, time, vehicles (IDs) and models of monitored vehicles
over the year.

the following trip departure time, except for each user’s last
recorded trip. In that case, the time until the end of the day
was reported. ITs were then classified, as will be shown in
the next sections, according to their duration, and to the
time they take place.

A vehicle classification was also introduced for distin-
guishing market segments' according to vehicle model, as
this may provide useful information correlated to vehicle
characteristics (energy consumption, battery size, maximum

1Segments defined as in https://en.wikipedia.org/wiki/Euro_Car_Segment,
when available.
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Figure 2. Average unique Device IDs observed in each day of the week.

Table 4. Travel pattern statistics on traveled distances and times.
Statistics

(1)  DVKT
() Number of daily trips

Description

Daily traveled distance aggregated by Device_ID
Trips performed per day and per Device_ID

Table 5. Travel pattern statistics on idle times.

Statistics Description
(2) Idle Times (ITs) Time between one trip and the next
made by the same ID
(3) VKT and IT Cumulative daily VKT by an ID
relationship before IT
(4) ITs Geographical Map of ITs to be matched with a
distribution zoning of Turin MSA

power for charging, etc.), to how the vehicle is used, and to
user characteristics to be employed in further analysis. This
operation directly follows the simplification of the strings
indicating the vehicle model (2.1 Database Structure and
Table 3). The association of each vehicle model to its corre-
sponding market segment was performed through the pre-
liminary definition of a data dictionary containing 398 car
models. In this phase, trips performed by heavy-duty
vehicles, light-commercial vehicles, recreational (RVs)
vehicles, and motorbikes, are identified and dropped, reduc-
ing the database size (Table 3). Most of the observed
vehicles are in the B segment (more than a quarter of the
total daily observed on average); the A and C segments
include slightly less than a quarter of the vehicles observed;
segments D and E include 1 out of 10 and 1 out of 30,
respectively, while segment F includes such a low number of
vehicles that they cannot even be seen in Figure 2.

3.2. Detailed travel pattern statistics

Considering that this study has two different main objec-
tives, the analysis can be split into two parts (Tables 4 and
5). First, the detailed travel pattern statistics linked to trip
duration, and therefore to battery range, are estimated,
mainly in terms of the daily VKT and TT (DVKT and
DTT). To consider daily activities instead of single trips is
more indicative of the user behavior and is consistent with

Em Segment C
W Segment D

Th
Weekday

HEm Segment E
Segment F

Fr Sa Su

the hypothesis of one charging operation per day (likely to
happen at night at home), already considered in (Jakobsson
et al., 2016) and (Khan & Kockelman, 2012) and supported
by the fact that private infrastructures have a higher share
than public ones (Funke et al, 2019). On the other hand,
the cumulative energy consumed after consecutive vehicle
activities cannot be considered by only observing single
trips. Then, the quantities reported in Table 5 were com-
puted to describe the opportunity for charging vehicle bat-
teries (when and where they are parked). This can provide
targeted information to support ECS infrastructure design
and development in the city.

DVKT(i,d) = > TD(, d, t) (1)
teT(d, i)

where i refers to the Device Id, d is the date of trip
departure, t is the trip, At is the trip travel time, and T(d, i)
is the set of trips performed by a given ID on a given date.

IT(5) = dp(i 1) — (s 1) @
CTD(46) = D peran:astan<dy (i) T 40 )
z(tj) = z : lat(an (i 1)), lon(an(i,t))e Oz (4)

where t; and t;,; are two consecutive trips by the same ID,
a,- and d,, are arrival and departure times, respectively, of a
given trip, lat and lon are the coordinates of arrival or
departure, k is the type of IT, z is the zone in which the
point characterized by the given lat and lon falls, and
N(k,z) is the number of trips whose arrivals belong to k-
class and z-zone.

3.3. Idle times definition and classification

Idle times (ITs) are the breaks between one trip and the fol-
lowing one, computed as the time difference between the
arrival time and departure time of the i trip and the i4 1™
trip, respectively, if performed by the same user (Equation
2). For this analysis, the results for each trip are described
by the trip information: IT after the trip, cumulative daily
VKT, and cumulative daily TT until the beginning of the
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Table 6. Idle time classification.

Kind of IT Abbreviation Characteristics Description Reason of interest
Brief B <5min Accidental or not None
interesting breaks
Standard S >5min Typical break that may occur Charging at workplaces,
<24h during daytime shopping centers, etc.
By-night N >5h Typical break that may occur Charging at home
<24h at night
1:00, 2:00, 3:00, 4:00 or 5:00
AM included
Long L >24h Situation that occurs when Vehicle-to-grid strategies
vehicle is not used for longer
than a day
le6
to below the average, meaning that C-segmented vehicles need
a slightly higher range. As far as concerns the other seg-
i ments: a 200 km range would satisfy 94%, 92% and 87% of
g vehicles respectively segmented D, E and F. These percen-
% tages increase to 98%, 97% and 95% with a range equal to
Doa 300km and are higher in all the three cases with a range of
400 km. However, it must be specified that the curve for seg-
0.2
ment F is not as smooth as the others due to the smaller
00 = number of vehicles observed. In conclusion, the fact that

0 5 10 15 20 25 30 35 40
Trips per user per day

Figure 3. Distribution of individual number of daily trips.

next IT (including VKT and TT of the last trip made).
Moreover, it is worth classifying ITs to understand the needs
for charging. Table 6 illustrates the proposed criteria.

4. Results
4.1. Distribution of traveled distance daily

After the dataset cleaning and selection operations, trips
were grouped by user and date. The VKT and TT of trips in
the same group were summed up, obtaining daily VKT and
TT totals. The information about the number of trips is
shown in Figure 3. In most cases the number of trips ranged
from 1 to 6. Up to 15 trips per day occurred quite often,
whereas cases in which an even higher number was recorded
were sporadic and may be related to unusual working needs.

An effort was made to model the experimental cumula-
tive distribution of the daily VKT, by sorting them from the
shortest to the longest, and allocating the value of 1 to the
longest trip. Figure 4 shows that even in the case of day-
level aggregation, the highest number of trips had quite low
VKTs, compared to the number of longer trips. For
instance, with battery capacity able to guarantee 200, 300
and 400 km, approximately 5%, 2% and 0.1% of daily trips,
respectively, could not be achieved across the entire set of
observed vehicles. The classification introduced about
vehicle segment turns out to be consistent, because the
curves are sorted from the lowest to the highest segment.
For values over the 40" percentile of daily traveled distan-
ces, the higher the segment is, the longer the distance trav-
eled. Vehicles in segments A and B traveled less than the
average, and approximately 99% of the demand observed
from the FCD of these segments is already met with a
200km range. Medium car (segment C) values are just

higher-segmented vehicles rely on more capable batteries is
justified by the results observed in terms of distances trav-
eled. The percentage of satisfied car mobility needs can
increase and reach almost 99% even with the technological
development of batteries to which the market is already sub-
ject, especially if the targets are the cars belonging to the
segments with higher VKTs.

Fitting operations were performed to understand if a stat-
istical distribution can explain the experimental cumulative
curve and to uniform the different segment distributions
which have a different number of observations, similarly to
the operation performed in (Jakobsson et al., 2016). Two
main criteria were considered: the probability density func-
tion (PDF) associated with the target cumulative density
function (CDF) must be positive (traveled distances cannot
assume negative values) and have an asymmetrical shape,
since short trips are much more recurrent than long ones.
According to the exploratory analysis performed, the Log-
normal CDFs, once properly fitted, turn out to give an
interesting compromise between goodness and conservativity
in fitting the experimental curves. The logarithm of traveled
distance values shows an almost Gaussian trend (Figure 5).
This result is also consistent with the conclusions in (Plotz
et al, 2017). Fitting has three targets: loc’ and ‘shape’
parameters refer to the variable transformation (5), while ‘s’
refers to the PDF formulation (6):

X — loc 5)
= shape
1 _logzz
flx,s) = e 22 (6)
YAV 4

Exponential and gamma distributions gave poorer results
and are not reported here. Moreover, Weibull distributions
do not provide the remarkable results explained in (Plotz
et al., 2017), unless they are adopted in the exponentiated
form. However, considering the aim of this study, the results
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Figure 5. Normal distribution of all daily traveled distance logarithms.

for the various distributions have not received focus here as
they deserve a specific and deeper analysis.

As shown in Figure 4, the log-normal CDFs provide a satis-
factory fit to the experimental curves relative to segments A, B
and C, whereas they tend to increase more slowly than those
representing segments D, E, and F. Relatively high residuals as
shown in Figure 6 observed for short distances are not crucial

in this phase, since it is assumed that almost any EV can cover
such short distances. Apart from these, the residuals observed
in the case of a log-normal CDF (Figure 6a) are:

e almost always positive and lower than 0.5% for the A
and B segment curves and for the overall curve (all six
segments considered).

o slightly higher (up to 1%) for distances less than 200 km
traveled by segment C vehicles.

e approximately equal to 1% for distances greater than
200 km traveled by car segments D and E.

e oscillating for segment F vehicles.

While log-normal CDFs tend to be under the experimental
relative curves, exponential and others sometimes go beyond
the experimental curves (Figure 6b), and sometimes below.
Considering that one of the most crucial limitations to the dif-
fusion of EVs is anxiety about range, log-normal distributions
may be a suitable choice among those observed for their
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precautionary feature. Given a fixed value of distance, the cor-
responding CDF values are lower than the experimental ones,
meaning that a higher percentage of trips has already been
covered. Further details about the fitting operations are con-
tained in Appendix III. Results show that log-normal distribu-
tions generally lead to lower errors in modeling, except for the
MAPE (mean absolute percentage error) (Table C2). This can
be justified by the fact that, as aforementioned, those distribu-
tions are conservative, and the residuals are almost always
positive (the modeled values are higher than those observed).

As final point, it should be mentioned that the shape of
the distribution curves is affected by the pattern of mobility
demand, which is linked in turn to the geographical area of
the trips. Indeed, in Appendix II, several aggregated statistics
show that people who travel only out of Turin (‘External’
label) or between Turin and other cities (‘Both’ label) tend
to cover a distance which is 3-4 times greater than the one
covered by people only moving in Turin (41 and 60 against
15km, respectively). Travel time is almost twice for users
who travel inside and outside Turin boundaries in the same
day with respect to the other two classes, which are charac-
terized by similar values of travel time, unlike what happens
for what concerns the distances. On the other hand, the
number of daily trips does not differ greatly: 4.8, 6.0 and 5.2
daily trips per individual for ‘Internal’, ‘Both” and ‘External’
classes, respectively.

Cumulative Density Function [%]
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Mmoo w>
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4.2. Idle times and cumulative traveled distances

Idle Time [h]

Figure 7. Cumulative distribution of the conditional probability of an IT dur-
ation for cumulative daily VKT in the range of 0-50 km and 50-100 km according
to the variation of the segment (from A to F).

Cumulative traveled distances in the day are computed for
each vehicle, as well as the idle time duration after the trip
to detect if there is a relation between them. For this
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Figure 9. Number of trip arrivals in the zones of the Metropolitan City of Turin.

purpose, only trips whose following IT belongs to the S
(Standard) or N (Nocturnal) categories are considered. The
probability of an IT of a certain duration after a cumulative
traveled distance which falls in a specific range is computed,
after having introduced several bins for both the quantities.
The bins are 1 hour and 50 km, respectively, in terms of IT dur-
ation and cumulative VKT. This computation is aggregated for
each car segment, showing similar results in the different cases:
an IT shorter than 1h after a cumulative VKT in the day lower
than 50 km occurs in about 40% of the cases regardless of the
segment; in about 50% of the trips, the IT and cumulative VKT
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Figure 10. Percentage of the fleet parked in Turin Municipality: mean and
standard deviation.

are lower than 2h and 100km, respectively. Also, marginal
probabilities are computed (9) for the different distance ranges,
to calculate the conditional probability of each IT duration,
given the range of cumulative distance (CD).

P(IT,CD)

P(IT|CD) = — D)

)
Cumulative distribution can hence be built for each dis-
tance range and aggregated by segment, or by cumulative
VKT range. Figure 7 shows that IT conditional probability
is not greatly affected by the car segment, except for seg-
ment F, though its reduced sample size may also have con-
tributed to the result. Nevertheless, the trend in Figure 7 is
clear, as the higher the segment is, the higher the curve is
on the plot: given an IT duration, lower segments are less
likely to perform ITs shorter than that duration, even if this
difference is reduced (5% at most). Indeed, for F-segmented
cars, the curve is slightly sharper for low values of ITs (less
than 3 h), while its slope is lower in the case of high IT val-
ues (more than 8 h), reducing the gap with the other curves.
On the other hand, IT conditional probability is sensitive to
the cumulative distance range for specific car segments. In
Figure 8 the results for segments A and C are reported, since
they refer to vehicles with evidently different features and have
a good sample size (Figure 2). Given an IT duration, the per-
centage of vehicles is higher for lower cumulative distances,
and the difference between extreme curves is more marked for
segment C with respect to segment A (approx. 20% at 5 h).

4.3. Spatial distribution of idle times

A crucial aspect is to determine which zones of a city would
benefit the most from the installation of ECS infrastructure,
by evaluating the number of ITs and their mean duration,
aggregated by zone. The database contains ITs spread all
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Figure 11. Trip arrivals in Turin. From top-left to bottom-right: brief (B), standard (S), nocturnal (N), and long (L) idle times.

over the province, but most of them (about 10 million out
of 30 million) were recorded in the Turin Municipality (blue
area in Figure 9), on which the following analysis will focus.

Similarly to (Pearre et al, 2011) and with comparable
results, the percentage of the fleet parked is calculated
throughout the day. For each thirty-minute period (e.g.,
00:30), the number of unused vehicles until the following
half an hour (e.g., from 00:30 to 1:00) was computed with
respect to the total amount of vehicles used on that day. By
averaging the percentages obtained for each day of the year,
it is shown in Figure 10 that even in peak hours (morning
and late afternoon), approximately 25% of vehicles are trav-
eling. At night, this percentage is lower than 5%.

A zonal analysis was performed exploiting a macro zon-
ing” of the Turin Municipality (23 zones), although a further
refinement can be easily implemented to catch more detailed
information. Each trip arrival coordinates are expressed as a
latitude and longitude (WGS84 EPSG:4326). A few points,
happening to report Turin as arrival (in the ISTAT column)
despite falling outside the shapefile polygons, were dropped.
A spatial join operation was performed to determine the
area belonging to each point, as shown in Figure 11.

The number of ITs and their mean were calculated with
the zone as the aggregation level, after having classified ITs

The zoning is performed consistently to that adopted by AMT (Agenzia per la
Mobilita Metropolitana di Torino) in which zones are distinguished based on
urban districts.

according to previously described criteria (Table 6).
Standard breaks that are expected to occur in daytime, are
more frequent in the city center (Figure 12a), whereas noc-
turnal breaks are more uniformly spread especially in resi-
dential and peripheral zones (Figure 12c). Considering the
IT duration, the city center shows shorter times compared
to those observed in many other zones, in respect of both
standard ITs (Figure 12b) and nocturnal ones (Figure 12d).
Indeed, parking tolls and a nonresidential use of this zone
discourages long breaks. On the other hand, standard ITs in
peripheral zones (e.g., the southmost zone) are longer due
to the presence of factories and other working places. In
terms of numerical values, this distinction is clear. The
mean of standard IT lasts no longer than 3hours in each
zone, while nocturnal ITs exceed 13-14h everywhere. ITs
longer than 24h (Figure 12e and f) are supposed to be less
systematic and can be useful for the purpose of assessing
eventual vehicle-to-grid strategies. Vehicle batteries, in case
of long-time parking activities, can be used as storage ele-
ments in the grid to compensate for peaks of energy
demand. In terms of the number of ITs (Figure 12a, ¢, e),
most daytime ones (approx. 500,000) were recorded in the
city center, whereas in other zones generally no more than
300,000 are observed. Nocturnal ITs occur more often in
residential zones (up to 100,000 in several zones) rather
than in the city center (60,000) or industrial zones (50,000).

For checking the results in maps (Figure 12b, d, f), the
KDE kernel regression curves are plotted for selected zones,
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which have different characteristics in terms of attraction.
For instance, zone 1 represents the city center; zones 2, 5,
and 8 are close to the center, but contain many residential
areas; zone 22 is a bit further from the city center and con-
sists of mainly residential land used with low population
density; zone 23 is supposed to be involved in many work-
related trips since many factories are based there. Indeed,
zone 23 is the only one in which is shown (Figure 13a) a
local peak for 8-hour ITs during the daytime. It is observed,
consistently with the map (Figure 12a and b), that in the
city center most of standard breaks take place, but they are
not as short as those occurring in the other non-peripheric
zones. ITs ranging from 1 to 4h are more likely in the city
center, while even shorter ones are more frequent in other

residential zones. Standard ITs longer than 4h have similar
density curves, except for zone 23. The mentioned trend is
observed for nocturnal ITs as well (Figure 13b). Zones have
similar IT density distributions (the map in Figure 12b is
dark in almost every non-peripheric zone), except for zone
23, in which a peak of relatively short nocturnal ITs was
observed. Combining the spatial distribution of the number
of ITs and the duration distributions, it is observed that,
given the similar density distribution of short ITs, each zone
would ideally require a complete range of power levels.
Indeed, short ITs take place everywhere. The power level of
ECS can be relatively lower where workplaces, such as facto-
ries, are located and should be higher where many mainten-
ance activities (e.g., shopping in small local shops) are
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performed. On the contrary, the number of ECS per zone
increases markedly with the centrality of the zone.
Nocturnal IT distribution is quite uniform all over the study
area, meaning that each area shows a similar demand both
in terms of time availability and number of ITs, except for
the zones characterized by an extremely low building density
or by the presence of big factories. This demand can be sat-
isfied either by private charging solutions, or by slow public
ECS. Longer ITs are not as numerous as those just described
for the purpose of this paper and their spatial distribution is
not clear.

5. Conclusions

In this paper passenger car mobility patterns in the
Metropolitan City of Turin were extracted and described to
assess how compatible they are with the characteristics of
electric vehicles (EVs). The mobility patterns were derived
from floating car data for 30 million trips, including infor-
mation on the car maker and model, time, latitude and lon-
gitude of departure and arrival, average speed, travel time,
and distance traveled. The observation period was the year
2019 and approximately 70,000km were traveled daily by
more than 10,000 (up to 18,000) vehicles every day, com-
prising 400 different models. Given that no specific informa-
tion about users and their activities between trips is
included in the dataset, this analysis was not aimed at build-
ing a demand model for describing user traveling behavior.
However, the extended dataset was used to observe car trip-

14 16
Idle times [h]

chains for a whole year and detect their relevant features for
electric mobility.

The analysis was divided into two parts: studying the dis-
tances traveled daily and parking habits. Distances traveled
daily are crucial when trying to estimate the percentage of
journeys possible with fixed battery ranges, commonly com-
municated to drivers not only by the energy of the battery,
but also through the average distance with a full charge.
Parking habits can provide useful information based on real
data to identify and classify idle times (ITs) in terms of dur-
ation and relate them to the cumulative distance traveled
before parking. This analysis can support decisions on the
power required for electric charging stations (ECSs) accord-
ing to the time between trips. Also, relations between zones
of the city and local idle times can contribute to assessing
where different solutions in terms of ECS number and
power level could be better exploited.

On average, a battery range of 200 km would allow about
97% of daily VKT, but it must be emphasized that this per-
centage varies depending on the vehicle market segment: for
mini and small cars (segments A and B) this percentage
rises to almost 99%; for medium cars (segment C) the per-
centage is close to the average (97%); for other segments,
this percentage falls to 90%. If the supposed range is
extended to 300km, 95% of daily VKT by F-segmented
vehicles are satisfied. Considering an even greater range of
400km, these percentages no longer differ greatly and
increase up to 99%. It was also noted that trip cumulative
distribution may be conservatively described by a log-nor-
mal cumulative distribution function (CDF).



Parking habits were studied for trips ending in the
Turin Municipality (about one third of the total number
of trips in the dataset). Idle Times (ITs) were classified
according to their type, omitting those shorter than 5 min,
to explore different charging infrastructures: daytime ITs
may be linked to electric charging stations (ECSs) at
workplaces, whereas nocturnal ITs may be linked to
home-charging solutions; ITs longer than 24h may be
considered for vehicle-to-grid strategies. Daytime ITs
often last no more than 30 minutes and their average dur-
ation is about 2h in most of the zones considered,
although in several peripheral zones with industrial land
use 8h ITs can occur. On the other hand, nocturnal ITs
are slightly longer in residential zones compared to indus-
trial ones. Most of the daytime ITs were recorded in the
city center (approx. 500,000), whereas the count in other
zones was generally no more than 300,000.

As expected, nocturnal ITs are more often observed in
residential zones (up to 100,000 in several zones) rather
than in the city center (approx. 60,000). Long ITs are more
unpredictable, since they may be related to irregular parking
behaviors, and no trend was detected. Nevertheless, it was
observed that they are longer in peripheral residential zones,
even if they occur more often in central zones.

Future research will be focused on analyzing patterns
according to the day of the week on which trips are performed.
An analysis in terms of the energy required by trip and the
power provided by the charging infrastructure could extend
these results, although more data are required to estimate the
energy consumption for the different vehicle types during the
various missions accurately. This modeling could include many
factors, such as speed/acceleration profiles, vehicle mass and
engine size, and road conditions along each route. For this rea-
son, the choice of introducing the vehicle segment classification
may be helpful to classify these elements of information.

In addition, no socio-economic data, such as income and
household size, about the people traveling was included in this
study, due to the lack of information in this regard, and was
beyond the scope of this paper. In a further analysis an effort could
be made to try and trace back the data presented here to several
socio-economic characteristics of the population, starting, for
example, with the market segment of the vehicles, supposing that
they are typically used by the same person/household.
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Appendix A: Turin and its metropolitan area

Results from the IMQ (mobility and transport quality survey) per-
formed by AMM (Agenzia per la Mobilita Metropolitana e Regionale,
2013) about the Metropolitan Statistical Area (MSA) of Turin mobility
survey are summarized in Table Al and Table A2. This survey pro-
vides basic information for the Turin conurbation (Turin and 31 other
satellite cities). Metropolitan City of Turin (previously known as Turin
Province) includes 316 Municipalities.

Mobility demand changes during the day, with peaks of approxi-
mately 200,000 and 150,000 trips per hour respectively within the
08:00-09:00 and 18:00-19:00 time windows. Private mobility ranges
between 70% and 75% during those time intervals and rises to 90% at
night, when public transport is less frequent. Maim reasons for the
trips are: work (31%), personal shopping (30%), escorting (8%), and
study (6%). From origin/destination matrices available, it is observed
that slightly less than half the total number of trips using private trans-
port are recorded inside the Turin Municipality. Almost a quarter of
those occur between other locations in the conurbation. Places outside
the conurbation feature as either the origin or destination in one out
of 10 or 20 trips, respectively.

Table A1. Turin MSA information from AMM survey: population and territory
description.

Conurbation Turin Satellite cities
Resident Population [inhab.] 1,555,518 911,823 59% 643,695 41%
Area [km?%] 838 130 16% 708 84%
Used Land [km?] 227 76 33% 151 67%

Table A2. Turin information from AMM survey: trips and corresponding mean.

Total Motorized  Private and Motorized
Conurbation Trips/day 2,962,000 1,962,000 66% 1,430,000 48%
Trips/day/person®  2.11 1.40 1.02

Appendix B: Preliminary operations with data

Data quality check

A data quality check was performed to determine if there was any
trip with unrealistic or inconsistent VKT, speed or TT values. Time
was therefore recomputed as the distance divided by the speed (original
values). The speed was recomputed as the distance divided by the time,
and the distance was recomputed as the product of the time and speed.
Comparisons were made plotting the original versus their relative
recomputed entities. All records seem to be consistent, because the
points are located extremely close to the 1** quadrant bisector, in terms
of the distance (Figure Bla) and speed (Figure B1b). There were some
slight discrepancies in time observed, especially for longer trips (Figure
Blc). This is probably related to the method used to estimate the aver-
age speed for trips, which may include breaks, making the time longer
while keeping the distance constant. The absolute error (Figure B2a)
increased with travel time, although only in a small number of instan-
ces. The relative error (Figure B2b) was higher for lower values of
travel time, and never exceeded 5%, which is consistent with the
expected accuracy of speedometers installed in vehicles.

“In this case, the population refers to people older than 10 years
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Table B1. Average Traveled Distance per day per vehicle.

Table B3. Average Number of trips per day per vehicle.

Traveled distance per day per vehicle [km]

Zone Weekday (Tue-Thu) ~ Weekend (Sun)
Metropolitan City of Turin (Total) 42.30 50.79
City of Turin Internal 14.88 12.93
External 41.10 51.46
Both 60.34 70.23
Metropolitan Area of Turin  Internal 25.10 22.23
External 40.27 54.25
Both 80.95 95.95
Metropolitan City of Turin Internal 34.11 3347
External 123.47 135.60
Both 121.94 137.71

Table B2. Average Traveled Time per day per vehicle.

Travel time per day per vehicle [h]

Zone Weekday (Tue-Thu) ~ Weekend (Sun)
Metropolitan City of Turin (Total) 1.26 1.18
City of Turin Internal 0.95 0.72
External 1.07 1.06
Both 1.76 1.67
Metropolitan Area of Turin  Internal 1.1 0.88
External 1.00 1.05
Both 1.85 1.86
Metropolitan City of Turin Internal 1.18 1.01
External 1.52 1.66
Both 2.09 2.15

Aggregated statistics
Some aggregated statistics are collected while screening the dataset
in Table B1, Table B2, and Table B3). Trips are grouped by date

Number of trips per day per vehicle [#]

Zone Weekday (Tue-Thu)  Weekend (Sun)

Metropolitan City of Turin (Total) 536 4.16
City of Turin Internal 4.80 3.79
External 5.16 3.82

Both 6.03 5.04

Metropolitan Area of Turin  Internal 5.25 4.21
External 4.99 3.52

Both 497 4.82

Metropolitan City of Turin Internal 5.49 436
External 1.15 1.08

Both 4.64 3.85

and ID and labeled according to the places involved in the trips.
‘Internal’ and ‘external’ labels respectively mean that all trips per-
formed by a specific ID on a specific date took place inside or out-
side Turin. ‘Both’ refers to dates when a given ID performs trips
both inside and outside Turin.

Appendix C: Fitting experimental curves

In Table C1 it is shown that the mean and standard deviation of the
Log-normal fitted CDF are the closest to the corresponding values of
the experimental distribution for segments A, B, and C and of the
overall curve. Table 13 shows that the Log-normal CDF often has
the lowest error values, except for the MAPE and the MPE. Despite
the highest error values and, hence, the lack of accuracy according
MPE/MAPE, the sign of MPE is a confirmation that Log-normal fitting
is the most conservative one.

Table C1. Absolute variation between computed and experimental distributions in terms of mean and standard deviation (std).

A Mean A Std A Mean A Std
Segment A LogNorm 2.62% 10.39% Segment D LogNorm 6.33% 33.11%
Weibull 4.69% 17.45% Weibull 5.08% 12.56%
Gamma 4.76% 17.50% Gamma 6.55% 16.36%
Exponential 3.98% 15.87% Exponential 9.84% 22.82%
Segment B LogNorm 1.38% 7.51% Segment E LogNorm 7.63% 37.98%
Weibull 6.27% 20.63% Weibull 4.02% 9.92%
Gamma 6.45% 20.91% Gamma 5.56% 14.01%
Exponential 5.75% 19.50% Exponential 9.09% 21.03%
Segment C LogNorm 2.14% 12.81% Segment F LogNorm 3.42% 16.59%
Weibull 6.34% 18.94% Weibull 1.72% 5.39%
Gamma 6.79% 19.93% Gamma 1.10% 3.35%
Exponential 6.89% 20.13% Exponential 1.94% 4.15%
All Segments LogNorm 1.49% 9.57%
Weibull 7.26% 22.15%
Gamma 7.80% 23.35%
Exponential 8.24% 24.21%
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Table C2. Fit accuracy in terms of (from left to right): mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), mean percentage error (MPE), and R? score.

MAE MSE RMSE MAPE MPE R2
Segment A LogNorm 0.003835 0.000025 0.004962 19.751299 —18.452474 0.999705
Weibull 0.004239 0.000025 0.005045 3.691687 2.502451 0.999695
Gamma 0.003972 0.000023 0.004791 3.248378 2.162947 0.999725
Exponential 0.004461 0.000028 0.005323 4.441980 3.155158 0.999660
Segment B LogNorm 0.003258 0.000018 0.004199 18.965016 —17.837976 0.999788
Weibull 0.005054 0.000041 0.006416 4.158289 2.709758 0.999506
Gamma 0.004765 0.000039 0.006205 3.642227 2.288951 0.999538
Exponential 0.005274 0.000043 0.006541 4.715672 3.205130 0.999487
Segment C LogNorm 0.002553 0.000011 0.003352 16.485184 —15.520633 0.999865
Weibull 0.006367 0.000061 0.007814 4.882112 3.057496 0.999267
Gamma 0.006329 0.000063 0.007918 4518913 2.721878 0.999248
Exponential 0.006295 0.000063 0.007922 4.370925 2.578064 0.999247
Segment D LogNorm 0.001861 0.000008 0.002792 11.047410 —10.364844 0.999906
Weibull 0.007899 0.000089 0.009425 6.063979 3.639182 0.998934
Gamma 0.008979 0.000116 0.010771 6.245090 3.466566 0.998608
Exponential 0.011078 0.000194 0.013928 4.232291 —0.768726 0.997672
Segment E LogNorm 0.002599 0.000012 0.003479 8.396056 —7.645315 0.999855
Weibull 0.008803 0.000103 0.010126 6.720184 3.848348 0.998770
Gamma 0.010067 0.000133 0.011536 6.931337 3.646580 0.998403
Exponential 0.012490 0.000224 0.014965 4.584167 —0.822816 0.997313
Segment F LogNorm 0.008605 0.000114 0.010666 17.968495 —15.193055 0.998635
Weibull 0.005577 0.000046 0.006793 3.563632 0.369103 0.999446
Gamma 0.005653 0.000047 0.006888 3.745261 —1.707067 0.999431
Exponential 0.009259 0.000120 0.010961 5.706947 3.837073 0.998558
All Segments LogNorm 0.002595 0.000012 0.003448 17.845070 —16.870298 0.999857
Weibull 0.006181 0.000059 0.007693 4.814132 3.014647 0.999290
Gamma 0.006257 0.000063 0.007927 4511944 2.686623 0.999246

Exponential 0.006150 0.000064 0.008030 3.930650 2.136056 0.999226
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