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Abstract—Patient monitoring requires the acquisition of in-
creasingly larger amounts of biosignal data that needs to be
managed and transferred with minimum energy consumption.

As huge quantities of data are often very redundant, it is
possible to reduce their size directly on the edge of the system,
right after the acquisition. To do so, subspace analysis can be
considered a fundamental tool that can be used to significantly
reduce the size of high-dimensional data, thus minimizing the
requirements for data transfer. The problem of these methods
is that they often come with big memory and computation
requirements, as they are ultimately equivalent to the expensive
eigenspace evaluation.

In order to use subspace analysis methods with the minimum
requirements in terms of cost and energy consumption, we here
rely on two specialized streaming algorithms for the estimation
of the subspace of electroencephalogram (EEG) signals directly
after the acquisition on edge devices.

The implementation of these state-of-the-art algorithms is
tested on a common low-end microcontroller unit (MCU), which
is an ideal candidate as edge computing digital hardware plat-
form. The functional performance of these methods is evaluated
along with the requirements in term of computational time,
energy consumption and memory footprint.

I. INTRODUCTION

Nowadays, the acquisition and processing of bio-signals by
means of low-cost and low-power edge devices has gained an
increasing importance, due to the growing need to record large
amounts of data from patients.

In order to efficiently transfer large amounts of data, it is
often needed to extract only its most important features, an
operation that can be performed using a plethora of methods,
of which principal component/subspace analysis (PCA/PSA) is
certainly one of the most widespread. In this way it is possible
to pre-elaborate the acquired data right after its acquisition
and before its transmission to cloud storage, and this can be
generally performed on dedicated edge devices. In fact, large
amounts of the collected data are often redundant during the
extraction of the actual information and fully transmitting them
would be wasteful.

The idea behind PCA/PSA is to find a subspace of the
original signal space such that the corresponding data sets
projection has some special properties and maintains most of
the energy of the original data. Some of the many applications
of PCA/PSA consist in pattern identification in computer net-
work traffic analysis [1], anomaly detection [2], blind source
separation [3], surveillance [4], [5], and of course biomedical
applications [6], [7], tough this list is far from being complete.
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Fig. 1. General scheme of a streaming algorithm for subspace analysis in
case of EEG feature extraction.

The most straightforward way of performing PCA/PSA is
by means of batch methods, such as the eigenvalue decom-
position (EVD) or the singular-value decomposition (SVD)
techniques [8]. These methods work on big chunks of data
at the same time, thus having high memory requirements and
being computationally expensive. Because of this, they are not
suited for cheap and low-power edge devices.

A good alternative to batch methods can be found in
PCA/PSA streaming methods. Here, data windows are not
stored but immediately processed as they are available, thus
cutting down the memory requirements and the computational
complexity. There is a large number of streaming algorithms
and some of them have been presented recently (see, e.g., [9]–
[11]).

In this paper we explore the use of PCA/PSA streaming
methods for the extraction of features from EEG signals, with
the dataset presented in [12]. The setup taken into account
is a simplified version of [13], where EEG signals are sent
to the streaming algorithm in mini-batches of multiple spatial
vectors consisting of subsequent time samples and then tested
on ASIC hardware. Unlike [13], our focus is on the study of
two different streaming methods (the well-known Oja method
[14], [15], and the more recent GROUSE [16]) and on their
implementation on a low-end microcontroller that could be
used as edge device. In addition, we consider a batch-size of
only one spatial vector for further reduction of the memory
footprint.

The paper is organized as follows: Section II describes
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PCA/PSA streaming algorithms and the two employed meth-
ods. Section III reports the performance of the two methods
implemented in Python language with maximum precision
while in Section IV the implementation on a low-end micro-
controller edge device is described along with the performance
results and the cost in terms of memory footprint and energy
consumption. Finally the conclusion is drawn.

II. METHODS DESCRIPTION

We define a data stream as a sequence of vectors xt ∈ Rn,
with t = 0, 1, . . . containing one reading for each sensor for
the same time instant t. We model xt as an instance of a
discrete-time and ergodic stochastic process characterized by
a covariance matrix Σ = E

[
xtx

>
t

]
∀t, whereas E [·] refers to

the expectation operator and ·> indicates transposition.
Principal Subspace Analysis (PSA) aims at identifying the

subspace spanned by the m < n principal eigenvectors of Σ,
i.e., the one corresponding to the m largest eigenvalues. Prin-
cipal Component Analysis (PCA) refers to the identification
of the actual principal eigenvectors. The principal subspace
can be expressed as the span of the columns of a matrix
U ∈ Rn×m, that is column orthonormal, i.e., U>U = Im,
where Im is the m×m identity matrix.

Streaming algorithms work on an estimation U t at time
t that is iteratively updated each time a new vector xt is
acquired, so that U t → U when t grows (see Figure 1).

In this section we describe the two methods we want to
implement and test. For each method we give the update step,
i.e., the sequence of operations necessary to update matrix
U t−1 to matrix U t considering the current occurrence xt.

A. Oja

The first streaming algorithm is Oja, originally proposed in
[14] for the principal subspace estimation with m = 1, and
then extended to the rank-m cases in [15]. The algorithm starts
from a random column-orthonormal matrix U0 ∈ Rn×m. The
estimation of matrix U at time t is updated every time an
input sample xt is received with the following rule

U t = Ω
(
U t−1 + γtxtx

>
t U t−1

)
(1)

where Ω(·) is an operator that makes the columns of its
argument orthogonal. This can be, for example, the extraction
of Q matrix in the QR decomposition of the input matrix [17,
Chapter 2]. Finally, γt is the learning rate or step size that in
general may change with time.

Interestingly, the works in [18]–[20] regard Oja as an
extension of the well-know power method described in [21]
that, at the same time, is the same of solving a maximization
problem where the cost function is

JVar(U t) = E
[
‖U>t xt‖2

]
= tr

(
U>t ΣU t

)
(2)

where ‖·‖ indicates the l2 norm, tr (·) evaluates the trace of
its argument, and U t has a column orthonormality constraint.
Additionally, ΣU t is the gradient of (2) with respect to U t and
because of this (1) is equivalent to the update of a stochastic

gradient descent method where xtx
>
t is the approximation

of the correlation matrix Σ, γt is the learning rate, and
Ω(·) induces the update to output a matrix that is column-
orthonormal.

Furthermore, in order to reduce the overall computation,
Ω operation could be applied only after a certain number
of updates [18]. Anyways, the actual number of steps to
run without the orthonormalize operation depends on the
application.

Finally, since the convergence of the algorithms is related
to the choice of the starting matrix U0, [22] suggests a way
of warm start of the method that excludes the use of random
matrices.

B. GROUSE

The second method, Grassmaniann Rank-One Update Sub-
space Estimation (GROUSE), has been proposed in [16] as a
streaming subspace tracking algorithm. Even tough it has been
designed to work on the cases where some elements of xt are
not known, we consider here the variation of the algorithm
in the case of complete data. The operations consist in the
application of the stochastic gradient descent to minimize an
objective function based on the so-called spiked model [23]
where the observable x is assumed as an expansion of an m-
dimensional vector s such that st = U>t xt [16], [24]. The
objective function is

JSM(U t) = E
[
‖xt −U tst‖2

]
(3)

that is optimized while moving strictly in the set of all possible
column-orthonormal matrices, i.e., the Grassmaniann manifold
of the m-dimensional subspaces of Rn.

Starting from one of these column-orthonormal matrices,
the update operations for the case in which all the elements
of xt are known is

pt = U t−1yt

θt = arctan

[
(1− αt)

‖rt‖
‖pt‖

]

zt = cos(θt)
pt

‖pt‖
+ sin(θt)

rt
‖rt‖

U t = U t−1 +

(
zt

‖zt‖
− pt

‖pt‖

)
y>t
‖yt‖

(4)

where the expression for the evaluation θt comes from Eq. (3)–
(4) in [25] and where αt, that may or may not be constant
with time, is employed to alleviate the effect of noise. The
convergence of GROUSE is analyzed in [25], [26].

III. PERFORMANCE OF THE METHODS

In this section we test Oja and GROUSE methods on an
EEG dataset by detecting a subspace that characterize it. In
particular, we focus on Evoked Potentials (EPs) recordings
of brain electrical activity evoked by an external stimulus
that is delivered repeatedly to the subject. Data consists in
actual EP recordings taken from a normal-hearing subject who
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performed a simple auditory task that consisted in listening to
one second spaced speech syllables.

The dataset used is the same of [12]. The signals were
acquired through 32 brain channels, with a sampling frequency
of 512 Hz and then filtered with offline denoising algorithms
as described in [12]. Even tough the offline filtering contrasts
with the purpose of this work, we use it to obtain a clean
dataset useful as a starting point for the exploration of the
algorithms applied to real-world biosignals. Time-Shift PCA
(TSPCA) [27] is first applied in order to remove environmental
noise. This filtering algorithm consists in delaying a pair of
extra channels specifically used as noise reference that are
then orthogonalized and used as a basis to project the brain
channels. Channels are finally cleaned by removing the signal
projected on this base. After this, Sensor Noise Suppression
(SNS) [28] is used to filter the resulting signals. This tech-
nique uses the assumption that all the relevant information is
acquired by more than one channel. Because of this, noise
reduction can be performed by projecting each signal on the
subspace spanned by its neighbor signals and then replaced by
the result. During this process, glitches and wide-band noise
not present in the neighbor signals is removed, while shared
features are kept. Finally, a spatial filter is used to remove
unwanted physiological sources. A blind source separation
technique called Denoising Source Separation (DSS) [29]
is used to partition the recorded activity into components
that are stimulus-related and stimulus-unrelated, based on the
reproducibility of stimulus-evoked signals.

Having 32 EEG tracks, data can be represented so that, for
each time sample, we have a vector xt ∈ Rn, with n = 32.
The total number of time samples is 357888 and each sample
is sent to the streaming algorithms one after another.

We set as target the subspace matrix U ∈ Rn×m evaluated
with EVD batch PCA. The columns of U are the m eigen-
vectors corresponding to the m greatest eigenvalues of the
correlation matrix Σ.

To quantify the effectiveness in subspace analysis, we use
a Python framework running on a double precision Intel CPU
architecture and for both methods we monitor the sequence of
reconstruction errors

et = ‖U −U tU
>
t U‖F (5)

where ‖·‖F indicates the Frobenius norm of its argument.
In case of correct estimation we have U t = U and thus

et = 0 while the error is maximum when U t is orthogonal to
U , yielding et = m.

Tests are performed to obtain a subspace with m = 4 and
results in terms of et are shown in Figure 2. The trend of
et with growing t is highly dependent on the parameters γt
for Oja and αt for GROUSE. In fact, a bigger γt (or a lower
αt) results in a faster convergence, but the algorithm produces
larger et values. Because of this we show the curves for two
different constant values of the parameters for each method
(γt = 5 · 10−3 and γt = 5 · 10−5 for Oja, αt = 0.985 and
αt = 0.9995 for GROUSE), so that it is possible to appreciate
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Oja (γt = 5 · 10−3)
GROUSE (αt = 0.985)

Oja (γt = 5 · 10−5)
GROUSE (αt = 0.9995)

1
Fig. 2. Performance comparison for subspace identification on Python
framework with 357888 EEG samples with n = 32, m = 4. For each method
are presented two different curves, with different parameters γt and αt.

the trend variation. By having a varying γt and αt, it would
be possible to maximize the convergence speed and stability
of the algorithms.

As expected, the two methods are able to deal with the
subspace identification task with an et <

1
10 . GROUSE is

capable to keep the same performance of Oja even without
the orthonormalize operation.

IV. IMPLEMENTATION ON EDGE DEVICES

We propose the implementation of the two streaming
PCA/PSA methods on edge devices. In particular, we choose
for the tests a low-end device such as STM32H743ZIT (Rev.
V), based on ARM Cortex M7 architecture.

In order to perform the task, we developed a C library1

targeting the ARM Cortex microcontroller (MCU) family of
devices. The library mainly uses the well know ARM CMSIS-
DSP library2 for algebraic computation.

The methods are implemented with the maximum effort in
minimizing the memory requirements and the computation
time by means of techniques such as loop unrolling and
register blocking operations.

While the operations for GROUSE only need some minor
care in order to minimize the overall cost, Oja requires extra
attention due to the orthonormalization operator Ω(·) used in
(1). Ω(·) is implemented as QR decomposition, which comes
to be the main bottleneck of the method.

As the QR decomposition is to be applied to matrix Ut,
which is tall (n > m), a good choice for its implementation
is to employ Cholesky decomposition (Chol-QR) [30], one of
the cheapest algorithms for this task. While this algorithm is
generally unstable for many applications, it is revealed to be
good enough in this case as shown in the numerical evidences.

Chol-QR algorithm is described in Algorithm 1.
As previously mentioned, we employ a STM32H743ZIT

(rev. V) MCU based on ARM Cortex M7 family with a 32-
bit floating point unit, fCLK = 480 MHz and both instruction

1online repository https://github.com/SSIGPRO/streaming pca
2online repository https://github.com/ARM-software/CMSIS 5
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Algorithm 1 Cholesky-based QR decomposition

1: cholesky(A>A)→ LL> where L is lower triangular
2: R← L>

3: R−1 ← BS(R) (BS: backward substitution)
4: Q← AR−1

TABLE I
PERFORMANCE ON STM32H743ZIT (REV. V) @1.8V, 480MHz, CACHE

ON (n = 32,m = 4)

Method Clock
cycles per

update

Time per
update

Energy per
update (no

peripher-
als)

Energy per
update (all

peripher-
als)

Oja 5240 10.92 µs 2.91 µJ 4.44 µJ
GROUSE 2394 4.99 µs 1.33 µJ 2.03 µJ

cache and data cache enabled3. The case study used is the
same described in Section III.

For each iteration, energy consumption is estimated as
Eupdate = VDD × IDD × tupdate, where VDD is the supply
voltage, IDD is the absorbed current and tupdate is the time
per update, evaluated as the measured number of clock cycles
divided by the clock frequency. In particular, the values of
IDD are obtained from datasheet of STM32H743ZIT (rev. V)
considering VDD = 1.8 V and the two cases where either no
peripherals or all the peripherals are enabled.

Table I shows time per update and energy consumption for
both methods.

Neglecting the stack memory, which is very small, we
evaluate the memory footprint as the sum of the memory
necessary for the storage of the matrix U t, the vector xt and
the extra memory buffers required by each method.

For each method, the size of the extra buffers and the overall
memory rule, along with the actual memory footprint for the
case study (n = 32,m = 4) are reported in Table II.

Finally, the performance on the subspace identification of
the two methods running on MCU is reported in Figure 3. The
variation compared to Figure 2 is minimal as the MCU keeps
a good subspace extraction performance on the dataset.

V. CONCLUSION

We have reviewed and tested two different streaming meth-
ods for subspace identification, with the aim of reducing the

3code has been compiled with fast target gcc option (-Ofast) in order to
maximize the speed performance.

TABLE II
MEMORY REQUIREMENTS RULE FOR EACH METHOD (MEMORY EXAMPLE

WITH n = 32,M = 4, 32-BIT SCALARS)

Method Size of extra buffers Overall memory rule Memory
example

Oja k × k n(k + 1) + k2 704B
GROUSE n, k n(k + 2) + k 784B

101 102 103 104 105
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t

e t

Oja (γt = 5 · 10−3)
GROUSE (αt = 0.985)

Oja (γt = 5 · 10−5)
GROUSE (αt = 0.9995)

1
Fig. 3. Performance comparison for subspace identification on
STM32H743ZIT (rev. V) with 357888 EEG instances with n = 32,
m = 4. For each method are presented two different curves, with different
parameters γt and αt.

dimensionality of the acquired data directly at the edge, before
it is transferred to the cloud storage.

In order to assess the performance of these algorithms,
we have extracted the principal subspace of a group of
recorded real EEG signals. The functional performance has
been tested with a high-precision architecture running a Python
framework.

As the main target of the work is to make these algo-
rithm work on low-end edge devices, further tests have been
performed directly on an MCU device running a dedicated
framework written in C. Special care has been dedicated to the
minimization of computational time and memory footprint.

The algorithms show good performance in the extraction of
the principal subspace of EEG data, even being lightweight
both in terms of computational complexity, memory footprint
and working on a low-end, energy efficient device.
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