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Non-linear Optimized Spatial Filter for Single-Trial
Identification of Movement Related Cortical Potential

Abstract

To investigate the optimal filter settings for pre-processing of Movement Related

Cortical Potentials (MRCP) for the detection through EEG in single trial, we

have proposed a novel Non-Linear Optimized Spatial Filter (NL-OSF) and com-

pared it to the Optimized Spatial Filtering (OSF) used in literature. MRCPs

from EEG recordings are emphasized, calculating the optimal non-linear com-

bination of channels which isolates the signal of interest. The method is applied

to EEG data recorded from 16 healthy patients either executing or imagining

50 self-paced upper limb movement (palmar grasp). NL-OSF had average true

positive rates of about 92±1% and 82±4% (mean±std) in motor execution and

imagination, respectively, which are significantly better than those of OSF ap-

plied to the same dataset. The proposed method can be potentially used for

online BCI system design for neuro-rehabilitation purposes.

Keywords: Surface EEG, Brain computer interface, Spatial filters

1. Introduction1

The Movement Related Cortical Potential (MRCP) is a low frequency negative2

shift in the EEG signal appearing around 2 seconds before a planned or executed3

voluntary movement [1][2]. Its detection can be instrumental in the development4

of Brain Computer Interfaces (BCI) which allow communication of patients who5

are otherwise unable, as well as in the neurorehabilitation of people with motor6

impairments [3]. An improvement in accuracy of the detectors could lead to a7

significant advancement in the field of neuroprosthetics [4].8

BCIs are a relatively recent subject of research, with the first paper on the topic9
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published in 1973 [5]. The term BCI encompasses multiple types of techniques10

to allow machine-brain communication, which are helpful for patients with con-11

ditions which do not allow them to communicate with the external world, such12

as locked-in syndrome [6], amyotrophic lateral sclerosis [7] and cerebral palsy [8].13

This kind of assistive technology gives these patients the ability to communicate,14

providing a significant improvement of their quality of life [9].15

Nonetheless current BCIs have many challenges, such as providing precise biofeed-16

back to the user: lack of touch, pressure, muscle lengthening and proprioception17

render the feedback poorly effective [10]. Indeed, the subject can usually only18

use sight to understand the difference between the desired action and the actual19

BCI output. Another important issue is latency: if the delay between the action20

and its feedback is too long, the ability of the patient to learn and improve the21

effective control of the BCI can be severely affected [11].22

Different approaches have been explored in the literature of BCI systems, e.g.,23

event-related potentials like P300 [12], steady-state visual evoked potentials24

(SSVEP, [13]), low frequency asynchronous switch design [14]. Here we focus25

on the detector performance of MRCP [1][2] (see an example in Figure 1). This26

EEG potential can be seen before a planned voluntary movement, both when27

it is executed and when it is simply imagined [1]. Moreover, the MRCP is28

found even if the patient is not physically capable of performing the movement,29

rendering its detection a good candidate for a BCI application [15].30

MRCPs have been studied for decades [1]. Research in the field has shown that31

their size and delay are adjusted according to the participants’ mental state32

and characteristics of the executed movement, such as speed, accuracy and33

frequency. Moreover, these potentials contain important information, including34

the intended limb, grasp force, speed and direction of the movement [16].35

Efforts have been devoted to developing systems for single trial MRCP detection36

for application in BCIs [17]. These attempts have been hindered by what is37

a common issue in BCIs, i.e., the signal to noise ratio (SNR), which is very38
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Figure 1: MRCPs of a healthy subject (participant number 1) in the case of motor execution.

The wave was obtained by an average of 50 large Laplacian spatial filtered EEG trials.

low (like most endogenous brain potentials recorded through the EEG). This39

reduces the accuracy of detection methods [18]. However, clinical studies have40

shown that participants can learn how to control and amplify MRCPs through41

training [19][20]. Individually calibrating endogenous BCIs has been postulated42

to be the solution to these problems [21]. Another important issue is the need43

of performing MRCP identification in order to give the user the impression to44

control the BCI in real-time [22].45

In this paper, an innovative technique is proposed to identify the MRCP. It is46

based on the estimation of an optimal non-linear combination of channels which47

isolates the waveform of interest, resulting in better performance for the MRCP48

based detector compared to previously proposed methods.49

2. Materials and Methods50

In the following sections, the data collection will be outlined as well as the51

analysis used in the current study.52
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2.1. Experimental data53

2.1.1. Subjects54

Sixteen healthy subjects aged 28±12 years, 4 men and 12 women, with no55

history of neurological diseases, participated in the experiment. All subjects56

gave their written informed consent. All procedures were approved by the local57

ethical committee (number 20130081).58

2.1.2. Experimental setup59

The subjects were placed in a chair in front of the computer with a hand force60

transducer (Noraxon USA, Scottsdale, AZ) in the right hand. They performed61

maximum voluntary contraction (MVC) three times and the highest value was62

retained. Then, grasp trials were executed. A feedback was given to the partici-63

pants to perform the grasp at 60% MVC force level during this motor execution64

task. The force data was sampled at 2000 Hz. All participants performed 5065

trials of both motor execution and motor imagination of palmer grasp. Each66

movement type was performed 2 × 25 times with a 2-3-minute break after the67

25th movement. The movements were performed in blocks; the order was ran-68

domized. The subjects were visually cued (see Figure 2) by a custom-made69

program (Aalborg University), and the produced force was recorded and used70

as input, so the subjects had continuous visual feedback. For the tasks where71

the movements were executed, the force was used to determine the movement72

onset. This was defined as the instant where all values in a 200-ms wide moving73

time window were above the baseline. The baseline was calculated from the74

recordings during the rest phase. All onsets were visually inspected.75

2.1.3. EEG Recording76

Continuous 9 channel monopolar (Ag/AgCl ring electrodes) EEG (EEG Am-77

plifiers, Nuamps Express, Neuroscan) was recorded from the following channels78

(according to the International 10-20 system): F3, Fz, F4, C3, Cz, C4, P3, Pz79

and P4. The signals were referenced to the right ear lobe and grounded at na-80

sion. Electrooculography (EOG) was recorded from FP1. The EEG and EOG81
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Figure 2: Visual cue provided to the participants.

were sampled at 500 Hz and converted with 32-bit precision. The impedance of82

all electrodes was below 5 kΩ. During the recordings, the subjects were asked83

to minimize eye blinks and facial and body movements. A digital trigger was84

sent from the visual cueing program to the EEG amplifier at the beginning of85

each trial.86

2.2. Signal processing87

We have developed an innovative filter to improve the SNR of EEG recordings88

containing MRCPs. The new method is compared to a state-of-the-art filter89

proposed in the literature [2].90

The data were divided as follows:91

� The measurement from one participant during motor execution was de-92

voted entirely for hyper-parameter optimization;93

� Every remaining session was divided in 2 parts, 70% for training and 30%94

for testing.95

Every test set was consequent in time to the corresponding training set, as96

to simulate a realistic calibration procedure. Some tests were also performed97
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considering a limited number of channels and a reduced training set.98

The signals were high-pass filtered at 0.04 Hz, to remove low frequency drifts,99

reflecting a measurement artifact (Butterworth filter with 40 dB per decade of100

attenuation outside of the pass band) [2]. Some examples of filtered data are101

shown in Figure 3.102

Blink artifacts exhibit a power significantly higher than the rest of the signal,103

rendering filtering ineffective as the small frequency components overlaying the104

MRCP are non-negligible [22]. Second Order Blind-source Identification (SOBI)105

[23] algorithm was shown to be capable of reliably identifying and isolating blink106

artifacts [24]. Specifically, the artifact was identified as included in the compo-107

nent (among those provided by SOBI algorithm) with lowest fractal dimension108

(computed by the Sevcik’s method [25]). Such a component was removed before109

reconstructing the signal. The same data considered in Figure 3 are shown after110

removal of blink artifacts in Figure 4.111

ECG lays outside the frequency band of MRCPs and can be removed by a low-112

pass filter. Specifically, a low-pass filter with cut-off 20 Hz was used (Butter-113

worth filter with roll-off 40 dB/decade). Moreover, the data were down-sampled114

by a factor of 10, bringing the sampling frequency to 50 Hz.115

2.3. Non-linear optimal spatial filter116

2.3.1. Linear approach117

To introduce the problem, we discuss here the design of a linear filter, which

is an approximation of the non-linear technique detailed in the following. The

method strives to find the best weight vector W which, when multiplied by the

multivariate EEG collected in the rows of matrix S, gives the best approximation

of the MRCP component A of the signal

S ·W = A+ τ (1)

where τ is a residual error. This linear model can be considered only as an ap-118

proximation of the real situation. Indeed, our ill-posed source separation prob-119
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(a) participant 1

(b) participant 2

(c) participant 3

Figure 3: Representative examples of EEGs from different participants, bandpass filtered

between 0.4 and 20 Hz.
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(a) participant 1

(b) participant 2

(c) participant 3

Figure 4: Representative examples of EEGs from different participants, bandpass filtered and

cleaned from artifacts.
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lem could likely benefit from a non-linear model. This observation suggested us120

to implement an algorithm able to learn non-linear mappings (described in the121

following). This is despite most authors managed the extraction of MRCPs from122

EEG recordings with fully linear models, which are surely simpler to manage123

than non-linear ones.124

Equation (1) is linear, in the canonical form of an Ordinary Least Squares125

(OLS) problem. The OLS method allows to get the vector W which minimizes126

the residual τ , under the following mathematical assumptions:127

� residuals have zero conditional mean;128

� predictors are linearly independent;129

� residuals are spherical.130

The validity of the above assumptions will be analyzed in the Appendix.131

A calibration process is used to estimate A, i.e., the MRCP component included132

in the signal. Assuming the vector W to be constant in time (which is reasonable133

considering that the dipole sources generating the MRCP are primarily affected134

by the physical properties of the skull and of the measuring system which are135

supposed to be time-invariant), we can estimate A by knowing the instant in136

which a movement was imagined or executed during a training session. A refer-137

ence signal is then generated, by placing a prototype waveform in relation to the138

movement onsets. Specifically, the prototype is a 1 s long wave starting from139

0 and linearly decreasing until the instant of a moving onset; then, it instantly140

reaches 0 in the following time sample (notice that different prototypes with du-141

rations in the range 0.5 - 2 seconds have been tested, obtaining similar results).142

Then, the vector W is calculated by solving the model on the training set and143

the MRCP over time (i.e, A) is computed for new unseen EEG recordings based144

9



on the estimated W :145

W = S−1 ·A (training set)

A = S ·W (testing set)
(2)

Notice that S is not square, so that it cannot be inverted. It was pseudo-146

inverted (Moore-Penrose inverse [26]). Replacing S−1 with its pseudo-inverse147

allows to minimize the square norm of the residual τ , obtaining the solution148

with minimum squared error. Notice that this solution is unlikely to feature a149

residual τ = 0, but still represents the best linear combination of channels to150

map the MRCPs to our prototype (in the least mean squared sense).151

2.3.2. Whitening Transformation152

Applying a transformation to S (matrix collecting the EEG channels in its

columns) that makes it spherical, i.e., with covariance equal to the identity

matrix, can ensure that the model satisfies the last two assumptions of OLS

method (i.e., orthogonality of predictors and sphericity of residuals), improving

the reliability of the results.

Thus, whitening was employed, by using singular value decomposition (SVD).

Consider the factorization of the matrix S written as

S = UΣV T

where U and V are orthonormal. The matrix Σ is square diagonal, so that its

inversion is immediate and can be used to whiten matrix S

Sw = UV T

Sw+ = V UT

where Sw and Sw+ are the whitened matrix and its pseudo-inverse, respectively.

In summary, the linear model now works as follows. The optimal vector is

obtained processing the training signal:

W = Sw+ ·A (training set)
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This vector is used to define the filter to be applied:

sest(t) = Sw
test ·W (testing set)

where sest(t) is the filtered signal obtained by processing the test data Stest,153

which ideally should be equal to the prototype waveform during an MRCP and154

zero otherwise.155

Notice that this method not only emphasizes the signal in the epochs containing156

the movements intention, while reducing the amplitude out of those epochs, but157

it also forces the MRCPs to be all similar, which could be useful to identify158

them.159

2.3.3. Non-linear method160

Up until now, the method we devised is only able to infer linear mappings be-161

tween the EEG signal and the MRCPs. In the field of machine learning, a162

common strategy to allow separation of non-linear data (e.g., in the field of163

support vector machines, SVM) is known as the kernel trick [27]. The method164

is based on the assumption that non linearly separable data can be linearly sep-165

arated when mapped in a different, usually higher dimensional, feature space166

[28].167

The idea of extending the dimensionality of the dataset by a non-linear trans-168

formation was also applied here. The data, after being extended by a non-linear169

function, were linearly classified, following the same method detailed in Section170

2.3.1. The Radial Basis Function (RBF, which is a common kernel) was used171

to transform our EEG data. It maps the data in an infinite dimensional space172

and allows a linear classifier to learn any smooth non-linear function [27][28]. In173

order to reduce the computational cost and memory storage, we approximated174

the kernel in a finite dimensional feature space [29]. Specifically, the Fourier175

transform of a RBF p(ω) is a Gaussian function, which is positive and real176

(this property holds also for other common shift invariant kernels, by Bochner’s177

theorem [29]). Thus, after normalization, we can consider it as a probability178

distribution function (i.e., a positive function with integral equal to 1). Hence,179
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writing the RBF as the inverse transform of p(ω), we can interpret it as the180

mean value of the complex exponential, or of the cosine function, as both the181

kernel and its transform are real. The RBF was then estimated using a set of182

cosine functions with random frequencies with distribution p(ω) and uniformly183

distributed phases (see [29] for details). The new kernel has finite dimensional-184

ity and can be simply reconstructed from the sampled points, so we can use it185

to explicitly map the EEG data to a high dimensional space before feeding it186

to the linear algorithm fitting the MRCPs.187

As shown by a fine tuning on preliminary tests, a dimension of 200 is enough188

to provide a significant performance boost to the algorithm without overfitting.189

The steps of this innovative non-linear filter are shown in Figure 5.190

The output of the filter was lowpass filtered with an exponential filter of order191

2. Then, a single shallow, CART-based binary decision tree with a maximum of192

10 nodes computed the thresholds at which the signal is to be considered either193

a MRCP or noise based on the univariate filter output.194

2.4. Comparison with a state-of-the-art method195

We have reproduced for comparison the Optimised Spatial Filter (OSF) with196

quasi-Newton BFGS optimizer and likelihood ratio based detector [2].197

The method calculates a virtual channel as a zero-mean linear combination of

the EEG channels such as to emphasize the energy of the MRCPs with respect

to the noise:

maximize : 10 · log10

[
P (
∑nc

k=1 xkSk(t))

P (
∑nc

k=1 xkNk(t))

]

subject to :

nc∑
k=1

xk = 0

where P (·) indicates power, nc is the number of EEG channels, S the concate-

nation of signal epochs (in which MRCPs were present) and N the noise (con-

catenation of epochs in which the MRCP was absent). The windows in which a

MRCP is present and absent are taken in the training data set. Starting from
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START

Bandpass EEG signal between 0.4Hz and 20Hz Fig. 3a, Fig. 3b, Fig. 3c

Apply artifact removal technique based on SOBI Fig. 4a, Fig. 4b, Fig. 4c

Perform SVD whitening to satisfy linear regression constraints

Generate reference signal from movement annotations in the training set

Fig. 7a, Fig. 7b, Fig. 7c

Apply the random Fourier features algorithm and use the Moore-Penrose inverse

to solve the linear system

SW = A

with S being the features, W the vector of spatial filter weights and A the reference

signal

Fig. 7a, Fig. 7b, Fig. 7c

STOP

Figure 5: Overview of the NL-OSF algorithm in the training phase (during the test, the data

are whitened, processed by the random Fourier features algorithm and applied to the vector

of spatial filter weights W to estimate the surrogate signal).
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the coefficients of the Laplacian spatial filter

xk =

 1, k = 1

− 1
nc−1 k 6= 1

(3)

where k = 1 for the electrode Cz, the coefficients are updated using the BFGS198

algorithm in order to maximize the SNR of such a linear combination.199

Here, the constraint that the filter coefficients have zero sum was implicitly

parametrized inside the loss function by using a penalty term

minimize :

(
10 · log10

[
P (
∑nc

k=1 xkSk(t))

P (
∑nc

k=1 xkNk(t))

])−1

+ (

nc∑
k=1

xk)2

To smooth the output of the OSF, we used a lowpass exponential filter of order200

2. The obtained surrogate signal was classified based on the likelihood ratio [30].201

Thus, it was necessary to calculate a reference signal to use in the classification202

process. This reference was computed as the average of all the MRCPs in the203

training data, as 2 s windows ending in the negative peak of the potential. The204

optimal threshold has been calculated using cross-validation on the training205

data and the Receiver Operating Characteristics (ROC) curve.206

2.5. Metrics207

Training is performed on continuous traces, while the results are computed on 2 s208

segmented windows of EEG data taken from the testing set. For every movement209

of the user, a single window is taken containing the 2 s before the motion210

execution and a second window is taken from 4 to 6 s before the movement in211

an interval in which there are no MRCPs. The algorithms are then asked to212

solve a balanced classification problem.213

The metrics chosen for the evaluation of the performances are the Accuracy,214

the True Positive Rate (TPR) and the False Positive Rate (FPR). They have215

been reported per-participant alongside the global mean and standard devi-216

ation. Performances of the different methods were compared using one-way217

Kruskal–Wallis ANOVA test by ranks, followed by post-hoc Wilcoxon signed218

rank test, if significant differences were obtained.219
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Some tests have also been made by changing some parameters from the default220

conditions. Specifically, the effect of reducing the number of detection channels221

was tested, by measuring classification performances when using a lower num-222

ber of channels: the electrodes F3, P4 and Fz have been removed. Moreover,223

the effect of reducing the training data was investigated: instead of using the224

training set including the 70% of the data, performances were also computed225

reducing the training to the 40% of the MRCPs. The Wilcoxon signed rank226

test was applied to make specific paired comparisons of the performances of the227

methods when either the number of recording channels or the training set were228

reduced.229

3. Results230

The output of the two filters OSF and NL-OSF is shown in Figures 6 and 7,231

respectively, for a few representative data (i.e., from the first 3 participants,232

during the motor execution task). Notice that NL-OSF shows waveforms corre-233

sponding to movement onsets which are more similar among them, with respect234

to those obtained by the OSF. The mean and standard error of MRCPs (aligned235

and averaged on the basis of the instants of movement onsets) are shown in Fig-236

ures 8 and 9, for the two filters, respectively, considering the same data of the237

previous figures. Notice that the average MRCPs obtained by the NL-OSF show238

smaller oscillations (with an almost monotonic decrease) than those provided239

by the OSF.240

The performances of the two methods on every participant are reported in Tables241

1 and 2, considering TPR and FPR (respectively), either in motor execution or242

imagination.243

With three one-way ANOVA tests, we see that all performance indexes show244

some statistically significant variation among different methods. The post-245

hoc test shows that in Motor Execution the accuracies of NL-OSF is better246

(p<0.001), its true positive rate is larger (p=0.016) and the false positive rate247
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True Positive Rate

Participant ID Motor Execution Motor Imagination

OSF NL-OSF OSF NL-OSF

1 0.86 0.93 0.92 0.85

2 0.74 0.93 0.62 0.92

3 0.84 0.69 0.62 0.77

4 0.63 0.85 0.07 0.71

5 0.50 0.86 0.79 0.79

6 0.86 0.93 0.69 0.69

7 0.77 1.00 0.69 0.69

8 0.71 0.50 0.57 0.79

9 1.00 0.92 0.62 0.69

10 0.77 0.87 0.29 0.79

11 0.57 0.86 0.43 0.93

12 1.00 1.00 0.07 0.86

13 0.50 0.86 0.92 0.85

14 0.59 0.93 1.00 0.93

15 0.38 1.00 0.86 0.93

16 0.29 1.00

Table 1: True Positive Rate of methods based on optimal spatial filter (OSF) and non-linear

optimal spatial filter (NL-OSF) applied to EEG data acquired during either Motor Execution

or Imagination.
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False Positive Rate

Participant ID Motor Execution Motor Imagination

OSF NL-OSF OSF NL-OSF

1 0.27 0.07 0.31 0.08

2 0.43 0.07 0.54 0.08

3 0.15 0.15 0.62 0.46

4 0.38 0.23 0.07 0.36

5 0.07 0.14 0.50 0.21

6 0.50 0.00 0.69 0.08

7 0.15 0.00 0.69 0.15

8 0.58 0.36 0.50 0.29

9 0.52 0.38 0.46 0.23

10 0.33 0.13 0.21 0.29

11 0.40 0.21 0.57 0.07

12 0.43 0.21 0.07 0.07

13 0.57 0.21 1.00 0.15

14 0.43 0.07 1.00 0.29

15 0.15 0.23 1.00 0.00

16 0.50 0.00

Table 2: False Positive Rate of methods based on optimal spatial filter (OSF) and non-linear

optimal spatial filter (NL-OSF) applied to EEG data acquired during either Motor Execution

or Imagination.
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(a) Result of the OSF Algorithm - Testing Set - Reference in dashed blue -

participant 1

(b) Result of the OSF Algorithm - Testing Set - Reference in dashed blue -

participant 2

(c) Result of the OSF Algorithm - Testing Set - Reference in dashed blue -

participant 3

Figure 6: Representative surrogate data obtained by the OSF Algorithm, during motor exe-

cution.

is lower (p=0.001) than for the OSF. Considering Motor Imagination, the NL-248

OSF is superior than OSF in terms of accuracy (p<0.001), true positive rate249

(p=0.009) and false positive rate (p=0.001).250
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(a) Result of the NL-OSF Algorithm - Testing Set - Reference in dashed blue -

participant 1

(b) Result of the NL-OSF Algorithm - Testing Set - Reference in dashed blue -

participant 2

(c) Result of the NL-OSF Algorithm - Testing Set - Reference in dashed blue -

participant 3

Figure 7: Representative surrogate data obtained by the NL-OSF Algorithm in different

participants, during motor execution.

The effect of a reduction of either the number of EEG channels or the size of251

the training set is shown in Figure 10. Moreover, possible differences in per-252

formances when considering motor execution or imagination are tested (paired253
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Figure 8: Mean and Standard Error of MRCPs in the testing set. A) participant 1, B)

participant 2 and C) participant 3.

test, removing from the motor imagination the participant whose data during254

motor execution were used for hyper-parameter optimization). Notice that per-255

formances decrease only in a few conditions, showing that the methods are quite256

stable to problems or to a reduction of information in the data (either due to257

motor imagination instead of execution or to a reduction of channels or training258

examples).259
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Figure 9: Mean and standard error of MRCPs in the testing set after NL-OSF. A) participant

1, B) participant 2 and C) participant 3.

4. Discussion260

A method for extracting the MRCP component from EEG recordings has been261

developed and tested on 15 recordings from different healthy subjects performing262

self-paced hand movements and 16 recordings of the same subjects imagining263

to perform such hand movements. Our approach is based on a non-linear filter,264

mapping multi-channel EEG into a surrogate signal. This signal should be265

ideally zero except when the user either performs or imagines a movement, in266

which case a prototype similar to an MRCP emerges.267
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Figure 10: Performances of the filters on the testing set as a function of the experimental

modality (either motor execution or imagination) and the reduction of either the number of

channels (6 instead of the 9 channels of the default model) or the size of the training set (40%

of the MRCPs instead of the 70% of the default model).

In the tests, the results of our method are compared to those of another filter268

(i.e., the OSF [2]) showing higher performances. Other methods have been pro-269

posed in the literature which have shown good performances, but they need to270

process epochs of EEG, making difficult the application in self-paced: the Lin-271

earity Preserving Projections (LPP) with Linear Discriminant Analysis (LDA)272
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[31]; the Adaptive Riemann Kernel (ARK) with SVM [32]. They have been also273

compared to our approach (not shown results), achieving performances which274

are not statistically different from those of our method.275

The main focus of the OSF is in increasing the energy of the potential in the276

epochs in which the MRCP is present and decreasing it when it is absent.277

However, the filter responses during different MRCPs are not imposed to be278

similar. On the other hand, our filter imposes both that the output is large279

only when the MRCP is present and that it is similar for different MRCPs.280

The result is that the output of our filter is much more consistent during motor281

intention of the participants than that of the OSF (Figures 6-9).282

It is worth noticing that the OSF presented here was coupled with pre-processing283

techniques which are adapted to our data and to the need of assessing the perfor-284

mance in realistic online conditions (in which subjective removal of perturbed285

epochs cannot be applied). Thus, the pre-processing was different from that286

used in the original paper in which it was proposed, where the blink was not287

attenuated automatically by a filter, but epochs with a clear blink were removed288

[2].289

Consider also that the techniques we employed to pre-process the signal could290

be not optimal in other applications or they could have poor generalization.291

Indeed, the literature in the field of EEG processing and multivariate signal292

analysis presents many interesting techniques (e.g., the constrained ICA [22])293

which could be tested as preliminary step to select the optimal combination for294

the specific application.295

In summary, our technique is based on a filter providing better performances296

than OSF. Furthermore, not shown results indicate that it has performances297

comparable to those of window based techniques, but it allows self-paced appli-298

cation. This is important, as it allows the patient to learn and adapt to the BCI299

during self-paced sessions [11]. Results hold up with a lower number of channels300

as well and in the case of a reduced training set, as shown in Figure 10.301
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5. Conclusions302

An innovative non-linear EEG filter has been developed for identification of303

MRCP during motor execution or imagination. The results are promising,304

showing better performances than a previous state-of-the-art filter. Thus, our305

algorithm could be of interest for application in self-paced BCI.306

Appendix - OLS Assumptions307

Here, we analyze whether the main OLS assumptions are verified.308

The residuals should have zero conditional mean. This is also known as the309

exogeneity constraint. The main causes of failure of exogeneity are the following310

[33]:311

� Measurement error;312

� Reverse causality;313

� Omitted variables;314

� Omitted sample selection;315

� Lagged dependent variables.316

We can easily see that our predictor matrix S should not be affected by these317

items (under proper measurement conditions and provided the assumption that318

the process which maps the source of the MRCPs to each channel does not affect319

its phase is verified).320

The predictors should be linearly independent. There is no guarantee that this321

assumption is verified. In fact, different channels could record the activity of the322

same sources in the brain or of different sources which have correlated activity.323

Whitening the data imposes this hypothesis to hold.324

The residuals should be spherical. This implies that the variance of the residual325

is diagonal and not dependent on time. If we assume that the MRCPs are small326

compared to the matrix S and thus the EEG signal, we can ensure that this327
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assumption is close to be verified, by imposing the matrix S to be spherical328

itself.329
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