
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated Identification of Application-Dependent Safe Faults in Automotive Systems-on-a-Chips / Bagbaba, A. C.; da
Silva, F. A.; Reorda, M. S.; Hamdioui, S.; Jenihhin, M.; Sauer, C.. - In: ELECTRONICS. - ISSN 2079-9292. - 11:3(2022),
p. 319. [10.3390/electronics11030319]

Original

Automated Identification of Application-Dependent Safe Faults in Automotive Systems-on-a-Chips

Publisher:

Published
DOI:10.3390/electronics11030319

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2960553 since: 2022-04-05T10:59:05Z

MDPI

electronics

Article

Automated Identification of Application-Dependent Safe Faults
in Automotive Systems-on-a-Chips

Ahmet Cagri Bagbaba 1,2,* , Felipe Augusto da Silva 1,3 , Matteo Sonza Reorda 4 , Said Hamdioui 3 ,
Maksim Jenihhin 2 and Christian Sauer 1

����������
�������

Citation: Bagbaba, A.C.; Augusto da

Silva, F.; Sonza Reorda, M.;

Hamdioui, S.; Jenihhin, M.; Sauer, C.

Automated Identification of

Application-Dependent Safe Faults in

Automotive Systems-on-a-Chips.

Electronics 2022, 11, 319. https://

doi.org/10.3390/electronics11030319

Academic Editor: Patrick Siarry

Received: 18 December 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cadence Design Systems, 85622 Munich, Germany; dasilva@cadence.com (F.A.d.S.);
sauerc@cadence.com (C.S.)

2 School of Information Technologies, Department of Computer Systems, Tallinn University of Technology,
19086 Tallinn, Estonia; maksim.jenihhin@taltech.ee

3 Mathematics and Computer Science, Department of Quantum and Computer Engineering, Faculty of
Electrical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands;
s.hamdioui@tudelft.nl

4 Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy;
matteo.sonzareorda@polito.it

* Correspondence: abagbaba@cadence.com

Abstract: ISO 26262 requires classifying random hardware faults based on their effects (safe, detected,
or undetected) within integrated circuits used in automobiles. In general, this classification is
addressed using expert judgment and a combination of tools. However, the growth of integrated
circuit complexity creates a huge fault space; hence, this form of fault classification is error prone and
time consuming. Therefore, an automated and systematic approach is needed to target hardware
fault classification in automotive systems on chips (SoCs), considering the application software. This
work focuses on identifying safe faults: the proposed approach utilizes coverage analysis to identify
candidate safe faults considering all the constraints coming from the application. Then, the behavior
of the application software is modeled so that we can resort to a formal analysis tool. The proposed
technique is evaluated on the AutoSoC benchmark running a cruise control application. Resorting
to our approach, we could classify 20%, 11%, and 13% of all faults in the central processing unit
(CPU), universal asynchronous receiver–transmitter (UART), and controller area network (CAN) as
safe faults, respectively. We also show that this classification can increase the diagnostic coverage of
software test libraries targeting the CPU and CAN modules by 4% to 6%, increasing the achieved
testable fault coverage.

Keywords: automotive systems; fault classification; fault injection; formal methods; functional safety;
diagnostic coverage; ISO 26262; safe faults

1. Introduction

Complex hardware and software systems are frequently used in safety critical envi-
ronments such as automobiles, planes, or medical devices. Safety standards have been
introduced to estimate and reduce the risk of critical failures in embedded systems utilized
in these areas. This risk might correspond to physical injury or damage to the overall health
of humans. Therefore, special solutions for hazards mitigation are required to develop
systems working in critical domains. Industries in the above domains need to comply with
standards focusing on the development of hardware/software components according to
system requirements [1]. Concerning the automotive industry, the number of systems on
chip (SoCs) and applications deployed in automobiles is significantly increasing with the
final objective of developing self-driving cars. Modern automobiles already incorporate
more than 100 electronic control units (ECUs) [2] to cope with the challenges originating
from complex applications, such as advanced driver assistance systems (ADAS). Com-
plexities of the hardware and software applications escalate on both the architectural and

Electronics 2022, 11, 319. https://doi.org/10.3390/electronics11030319 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5251-4378
https://orcid.org/0000-0002-9371-5296
https://orcid.org/0000-0003-2899-7669
https://orcid.org/0000-0002-8961-0387
https://orcid.org/0000-0001-8165-9592
https://orcid.org/0000-0003-0647-0938
https://doi.org/10.3390/electronics11030319
https://doi.org/10.3390/electronics11030319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics11030319
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030319?type=check_update&version=2

Electronics 2022, 11, 319 2 of 26

functional levels. The hardware complexity is defined as how many components and blocks
are integrated on a single SoC/chip. The software complexity is related to the number
and time complexity of the pieces that should be combined to deliver the functionality
and internal interactions. Moreover, migrating to more advanced integrated circuit (IC)
technologies poses a more significant challenge for the safety of automobiles since several
phenomena, such as nanoelectronics aging, process variation, or electrostatic discharge
used in advanced nodes, introduce numerous vulnerabilities [3]. Consequently, the auto-
motive industry has developed the ISO 26262 Road Vehicles Functional Safety Standard [4]
to minimize the risks connected to electric and/or electronic systems used in vehicles.
For automotive applications, each electronic system must detect and correctly manage a
high percentage of potential faults during the operation in the field to avoid life-critical
situations. In order to decide which faults could disturb the safety critical functionality of
an IC, faults must be classified based on their effects in the operation mode using expert
judgment and a combination of tools. From this perspective, faults can be classified as safe
or dangerous. A safe fault does not contribute to the violation of the safety goal, whereas a
dangerous fault may lead to a failure relevant for the overall system, that is, create a hazard.
We note that all the terms and definitions are given in the context of functional safety
verification guided by ISO 26262. Examples of safe faults include faults located in parts of
an IC that are not used by the application and faults masked by some safety mechanism.
Fault classification is of prime importance for the test of ICs in the operational mode.
This test can be performed resorting to different solutions, including design for testability
(e.g., BIST) and software test libraries (STLs) based on the software-based self-test (SBST)
paradigm [5]. In both cases, the identification of safe faults is vital since it enables us to
remove safe faults from the initial (normally huge) fault list and to focus the test efforts
toward the remaining faults, i.e., the testable ones [6]. Identifying safe faults thus makes it
easier to reach the target diagnostic coverage (DC), helping to achieve safety requirements,
such as a higher automotive safety integrity level (ASIL) [4]. For these reasons, there is a
high demand for an automated, systematic, and comprehensive safe fault identification
technique.

The effects of a fault classification flow are summarized in Figure 1, referring to
a generic case study. We assume that an SoC runs a single software (SW) application
during its operational life and uses an STL as a safety mechanism. Therefore, the DC
of this STL must be calculated to prove that it detects dangerous faults up to a certain
extent in the target design. In the first step of the flow, without any classification, all the
faults are unknown, as shown in Figure 1. Then, an initial classification is performed to
identify the first group of structurally safe faults, i.e., those which are safe due to the IC
structure (e.g., faults located on lines which are not connected to the IC primary inputs
and/or outputs). These kinds of safe faults can be identified using any automatic-test-
pattern-generation (ATPG) or formal analysis tool. However, other safe faults may exist,
which cannot be identified by these tools; therefore, a considerable amount of faults are
still unknown after the first step. The unknown faults need to be further analyzed to
check whether their effects may impact the safety critical functionalities or not. Thus,
fault simulation with an STL is deployed to classify faults better. In practice, this step
(named unoptimized classification in Figure 1) produces inaccurate results since it is
often impossible to exhaustively evaluate all possible input stimuli or activate all possible
operating modes in an application or system [7]. Undetected faults may correspond
either to safe or dangerous faults. As in Figure 1, fault simulation targets unknown
faults and classifies them as either detected or undetected based on the propagation
of faults. A non-negligible amount of undetected faults may be observed depending
on the workload that runs on the target design. Usually, all the undetected faults are
pessimistically classified as dangerous. For this reason, the gathered figures from fault
simulation may not be representative of the design operational behavior, as not all faults
can be accurately classified. DC is calculated in this step using (1), where Detected is the
number of faults classified as detected and dangerous by fault simulation; Total is the

Electronics 2022, 11, 319 3 of 26

size of the target system’s fault list; and Safe is the number of safe faults. The purpose
is to check if the collected results from fault simulation satisfy the desired safety metrics.
If DC is not enough, the test must be improved, or an additional classification effort
targeting undetected faults, i.e., a subset of undetected faults, is required to classify their
effects. Experts usually perform this step based on their design knowledge; however, this
is error prone and time consuming. Consequently, the unoptimized classification implies
that there is still room for improvement in the fault classification pessimism. Finally,
using the technique presented in this work, a formal analysis approach optimizes the fault
classification (named optimized classification) as shown in the fourth bar of Figure 1, which
targets the identification of more safe faults, reducing the number of undetected faults
and, therefore, the overall pessimism of the classification. The optimized classification
decreases the denominator of (1) by classifying more safe faults than in the unoptimized
classification, and the DC is increased.

DC = Detected/(Total − Sa f e) (1)

Figure 1. Hardware fault classification flow.

This work advances hardware fault classification with an automated workflow, which
assists safety experts in addressing fault classification reducing human error and the time
to signoff. The present work focuses on the automated analysis of undetected faults to
check whether they affect the safety critical functionalities of ICs. In the case that a fault
cannot violate a safety goal or disturb safety critical outputs, it is defined as a safe fault. We
consider a realistic scenario corresponding to a special-purpose system, i.e., an SoC which
performs a single SW application, which remains the same during the whole operational
life. Using the proposed technique, we can identify application-dependent safe (App-Safe)
faults. One example of App-Safe faults is associated with the faults in the CPU debug
unit, which is not used by the SW application during the operation life of the SoC. For this
purpose, first, we perform several logic simulations to extract a target system’s operational
behavior by investigating code coverage results. Then, the candidates for being labeled
safe faults which are not safety related are automatically translated into formal properties,
which then configure the formal environment to identify App-Safe faults.

As a case study, the AutoSoC benchmark [8], an automotive representative SoC, and
the cruise-control-application (CCA) as a target SW application are used. We focused on the
CPU core and several peripherals, i.e., the universal asynchronous receiver–transmitter IP
(UART) and the controller area network controller IP [9] (hereinafter referred to as CAN).

This paper addresses the problem of what is new in ISO 26262 functional safety
verification that differs from general reliability in terms of safe faults. The main goal
of functional safety verification is to avoid safety goal violations, not general failures
in the design. This is the concept of safe faults. Our hypothesis is on deploying the
strengths of existing technologies in an innovative methodology to resolve the issues. As a
result, this paper proposes a novel methodology based on the innovative use of existing

Electronics 2022, 11, 319 4 of 26

technologies that address the problem. The main contributions of this work can be listed
and summarized as follows:

• A new systematic approach combined with engineering concepts in order to deliver
an industrial solution that can be deployed for SoC targeting the automotive industry.

• An automated safe fault identification technique supported by an industrial-grade
electronic design automation (EDA) tool flow: logic simulation of the target design
when it runs the software application, extraction of coverage reports that reflects
the behavior of the software application, development of formal properties that are
translated from coverage reports, and formal analysis execution.

• ISO 26262-driven safe fault identification technique that contributes to the testing and
verification theory by focusing the test efforts on the other faults (dangerous).

• A scalable formal property generation approach to translate the design’s operational
behavior into the formal analysis tool.

• An experimental demonstration of the effectiveness of the proposed technique on a
comprehensive automotive benchmark SoC, using its CPU and the UART and CAN
peripherals.

• Significant improvements in the classification of safe faults and of the resulting DC,
thus allowing to achieve a higher safety level. When the AutoSoC runs the CCA, 20%,
11%, and 13% of all faults in the CPU, UART, and CAN are classified as safe using the
presented technique, respectively. The value of DC is increased by around 6% and
4% for the CPU and the CAN, respectively. This analysis also reduces the number of
undetected faults by 1.5 and 1.6 times in the CPU and CAN, respectively.

The rest of this paper is structured as follows. Section 2 summarizes the previous and
related works in the area. Section 3 provides some background, covering hardware fault
classification and the techniques to achieve this classification, such as fault simulation and
formal analysis. Section 4 defines the App-Safe faults in detail and presents the proposed
method step by step. Section 5 briefly describes the AutoSoC benchmark suite, including
its CPU, peripherals, and the software application that we use in this work. Section 6
reports and discusses the experimental results of the proposed technique. Finally, Section 7
draws some conclusions.

2. Related Works

Many works exist in the literature about hardware fault classification. This section
examines some of them based on different approaches, such as fault simulation, formal
methods, ATPG, or hybrid approaches.

Several works have explored fault simulation targeting fault classification. For ex-
ample, Ref. [10] optimizes fault simulation by integrating it into the design verification
environment and using the clustering approach to accelerate the fault simulation cam-
paigns. However, using only fault simulation for fault classification is computationally
expensive and incomplete; hence it requires additional methods to classify undetected
faults. Similarly, Ref. [11] relies only on fault simulation to classify the faults, but there
was no additional classification technique proposed. Similarly, Refs. [12–15] deploy fault
simulation to classify faults in automotive systems considering the requirements of ISO
26262. In short, when fault simulation is used alone to classify faults, additional techniques
targeting the classification of undetected faults are necessary.

Hence, some other works have investigated formal analysis, focusing on safe fault
identification. Refs. [16–18] use the ability of the formal techniques to analyze the design
behavior. Safe fault identification is also applied to GPUs. For example, ref. [19] employs
formal analysis to increase fault coverage when the identification technique is applied to
an open-source GPU. These works specifically focused on identifying structurally safe
faults, i.e., faults for which there are no test or input stimuli due to the hardware structure,
independently of the software and the application.

Researchers have also combined fault simulation and formal analysis leveraging fault
classification. Refs. [20,21] have an eclectic approach that makes use of the strength of

Electronics 2022, 11, 319 5 of 26

different technologies. Even though these works are promising in terms of the results, they
still require many manual efforts based on the engineer’s expertise.

On the other side, ATPG is also a promising technique to identify safe faults. Examples
of this approach are [22–24], which aim at identifying untestable faults in sequential circuits.
We note that untestable faults are, by definition, safe faults [25]. In addition, Refs. [6,25,26]
resort to ATPG to identify application-dependent safe faults, which is the same target of
the work described in this paper. Even though these works can identify safe faults using
the ATPG, they still have a manual part in their flow, i.e., they are semi-automated.

Considering application-dependent safe faults, some works have proposed solutions
for the classification of these kinds of faults. For example, Ref. [27] explores the use of
safe faults to optimize STL fault coverage in microprocessors, which is not safety critical.
However, the scope of the work is limited only to CPU modules, and the deployed tests are
not automotive representative. Additionally, Ref. [28] focuses on safe fault identification
in only CAN; thus, the analysis of a complete automotive representative SoC is missing.
In addition, Ref. [28] analyzes a combination of test programs developed for CAN, which
makes it weaker as this work examines safe faults when an SoC runs a practical industry-
scale software application. Last, the presented work in this paper has a more advanced
approach in the sense that the proposed technique is more automated and systematic;
hence, it is less error prone and time consuming.

To address the outlined gaps, the technique proposed in this paper corresponds to a
fully automated fault classification technique, which focuses on safe faults when a CPU is
running a specific SW application. The main strength of the proposed approach lies in the
developed formal properties, which are extracted via the analysis of the target system’s
operational behavior.

3. Background

This section, first, provides basics about hardware fault classification. Then, fault
simulation and formal methods for hardware fault classification are explained.

3.1. Hardware Fault Classification

ISO 26262 divides the malfunction of electrical/electronic components into two cate-
gories, corresponding to systematic and random faults [4]. A systematic fault is manifested
in a deterministic way and can only be prevented by applying process or design measures.
On the other hand, a random fault can occur unpredictably during the lifetime of a hard-
ware element. When we consider safety critical designs, such as automotive, medical, or
aerospace designs, safety and verification engineers must prove that both the correct and
safe functionalities of these designs are guaranteed, taking into account both systematic
and random faults.

Several sources exist for random hardware faults, such as extreme operating con-
ditions, aging, or in-field radiation. Additionally, each fault type should have a fault
model that describes how faults from these sources should be modeled at the appropriate
hardware design abstraction level (e.g., at the gate level or register-transfer level (RTL)).
Moreover, faults can be permanent and transient. Transient faults occur and subsequently
disappear. On the other hand, permanent faults occur and stay until removed or repaired.
This work focuses on permanent faults modeled as stuck-at faults, i.e., signals getting
permanently stuck at a given logic value, i.e., 0 (stuck-at-0, SA0) or 1 (stuck-at-1, SA1),
following what safety standards in the automotive domain suggest. We also note that a
stuck-at fault can apply to all netlist signals, such as the ports of logic gates or registers. In
this paper, we focus on random hardware faults (specifically permanent faults), only.

In order to determine the probability of a fault causing a safety critical failure, its
effects must be classified into two different categories as follows.

• Safe: A safe fault does not disturb any safety critical functionality because it is not in
safety relevant logic, or it is in safety relevant logic but is unable to impact the safety
critical functionality of a design (i.e., it cannot violate a safety goal).

Electronics 2022, 11, 319 6 of 26

• Dangerous: A dangerous fault impacts the safety of the device and creates a hazard
that may produce a safety goal violation.

3.2. Fault Simulation

As an integral part of the safety critical IC development, fault simulation is a widely
used technique to identify fault effects [29]. Fault simulation tools analyze an RTL or
gate-level abstraction of an IC by performing a simulation with some given test stimuli.
In general, the fault injection flow is based on the comparison between the results of the
good run and those of the faulty run. First, the good run is run to generate reference
values. In this step, observation points where the propagation of faults is monitored are
specified. Then, the faulty run is executed with faults injected. In the end, the reference
values obtained by the good run and the faulty values generated by the faulty run are
compared for the classification of each injected fault, and we can determine whether each
injected fault is detected or undetected. Faults are classified as detected when at least one
output value changes for a specified observation point between the good run and the faulty
run. Otherwise, the fault is classified as undetected.

Although fault simulation is a widely used and adopted technique by both industry
and academia, it suffers from two problems [7]:

• Incomplete results: It is impossible to simulate all possible combinations of input
sequences when considering today’s complex applications and devices. Hence, some
faults cannot be accurately classified as safe or dangerous with the fault simulation
technique.

• No-effect faults: Faults injected into components of the target system that are not
activated during the execution of a workload (testbench) will result in no-effect
faults. These faults are classified as undetected by the fault simulation. This causes
ambiguous results because these faults might be dangerous when different or more
comprehensive input stimuli are used.

Because of the two reasons listed above, it may be required to use additional clas-
sification techniques, such as formal methods, as explained in the following subsection,
to classify faults after fault simulation, whether they are safe or not. We must also men-
tion that both sets of detected and undetected faults may contain safe and dangerous
faults. Therefore, if a fault is not classified and not proven safe, it should be pessimistically
considered dangerous.

The following subsection explains how formal methods classify faults, distinguishing
between safe and dangerous.

3.3. Formal Methods

Formal methods help to classify faults based on their effects. An analysis is performed
to determine whether or not a target design satisfies a set of properties or conditions. This
approach is usually a combination of different techniques that employ static analysis and
algorithmic calculations. Compared to fault simulation that applies one single stimulus,
formal analysis is less limited since it abstracts from any specific stimulus. On the other
hand, the computational complexity may limit the formal analysis applicability [28]. In this
case, the classification of all faults can be impossible; thus, a formal analysis tool should
be fed by formal properties, developed carefully, considering the constraints from the SW
application and looking for a compromise between computational feasibility and result
accuracy, as it is done in this work.

In general, formal tools apply two checks, structural analysis check and formal analysis
check to identify safe faults, as explained below.

3.3.1. Structural Analysis Check Types

In the structural analysis check, formal tools use the topological characteristics of a
design to determine the testability of each fault. There are three methods of structural fault
analysis:

Electronics 2022, 11, 319 7 of 26

• Out-of-cone of influence (COI) analysis: This method checks whether a given node
is outside the COI of a given observation point(s); in that case, the fault is safe. In
Figure 2, all faults located on nodes in the COI of out1 (shown in green) are safe
since the considered observation point is out0 in the example analysis. It is obvious
that stuck-at faults on the cell ports of G3 cannot propagate to out0, as they have no
physical connection with out0. Hence, faults on G3 are safe.

• Unactivatable analysis: This is to check if a SA0 or SA1 fault is located on a node
that is constant 0 or 1; if so, the fault cannot be activated. In this case, the fault is
unactivatable and safe. In Figure 3, assuming that in0 is tied to logic zero, f0 for SA0 is
unactivatable and safe.

• Unpropagatable analysis: This is performed to check if a fault is activated and in the
COI of the considered observation point but cannot be propagated to the outputs. In
this case, the fault is safe. In Figure 3, the AND gate G2 can block the propagation of
f1 if one of the in1 or in2 is always set with the logic value zero. Hence, f1 would be
safe for SA1 or SA0, as it can never be propagated to out0.

Figure 2. Out-of-COI example when out0 is the only safety critical output.

Figure 3. Unactivatable and unpropagatable analysis example.

3.3.2. Formal Analysis Check Types

As opposed to structural analysis checks for which physical connections of a design
are taken into account, formal analysis checks are used to classify faults as well. The
approach uses a good machine and bad machine similar to the fault simulation and injects
a fault in the bad machine for formal analysis. In the end, the output signal values of good

Electronics 2022, 11, 319 8 of 26

and bad machines are compared to check whether an injected fault is propagated or not.
A formal tool generally generates a Boolean representation of the function implemented
by the circuit (or part of it) and uses formal techniques as explained above to prove this
Boolean equation. Formal analysis tools use various engines based on Boolean expressions
representation and manipulation techniques, such as binary decision diagrams (BDDs) [30]
to prove the formal properties exhaustively. There are two types of this analysis:

• Activation analysis: This analysis checks whether the fault can be functionally acti-
vated from the inputs. If not, then it is determined to be safe.

• Propagation analysis: This one checks whether the fault can propagate to the relevant
output(s). If it cannot, then it is safe.

The technique described in Section 4 deploys both structural and formal analysis
checks resorting to formal methods.

4. Proposed Application-Dependent Safe Fault Identification Method

In this section, first, we explain the definition and details of application-dependent
safe faults. Then, we describe each step of the proposed technique.

In Section 3, we explain that a safe fault does not disturb any safety critical functionality
because it is not located in any safety relevant logic or is in a safety relevant component.
Based on this explanation, we further classify safe faults as follows:

• Structurally safe (Str-Safe): These are faults that cannot be activated or propagated
to the outputs of interest by any test sequence because of the design’s structural
constraints. For example, a fault in the redundant logic or a floating net (i.e., any net
that does not have a load) is Str-Safe. Another example is supply0 and supply1 nets.
Specifically, a SA0 fault on supply0 net and a SA1 fault on a supply1 net are Str-Safe.
Finally, a SA1 fault on a pull-up gate and a SA0 fault on a pull-down gate are Str-Safe.

• Functionally safe: As opposed to structurally safe faults, a test or test sequence for
functionally safe faults exists, and their effects may propagate to design outputs.
However, they do not affect any safety critical functionality. For example, faults in the
debug unit of a CPU not used due to hardware configuration are functionally safe.

The present work focuses on a subset of functionally safe faults, corresponding to
application-dependent safe faults (App-Safe). App-Safe faults are related to the SW applica-
tion that the target system executes, and they cannot disturb the safety critical functionality
in the operational mode. Therefore, it can be said that a fault can be App-Safe for one
software application but may be dangerous for another software application.

More specifically, the target system considered in this work performs a single software
application during the whole operational life. During the operation in the field, this
application and its input data set do not access all the design parts; thus, inaccessible
components generate App-Safe faults. For example, if the SW application does not use any
multiplication operation, all resources related to the multiplication opcode become App-
Safe faults. Therefore, opcodes of an SW application are a good indicator for App-Safe fault
identification. Referring to the multiplication example again, when the SW application,
which runs on the target design, does not include multiplication opcode, the SW application
does not trigger multiplication hardware in the arithmetic logic unit (ALU), so faults on
these components contribute to the App-Safe fault list. Another example of App-Safe faults
can be found in the design-for-test modules of the design. The SW application does not
use these hardware elements during the normal operation mode; hence, the corresponding
faults are App-Safe.

In the following subsection, we explain the proposed flow to identify App-Safe faults
in an industrial-size SoC when an SW application is being run on it.

4.1. The Proposed Flow

In Figure 4, the proposed flow to identify App-Safe faults is shown, step by step.
At the beginning of the flow, we have a design-under-test (DUT) circuit (typically, an

Electronics 2022, 11, 319 9 of 26

SoC) and a SW application running on it. First, we run several logic simulations with
different representative input data sets. The goal of running logic simulations is to analyze
the design’s behavior when it runs the SW application. Next, application-specific formal
properties are developed to translate the design’s operational behavior into the formal
environment. Formal properties provide input to the formal analysis tool to identify App-
Safe faults. Finally, the formal analysis tool is deployed, and safe faults are listed. In the
following subsections, we discuss each step in detail.

Figure 4. Proposed application-dependent safe fault identification flow.

4.1.1. Logic Simulation

In this step, we perform several logic simulations on the design under test (DUT)
executing the SW application with different representative realistic data input sequences,
i.e., set1 to setn, as shown in Figure 4. More than one logic simulation is performed when
each of them runs with different input data since we aim to identify which design parts are
independent of the input data set. The purpose of performing logic simulations is two-fold:

• To understand which design parts are affected by the input data set;
• To extract the design’s operational behavior when it runs an SW application.

To achieve the objectives, we generate hardware design code coverage data per each
logic simulation and dump them into the coverage reports.

In general, logic simulations aim to detect which points are not toggled, as these are
App-Safe candidates that must be addressed. Concerning coverage metrics, the proposed
work focuses on hardware code coverage that assesses how well the stimuli exercise the
design code by pointing to design components that did not meet the desired coverage
criteria [31]. Our technique deploys toggle and block coverage sub-types of design code
coverage to identify App-Safe faults. Block coverage is a primary code coverage metric that
identifies which lines in the code have been executed and which have not. On the other
hand, toggle coverage monitors, collects, and reports the signal toggle activity, allowing
the identification of unused signals or signals that remain at a constant value of 0 or 1.

The block and toggle coverage metrics provide insight into the SW application be-
havior during the operational life of an IC. Thus, we can identify App-Safe candidates
included in the functionally safe fault list. More specifically, block coverage can indicate
that some states are never activated, indicating that the SW application does not use the
corresponding design components. Likewise, constant signals identified by toggle coverage
can highlight invalid configurations, not utilized functions, among others. Moreover, the
combination of block and toggle coverage data should be carefully analyzed because they
can point out further information about the SW application’s behavior. For the sake of an
example, an untoggled signal may never activate a state machine block, and this can cause
some other blocks to remain unactivated during the simulation. The small Verilog code in
Listing 1 and Table 1 illustrates block coverage, toggle coverage and explains why both of
them should be carefully analyzed. Listing 1 shows that r f _data_in block is never activated
since break_error is never toggled to logic 1 as shown in Table 1. This coverage results also
means that r f _data_in never gets the right-hand side value at line 402, as the block is not

Electronics 2022, 11, 319 10 of 26

activated. This example points out the importance of assessing block and toggle coverage
together.

After running logic simulations and measuring the hardware code coverage metrics
presented above, the hardware coverage metrics data are available for report generation
and analysis. At the end of this step, coverage reports represent the design’s operational
behavior under the effect of different input data sets. When this behavior is translated
into formal properties, as explained in the following subsection, we call them application-
specific formal properties.

Listing 1. Block coverage example: r f _data_in is not executed.

if(srx_pad_i | break_error)
// The following "begin" block is covered (100%)
begin

if(break_error)
// The following block is not covered (0%)
rf_data_in <= {8'b0 , 3'b100);

else
// The following block is covered (100%)
rf_data_in <= {rshift , 1'b0 , rparity_error , rframing_error };
// The following block is covered (100%)
rf_push <= 1'b1;
rstate <= sr_idle;

end

Table 1. Toggle coverage example: break_error is not toggled.

Signal Name 0-to-1 Toggling 1-to-0 Toggling

break_error 0 0

4.1.2. Application-Specific Formal Property Development

The development cycle of ICs begins with inferring the specification and requirements
of the target system. Additionally, the DUT must be verified with a formulated verification
plan, which is defined by both design and verification engineers. Then, features or require-
ments of the DUT are created and mapped to the formal properties to deploy them in a
formal analysis tool [32]. Formal properties are created from the design specification and
implementation decisions. Thus, after extracting the target system’s operational behavior
through logic simulations, in this step, we translate this behavior to the formal properties
to be used in a formal analysis tool, which will identify additional App-safe faults.

We use two types of formal properties to define the correct behavior of the design.
The first one is assume statement, which creates an assumption for the specified Boolean
expression that evaluates to either true or false. In the general sense, it specifies that the
given property is an assumption and is used to generate the input stimulus. Hence, assume
statements can be helpful when we define a design configuration or to inform the tool
how the design inputs can behave. Without this assumption, a formal tool checks all
possible input combinations of the DUT. There are two benefits of using assume statements
in the formal environment. First, it allows excluding illegal input combinations when
known. Legal inputs are those that we expect to see during normal operation. It is not
realistic to expect the design to behave correctly when all possible input combinations
are being applied, unless we explicitly define every possible set of input combinations
that the design can theoretically see. The second benefit of using assume statements is
that it intentionally reduces the state space, which is exhaustive when no assumption is
defined. For example, as we want to prepare our formal environment considering the
design’s operational behavior, we should disable the scan_enable pin, as the scan chain
is not activated during the operation and is used only for test purposes. In this case, the
assume statement given in (2) is created to inform the formal tool about the scan_enable

Electronics 2022, 11, 319 11 of 26

signal behavior; thus, the input test stimuli of a formal analysis tool are limited accordingly.
The command given in (2) simply informs the tool that scan_enable is always logic-0.
Assume statements also increase the safe fault identification capacity of a formal analysis
tool by guiding it. Moreover, similar to the example given below, the input ports of design
instances are suitable candidates for assume statements.

assume− env {scan_enable == 1′b0} (2)

The second formal property is the fault propagation barrier, which creates a formal
barrier that blocks the propagation of a fault. In this case, faults cannot propagate after
this barrier; therefore, they cannot disturb any safety critical functionality. For instance,
knowing that the debug unit is not used in the design’s operational mode, we can block all
faults to propagate from it and identify more App-Safe faults. As seen in (3), the formal
analysis tool is asked to block all faults propagated to du_dat_o, which is the debug unit’s
data output signal. As in this given example, output ports are proper candidates for a fault
propagation barrier as opposed to assume statements, for which input ports are suitable
candidates.

check_ f sv− barrier {du_dat_o} (3)

Consequently, the application-specific formal properties [33] can be developed using
assume statements and fault propagation barriers. By doing so, the internal architecture
and logical details of the target system, the operational constraints (if any), or the initial
configuration of the design can be defined as formal properties to be used in the formal
analysis step. Therefore, the design’s operational behavior can be transferred from the
logic simulations into the formal analysis tool. The following subsection explains how the
formal analysis tool uses these application-specific formal properties.

4.1.3. Formal Analysis

Having specified the formal properties of a target design in a suitable notation, a
formal analysis tool can be employed to generate App-Safe faults. The advantage of the
formal analysis is that it provides a precise answer to whether a fault is propagated since
it considers all possible input stimuli combinations (yet configured and limited thanks to
assume statements as explained before) and hence, it eliminates the dependency on input
stimuli. In this step of our flow, a formal analysis tool checks each fault in the target design
to see whether it can be propagated to the observation points or not. If any input stimuli
cannot propagate a fault, it is classified as safe; in our case, it is App-Safe. Otherwise, the
fault falls into the dangerous category.

The formal analysis flow, which includes three phases, is shown in Figure 5. Phase
I begins with the creation of input files that are the formal properties established in the
previous stage and the DUT. Then, it continues with the development of the tool command
language (TCL) setup script for the formal analysis tool. The setup script consists of Verilog
files, libraries, and formal property files. The setup script first analyzes design and property
files to check for syntax errors. Then, it defines clock and reset signals. The clock definition
is to specify the characteristics of how the clock is driven during a formal analysis run. The
reset specification aims at bringing the design to a known state and avoiding unreachable
failure states. In the next step, warnings are generated by the formal analysis tool if there
is a mismatch between formal properties and the DUT. For example, a signal tied to the
ground in the DUT and the assume statement that defines this signal as if it is always logic-1
can create a mismatch, and a warning is generated. However, as we automatically translate
coverage reports to the formal properties, this is not the case for the work proposed in this
work. Then, in Phase II, the formal engine proves the formal properties by running the
structural and formal checks as presented in Section 3.3. Finally, in Phase III, App-Safe
faults are identified and reported.

In brief, a formal analysis tool uses formal properties to generate safe faults. When
we include formal properties driven by SW application, as mentioned before, we enable

Electronics 2022, 11, 319 12 of 26

the tool to work in a well-specified configuration. Hence, formal analysis with the formal
properties increases the number of identified App-Safe faults.

Figure 5. Formal analysis phases.

5. Case Study: The AutoSoC Benchmark Suite

The proposed application-dependent safe fault identification method is evaluated on
the AutoSoC benchmark suite, which we conceptualized in [8]. The AutoSoC is an open-
source benchmark suite, incorporating all required elements in the format of a configurable
SoC. It is developed to support research in the automotive domain by providing varied
hardware configurations, safety mechanisms, and representative software applications. In
this section, we explain the AutoSoC by detailing its CPU and other functional blocks.

5.1. General Architecture of the AutoSoC

Developed by characterization of commercial CPUs used in the automotive field, the
AutoSoC has two main processing units as the safety island and the application specific
block, as illustrated in Figure 6. While the safety island handles all safety-critical processes
driven by ISO 26262 [4], the application-specific block executes the hardware needed for
application-specific processing. It is also important to note that the safety island and the
application-specific block have dedicated software stacks to execute distinguished appli-
cations. The interconnect block deploys Wishbone Bus for internal SoC communication.
Additionally, the remaining blocks in Figure 6 are included to fulfill the requirements for
communication, security, and general infrastructure.

Since the AutoSoC is implemented as a modular, it has several configurations as
detailed in [8]. One of these configurations named AutoSoC QM is used in this work.
This configuration is a fully functional version of the benchmark suite. When considering
functional blocks of the AutoSoC shown in Figure 6, the AutoSoC QM configuration has
only the application-specific block, but here, the presented work remains suitable to all
available configurations of the AutoSoC.

The main CPU used in the development of the AutoSoC is the mor1kx implementation
of the OpenRISC [34]. This implementation provides all necessary tools and examples

Electronics 2022, 11, 319 13 of 26

for developing SoCs, such as CPU, memory, debug unit, communication protocols, and
a bus. Concerning software resources, the AutoSoC includes several options, some of
which come from the mor1kx package and the others developed by ourselves in conformity
with automotive functional safety analysis. These software resources are available as
both BareMetal, and the real-time executive for multiprocessor systems (RTEMS) real-time
operating system [35]. Furthermore, the automotive cruise control application (CCA) is
developed and targeted for safe fault identification. This application is based on BareMetal
and the RTEMS operational system and covers several tasks: reading vehicle sensor data
from UART and CAN, computing actuation, and setting engine parameters. In addition,
the AutoSoC has STL programs that target the CPU (mor1kx_cpu). These STL programs
are developed for online testing of the AutoSoC. The current available STL presented in
the open-source AutoSoC package comprises 16 test programs [8].

Finally, the AutoSoC is available at both the register-transfer level (RT-Level) and gate
level. The synthesis is performed using Cadence GPDK045 (45nm CMOS Generic Process
Design Kits). The proposed approach in this paper is demonstrated using the gate-level
model of the AutoSoC.

Figure 6. AutoSoC functional blocks.

5.2. UART IP

The AutoSoC benchmark suite includes a UART IP, which incorporates the industry
standard National Semiconductors’ 16550A device features. Furthermore, as it is a well-
known and widely-used communication standard by the industry and academia, and the
proposed safe fault identification method is also extended to the UART. In this subsection,
we provide details about the adopted core.

UART is a block of circuitry that uses asynchronous serial communication with
configurable speed. It operates data transfer by receiving data from a peripheral device or
a CPU. Moreover, the UART includes an interrupt system and control capability tailored
to minimize software management of the communication link. The UART IP used in the
AutoSoC operates in a 32-bit bus mode fully compatible with Wishbone Bus. As depicted
in Figure 7, the UART core consists of receive logic, control, and status registers, modem
control module, transmit logic, Baud generator logic, and interrupt logic. Incoming serial
messages are received by the RX shift register, whose Baud rate is programmable through
Baud generator logic. Received messages are placed in the receive FIFO if the incoming
messages have no problems. On the contrary, the TX shift register handles the transmission
of data written to the transmit FIFO. Control and status registers allow the specification

Electronics 2022, 11, 319 14 of 26

and observation of the format of the asynchronous data communication used. Modem
control has registers that allow transferring control signals to a modem connected to the
UART. The UART IP also has Baud generator logic to control transmit and receive data
rates. Finally, interrupt logic allows enabling and disabling interrupt generation by the
UART.

The AutoSoC benchmark suite includes the above-explained UART IP and some
test programs to experiment with the functionality of the UART to provide a baseline for
researchers to develop and validate their approaches.

Figure 7. Block diagram of the UART IP.

5.3. CAN Controller IP

The CAN is a communication bus standard introduced by Bosch in 1986. It is in-
tended to work in the automotive field for serial communication applications among
microcontroller units. The CAN has several benefits; it is low-cost, and it has the ability
to self-diagnose and repair data errors. These features promote CAN’s popularity in the
automotive and some other industries, such as medical or aerospace [36]. As it represents
the automotive industry’s challenges, we validate the proposed safe fault identification
method on CAN.

The AutoSoC benchmark suite has open hardware implementation of the SJA1000 [9],
which is a standalone controller for the CAN, developed by Philips Semiconductors in the
early 2000s. Figure 8 shows the block diagram of SJA1000 CAN. The CAN transceiver is
a module to connect other nodes to the CAN. The CAN core block controls the reception
and transmission of CAN frames. The interface management logic implements the CAN
interface as a link to the host CPU through its set of registers. Additionally, this block
configures the operational mode of CAN, whether it works in BasiCAN or PeliCAN mode.
The transmit buffer stores messages in extended or standard format. The CAN core block
reads messages from the transmit buffer whenever the interface management logic forces it.
The acceptance filter comes into prominence when receiving a message. It checks whether
the message on the bus has to be stored by the CAN or not. All received messages accepted
by the acceptance filter are stored in the receive FIFO.

As the AutoSoC benchmark suite uses a Wishbone Bus, the adopted CAN is directly
connected without the need for bridges between different bus interfaces. When it is required
to add another node to be communicated with the Host CPU, the CAN Transceiver provides

Electronics 2022, 11, 319 15 of 26

a straightforward way for connection. Moreover, the AutoSoC benchmark suite provides
an STL for the self-test of the CAN. As it is explained in [37], the developed STLs implement
an effective in-field test for the CAN based on a functional approach and also provide
experimental evidence to demonstrate its effectiveness.

Figure 8. Block diagram of the adopted SJA1000 CAN controller IP.

6. Experimental Setup and Results

This section first describes the experimental setup we used to quantitatively assess
the effectiveness of the proposed approach. Then we provide the results in a separate
subsection by focusing on CPU, UART, CAN, and finally the combined results.

6.1. Experimental Setup

In order to demonstrate the effectiveness of the proposed App-Safe fault identification
method, we used the experimental setup shown in Figure 9. Our setup is composed of two
AutoSoC nodes; each includes a CAN and a UART IP to communicate with each other,
and one of the two AutoSoCs (named AutoSoC-0) is assumed to be active, whereas the
other (named AutoSoC-1) is the passive node. Moreover, CCA accesses CAN or UART
in both the AutoSoC-0 and the AutoSoC-1. Thus, each CCA comes in two modes, even
though the executed steps are symmetric; the two AutoSoC nodes alternatively receive and
send messages in the same configuration. Furthermore, even if it is changeable, AutoSoC-0
receives messages first, while AutoSoC-1 transmits first in our experimental setup. Finally,
the whole system is simulated at the gate level.

Concerning the EDA tools, we used Cadence Xcelium™ for logic simulations, Ca-
dence® Integrated Metrics Center (IMC) for coverage analysis, Cadence® JasperGold®
Functional Safety Verification (FSV) App for formal analysis, and Cadence® Xcelium™
Fault Simulator (XFS) for the fault simulation. However, the approach proposed in this
paper remains applicable to other tool flows as well.

In brief, we first performed logic simulations using the hardware configuration de-
scribed before, which runs the CCA SW application using different input data sets, as
shown in Figure 4. Then, coverage reports are generated and translated into application-
specific formal properties that configure the formal analysis environment according to
the SW application’s behavior. Finally, the formal analysis tool is deployed to identify
App-Safe faults.

Electronics 2022, 11, 319 16 of 26

Figure 9. Experimental setup composed of two AutoSoC nodes.

6.2. Experimental Results

This subsection presents the identified safe faults in CPU, UART, and CAN, respec-
tively. Then, the combined results (fault simulation + formal analysis) are reported for the
CPU and CAN modules (this step does not include the analysis of UART).

6.2.1. Safe Faults in CPU

Firstly, App-Safe fault identification is checked in the CPU core (which has 96,354
faults in total) when it runs a SW application. We summarize the safe fault results of the
CPU in Table 2.

Table 2 categorizes the results based on the analysis we run. In the top row, it can be
seen that we performed four analyses as follows:

• Application-independent: The formal analysis tool is deployed on the gate-level
netlist of the AutoSoC without any formal properties, meaning that the identified safe
faults are valid for any SW application.

• BareMetal-CCA: The CCA runs BareMetal, which refers to running the SW application
directly on a CPU without the support of an operating system. In order to perform
this analysis, the gate-level netlist of AutoSoC and the formal properties (as explained
in Section 4.1.2) are used as inputs to the formal analysis tool.

• RTEMS-CCA: Unlike BareMetal-CCA, the SW application runs on an operating system
in this analysis, meaning that it can start and stop different processes concurrently.
The RTEMS-CCA causes higher signal activity when compared to BareMetal-CCA, as
it runs on operating systems that trigger more signals. In addition, RTEMS-CCA uses
two additional opcodes compared to BareMetal-CCA. This means that RTEMS-CCA
triggers more design components than BareMetal-CCA.

• BareMetal-Sum: For this analysis, we use an entirely different SW application than
CCA. The application performs a sum operation, and it has fewer opcodes than
BareMetal-CCA. This SW application aims to show how App-Safe faults change when
the CPU is running a different application.

In brief, App-Safe faults are originated from what a SW application executes in an IC.
For example, some design components are not accessed during the design’s operational
life, such as debug units or scan chains. In addition, unused opcodes cause App-Safe faults,
meaning that if (for example) the multiplication opcode is not used in the SW application
that runs on the IC, all signals related to multiplication hardware become App-Safe faults,
as they are not exercised. Table 2 reports the results for the CPU core, also detailing the
results achieved on each component module inside it. In the application-independent
analysis, the formal analysis tool identifies 8.785% safe faults with respect to all faults in
the CPU. We highlight that all the identified safe faults in the application-independent
analysis are Str-Safe faults because the formal tool could not identify any safe faults using
the formal fault analysis check types mentioned in Section 3.3.2 without formal properties.

Concerning the three application-dependent analyses (BareMetal-CCA, RTEMS-CCA,
and BareMetal-Sum):

Electronics 2022, 11, 319 17 of 26

• The top module includes connectivity signals and configuration-related signals. Among
these, debug unit’s address and data signals, interrupt request signals, multicore con-
figuration signals, special-purpose-register signals are identified as safe in all analyses
since they are not activated due to the SW applications configuration. Depending on
the opcodes used in the applications, there are slight differences in BareMetal-CCA,
RTEMS-CCA, and BareMetal-Sum. For example, RTEMS-CCA triggers exception
signals, which are connected to the top level.

• The Decode_execute Unit is the module where the instruction memory management
unit (IMMU) and the data memory management unit (DMMU) signals take part.
Many safe faults are identified in the IMMU and DMMU, which are not used by the
SW applications. The number of safe faults is different between BareMetal-CCA and
RTEMS-CCA because of the exception signals used by RTEMS-CCA, as mentioned
above. In addition, the deviation between BareMetal-CCA and BareMetal-Sum is due
to division and multiplication-related signals, which BareMetal-Sum does not use.

• The load–store unit computes the addresses used by load and store instructions. Safe
faults may exist, as not all addresses are used by the SW applications. In addition, some
connection signals create a slight difference between BareMetal-CCA and RTEMS-CCA.

• The fetch stage fetches the next instruction from memory into the instruction register.
Therefore, it is directly associated with the address range, which is not fully covered
by the SW application. Therefore, safe faults can be identified in this unit. In addition,
the difference between BareMetal-CCA and RTEMS-CCA is due to exception signals.

• The control stage has the most considerable impact on the number of identified safe
faults. This unit contains features such as a tick timer, interrupts, and configuration
registers. Since the CPU configuration is the same in all applications, configuration
registers create the same amount of safe faults. However, the tick-timer unit has a
higher activity in RTEMS-CCA; hence, it has fewer safe faults when the CPU runs
RTEMS-CCA.

• Concerning the arithmetic logic unit, the proposed technique identifies the same amount
of safe faults in BareMetal-CCA and RTEMS-CCA, as they use the same arithmetic
opcodes. However, BareMetal-Sum performs only addition operations; therefore, all
the other arithmetic operations contribute to the safe faults.

• The decode unit is directly affected by the used opcodes; hence, there is a difference
between the numbers of safe faults, as all three analyses use different numbers of
opcodes.

The results in Table 2 show that the percentage of safe faults varies widely from
one module to another, depending on the tasks performed by the modules. In addition,
the number of App-Safe faults is relevant, accounting for about 20%, 14%, and 40% in
BareMetal-CCA, RTEMS-CCA, and BareMetal-Sum applications, respectively.

Electronics 2022, 11, 319 18 of 26

Table 2. Safe faults in CPU.

CPU Modules
Application-Independent Baremetal-CCA RTEMS-CCA Baremetal-Sum

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 1679 1.743% 1725 1.790% 1716 1.781% 1717 1.782%
Register File 2 0.002% 5 0.005% 2 0.002% 5 0.005%

Decode_Execute Unit 651 0.676% 844 0.876% 719 0.746% 949 0.985%
Load Store Unit 910 0.944% 2380 2.470% 2317 2.405% 2380 2.470%

WriteBack Mux Unit 0 0.000% 0 0.000% 0 0.000% 76 0.079%
Fetch Stage 976 1.013% 1230 1.277% 1195 1.240% 1230 1.277%

Control Stage 3966 4.116% 11,618 12.058% 6418 6.661% 11,618 12.058%
Arithmetic Logic Unit 55 0.057% 1000 1.038% 1000 1.038% 19,478 20.215%

Decode Unit 5 0.005% 267 0.277% 16 0.017% 315 0.327%
Branch Prediction Unit 0 0.000% 0 0.000% 0 0.000% 0 0.000%

TOTAL 8465 8.785% 19,484 20.221% 13,670 14.187% 38,193 39.638%

Electronics 2022, 11, 319 19 of 26

6.2.2. Safe Faults in UART

Concerning the UART module, which has 19,120 faults in total, we followed the
same procedure using two scenarios (application-independent, and CCA is compared),
and the results are detailed in Table 3. We also noted that there is no difference between
BareMetal-CCA or RTEMS-CCA, so we only report the identified safe faults as CCA in
Table 3. In short, the proposed technique identified 11.088% safe faults, which is two times
more than when compared to the application-independent analysis.

More specifically, we have the following:

• The regs unit has configuration registers, whose value is written in the initialization
phase. Since the UART configuration is fixed in CCA, some parts of the UART are
unused; thus, several safe faults can be identified in this unit.

• Safe faults in the transmitter module originate from the configuration of the trans-
mission format, such as the selected BAUD rate. Therefore, more safe faults can be
found in this unit when the SW application is fixed, as in this work. Correspondingly,
transmitter fifo is partially affected by these factors.

• Concerning the receiver module that is directly affected by the configuration registers,
a significant amount of increase in the number of safe faults is observed. This mainly
stems from the fact that the receiver module is responsible for generating interrupts.
However, the CCA works in polling mode, meaning that no interrupt is used. More-
over, the receiver module has a modem configuration, which CCA does not need. By
extension, receiver fifo is partly affected, similar to transmitter fifo.

Table 3. Safe faults in the UART IP.

UART Modules
Application-Independent CCA

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 9 0.047% 19 0.099%
wb_interface 78 0.408% 78 0.408%

regs 357 1.867% 1003 5.246%
transmitter 67 0.350% 67 0.350%

uart_sync_flops 6 0.031% 6 0.031%
fifo_tx 101 0.528% 101 0.528%

receiver 171 0.894% 651 3.405%
fifo_rx 195 1.020% 195 1.020%

TOTAL 984 5.146% 2120 11.088%

6.2.3. Safe Faults in CAN

The same analysis is performed for the CAN module, which has 38,012 faults in total,
and the results are provided in Table 4. In the application-independent analysis, the formal
analysis tool can classify only 1.415% of all faults as safe. On the other hand, when the
proposed approach is deployed, the amount of safe faults is increased to 12.909%, which is
not negligible.

Similar to UART, the number of safe faults in CAN is directly affected by its configura-
tion. In CCA, we configure the CAN to work in peliCAN mode, which has extended frame
format messages. When the basiCAN mode is used, more safe faults can be identified. To
put the results given in Table 4 more explicitly, we have the following:

• Acceptance_code_mask defines whether the corresponding incoming bit is compared
to the respective bit in the acceptance_code_regs. Similarly, bus_timing_regs defines
the values of the Baud rate prescaler and programs the period of the CAN system.
Moreover, clock_divider_regs controls the clock frequency for the microcontroller and
allows to deactivate the clock pin. In addition, the CCA works in polling mode, so

Electronics 2022, 11, 319 20 of 26

safe faults can be found in the IRQ registers. Consequently, all these registers should
not be changed after the initial configuration; thus, this creates additional safe faults.

• Bit timing logic is directly affected by bus_timing_regs explained above, so the CCA
originates some safe faults in this unit.

• Bit stream processor corresponds to the control and processing unit of the peripheral. It
is a sequencer that controls the data stream between the transmit buffer, the receive
fifo, and the CAN bus. Additionally, error-detection, arbitration, stuffing, and error-
handling are done in this unit. In addition, the bit stream processor is affected by
the configuration, such as working mode of the CAN, such as the listen-only mode
or self-test mode. The CCA does not use these modes, which provide the safe faults
shown in Table 4.

• Acceptance filter checks whether the message currently on the bus has to be stored
by the peripheral or not. If the message is accepted, it is stored in the fifo. In other
words, the bit acceptance filter and its fifo are related to acceptance_code_regs and
acceptance_code_mask; therefore, the fixed content of these registers gives rise to safe
faults.

Table 4. Safe faults in the CAN controller IP.

CAN Modules
Application-Independent CCA

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 10 0.026% 41 0.108%
can_registers 22 0.058% 769 2.023%

acceptance_code_regs 0 0.000% 52 0.137%
acceptance_mask_regs 0 0.000% 52 0.137%

bus_timing_regs 0 0.000% 26 0.068%
clock_divider_regs 11 0.029% 41 0.108%

command_reg 13 0.034% 57 0.150%
error_warning_reg 10 0.026% 74 0.195%

irq_en_reg 0 0.000% 15 0.039%
mode_regs 14 0.037% 53 0.139%

tx_data_regs 0 0.000% 115 0.303%
Bit Timing Logic 46 0.121% 299 0.787%

Bit Stream Processor 354 0.931% 2988 7.861%
can_crc_rx 0 0.000% 0 0.000%

Acceptance Filter 3 0.008% 256 0.673%
can_fifo 55 0.145% 69 0.182%

TOTAL 538 1.415% 4907 12.909%

6.2.4. Combined Results: Fault Simulation and Formal Analysis

In this step, we combine the fault simulation and formal analysis, as it is proposed
in this work, to check the increase in the DC. This analysis targets the CPU and the CAN
modules in the AutoSoC.

As mentioned in Section 3.2, the fault simulation is not enough to classify all faults
because workloads used for fault simulation cannot activate and propagate all faults.
Therefore, some faults become undetected as a result of fault simulation. It is needed to
analyze these undetected faults to check if the desired DC is reached. If the DC does not
match the requirements, then the undetected faults must be re-analyzed using alternative
methods, such as the proposed technique in this work. In short, the purpose of this step is
to show that the proposed technique can increase DC to achieve the figures required by a
given automotive safety integrity level.

In order to perform this analysis, we resorted to the software-based self-test (SBST) [5]
approach in the form of STLs. In the considered scenario, the AutoSoC runs BareMetal-
CCA in the field, and the STL, when activated, forces the processor to execute a proper

Electronics 2022, 11, 319 21 of 26

sequence of instructions. Then, a signature is produced based on the generated results, and
the application can compare it with the expected results if there are faults.

The developed STL for the AutoSoC CPU is a combination of 57 test programs, partly
taken from [8] and partly newly developed for this paper. Concerning the STL for CAN,
we use the same test programs described in [28]. The STL was developed as a collection of
tasks that can either operate independently or collectively, depending on the self-test time
slot [37].

The following steps are applied:

• First, Str-Safe faults are identified using the Cadence® JasperGold® Functional Safety
Verification (FSV) App.

• Second, we use the Cadence® Xcelium™ Fault Simulator to inject SA0 and SA1 faults
at cell ports of the AutoSoC CPU and CAN modules, which run the STL as a workload.
As a result, faults are classified as detected or undetected.

• Third, DC is calculated by using (1).
• Fourth, App-Safe faults are identified before being excluded from undetected faults.

This process is incremental, always focusing on faults that were previously undetected.
• Finally, DC is calculated again with the newly achieved numbers using (1).

Figures 10 and 11 detail the results of the STL efficiency and uptrend in DC when
App-Safe faults are identified. Concerning the analysis in CPU, Figure 10 shows that
8465 Str-Safe faults are identified in the beginning. Then, when fault simulation is deployed,
71,255 detected and 16,634 undetected faults are classified. After fault simulation, DC
is 81.07%, calculated using (1). Then, by applying the proposed safe fault identification
technique using formal methods, 5627 App-Safe faults are identified, i.e., undetected faults
are reduced to 11,007. Using again (1), DC is increased to 86.62%. A similar analysis is
performed in CAN as shown in Figure 11. As a result, DC is increased from 88.04% to
91.97%.

Figure 10. Combined results in CPU: uptrend in DC when fault simulation and formal analysis
combined.

Electronics 2022, 11, 319 22 of 26

Figure 11. Combined results in CAN: uptrend in DC when fault simulation and formal analysis
combined.

The proposed technique appears to be a promising way for the classification of unde-
tected faults via safe fault identification. The combined results show that DC is improved
by around 6% for the CPU and 4% for the CAN. Moreover, with a final DC of 91.97%, the
CAN achieves the requirements for an automotive ASIL B [4] hardware component as is,
i.e., without design modifications.

6.3. Discussion

Safety standards (e.g., ISO 26262) mandate the estimation of the achieved safety level,
which in turn requires the identification of safe faults. This work provides a new tech-
nique for automatically identifying safe faults in the CPU and peripherals. The proposed
technique can significantly reduce the cost and effort for safe fault identification, showing
that the method can identify a significant number of safe faults. Safety standards (e.g.,
ISO 26262) mandate the estimation of the achieved safety level, which in turn requires the
identification of safe faults. This work provides a new technique for automatically iden-
tifying safe faults in the CPU and peripherals. The proposed technique can significantly
reduce the cost and effort for safe fault identification, showing that the method can identify
a notable number of safe faults.

The main advantage of the proposed method is its automated approach for safe fault
identification using the automotive representative hardware and software application.
The method reduces the constraints of manual expert-based analysis, so the time and
complexity of verification efforts are reduced simultaneously. This also helps reduce the
time-to-market criteria, which is one of the biggest challenges of the IC design industry.
Moreover, the proposed method is systematic and established based on logic simulation
and formal analysis, supported by industrial-grade tools that make it suitable for the
automotive industry and research on functional safety verification. It enables an accurate
safety metrics evaluation; therefore, it allows compliance with ISO 26262 functional safety
metrics. Concerning disadvantages, there is no analytical calculation regarding the number

Electronics 2022, 11, 319 23 of 26

of logic simulations to be run. We ran several logic simulations using different but realistic
input data sequences in our work (as explained in Section 4.1.1) and stopped running new
ones when the coverage reports were the same. Additionally, concerning the computational
complexity of the proposed technique, it depends upon the number of faults that are being
evaluated by the formal analysis.

7. Conclusions

Functional safety verification is a crucial and non-negotiable requirement that must
be considered throughout the safety critical IC design cycle. Therefore, the ISO 26262
functional safety standard was developed to guide how this requirement is implemented.
According to ISO 26262, random hardware failures can occur unpredictably during the
lifecycle of an IC. Thus, random hardware faults must be classified based on their effects,
i.e., on whether they can disrupt any safety critical functionality or not. Nevertheless, this
classification process is expensive and error prone since it requires a combination of tools
and inputs from experts based on their design knowledge. The method proposed in this
work brings a solution to this challenge.

The proposed methodology focuses on identifying safe faults on a SoC when it
runs a single SW application. We extend functionally safe faults by the identification
of application-dependent safe faults. The flow relies on code coverage analysis through
logic simulations and formal methods. The methodology starts with the analysis of code
coverage to understand the target system’s operational behavior. In other words, faults that
do not disturb any safety critical functionality are first identified through code coverage
analysis. Then, code coverage results are translated to formal properties, then transferred
to a formal analysis tool to constrain the environment to identify safe faults. The proposed
methodology is demonstrated on the AutoSoC using its CPU, UART, and CAN when the
cruise-control application runs.

We computed the number of identified safe faults (specifically focusing on stuck-at
faults). In addition, we combined fault simulation and the proposed formal technique to
show the increase in diagnostic coverage. As a result, the number of safe faults accounts
for 20%, 11%, and 13% in the CPU, CAN, and UART modules, respectively. Concerning
the diagnostic coverage, we show that it is increased by 6% and 4% in CPU and CAN
modules, respectively. This analysis also proves that the number of undetected faults for
the same STL is reduced by 1.5–1.6 times for the CPU and CAN, significantly increasing
the diagnostic coverage for an industry-scaled SoC with a sample automotive application.

In future work, we plan to analyze different automotive representative software
applications with various scenarios to see the effect of the proposed method on the safety
metrics. Furthermore, an FMEDA will be created, and safety metrics guided by ISO 26262
will be calculated when the proposed technique identifies safe faults. Additionally, different
STLs that target the AutoSoC and peripherals will be deployed, and the increase in the
safety level will be analyzed.

Author Contributions: Conceptualization, A.C.B. and F.A.d.S.; data curation, A.C.B.; formal analy-
sis, A.C.B.; investigation, A.C.B. and F.A.d.S.; methodology, A.C.B. and F.A.d.S.; software, A.C.B.;
writing—original draft preparation, A.C.B.; supervision, M.J., M.S.R., S.H. and C.S.; writing—review
and editing, A.C.B., F.A.d.S., M.S.R., S.H., M.J. and C.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by project RESCUE funded from the European Union’s
Horizon 2020 research and innovation program under the Marie Sklodowaska-Curie grant agreement
No. 722325.

Data Availability Statement: The AutoSoC Benchmark Suite is open source and available at https://
www.autosoc.org (accessed on 18 December 2021) Additionally, the original contributions presented
in the study are included in the article, and further inquiries can be directed to the corresponding
author.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.autosoc.org
https://www.autosoc.org

Electronics 2022, 11, 319 24 of 26

Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance System
ALU Arithmetic Logic Unit
ASIL Automotive Safety Integrity Level
ATPG Automatic Test Pattern Generation
BDD Binary Decision Diagram
BIST Built-in Self-Test
CAN Controller Area Network
CCA Cruise Control Application
CPU Central Processing Unit
COI Cone-of-Influence
DC Diagnostic Coverage
DUT Design Under Test
ECU Electronic Control Unit
FSV Functional Safety Verification
IC Integrated Circuit
IMC Integrated Metrics Center
RTEMS Real-Time Executive for Multiprocessor Systems
RTL Register Transfer Level
SBST Software-Based Self-Test
SoC System-on-Chip
STL Software Test Library
SW Software
TCL Tool Command Language
UART Universal Asynchronous Receiver–Transmitter
XFS Xcelium Fault Simulator

References
1. Jenihhin, M.; Sonza Reorda, M.; Balakrishnan, A.; Alexandrescu, D. Challenges of Reliability Assessment and Enhancement in

Autonomous Systems. In Proceedings of the 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), Noordwijk, The Netherlands, 2–4 October 2019; pp. 1–6. [CrossRef]

2. Munir, A. Safety Assessment and Design of Dependable Cybercars: For today and the future. IEEE Consum. Electron. Mag. 2017,
6, 69–77. [CrossRef]

3. Nardi, A.; Armato, A. Functional safety methodologies for automotive applications. In Proceedings of the 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 970–975. [CrossRef]

4. International Standardization Organization. ISO 26262 Road Vehicles—Functional Safety, 2nd ed.; ISO: Geneva, Switzerland, 2018.
5. Psarakis, M.; Gizopoulos, D.; Sanchez, E.; Sonza Reorda, M. Microprocessor Software-Based Self-Testing. IEEE Des. Test Comput.

2010, 27, 4–19. [CrossRef]
6. Cantoro, R.; Firrincieli, A.; Piumatti, D.; Restifo, M.; Sanchez, E.; Sonza Reorda, M. About on-line functionally untestable fault

identification in microprocessor cores for safety-critical applications. In Proceedings of the 2018 IEEE 19th Latin-American Test
Symposium (LATS), São Paulo, Brazil, 12–16 March 2018; pp. 1–6. [CrossRef]

7. Benso, A.; Di Carlo, S. The Art of Fault Injection. Control Eng. Appl. Inform. 2011, 13, 9–18.
8. da Silva, F.A.; Cagri Bagbaba, A.; Ruospo, A.; Mariani, R.; Kanawati, G.; Sanchez, E.; Sonza Reorda, M.; Jenihhin, M.; Hamdioui,

S.; Sauer, C. Special Session: AutoSoC—A Suite of Open-Source Automotive SoC Benchmarks. In Proceedings of the 2020 IEEE
38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–9. [CrossRef]

9. SJA1000, Stand-Alone CAN Controller. Available online: https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf (accessed on
18 December 2021).

10. Alexandrescu, D.; Evans, A.; Glorieux, M.; Nofal, I. EDA support for functional safety—How static and dynamic failure analysis
can improve productivity in the assessment of functional safety. In Proceedings of the 2017 IEEE 23rd International Symposium
on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece, 3–5 July 2017; pp. 145–150. [CrossRef]

11. Lu, K.L.; Chen, Y.Y.; Huang, L.R. FMEDA-Based Fault Injection and Data Analysis in Compliance with ISO-26262. In Proceedings
of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W),
Luxembourg, 25–28 June 2018; pp. 275–278. [CrossRef]

12. Juez, G.; Amparan, E.; Lattarulo, R.; Rastelli, J.P.; Ruiz, A.; Espinoza, H. Safety assessment of automated vehicle functions by
simulation-based fault injection. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety
(ICVES), Vienna, Austria, 27–28 June 2017; pp. 214–219. [CrossRef]

http://doi.org/10.1109/DFT.2019.8875379
http://dx.doi.org/10.1109/MCE.2016.2640738
http://dx.doi.org/10.1109/ICCAD.2017.8203886
http://dx.doi.org/10.1109/MDT.2010.5
http://dx.doi.org/10.1109/LATW.2018.8349679
http://dx.doi.org/10.1109/VTS48691.2020.9107599
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
http://dx.doi.org/10.1109/IOLTS.2017.8046210
http://dx.doi.org/10.1109/DSN-W.2018.00075
http://dx.doi.org/10.1109/ICVES.2017.7991928

Electronics 2022, 11, 319 25 of 26

13. Fu, Y.; Terechko, A.; Bijlsma, T.; Cuijpers, P.J.L.; Redegeld, J.; Örs, A.O. A Retargetable Fault Injection Framework for Safety
Validation of Autonomous Vehicles. In Proceedings of the 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), Hamburg, Germany, 25–26 March 2019; pp. 69–76. [CrossRef]

14. Ferlini, F.; Seman, L.O.; Bezerra, E.A. Enabling ISO 26262 Compliance with Accelerated Diagnostic Coverage Assessment.
Electronics 2020, 9, 732. [CrossRef]

15. da Silva, F.A.; Bagbaba, A.C.; Hamdioui, S.; Sauer, C. Flip Flop Weighting: A technique for estimation of safety metrics in
Automotive Designs. In Proceedings of the 2021 IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), Torino, Italy, 28–30 June 2021; pp. 1–7. [CrossRef]

16. Raik, J.; Fujiwara, H.; Ubar, R.; Krivenko, A. Untestable Fault Identification in Sequential Circuits Using Model-Checking. In
Proceedings of the 2008 17th Asian Test Symposium, Sapporo, Japan, 24–27 November 2008; pp. 21–26. [CrossRef]

17. Syal, M.; Hsiao, M. New techniques for untestable fault identification in sequential circuits. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 2006, 25, 1117–1131. [CrossRef]

18. Liang, H.C.; Lee, C.L.; Chen, J. Identifying untestable faults in sequential circuits. IEEE Des. Test Comput. 1995, 12, 14–23.
[CrossRef]

19. Condia, J.E.R.; Da Silva, F.A.; Hamdioui, S.; Sauer, C.; Reorda, M.S. Untestable faults identification in GPGPUs for safety-critical
applications. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
Genova, Italy, 27–29 November 2019; pp. 570–573. [CrossRef]

20. Augusto da Silva, F.; Bagbaba, A.C.; Hamdioui, S.; Sauer, C. Combining Fault Analysis Technologies for ISO26262 Functional
Safety Verification. In Proceedings of the 2019 IEEE 28th Asian Test Symposium (ATS), Kolkata, India, 10–13 December 2019;
pp. 129–1295. [CrossRef]

21. Bernardini, A.; Ecker, W.; Schlichtmann, U. Where formal verification can help in functional safety analysis. In Proceedings of the
2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 7–10 November 2016; pp. 1–8.
[CrossRef]

22. Lai, W.C.; Krstic, A.; Cheng, K.T. Functionally testable path delay faults on a microprocessor. IEEE Des. Test Comput. 2000,
17, 6–14. [CrossRef]

23. Tille, D.; Drechsler, R. A Fast Untestability Proof for SAT-Based ATPG. In Proceedings of the 2009 DDECS ’09—12th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems, Liberec, Czech Republic, 15–17 April 2009; p. 38–43.
[CrossRef]

24. Long, D.E.; Iyer, M.A.; Abramovici, M. FILL and FUNI: Algorithms to Identify Illegal States and Sequentially Untestable Faults.
ACM Trans. Des. Autom. Electron. Syst. 2000, 5, 631–657. [CrossRef]

25. Gursoy, C.; Jenihhin, M.; Oyeniran, A.S.; Piumatti, D.; Raik, J.; Sonza Reorda, M.; Ubar, R. New categories of Safe Faults in a
processor-based Embedded System. In Proceedings of the 2019 IEEE 22nd International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS), Cluj-Napoca, Romania, 24–26 April 2019; pp. 1–4. [CrossRef]

26. Cantoro, R.; Carbonara, S.; Floridia, A.; Sanchez, E.; Sonza Reorda, M.; Mess, J.G. Improved Test Solutions for COTS-Based
Systems in Space Applications. In VLSI-SoC: Design and Engineering of Electronics Systems Based on New Computing Paradigms;
Bombieri, N., Pravadelli, G., Fujita, M., Austin, T., Reis, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 187–206.

27. Narang, A.; Venu, B.; Khursheed, S.; Harrod, P. An Exploration of Microprocessor Self-Test Optimisation Based On Safe Faults.
In Proceedings of the 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Athens, Greece, 6–8 October 2021; pp. 1–6. [CrossRef]

28. da Silva, F.A.; Bagbaba, A.C.; Sartoni, S.; Cantoro, R.; Sonza Reorda, M.; Hamdioui, S.; Sauer, C. Determined-Safe Faults
Identification: A step towards ISO26262 hardware compliant designs. In Proceedings of the 2020 IEEE European Test Symposium
(ETS), Tallinn, Estonia, 25–29 May 2020; pp. 1–6. [CrossRef]

29. Maier, P.R.; Sharif, U.; Mueller-Gritschneder, D.; Schlichtmann, U. Efficient Fault Injection for Embedded Systems: As Fast as
Possible but as Accurate as Necessary. In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing And
Robust System Design (IOLTS), Platja d’Aro, Spain, 2–4 July 2018; pp. 119–122. [CrossRef]

30. Clarke, E.; McMillan, K.; Campos, S.; Hartonas-Garmhausen, V. Symbolic model checking. In Computer Aided Verification; Alur, R.,
Henzinger, T.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 419–422.

31. Tasiran, S.; Keutzer, K. Coverage metrics for functional validation of hardware designs. IEEE Des. Test Comput. 2001, 18, 36–45.
[CrossRef]

32. Devarajegowda, K.; Servadei, L.; Han, Z.; Werner, M.; Ecker, W. Formal Verification Methodology in an Industrial Setup. In
Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019;
pp. 610–614. [CrossRef]

33. Lach, J.; Bingham, S.; Elks, C.; Lenhart, T.; Nguyen, T.; Salaun, P. Accessible formal verification for safety-critical hardware design.
In Proceedings of the RAMS ’06—Annual Reliability and Maintainability Symposium, Newport Beach, CA, USA, 23–26 January
2006; pp. 29–32. [CrossRef]

34. OpenRISC 1000 Architecture Manual. Available online: https://openrisc.io/or1k.html (accessed on 18 December 2021).
35. RTEMS Real Time Operating Systems (RTOS). Available online: https://www.rtems.org/ (accessed on 18 December 2021).

http://dx.doi.org/10.1109/ICSA-C.2019.00020
http://dx.doi.org/10.3390/electronics9050732
http://dx.doi.org/10.1109/IOLTS52814.2021.9486697
http://dx.doi.org/10.1109/ATS.2008.22
http://dx.doi.org/10.1109/TCAD.2005.855967
http://dx.doi.org/10.1109/MDT.1995.466367
http://dx.doi.org/10.1109/ICECS46596.2019.8964677
http://dx.doi.org/10.1109/ATS47505.2019.00024
http://dx.doi.org/10.1145/2966986.2980087
http://dx.doi.org/10.1109/54.895002
http://dx.doi.org/10.1109/DDECS.2009.5012096
http://dx.doi.org/10.1145/348019.348311
http://dx.doi.org/10.1109/DDECS.2019.8724642
http://dx.doi.org/10.1109/DFT52944.2021.9568326
http://dx.doi.org/10.1109/ETS48528.2020.9131568
http://dx.doi.org/10.1109/IOLTS.2018.8474079
http://dx.doi.org/10.1109/54.936247
http://dx.doi.org/10.1109/DSD.2019.00094
http://dx.doi.org/10.1109/RAMS.2006.1677345
https://openrisc.io/or1k.html
https://www.rtems.org/

Electronics 2022, 11, 319 26 of 26

36. Chen, H.; Tian, J. Research on the Controller Area Network. In Proceedings of the 2009 International Conference on Networking
and Digital Society, Guiyang, China, 30–31 May 2009; Volume 2, pp. 251–254. [CrossRef]

37. Cantoro, R.; Sartoni, S.; Sonza Reorda, M. In-field Functional Test of CAN Bus Controllers. In Proceedings of the 2020 IEEE 38th
VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/ICNDS.2009.142
http://dx.doi.org/10.1109/VTS48691.2020.9107628

	Introduction
	Related Works
	Background
	Hardware Fault Classification
	Fault Simulation
	Formal Methods
	Structural Analysis Check Types
	Formal Analysis Check Types

	Proposed Application-Dependent Safe Fault Identification Method
	The Proposed Flow
	Logic Simulation
	Application-Specific Formal Property Development
	Formal Analysis

	Case Study: The AutoSoC Benchmark Suite
	General Architecture of the AutoSoC
	UART IP
	CAN Controller IP

	Experimental Setup and Results
	Experimental Setup
	Experimental Results
	Safe Faults in CPU
	Safe Faults in UART
	Safe Faults in CAN
	Combined Results: Fault Simulation and Formal Analysis

	Discussion

	Conclusions
	References

