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Speckle2Void: Deep Self-Supervised SAR
Despeckling with Blind-Spot Convolutional Neural

Networks
Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli

Abstract—Information extraction from synthetic aperture
radar (SAR) images is heavily impaired by speckle noise, hence
despeckling is a crucial preliminary step in scene analysis
algorithms. The recent success of deep learning envisions a
new generation of despeckling techniques that could outperform
classical model-based methods. However, current deep learn-
ing approaches to despeckling require supervision for training,
whereas clean SAR images are impossible to obtain. In the
literature, this issue is tackled by resorting to either synthetically
speckled optical images, which exhibit different properties with
respect to true SAR images, or multi-temporal SAR images,
which are difficult to acquire or fuse accurately. In this paper,
inspired by recent works on blind-spot denoising networks, we
propose a self-supervised Bayesian despeckling method. The
proposed method is trained employing only noisy SAR images
and can therefore learn features of real SAR images rather
than synthetic data. Experiments show that the performance of
the proposed approach is very close to the supervised training
approach on synthetic data and superior on real data in both
quantitative and visual assessments.

Index Terms—SAR, despeckling, convolutional neural net-
works, self-supervised

I. INTRODUCTION

Synthetic Aperture Radar (SAR) is a coherent imaging
system and as such it strongly suffers from the presence
of speckle, a signal dependent granular noise. Speckle noise
makes SAR images difficult to interpret, preventing the
effectiveness of scene analysis algorithms for, e.g., image
segmentation, detection and recognition. Several despeckling
methods applied to SAR images have been proposed working
either in spatial or transform domain. The first attempts at
despeckling employed filtering-based techniques operating in
spatial domain such as Lee filter [1], Frost filter [2], Kuan filter
[3], and Gamma-MAP filter [4]. Wavelet-based methods [5],
[6] enabled multi-resolution analysis. More recently, non-local
filtering methods attempted to exploit self-similarities and
contextual information. A combination of non-local approach,
wavelet domain shrinkage and Wiener filtering in a two-step
process led to SAR-BM3D [7], a SAR-oriented version of
BM3D [8].

In recent years, deep learning techniques have become
the benchmark in many image processing tasks, achieving
exceptional results in problems such as image restoration [9],
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super resolution [10], semantic segmentation [11], and many
more. Recently, some despeckling methods based on convo-
lutional neural networks (CNNs) have been proposed [12],
[13], attempting to leverage the feature learning capabilities
of CNNs. Such methods use a supervised training approach
where the network weights are optimized by minimizing a
distance metric between noisy inputs and clean targets. How-
ever, clean SAR images do not exist and supervised training
methods resort to synthetic datasets where optical images are
used as ground truth and their artificially speckled version as
noisy inputs. This creates a domain gap between the features of
synthetic training data and those of real SAR images, possibly
leading to the presence of artifacts or poor preservation of
radiometric features when despeckling real SAR images. SAR-
CNN [14] addressed this problem by averaging multi-temporal
SAR data of the same scene in order to obtain an approximate
(finite number of looks) ground truth. However, acquisition
of multi-temporal data, scene registration and robustness to
temporal variations can be challenging, leading to a sub-
optimal rejection of speckle.

Recently, self-supervised denoising methods [15]–[18]
proved, under certain assumptions, to be a valid alternative
when it is not possible to have access to clean images. In
particular, the two methods in [16], [18] deal with a single
noisy version of each image in the dataset. These two works
make use of a modified version of the classical CNN, called
blind-spot convolutional network, to reconstruct each clean
pixel exclusively from its neighboring pixels. The target pixel
itself is kept hidden by the blind spot operation during training
in order to prevent the network from learning the identity
mapping and just copying the noisy pixel in the final denoised
image. Self-supervision thus allows to exploit the potential of
deep learning in those fields where the ground truth is not
accessible, such as SAR imaging.

Inspired by these works, in this paper we present
Speckle2Void, a self-supervised Bayesian despeckling frame-
work that enables direct training on real SAR images.
Our method bypasses the problem of training a CNN on
synthetically-speckled optical images, thus avoiding any do-
main gap and enabling learning of features from real SAR
images. It also avoids the inherent difficulty in constructing
multitemporal datasets, as done in [14]. Our main contribu-
tions can be summarized as follows:

• we formulate a Bayesian model to characterize the
speckle and the prior distribution of pixels in the clean
SAR image, conditioned on their neighborhoods;
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• we propose an improved version of the blind-spot CNN
architecture in [18] and a regularized training procedure
with a variable blind-spot shape in order to account for
the autocorrelation of the speckle process;

• we present two versions of Speckle2Void: a local ver-
sion with classical convolutional layers and a non-local
version to incorporate information from both spatially-
neighboring as well as distant pixels to exploit self-
similarity, albeit at higher computational complexity;

• we achieve remarkable despeckling performance, show-
ing how our self-supervised approach is better than
model-based techniques, close to the deep learning meth-
ods requiring supervised training on synthetic images and
superior to them on real SAR data.

A preliminary version of this work appeared in [19], show-
ing the basic principles of the proposed approach. This paper
significantly expands the treatment with improvements on
network modeling, on the loss function and on the training
procedure. In particular, it solves the problem of the residual
granularity in the despeckled images in [19], by showing the
importance of properly decorrelating the speckle process and
carefully designing the blind-spot shape.

The remainder of this paper is organized as follows. Section
II introduces related works on SAR despeckling. Section III
provides the background knowledge on the Bayesian frame-
work adopted in this work. Section IV details the proposed
statistical models and the regularized blind-spot network with
variable structure. Section V contains results and performance
evaluation. Section VI draws some conclusions.

II. RELATED WORK

A. SAR Despeckling

The last decades have seen a multitude of SAR image
despeckling methods, that can be broadly categorized into four
main approaches: spatial-domain methods, wavelet-domain
methods, non-local methods and deep learning methods.
Filtering-based techniques such as Lee filter [1], Frost filter
[2], Kuan filter [3] represent the early attempts to solve SAR
despeckling and they operate in spatial domain. Subsequent
works in spatial domain aimed to reduce speckle under a
non-stationary multiplicative speckle assumption. A popular
example is represented by the Bayesian maximum a posteriori
(MAP) approaches aiming to give a statistical description to
the SAR image. A few MAP-based works have been proposed
and the most representative is the Γ-MAP filter [4] that solves
the MAP equation modeling both the radar reflectivity and the
speckle noise with a Gamma distribution.

Wavelet-based methods proved to be more effective than
spatial domain ones, enabling multi-resolution analysis and
boosting analysis under non-stationary characteristics. They
despeckle SAR images in the transform domain by estimating
despeckled coefficients and then by applying the inverse
transform to obtain the cleaned SAR image. A first subclass of
wavelet based methods solve the despeckling problem with a
homomorphic approach, consisting in applying a logarithmic
transform of the data to convert the multiplicative noise into
an additive one. The works in [20], [21] applied the traditional

wavelet shrinkage based on hard- and soft-thresholding with
an empirical selection of the threshold. Further wavelet-based
methods [22]–[25] introduce prior knowledge about the log-
transformed reflectance in the wavelet domain, employing
a MAP estimator. Most of the wavelet-based homomorphic
approaches do not compensate for the bias in the reconstructed
images resulting from the mean of the log-transform speckle.
To cope with this problem, a non-homomorphic approach
has been considered by some works [26]–[29] in the wavelet
domain, dealing with a signal-dependent speckle whose dis-
tribution parameters are harder to be estimated.

In general, both spatial domain and wavelet domain tech-
niques yield limited detail preservation with the introduction of
severe artifacts. The amount of information provided by a local
window is quite limited and the need of incorporating more
information from the neighborhood led to the proliferation of
non-local methods. The pioneering work in this field is repre-
sented by the non-local mean (NLM) filter [30] that performs
a weighted average of all pixels in the image and the weights
depend on their similarity with respect to the target pixel.
The weights are defined by computing the Euclidean distance
between a surrounding patch centered at a neighboring pixel
and a local patch centered at the target pixel. In [31], the
Probabilistic Patch-Based (PPB) algorithm has been proposed
to adapt the non-local means approach to SAR despeckling.
The authors devised a patch similarity measure that generalizes
to the case of multiplicative, non-Gaussian speckle.

In [32], the authors proposed another extension of NLM
for despeckling, called NL-SAR, to deal with arbitrary SAR
modalities (SAR, polarimetric SAR, interferometric SAR)
and any number of looks. They proposed a unified nonlocal
framework where several non-local estimations are performed
and the best one is locally selected to ensure adaptivity to local
structures. Moreover, in order to ensure robustness to noise
correlation, similarities are weighted using kernels learned
from a homogeneous region.

NLM inspired a number of extensions in the Gaussian noise
context such as the Block-Matching 3D (BM3D) algorithm
[8], a combination of non-local approach, wavelet domain
shrinkage and Wiener filtering in a two-step process.

One of the most popular SAR despeckling algorithm is the
SAR version of BM3D [8] (SAR-BM3D) that follows the
same BM3D phases with an adaptation to the SAR statistics
in the grouping phase where the same PPB similarity measure
is used. Moreover the hard-thresholding and Wiener filtering,
suitable in the Gaussian noise context, are replaced with an
LMMSE estimator (based on an additive signal-dependent
noise model).

The success of deep learning on many tasks involving image
processing has suggested that the powerful learning capabil-
ities of CNNs could be exploited for SAR despeckling and
a few works have started addressing the problem. Chierchia
et al. [14] proposed SAR-CNN, which applies a DnCNN-like
[33] supervised denoising approach to SAR data. They exploit
the homomorphic approach to deal with multiplicative noise
model and use a new similarity measure for speckle noise
distribution as loss function rather than the usual Euclidean
distance. Clean data for training are obtained by averaging
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multitemporal SAR images. Wang et al. [12] proposed a
residual CNN (ID-CNN) trained on synthetic SAR images, to
directly estimate the noise in the original domain, and, hence,
the despeckled image is obtained by dividing the noisy image
by the estimated noise. Training is once again supervised
using synthetically speckled optical images and carried out
with the Euclidean distance and a total variation regularization
as loss function. Several subsequent deep learning works
[13], [34]–[38] proposed slight variations on the topic by
introducing different architectures and losses, but all under the
supervised training umbrella using synthetically speckled SAR
images. In [34] the authors proposed IDGAN, a deep learning
SAR despeckling method based on a generative adversarial
network (GAN) and trained using a weighted combination of
Euclidean loss, perceptual loss and adversarial loss. In [35],
a dilated densely connected network (SAR-DDCN) trained
with Euclidian distance, was proposed to enlarge the recep-
tive field and to improve feature propagation and reuse. A
combination of hybrid dilated convolutions and both spatial
and channel attention modules through a residual architecture
called HDRANet was proposed in [36], to further improve the
feature extraction capability. More recently, Cozzolino et al.
[39] proposed a method that combines the classical non-local
means method with the power of CNN, where NLM weights
are assigned by a convolutional neural network with non local
layers.

Until now, the power of CNN has not been fully exploited
yet, since most of the works in literature make use of synthetic
SAR images. Inspired by the recent blind-spot CNN denoising
works, we tackle SAR despeckling with a self-supervised
Bayesian framework relying on blind-spot CNNs.

B. Self-supervised denoising with CNNs

During the last year, significant advances have been made
on deep learning approaches to denoising that do not require
ground-truth, showing that it is possible to reach performance
close to that exhibited by fully-supervised methods. These
new self-supervised denoising methods have been developed
on natural images, but it is quite clear that extending them
to the SAR context is appealing, as significant speckle noise
is always present in SAR acquisitions. Noise2Noise [15]
proposed to use pairs of images with the same content but
independent noise realizations. The main drawback of this
method is the difficulty of accessing multiple versions of the
same scene with independently drawn noise realizations. Yuan
et al. [40] presented a despeckling method based on the idea
of Noise2Noise [15], but still simulating speckle on a dataset
based on ImageNet. Ma et al. [41] devised a method based
on the Noise2Noise scheme, requiring multi-temporal SAR
images to train the network. They coped with the possible
temporal variations by introducing a similarity measure in
order to weight the contribution of each pixel pair in the loss.

Noise2Void [16] and Noise2Self [17] further relax the
constraints on the dataset, requiring only a single noisy version
of the training images, by introducing the concept of blind-
spot networks. Assuming spatially uncorrelated noise, and
excluding the center pixel from the receptive field of the

network, the network learns to predict the value of the center
pixel from its receptive field by minimizing the `2 distance
between the prediction and the noisy value. The network is
prevented from learning the identity mapping because the pixel
to be predicted is removed from the receptive field. Notice that
this is also the reason for the uncorrelated noise assumption.
The blind-spot scheme used in Noise2Void [16] is carried
out by a simple masking method that hides one pixel at a
time, processing the entire image to learn to reconstruct a
single cleaned pixel. Laine et al. [18] devised a novel blind-
spot CNN architecture capable of processing the entire image
at once, increasing the efficiency. They also introduced a
Bayesian framework to include noise models and priors on the
conditional distribution of the blind spot given the receptive
field.

III. BACKGROUND

CNN denoising methods estimate the clean image by learn-
ing a function that takes each noisy pixel and combines its
value with the local neighboring pixel values (receptive field)
by means of multiple convolutional layers interleaved with
non-linearities. Taking this from a statistical inference perspec-
tive, a CNN is a point estimator of p(xi|yi,Ωyi), where xi is
the ith clean pixel, yi is the ith noisy pixel and Ωyi represents
the receptive field composed of the noisy neighboring pixels,
excluding yi itself. Noise2Void and Noise2Self predict the
clean pixel xi by relying solely on the neighboring pixels and
using yi as a noisy target. By doing so, the CNN learns to
produce an estimate of Exi [xi|Ωyi ], using the `2 loss when in
presence of Gaussian noise. The drawback of these methods
is that the value of the noisy pixel yi is never used to compute
the clean estimate.

The Bayesian framework devised by Laine et al. [18]
explicitly introduces the noise model p(yi|xi) and conditional
pixel prior given the receptive field p(xi|Ωyi) as follows:

p(xi|yi,Ωyi) ∝ p(yi|xi)p(xi|Ωyi).

The role of the CNN is to predict the parameters of the
chosen prior p(xi|Ωyi). The denoised pixel is then obtained
as the posterior mean (MMSE estimate), i.e., it seeks to find
Exi [xi|yi,Ωyi ]. Under the assumption that the noise is pixel-
wise i.i.d., the CNN is trained so that the data likelihood
p(yi|Ωyi) for each pixel is maximized. The main difficulty
involved with this technique is the definition of a suitable
prior distribution that, when combined with the noise model,
allows for closed-form posterior and likelihood distributions.
We also remark that while imposing a handcrafted distribution
as p(xi|Ωyi) may seem very limiting, it is actually not since
i) that is the conditional distribution given the receptive field
rather than the raw pixel distribution, and ii) its parameters
are predicted by a powerful CNN on a pixel-by-pixel basis.

IV. PROPOSED METHOD

Following the notation in Sec. III, this section presents the
Bayesian model we adopt for SAR despeckling, the training
procedure and the blind-spot architecture. A summary is
shown in Figs. 1 and 2.
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Fig. 1. Speckle2Void takes as input four rotated versions of an image. Each branch processes a specific rotation to compute the receptive field in a specific
direction. Subsequently, the four half-plane receptive fields are shifted to achieve the desired blind-spot shape, rotated back and concatenated. As last, a series
of 2D convolutions with kernel 1x1 are used to fuse the four receptive fields and generate the parameters of the inverse gamma for each pixel.
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Fig. 2. Scheme depicting the training and the testing phases. During training
phase the blind-spot network is trained to minimize the negative log of the
noisy data likelihood to estimate αxi and βxi for each pixel. In testing phase,
the MMSE estimator generates the final clean image, combining together the
parameters of the pixel prior, the noisy pixel and the parameter of noise
distribution.

A. Model

We consider the multiplicative SAR speckle noise model:
yi = nixi, where x represents the unobserved clean image in
intensity format and n the spatially uncorrelated multiplicative
speckle. Concerning noise modeling, one common assumption
is that it follows a Gamma distribution with unit mean and
variance 1/L for an L-look image and has the following
probability density function:

p(n) =
1

Γ(L)
LLnL−1eLn

where Γ(.) denotes the Gamma function and n ≥ 0, L ≥ 1.
The aim of despeckling is to estimate intensity backscatter x
from the observed intensity return y.

We model the conditional prior distribution given the re-
ceptive field as an inverse Gamma distribution with shape αxi
and scale βxi :

p(xi|Ωyi) = invΓ(αxi , βxi),

where αxi and βxi depend on Ωyi , since they are the outputs
of the CNN at pixel i. Assuming the noise to be Gamma-
distributed, i.e., ni ∼ Γ(L,L), then by the scaling property of
the Gamma distribution, we obtain that yi|xi ∼ Γ(L, Lxi ). We
can now write the unnormalized posterior distribution as:

p(xi|yi,Ωyi) ∝ p(yi|xi)p(xi|Ωyi),

p(xi|yi,Ωyi) ∝
1

Γ(L)

(
L

xi

)L
yL−1
i e

L
xi
yi β

αxi
xi

Γ(αxi)

e
βxi
xi

xαxi+1 ,

∝ e
Lyi+βxi

xi

xαxi+L+1

For the chosen prior and noise models, the posterior dis-
tribution has still the form of an inverse Gamma with shape
L+ αxi and scale βxi + Lyi:

p(xi|yi,Ωyi) = invΓ(L+ αxi , βxi + Lyi). (1)

The chosen prior distribution and noise model allow to
conveniently obtain the marginal distribution of the noisy
training data p(yi|Ωyi) in close form by solving the following
integral:

p(yi|Ωyi) =

∫
p(yi|xi)p(xi|Ωyi)dxi (2)

The probability density obtained by solving this integral is
known as G0

I , and has the following expression:

p(yi|Ωyi) = G0
I =

LLyL−1
i

β
−αxi
xi Beta(L,αxi)(βxi + Lyi)

L+αxi
,

(3)

According to [42], the G0
I distribution is a very general model,

that is particularly suitable to model the observed intensity
return y of SAR images and able to accommodate different
types of areas: from extremely heterogeneous scenes such
as urban areas, to extremely homogeneous scenes such as
deforested area as −αxi and βxi become larger.
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B. Training

The training procedure learns the weights of the blind-
spot CNN. The blind-spot CNN processes the noisy image to
produce the estimates for parameters αxi and βxi of the inverse
gamma distribution p(xi|Ωyi) used as prior. It is trained to
minimize the negative log likelihood p(yi|Ωyi) for each pixel,
so that the estimates of αxi and βxi fit the noisy observations.

As stated in Sec.II-B, training a blind-spot network requires
noise to be spatially uncorrelated, so that the CNN is prevented
from exploiting the latent correlation to reproduce the noise in
the blind spot. While many works assume that SAR speckle
is uncorrelated, the SAR acquisition and focusing system has
a point spread function (PSF) that correlates the data. To cope
with this, we apply a pre-processing whitening procedure, such
as the one proposed by Lapini et al. [43] to decorrelate the
speckle. In [43], the authors use the complex SAR data after
focusing to estimate the PSF of the system and approximately
invert it, achieving the desired decorrelation and showing
that this step boosts the performance of any despeckling
algorithm relying on the uncorrelated speckle assumption. This
whitening step is especially critical in the proposed approach
due to the high capacity of neural networks to overfit even
random patterns.

However, perfect decorrelation is in practice impossible and
the residual correlation could limit the performance of the
blind-spot CNN. For this reason, we modify the basic design
of the blind-spot CNN by Laine et al. [18], and introduce
a variable-sized blind spot. If noise correlation cannot be
removed by other means, one could consider the width of the
autocorrelation function of the noise and set a blind spot that
is wide enough to cover the peak of the autocorrelation. This
ensures that the receptive field contains a negligible amount
of information for the reproduction of the noise component of
the pixel to be estimated. However, this inevitably reduces the
amount of information that can be exploited by the CNN, as
the content of the immediate neighbors of a pixel is the most
similar to that of the pixel itself. Therefore, a larger blind spot
trades off more effective noise suppression with a less accurate
(appearing as blurry) prediction.

To achieve a finer control about this trade-off, we devise a
regularized training procedure that allows to tune the degree
of reliance of the CNN on the immediate neighbors, leading to
an improvement of the high frequency details in the denoised
image, while still suppressing most of the noise correlation.
During training, we randomly alternate, with predefinied prob-
abilities, a 1 × 1 blind spot and a larger blind spot that
can have arbitrary shape to match the noise autocorrelation.
This mechanism allows the network weights to learn how to
partially exploit the neighboring pixels belonging to the larger
blind-spot but at the same time not to rely too much on them,
in order to prevent from overfitting the noise components.
During testing, a 1×1 blind spot is used, thus only excluding
the center pixel, and exploiting the closest neighbors. Due to
their weak training, these neighbors allow to recover some
high frequency image content, which is the stronger signal
present, while not being able to exploit the weaker correlations
in the noise. We refer the reader to Sec. V-D for the details

on the chosen parameter settings and the specific SAR dataset
used for training.

C. Testing

In testing, the blind-spot CNN processes the noisy SAR
image to estimate αxi and βxi for each pixel. The despeckled
image is then obtained through the MMSE estimator, i.e., the
expected value of the posterior distribution in Eq. (1), as:

x̂i = E[xi|yi,Ωyi ] =
βxi + Lyi
L+ αxi − 1

.

Notice that this estimator combines both the per-pixel prior
estimated by the CNN and the noisy observation.

D. Loss function

As mentioned in Sec. IV-B, the blind-spot CNN is trained
by minimizing the negative log likelihood of the noisy ob-
servations, based on the estimated parameters αxi and βxi
of the prior. Moreover, we incorporate a total variation (TV)
component, computed over the posterior image, to further
promote smoothness. Our final loss function is as follows:

l = −
∑
i

log p(yi|Ωyi) + λTV TV (x̂)

where p(yi|Ωyi) is defined in Eq. (3), the TV term is
the anisotropic version of the total variation TV (x̂) =∑
i,j |x̂i+1,j − x̂i,j | + |x̂i,j+1 − x̂i,j | and λTV is a hyperpa-

rameter to tune the desired degree of smoothness.

E. Blind-spot architecture

The rationale behind the blind-spot network is to introduce
a pixel-sized hole in the receptive field, in order to prevent
the network from learning the identity mapping. Our model is
built upon the architecture by Laine et al. [18], who designed
a CNN architecture to naturally account for the blind spot in
the receptive field, thus increasing training efficiency. They
cleverly implemented shift and padding operations on the
feature maps at each layer, in order to limit the receptive
field to grow in a specific direction, excluding the center
pixel from the computation. Their architecture is composed
of four different CNNs, each responsible of limiting the
receptive field to extend in a single direction by means of
shift and padding operations on the feature maps at each layer.
The four subnetworks produce four limited receptive fields
that extend strictly above, below, leftward and rightward of
the target pixel. In order to reduce the number of trainable
parameters, they feed four rotated versions of each input image
to a single network that computes the receptive field in a
specific direction. The four limited receptive fields are finally
combined through a series of 2D convolutions with 1 × 1
filters, ensuring no further expansion of the receptive field. To
perform this particular computation, classical 2D convolutional
layers are used but their receptive field is limited to grow in a
direction by shifting the feature map in the opposite direction
by an offset of bk/2c pixels, where k × k is the kernel size,
before performing the convolution operation. At the end of the
network, each of the four limited receptive fields still contains
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shifting feature maps

combining 4 half-plane receptive fields

Fig. 3. Visual depiction of the operations performed by the blind-spot network
to constrain the receptive field related to the center pixel to exclude the center
pixel itself and two pixels in the vertical direction. The first row represents,
in pink color, the four limited receptive fields extending in four directions. As
the center pixel is still included in the receptive fields, each feature map is
shifted in the opposite direction with respect to the growing direction of the
receptive field. This shifting operation allows the pink pixels in the second
row to be the new receptive fields associated to the center pixel. The shift is
1 in azimuth direction and 2 in the range one. The last row represents the
final receptive field, related to the center pixel, as the result of a combination
of the four receptive fields depicted in the second row.

the center row/column, so the center pixel as well. To exclude
it, the feature maps are shifted by one pixel before combining
them.

An overview of the blind-spot network used by
Speckle2Void is shown in Fig. 1. Speckle2Void modifies the
basic architecture by Laine et al. [18] described above to
allow more flexibility in shaping the blind-spot. In principle,
if the final shift applied to each of the four directional
receptive fields was different from one another, we would be
able to control the size of the blind spot in each direction. In
SAR images, the azimuth and range directions may exhibit
different statistical properties, including the residual noise
autocorrelation. We therefore account for that by only sharing
weights between the two branches processing the receptive
field oriented as the azimuth or range directions, instead of
sharing them for all four branches as in [18]. Furthermore,
as shown in Fig. 3, Speckle2Void can apply one shift in the
azimuth direction and a different shift in the range one.

F. Non local convolutional layer and its adaptation to blind-
spot networks

The blind-spot CNN used by Speckle2Void also comes
in two versions. The “local” version of Speckle2Void is
composed by a series of classic 2D convolutional layers,
each followed by Batch normalization [44] and a Leaky-
ReLU non-linearity. The “non-local” version adds several
non-local layers, as defined in [45]. Such layers introduce a
dynamic weighted function of the feature vectors that help

retrieving more information from a wider image context.
While the “local” version of Speckle2Void employs classical
2D convolutions, so only local information is exploited at each
layer, non-local layers leverage non-local structural similarity
across spatially distant patches within an image, enabling the
CNN to combine both spatially-neighboring as well as distant
pixels. In particular, non-local self-similarity can be effective
in recovering the information hidden by the blind spot, without
encountering the problem of noise correlation as it is drawn
from spatially-distant areas. However, exploiting non-locality
incurs a significant penalty in terms of computational cost.

The non-local module proposed by NLRN [45] uses a soft
block matching approach and applies the Euclidean distance
with linearly embedded Gaussian kernel as distance metric.
The rational behind this module is to perform a weighted
combination of all the feature vectors in a patch (search
window) to compute the new feature vector at its center,
where the used weights dynamically depend on the similarity
between the center feature vector and all the others within the
patch, and repeat it for each feature vector in the feature map.
This non-local layer is designed to work in a traditional CNN
architecture, and requires introducing a masking technique to
adapt it to the blind-spot architecture used by Speckle2Void.
In [45], the linear embeddings are defined as follows:

Φ(Xij) =φ(Xij , Xpij ) = exp{θ(Xij)ψ(Xpij ))},∀i, j,
θ(Xij) =XijWθ, ψ(Xpij ) =XpijWψ, G(Xij) =XpijWg,∀i, j.

Φ(Xij) represents the distance metric to encode the non local
correlation between the feature vector in position i, j and each
neighbours in the patch Xpij . Φ(Xij) has shape 1×q×q where
q× q denotes the spatial size of the neighbour patch centered
at pixel i, j. θ(Xij) represents the embedding associated to
the feature vector in position i, j with shape 1 × l where l
is the number of features. ψ(Xpij ) represents the embeddings
associated to each feature vector in the neighbour patch p
centered at i, j with shape q× q×m where m is the number
of features. The transformation weights Wθ,Wψ,Wg used to
compute the embeddings have shape m × l, m × l, m × m
respectively, and are trainable weights. We add a masking
operation to the non-local layer proposed in [45] and the final
formulation is obtained as:

Zij =
1

δ′(Xij)
(Mi � exp{XijWθW

T
ψX

T
pij )})XpijWg,∀i, j,

where δ
′
(Xij) =

∑
pij
Mi�φ(Xij , Xpij ) is the normalization

factor, Zij is the output feature vector at spatial location i, j
and Mi is a mask, associated to row i, aiming to get rid of the
contribution of specific feature vectors in the computation of
the new feature vector Zij . Considering the receptive field
extending upwards, all the pixels in a specific row i are
associated with a mask Mi which has weight 1 in row i and
all the rows above, and 0 everywhere else. This allows to
disregard all Euclidian distances with respect to feature vectors
that are not contained in the receptive field extending upwards.
The construction of the mask Mi is not influenced by the shape
of the blind-spot structure. The blind-spot shaping always
happens right after the four receptive fields are computed, by



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

shifting each of the four feature maps according to the desired
final shape, as in the “local” version.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of
Speckle2Void, both quantitatively and qualitatively. First, we
compare our method with several state-of-the-art methods
on a synthetic dataset, where the availability of ground
truth images allows to compute objective performance
metrics, and then on a real-world SAR dataset, relying on
several established no-reference performance metrics and
visual results. We also test the proposed method against
a benchmarking dataset, composed of a set of simulated
canonical images, to highlights its behavior in all the major
types of regions found in SAR images. Moreover, we perform
an ablation study to show the impact of various design
choices on the despeckling performance.Finally, a comparison
on the computational time is provided to assess the different
complexity of CNN-based methods with respect to the
traditional methods.

Speckle2Void code is publicly available online: https://
github.com/diegovalsesia/speckle2void.

A. Quality assessment criteria

The evaluation reference metric used to assess quantitative
results on synthetic SAR images corrupted by simulated
speckle is the PSNR. This allows to understand the denoising
capability of our self-supervised method when compared with
traditional methods and CNN-based ones with supervised
training. In the second set of experiments, conducted on real
SAR images, we compare the various despeckling methods
by relying on some no-reference performance metrics such
as equivalent number of looks (ENL), moments of the ratio
image (µr, σr), quality index M [46] and the ratio image
structuredness RIS [47]. The ENL is estimated over apparently
homogeneous areas in the image and is defined as the ratio
of the squared average intensity to the variance. Computing
the ENL on the noisy SAR image provides an approximate
estimate of its nominal number of looks. Moments of the
ratio image µr and σr measure how close the obtained ratio
image is to the statistics of pure speckle (µr = 1, σr = 1
are desirable for a single-look image). The previous metrics
lack in conveying information about the detail preservation
capability of a filter and the visual inspection of the ratio
image would provide an indication of the remaining structure
of what ideally should be pure speckle with no visible pattern.
To avoid the subjectiveness of the visual interpretation of ratio
images, Gomez et al. [46] designed the quality index M.
This index evaluates the goodness of a filter by integrating
two measures together: a first-order component measuring
the deviation from ideal ENL and from ideal speckle mean
over n automatically selected textureless areas and a second-
order component measuring the remaining geometrical content
within the ratio image through the homogeneity textural de-
scriptor proposed by Haralick et al. [48]. Ideally, M should
tend to zero. RIS [47] is a metric closely related to the
second-order component of M, allowing to evaluate solely

the remaining geometrical content within the ratio image.
Similarly to Gomez et al. [46], it employes the homogeneity
textural descriptor proposed by Haralick et al. [48] to measure
the similarity among neighbouring pixels. RIS is zero when
the ratio image consists of independent identically distributed
speckle samples.

B. Reference methods

The following state-of-the-art references are compared with
our method on both optical and SAR datasets:

1) PPB [31];
2) SAR-BM3D [7];
3) NL-SAR [32];
4) CNN baseline with the improved loss defined in [14];
5) ID-CNN [12].

These methods have been chosen for their popularity and
diffusion in the SAR community. For PPB [31], SAR-BM3D
[7] and NL-SAR [32] methods, we selected parameters as
suggested in the original papers. As a CNN baseline we
used the well-known network architecture proposed in [33],
employing a homomorphic approach and the loss proposed in
[14] that better adapts to deal with the speckle noise distribu-
tion. ID-CNN has been implemented from scratch following
the indications in the original paper for what concerns the
CNN architecture and the hyperparameters. Notice that both
CNNs follow a supervised training approach with synthetically
speckled natural images. We remark that we do not directly
compare with the results in SAR-CNN [14] or the more recent
work in [39] as they use multitemporal data, which would
make the setting unfair with respect to the single observation
of a scene in our case. In addition, the dataset used in those
works is not publicly available.

As described in Sec. IV, Speckle2Void employs four
branches where the horizontal and the vertical directions are
processed separately with a different set of parameters, as
shown in Fig. 1. The first part of the architecture consists of 17
blocks composed of 2D convolution with 3×3 kernels with 64
filters each, batch normalization and Leaky ReLU nonlinearity.
After that, the branches are merged with a series of three 1×1
convolutions. The non-local version of our method maintains
the same general structure with an addition of 5 non-local
layers, one every 3 local layers. The same architecture is used
in both the experiments with the only difference that in the
case of synthetic images the blind-spot shape is 1 × 1, since
the injected speckle is pixel-wise i.i.d and therefore there is no
need to use an enlarged blind-spot. Instead, in the real SAR
case the blind-spot shape is variable across training.

For both experiments, the Adam optimization algorithm [49]
is employed, with momentum parameters β1 = 0.9, β2 =
0.999, and ε = 10−8. We use the Tensorflow framework to
train the proposed network on a PC with 64 GB RAM, an
AMD Threadripper 1920X, and an Nvidia 1080Ti GPU.

C. Synthetic dataset

In this experiment we use natural images to construct a
synthetic SAR-like dataset. Pairs of noisy and clean images
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TABLE I
SYNTHETIC IMAGES - PSNR (DB)

Image PPB [31] SAR-BM3D [7] NL-SAR [32] Baseline CNN ID-CNN [12] Speckle2Void Speckle2Void+TV Speckle2Void+NL
Cameraman 23.02 24.76 24.37 26.26 25.83 25.90 25.90 25.85
House 25.51 27.55 25.75 28.17 28.32 27.96 27.94 28.08
Peppers 23.85 24.92 23.62 26.30 26.26 25.99 26.02 26.09
Starfish 21.13 22.71 21.84 23.39 23.42 23.32 23.31 23.50
Butterfly 22.76 24.48 23.82 25.96 26.09 25.82 25.80 25.98
Airplane 21.22 22.71 21.83 23.78 23.90 23.67 23.65 23.61
Parrot 21.88 24.17 24.13 25.91 25.85 25.44 25.45 25.46
Lena 26.64 27.85 26.80 28.66 28.71 28.54 28.58 28.44
Barbara 24.08 25.37 23.13 24.30 24.38 24.36 24.31 24.74
Boat 24.22 25.43 24.55 26.06 26.00 26.02 25.57 25.88
Average 23.43 24.99 23.98 25.88 25.88 25.70 25.69 25.76

Fig. 4. Synthetic images: Noisy, Clean, PPB (21.13 dB), SAR-BM3D (22.71 dB), NL-SAR (21.89 dB), CNN-based baseline (23.37 dB), ID-CNN (23.42
dB), synthetic Speckle2Void (23.32 dB).

are built by generating i.i.d. speckle to simulate a single-look
intensity image (L = 1).

During training, patches are extracted from 450 different
images of the Berkeley Segmentation Dataset (BSD) [50].
The network has been trained for about 400 epochs with
a batch size of 16 and learning rate equal to 10−5. All
the CNN-based methods have been trained with the same
synthetic dataset. Table I shows performance results on a set
of well-known testing images in terms of PSNR. It can be
seen that all the CNN-based methods outperform the non-
local traditional methods by a significant margin. Despite ID-
CNN employs the suboptimal `2 loss, the TV regularizer helps
smoothing out the artifacts, showing approximately the same
result as the CNN baseline. It can be noticed that our self-
supervised method outperforms PPB, SAR-BM3D and NL-
SAR. Moreover, it is interesting to notice that while the
proposed approach does not use the clean data for training,
it achieves comparable results with respect to the supervised
ID-CNN and CNN-based baseline methods. This happens for
the non-local version and TV version as well. We can observe

a slight improvement when non-locality is employed. Even if
we analyze the performance from a qualitative perspective, as
done in Fig. 4, we observe the same behaviour. Despite the
absence of the true clean images during training, our method
produces images as visually pleasing as those produced by
the CNN-based reference approaches with comparable edge-
preservation capabilities. This is a significant result because it
shows that, in theory, we do not need supervised training to
achieve the outstanding despeckling results obtained by CNN-
based methods.

D. TerraSAR-X dataset

In this experiment we employ single-look TerraSAR-X
images1. Notice that optimal results are obtained by training
a model that is specific to a given SAR platform (e.g.,
TerraSAR-X in our example). We suggest retraining from
random initialization to optimize the model for a different
platform. This should not be an issue since we only require

1https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X/tree
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TABLE II
PERFORMANCE METRICS ON 5 REAL TERRASAR-X TEST IMAGES

Metric Image PPB [31] SAR-BM3D [7] NL-SAR [32] CNN baseline ID-CNN [12] Speckle2Void Speckle2Void NL

ENL ↑
1 82 46.2 77.3 52.9 76.5 88.5 86.5
2 78.6 49.1 60.6 48.7 69.9 89.9 81.8
3 76.9 58.1 59.4 52.5 73.1 84.0 86.0
4 54.2 40.4 45.0 37.6 46.2 54.7 53.1
5 22.9 16.2 16.8 14.6 16.6 18.9 17.5

µr ↑
1 0.887 0.919 0.921 0.963 0.943 0.966 0.970
2 0.925 0.938 0.933 0.969 0.964 0.966 0.967
3 0.926 0.941 0.936 0.974 0.969 0.968 0.968
4 0.933 0.942 0.936 0.974 0.976 0.962 0.977
5 0.853 0.894 0.902 0.950 0.918 0.947 0.946

σr ↑
1 0.847 0.627 0.692 0.726 0.745 0.803 0.800
2 0.886 0.674 0.734 0.740 0.803 0.829 0.817
3 0.874 0.684 0.739 0.756 0.817 0.816 0.814
4 0.876 0.688 0.746 0.755 0.846 0.823 0.837
5 0.891 0.549 0.621 0.683 0.664 0.748 0.736

M [46] ↓
1 24.4 16.5 13.8 11.9 14.6 7.72 6.71
2 10.1 11.6 15.4 11.6 9.12 9.11 8.04
3 9.82 11.3 13.0 11.3 6.93 6.24 5.44
4 10.6 10.5 16.9 12.3 9.7 8.07 7.74
5 14.4 14.3 11.7 9.76 10.4 8.91 7.9

RIS [47] ↓
1 0.402 0.186 0.098 0.145 0.242 0.0929 0.0817
2 0.114 0.0765 0.111 0.0925 0.112 0.0918 0.075
3 0.114 0.0782 0.076 0.113 0.0643 0.0396 0.0257
4 0.0962 0.0392 0.129 0.127 0.106 0.0873 0.0804
5 0.159 0.114 0.0643 0.0566 0.130 0.0708 0.0547

a modest number of noisy images and we also do not need
careful curation of multitemporal data.

As mentioned in Sec. IV-B, both training and testing images
are pre-processed through the blind speckle decorrelator in
[43] to whiten them. To ensure fairness, the whitening proce-
dure is applied to the images for all the tested methods.

During training, 64× 64 patches are extracted from 30000
whitened SAR images of size 256 × 256. The network has
been trained for 300000 iterations with a batch size of 16 and
an initial learning rate of 10−4 multiplied by 0.1 at 150000
iterations. In this case, in addition to two versions (L/NL)
of the proposed method used for the synthetic images, we
add the TV regularizer to the loss with a λTV of 5 × 10−5

and we apply the regularized training procedure described
in Sec. IV-B, carefully choosing the blind-spot shape. By
empirical observation we found non-negligible residual noise
correlation in the vertical direction after the whitening stage,
so we adapted the structure of the blind spot accordingly. The
regularized training alternates between a 3×1 and 1×1 shape
with probabilities 0.9 and 0.1, respectively. This allows us
to take into account the wider vertical autocorrelation of the
speckle. In the ablation study presented in Sec. V-F1 we also
show the results obtained when only a 1×1 blind spot is used.

Table II and Figs. 5,6,7 show the results obtained on a set of
1000×1000 test images2, that were not included in the training
set. Speckle2Void outperforms all other methods for almost
all testing images in terms of ENL, showing a better speckle
suppression capability on smooth areas. The non local version
of Speckle2Void scores a slightly lower ENL with respect to
the local version as it recovers finer details, generating an
additional texture over the apparently homogeneous areas as
shown in Fig. 6. The metric µr is very close to the desired

2High-resolution visualization: https://diegovalsesia.github.io/speckle2void

statistic of the ratio image for all the considered methods,
in particular for the CNN-based ones. The reference method
PPB [31] provides the best result in terms of σr showing a
strong speckle suppression, but a very poor detail preservation
capability as confirmed by the qualitative comparison in Figs.
6 and 7. Despite SAR-BM3D [7] provides worse results in
terms of σr with respect to PPB [31], it produces images
with higher fidelity and finer details, as can be observed
both visually in Fig. 5 and quantitatively with the RIS [47].
However, several areas in the SAR-BM3D image still present
artifacts like streaks or unrealistic texture. NL-SAR [32] shows
a stronger speckle suppression than SAR-BM3D [7], providing
better results in terms of ENL and σr.

Overall, the CNN-based methods show a greater speckle
suppression than SARBM3D [7] and PPB [31]. However, both
the CNN baseline and ID-CNN [12] tend to oversmooth and
produce cartoon-like edges. The test image in Fig. 5 presents
strong artifacts, making the recovered details look quite unre-
alistic. This is due to the domain gap between natural images
and real SAR images and it represents a strong argument
against supervised training with synthetically speckled images.
On the contrary, Speckle2Void does not hallucinate artifacts
over homogeneous regions and produces higher quality images
with respect to any other reference method, with much more
realistic details in regions with man-made structures and sharp
edges. This is confirmed qualitatively by a visual inspection
of the cleaned image in Fig. 5, 6, 7. Instead, Fig. 8 shows the
image obtained as the ratio between the noisy and despeckled
images. Ideally, no structure should be evident in the ratio
image. Also in this case, we can observe the capability of
Speckle2Void to remove the speckle effectively, with a mini-
mal amount of visible patterns. The outstanding visual quality
of Speckle2Void demonstrates the effectiveness of both direct
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Fig. 5. TerraSAR-X image 1. Top-Left to bottom-right: Noisy, PPB, SARBM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL

Fig. 6. TerraSAR-X image 1 detail. From left to right: Noisy, PPB, SARBM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL

training on real SAR images and of the adopted regularized
training procedure to tackle the residual local noise correlation
structure.

Moreover, if we compare the two versions of the pro-
posed method, we can notice that adding the non-local layers
provides a marginal improvement in the preservation of the
details, yielding lower values for M [46] and RIS [47]. The
drawback of the non local version of Speckle2Void is its higher
computational overhead, leading to a much longer training and
inference time.

E. Benchmarking dataset

The presented quantitative assessment relies on no-reference
metrics as the lack of clean images prevents from using full-
reference measures. In [51] the authors introduce a standard
benchmark for the objective assessment of SAR despeckling
techniques. The use of this framework enriches our quanti-
tative assessment on no-reference metrics by evaluating the
behaviour of the compared methods on a set of canonical
scenes, generated through physical SAR simulation. Five dif-
ferent scenes have been simulated to assess specific features
of the despeckling methods:

• homogeneous scene (water, bare soils, and vegetated
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Fig. 7. TerraSAR-X image 2 detail. From left to right: Noisy, PPB, SARBM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL

Fig. 8. TerraSAR-X image 4 detail. From left to right: Noisy and ratio images (PPB, SARBM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void,
Speckle2Void+NL)

areas) to focus on speckle suppression ability;
• texture scene to specifically evaluate the scene feature

preservation on a nonflat terrain;
• scene with edges (roads, rivers, and region boundaries)

to evaluate the preservation of contours;
• scene with isolated point target to assess the amount of

radiometric distortion;
• scene with urban areas to assess the preservation of man-

made structures.

In [51] the authors also propose to use a set of reference and
no-reference measures associated to each test image. Table III
shows that the proposed methods achieve comparable results
for most of the test images and in some cases outperform the
other methods. We remark that Speckle2Void is optimized on
the real TerraSAR-X dataset, which present different statistics
with respect to the simulated SAR images considered in the
benchmark, such as a different residual noise correlation.This
leads us to believe that the despeckling action of the proposed
method is actually slightly sub-optimal when evaluated on the
simulated SAR test images rather than on TerraSAR-X images.

1) Homogeneous case: This test case represents a flat
surface. The performance is evaluated using the following

metrics: the mean value of the filtered image (MoI), that should
be preserved after despeckling; the mean and the variance of
the ratio image (MoR and VoR) that should match the pure
speckle statistics; the ENL and the despeckling gain (DG),
which measure the speckle reduction factor on a logarithmic
scale by exploiting the available clean reference. All the
compared methods do not introduce any notable distortion on
the mean. However, the two version of Speckle2Void present
the mean indicators that are overall the closest to 1. In addition,
the VoR indicates that the proposed methods are the ones
that more strongly suppress speckle. The DG metric shows
comparable performance for all the compared methods. The
latter measure is slightly biased by the fact that the reference
image is not really clean.

2) Texture case (Digital Elevation Model): The texture
image represents an artificial canonical fractal DEM. The
performance is evaluated measuring MoI, MoR, VoR, DG
and the coefficient of variation Cx̂, i.e., the ratio between the
estimated standard deviation and the mean of the image. The
latter metric measures the texture preservation. The two means
show slightly worse performance for the proposed methods
with respect to the references, denoting a slight radiometric
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TABLE III
MEASURES FOR SIMULATED SAR TEST IMAGES

Image Metric PPB [31] SAR-BM3D [7] NL-SAR [32] CNN baseline ID-CNN [12] Speckle2Void Speckle2Void NL

Homogeneous

MoI ↑ 0.997 0.978 1.000 0.991 0.978 0.987 0.988
MoR ↑ 0.960 0.979 0.972 0.979 0.995 1.01 0.989
VoR ↑ 0.820 0.814 0.837 0.844 0.903 0.898 0.88
ENL ↑ 127.68 102.44 104.52 125.69 122.94 120.48 112.96
DG ↑ 20.29 19.40 19.46 20.2 20.04 20.03 19.8

Texture

MoI ↑ 0.998 0.968 0.915 0.931 0.836 0.867 0.846
MoR ↑ 0.911 0.833 0.857 0.807 0.893 0.847 0.808
VoR ↑ 0.560 0.415 0.485 0.475 0.766 0.848 0.822

Cx (2.40) 2.71 2.43 2.31 2.25 2.29 2.24 2.21
DG ↑ 3.68 5.32 4.83 4.25 3.77 3.5 3.45

Squares

ES (up) ↓ 0.07 0.036 0.07 0.026 0.033 0.057 0.058
ES (down) ↓ 0.209 0.113 0.198 0.0825 0.0873 0.138 0.158

FOM ↑ 0.837 0.847 0.799 0.818 0.82 0.825 0.834

Corner CNN ↑ 3.75 7.39 5.67 7.8 7.77 7.79 7.79
CBG ↑ 32.69 35.45 33.75 36.53 36.51 36.55 36.54

Building CDR ↑ 64.90 65.91 64.44 65.92 65.98 65.91 65.9
BS ↓ 3.13 1.46 6.827 0.3082 0.2612 0.272 0.4031

distortion. All the reference techniques present a small value
of VoR, showing the challenge of speckle removal in case of
a highly textured image. The VoR values of the two proposed
methods are the closest to 1. The coefficient of variation Cx
should match the theoretical one computed on the clean image,
which corresponds to 2.40. The two versions of Speckle2Void
present a comparable Cx̂ with respect to the other CNN-
based methods. DG shows similar results for all the compared
methods, showing a good speckle suppression even for this
challenging image.

3) Edges (Squares): This test case represents a flat surface
divided in 4 regions with different intensity levels, creating
straight contours aligned to the range and azimuth coordinates
as shown in Fig. 9. The performance is evaluated through the
measure of edge smearing (ES), which gives an indication
of the edge degradation and the smoothing action applied
by the despeckling methods, and an indirect measure called
Pratt’s FOM, which quantifies the ability of an automatic
edge detection algorithm to recognize the edges in the clean
estimate. Table III reports the ES measures for the two vertical
edges, characterized by lower (up) and higher (down) contrast,
along with the FOM for the detected edges. Lower ES values
indicate less smearing. The worst results comes from the
methods producing the blurriest edges such as PPB [31] and
NL-SAR [32]. However, this metric does not give a complete
insight about the edge preservation and it is quite unreliable.
FOM represents the best measure to evaluate edge preservation
by quantifying their recognition through a detector algorithm.
The FOM values in Table III should be higher than the FOM
resulting from the noisy image (0.792) and as close as possible
to the one resulting from the clean reference image (0.993).
The two proposed methods present FOM values that are higher
than the ones produced by the supervised CNN-based methods
and consistent with the best results, provided by PPB [31] and
SAR-BM3D [7].

4) Isolated point target case (Corner): The corner image
represents a point target produced by a corner reflector at
the center of a flat scene. The performance is evaluated
through two intensity contrast measures in logarithmic scale,
quantifying the preservation of the point target with respect

to the average intensity in the surrounding region (CNN ) and
the average intensity of the whole background (CBG). All the
CNN-based methods in Table III perform prior classification
as they have been trained without the point targets. In testing,
a thresholding procedure is performed to remove the point
targets prior to filtering and to copy them back right after.
Overall, CNN-based techniques tend to present the highest
values for these two metrics.

5) Urban area case (Building): The building image rep-
resents an isolated building over a homogeneous flat surface.
The intense double reflection line resulting from the multiple
scattering mechanisms should be preserved by the despeckling
technique. The performance is evaluated employing a building
smearing measure BS and an intensity contrast measure CDR
in logarithmic scale. CDR quantifies the preservation of the
double reflection segment with respect to the average intensity
of the background. This is another case where the CNN-
based methods better preserve the radiometric features of the
building, presenting a BS closer to zero and a higher CDR.

F. Ablation study

In the following study, we want to assess the benefits of
some of the features proposed for Speckle2Void.

1) Original vs whitened: First, we show the importance of
the pixel-wise noise independence condition when training a
blind-spot network. To assess it, we train Spleckle2Void with
two different datasets. One dataset is composed of real single-
look complex images as they are provided by the focusing
algorithm for the TerraSAR-X satellite, while the other dataset
is composed of the same real SAR images but pre-processed
by the decorrelator defined in [43]. For both datasets we use
a 1 × 1 blind-spot shape, including solely the center pixel
during the entire training. To better highlight the effect of the
whitening procedure, we do not add the TV regularization
in the loss. Fig. 10 shows the two resulting cleaned images
together with the one obtained by the full Speckle2Void
method (whitening+variable blind spot). The visual difference
between the left image and the middle one shows that the
decorrelator improves drastically the qualitative performance,
since barely any denoising is performed in the first image.
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Fig. 9. Squares benchmark image. Top-Left to bottom-right: Clean, Noisy, SARBM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void,
Speckle2Void+NL

Fig. 10. From left to right: cleaned image resulting from the training with the
original TerraSAR-X dataset (ENL 1.28), cleaned image resulting from the
training with the whitened TerraSAR-X dataset (ENL 14.5) and Speckle2Void
(ENL 88.5).

2) Enlarging the blind-spot: In our regularized training
procedure we vary the shape of the blind-spot to account
for the residual noise correlation that persists even after
the whitening procedure. To better understand the effect of
enlarging the size of the blind-spot structure, we compare
Speckle2Void trained with the canonical 1×1 blind-spot shape
against a 3 × 3 shape. Notice that, in this experiment, the
latter uses the 3 × 3 blind-spot in testing as well, differently
from the regularization procedure explained in IV-B which
always uses a 1× 1 blind spot in testing. Moreover, to better

Fig. 11. From left to right: network with 1×1 blind-spot, network with 3×3
blind-spot, Speckle2Void

highlight the effect of the shape of the blind-spot, we do not
add the TV regularization in the loss. Fig. 11 shows a visual
comparison between the two methods. The left image is the
result produced by the network with blind-spot of shape 1×1.
We can notice sharper edges and more details with respect to
the middle image produced by the network with blind-spot of
shape 3× 3, which looks more blurry. However, we also see
more residual noise in the image on the left. Enlarging the
shape of blind-spot structure leads to a more effective speckle
noise reduction as the network uses surrounding pixels that
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TABLE IV
BLIND-SPOT SIZE. MEASURES FOR SIMULATED SAR TEST IMAGES

Image Metric 1x1 3x3 Speckle2Void

Homogeneous

MoI ↑ 0.977 1.000 0.988
MoR ↑ 1.000 0.976 0.989
VoR ↑ 0.874 0.861 0.88
ENL ↑ 20.05 103.09 112.96
DG ↑ 13.00 19.43 19.8

Texture

MoI ↑ 1.020 0.987 0.846
MoR ↑ 0.834 0.838 0.808
VoR ↑ 0.963 0.719 0.822

Cx (2.40) 2.45 2.43 2.21
DG ↑ 3.34 4.03 3.45

Squares

ES (up) ↓ 0.064 0.074 0.058
ES (down) ↓ 0.145 0.171 0.158

FOM ↑ 0.783 0.795 0.834

Corner CNN ↑ 7.77 7.77 7.79
CBG ↑ 36.61 35.51 36.54

Building CDR ↑ 65.9 65.86 65.92
BS ↓ 0.4394 0.4159 0.4031

are less correlated with center pixel. A downside of expanding
the blind-spot is to reduce the amount of relevant information
for the network to estimate the center pixel, resulting in a
smoother image with a loss of high frequency details, failing
to preserve the original edges. In the image on the right we
report the result of Speckle2Void, showing that the proposed
method is able to achieve stronger speckle suppression with
an impressive preservation of details.

Table IV provides a quantitative comparison using the
benchmark dataset proposed in [51]. For the homogeneous
case, Speckle2Void provides a stronger speckle suppression
than the network with a blind-spot of shape 1×1 or with shape
3×3. The latter method presents a despeckling gain (DG) very
close to the one of Speckle2Void and much higher than the
one produced by the network with blind-spot of shape 1× 1.
This suggests the ability of the 3×3 blind-spot to disregard the
strong noise correlation of the immediate neighboring pixels
with respect to the center pixel, when producing the clean
estimate. For the same reason, the network with blind-spot of
shape 3× 3 provides the best despeckling suppression ability
in the DEM test case. The FOM metric for the squares case
shows that a bigger blind-spot allows a better edge detection
even in the presence of blurrier contours. Speckle2Void adds
to the filtered image the necessary high frequency details to
help the downstream detector algorithm. For the corner and
building cases, the results of the three methods are comparable,
since the radiometric preservation of the point targets strongly
depends on the prior classification step that is the same in all
the three methods.

3) Effect of the TV regularizer: Speckle2Void employs
TV in the loss as an additional spatial regularizer. We aim
to understand its impact by comparing Speckle2Void with
a version trained without TV. Fig. 12 shows the resulting
cleaned images, revealing the reduced amount of artifacts and
smoother flat areas when the TV regularization is employed.

4) Prior vs posterior: The Bayesian framework, exploited
in our method, makes use of the noisy SAR image to obtain
the despeckled version by computing the expected value of
the posterior distribution. The blind-spot CNN produces the
parameters of the prior distribution. If we compute its expected

Fig. 12. From left to right: Noisy, Speckle2Void w/o TV and Speckle2Void.

value we obtain the prior despeckled image. In Fig. 13, the
prior and the posterior images highlight the great qualitative
improvement brought by the use of the noisy observations in
the estimation of the cleaned image with the posterior mean.
The prior image shows fuzzy edges and a disturbing granular
pattern that makes the posterior image visually preferable.

G. Transferability to Sentinel-1

In this section we present a result to show the performance
of the Speckle2Void model trained on TerraSAR-X data when
applied to Sentinel-1 single look images. Fig. 14 shows a
qualitative result while the caption reports quantitative metrics.
It is interesting to notice that Speckle2Void provides excellent
performance, both qualitatively by showing strong speckle
suppression while maintaining several details of the scene,
and quantitatively according to the metrics presented in the
previous sections. A more detailed study on how to train
optimally on Sentinel-1, either by finetuning a pretrained
model or from scratch, is out of the scope of this paper, but it
would be an interesting future developement, especially in the
context of studying how well self-supervised representations
transfer across platforms.

H. Training time and runtime comparisons

The training and inference run-times for all the methods
considered in the experimental evaluation are shown in Table
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TABLE V
TRAINING TIME AND RUNTIME COMPARISONS

Image PPB [31] SAR-BM3D [7] NL-SAR [32] Baseline CNN ID-CNN [12] Speckle2Void Speckle2Void+NL
Training - - 0.8645 s (100x100) 3 days 2 h 7 h 1 day 3 h 6 days 19h
Inference (1000x1000) 27.54 s 223.51 s 23.39 s 0.587 s 0.1627 s 1.26 s 432.41 s

Fig. 13. From left to right: Noisy, Speckle2Void (Prior mean image),
Speckle2Void (Posterior mean image).

V. The experiments have been performed on a PC with 64-
GB RAM, an AMD Threadripper 1920X CPU, and an Nvidia
1080Ti GPU. All the CNN-based methods have been trained
using the Tensorflow framework. The CNN-based methods
have the lowest inference times except for the nonlocal version
of Speckle2Void. This version is more expensive due to the
non-local layers, which have to compute dynamic aggregation
weights for all the pixels in a search window. Moreover,
due to GPU memory constraints, the nonlocal version of
Speckle2Void processes SAR images in multiple smaller
patches, resulting in a longer inference time to reconstruct
the entire clean image. The local version of Speckle2Void
takes, on average, 1.26 seconds to process a 1000 × 1000
image, which is slightly higher than the inference times of the
baseline CNN and ID-CNN models because it has to process
the same image four times to compute the four half-plane
receptive fields. However, it is significantly lower than the
inference times of model-based methods. The training times
affect only the CNN-based methods and span from some hours
to several days.

VI. CONCLUSION

In this paper we have presented Speckle2Void, a self-
supervised Bayesian denoising framework for despeckling.
The main obstacle in applying classical supervised deep
learning methods to despeckling is represented by the vast
content disparity between speckle injected natural images and
real SAR images, often resulting in unfaithful cleaned images.
Speckle2Void exploits a customized version of the blind-spot

convolutional networks where the receptive field is constrained
to exclude a variable amount of pixels throughout training to
account for the correlation structure of the noise, introducing
one of the first deep learning despeckling method purely based
on real single-look complex SAR images. Speckle2Void is able
to learn to produce excellent images with faithful details and
no visible residual speckle noise.
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