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Abstract—Context: 2nd generation (Layout-based) and
3rd generation (Visual) GUI testing are two approaches for
testing mobile GUIs, both with individual benefits and
drawbacks. Previous research has presented approaches to
translate 2nd generation scripts to 3rd generation scripts but not
the vice versa.

Goal: The objective of this work is to provide Proof of Concept
of the effectiveness of automatic translation between existing
3rd generation test scripts to 2nd generation test scripts.

Method: A tool architecture is presented and implemented in a
tool capable of translating most 3rd generation interactions with
the GUI of an Android app into 2nd generation instructions and
oracles for the Espresso testing tool.

Results: We validate our approach on two test suites of our
own creation, consisting of 30 test cases each. The measured
success rate of the translation is 96.7% (58 working test cases
out of 60 applications of the translator).

Conclusion: The study provides support for the feasibility of
a translation-based approach from 3rd to 2nd generation test
cases. However, additional work is needed to make the approach
applicable in real-world scenarios or larger open-source test
suites.

Index Terms—Testing, Android, Mobile Applications, Software
Engineering

I. INTRODUCTION

The user experience provided by Android apps, through
their GUI (i.e., Graphical User Interface), now-days rival the
experience and complexity previously exclusive to desktop
applications. An abundance of features, along with the high
competition among apps in the market (e.g., nearly three
million apps are available on the official PlayStore as of
September 20191), drive a need for more thorough Verifi-
cation and Validation of Android apps. Additionally, as for
traditional software, Android apps are subject to the constant
push for faster delivery of software, a trend that is fueled
by the widespread adoption of agile approaches to software
development. Thus, making automated testing a necessity for
the application of practices like continuous integration and
delivery.

While low-level, white-box test automation (e.g., unit test-
ing with JUnit) is common practice among mobile devel-
opers, higher-level practices like GUI-based testing have a
significantly lower diffusion. Often, GUI test cases are not

1https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

automated, instead they are performed manually with high
error-proneness and cost.

Several techniques have been proposed by the literature
to execute GUI-based automated testing. It is possible to
categorize these techniques under three chronological gener-
ations. 1st Generation testing tools (also called Coordinate-
based) drive the interaction with the GUI by leveraging exact
coordinates of the elements of the screen involved in the test
cases. 2nd generation testing tools (also called Property-based
or Layout-based) identify the GUI elements to interact/verify
utilizing unique attributes specified in the application lay-
outs, according to the specific programming patterns of the
application domain. 3rd generation testing tools (also called
Visual, or Image-recognition based) identify the GUI elements
to interact/verify using computer vision and image recognition
algorithms that use screen captures of the expected appearance
of the application components as input.

1st generation tools have mostly been abandoned since
coordinates of GUI elements often change, making them very
fragile as locators. 2nd and 3rd generation testing tools, instead,
dominate industrial practice and research into them has shown
that they have complementary characteristics, and that a com-
bined usage of both the techniques would be beneficial.

However, there are few documented cases in the literature
about combined usage of both the techniques in real scenarios.

In our previous work [1], we proposed an architecture for a
tool able to translate 2nd generation to 3rd generation test cases,
and vice-versa. The rationale behind the research is to identify
ways of taking advantage of the commonalities between the
two typologies of scripts, e.g., step-wise test sequences and
GUI-widget information used at each interaction. The transla-
tion of one generation to the other would thereby allow their
individual benefits, to counter their respective drawbacks. Such
a translation-based approach would also be able to mitigate of
one of the most crucial deterrents to the adoption of automated
GUI testing, i.e., the high fragility of test suites and the
resulting high cost for test case maintenance.

The work presented in this paper builds on the concep-
tual architecture presented in previous work. Specifically, by
detailing and evaluating the implementation of one of its
two main features, i.e., the translator from 3rd generation to
2nd generation test scripts. In summary, the contributions of
this work are the following:



• Proof of Concept, supported by quantitative results from
two cases, that 3rd generation test cases can be translated
into 2nd generation test cases.

• A description of the approach, and the technical chal-
lenges in implementing it;

• A discussion of the possible applications of the approach;
• Ideas for future research within the area of the topic.
The remainder of the manuscript is organized as follows:

Section II provides background information about available
testing techniques and tools for Android applications, and
the reported drawbacks in literature; Section III motivates the
current work, describing the benefits provided by a translation-
based creation of 2nd generation test cases from 3rd generation
test cases; Section IV describes the architecture of the devel-
oped tool and provides technical details; Section V reports
the results of a first evaluation of the tool on two open-source
applications; Section VI discusses related work and similar
approaches in the literature; Section VII discusses the threats
to the validity of this study; finally, Section VIII concludes the
paper.

II. BACKGROUND

This section describes the typical characteristics of Visual
and Layout-based testing techniques when applied to Android
applications. This section also overviews the principal tools
proposed by the market and the literature.

A. Android Native Apps Structure

It is possible to divide Android apps into three main
typologies, based on the way they are developed:

• Native: applications developed for Android specifically
using the OS constructs and design guidelines;

• Web-based: normal web applications optimized for a
mobile browser;

• Hybrid: applications built using multi-platform web tech-
nologies embedded into a native, platform-specific wrap-
per (e.g., Xamarin or Cordova).

While 3rd generation testing techniques are platform-
agnostic and can be applied to any application provided with
a pictorial GUI, 2nd generation practices test Android apps
according to the definition of the layouts of the app and
therefore require native code (white-box techniques) or at least
knowledge about Android layout and screen hierarchies (grey-
box techniques). It is possible to test Web-based and hybrid
apps by using testing tools for web applications.

We focus this work on testing native mobile apps; thereby
we will report the typical structure of a native Android
application.

In native Android apps, the appearance and behavior for
each GUI screen is defined by components named Activities.
When instantiated, the activities populate the layout of the
screen. Layouts can be defined statically in layout files, i.e.,
XML files containing the definition and the properties of
the GUI components. All layout files are stored in a fixed
location of the Android project (i.e., under the layout or menu
folders). Multiple layouts can be given for the same activity, to

provide different arrangements (or appearance) of the widgets
on different devices. During the execution of a native app,
some particular layouts can be generated dynamically, e.g.,
when lists of generated elements are to be shown in the
GUI, or when widgets are programmatically added to the
GUI. 2nd generation testing tool base the interaction with the
widgets and the verification of the current state of the screen
on the properties that are defined in the layouts, e.g., individual
ids, text, parent/child relationships (between widgets and their
containers) or content description.

B. Tools for Android testing

A systematic mapping study by Linares-Vasquez et al. [2]
has identified many 2nd generation testing tools tailored to
work with Android applications. The mapping provides a
categorization of the tools based on the way the sequences of
interactions are obtained and described. Automation Frame-
works and APIs provide interfaces to perform operations
on widgets of the GUI, and to verify their properties, by
manually writing test-scripts in JUnit-like syntax. The two
principal testing tools provided by Android, Espresso [3] and
UIAutomator [4], belong to this category of 2nd generation
testing tools; other tools that achieved relevant diffusion are
Appium [5], Robolectric [6], and Robotium [7].

Record & Replay testing tools acquire sequences of interac-
tions that are executed manually on the app’s GUI and create
repeatable sequences of interactions based on them. These
sequences are typically based on the layout properties of the
apps to be replayed. Examples of Record & Replay testing
tools are Barista [8], RERAN [9] and the official Espresso
Test Recorder [10].

The most recent research has focused on automated gen-
erations of input sequences. Such sequences can be created
through random explorations of the GUIs, as it is done by
SAPIENZ [11], CrashScope [12], and Stoat [13], or through
model-based representation of the layouts, as it is done by
MobiGUITAR [14].

Fewer works in related literature introduced 3rd generation
testing tool specific to mobile applications. One exception
is provided by SPAG-C, an older proposal which relied on
an external physical camera to record the screen captures of
the interacted widgets on a physical device. The platform-
agnostic nature of 3rd generation testing tools allows, how-
ever, the application of any image-recognition based testing
engine to Android apps on an emulated device. Compared to
2nd generation ones, these tools provide simpler means of in-
teraction with the GUI, since they only allow to emulate mouse
and keyboard operations. In fact, they do not provide special
commands specific to Android apps (e.g., means to press the
back, home or menu button on the device) that are instead
offered by 2nd generation testing tools. Examples of general-
purpose 3rd generation tools are SikuliX [15], EyeAutomate
[16] (formerly known as JAutomate [17]) and AppliTools [18].



C. Limitations of Android testing

Several studies in the literature have highlighted the issues
of existing testing tools for Android applications, and the
limited adoption by developers from both the industry and
the open-source community. Linares-Vasquez et al. highlighted
many common issues for Android testers [19]. Kochhar et al.
found – out of a sample of open-source developers – that the
diffusion of test automation was scarce, and that developers
mostly relied on manual testing or traditional unit testing
(with tools like JUnit) instead of applying higher-level testing
techniques [20].

Testing fragility is considered one of the main motivation for
the limited adoption of testing techniques for mobile tools. A
test case is defined fragile when it fails during the evolution
of the application, because of changes in the locators used
by the tests. 2nd generation tests are hence fragile to changes
in the layout definition and in the properties of the widgets,
while 3rd generation tests are fragile to changes in the pictorial
appearance of the widgets. Fragility manifests as an added
maintenance costs for test cases. In many cases, such cost
represents an important percentage of the total maintenance
cost of the whole software project [21].

III. MOTIVATION

Despite the limited penetration of both 2nd and
3rd generation testing techniques among Android developers,
there is evidence in the literature about the benefits provided
by their adoption. As well, research has highlighted that the
combined adoption of both techniques can yield beneficial
results, since they have mutual benefits and drawbacks [22].

In our previous conceptualization [1], we have proposed an
automated approach based on translation, from one generation
of test scripts to the other, and vice-versa. The implementa-
tion of the approach thereby requires the development and
validation of a module to generate visual oracles/locators from
layout properties, and another module to perform the backward
translation. The current manuscript aims to provide a proof of
concept of the implementation of the latter.

Such 3rd to 2nd translation would provide the following
benefits:

• Automate the creation of 2nd generation tests from sys-
tematic reuse of existing 3rd generation tests. This auto-
mated generation would reduce the development costs
and the time for the retrieval of proper layout-based
locators and oracles, reducing the need for a manual
analysis of the layout files. Such manual exploration of
layout files is placed by practitioners among the most
time-consuming operations to perform in the creation of
Layout-based test cases [23].

• Enhance the expressive power of existing test suites de-
veloped with 3rd generation testing tool – that can verify
only the pictorial appearance of the app – allowing to
verify layout properties of the app. The creation of Java-
based test scripts would also allow adding code-related
assertions to the translated 2nd generation test cases.

Fig. 1: Architecture of the proposed tool

• Mitigate the fragility of 2nd generation test cases when
they are used with regression testing purpose. While
2nd generation test cases are fragile to changes in the
definition of the app layouts between different releases,
3rd generation tests remain valid if the pictorial appear-
ance is unchanged. A valid 3rd generation test can hence
be used to re-create a working 2nd generation test script
when layout-based fragilities are present during the app
evolution.

IV. TOOL ARCHITECTURE

The proposed tool architecture is shown in Figure 1. The
tool receives as input a (set of) 3rd generation test case(s), and
the package of the Android app to test.

The output of the tool is a translated 2nd generation test case.
Four distinct modules compose the architecture:
• Instrumentor: it is in charge of instrumenting the appli-

cation code, by adding callbacks to the logging methods
and ensuring that each widget is provided with a candi-
date locator for 2nd generation tests;

• Executor: it executes the 3rd generation tests on the
instrumented AUT so that the interaction logs can be
collected;

• Log Parser: it parses the logs obtained when executing
the tests, to reconstruct – in a tool-agnostic way – the
sequence of performed interactions;

• 2nd generation test creator: it translates the tool-agnostic
sequence of interaction to the selected 2nd generation
syntax.

This conceptual architecture can be tailored to work with
different testing tools and syntaxes. For our purposes, we se-
lected EyeAutomate as the starting 3rd generation testing tool,
due to our previous experience with the tool, and Espresso
as the destination 2nd generation testing tool, due to its high
diffusion in open-source Android projects [24].



Fig. 2: Steps performed by the Instrumentor module

The following subsections provide details about the imple-
mentation choices we took to realize each of the four modules.

A. Instrumentor

The Instrumentor has the role of initializing the project. It
obtains as input the folder with the project files that have to be
instrumented and gives as output a folder of temporary project
files to be used to generate 2nd generation test cases. In this
module, we used the JavaParser2 open-source tool to parse and
modify the Java files of the application.

Figure 2 shows the flowchart with the steps performed by
the Instrumentor. The description and motivation of the steps
is given in the following.

1) Addition of libraries: At first, the module verifies the
presence of the needed support Android libraries, such as
the RecyclerView and SupportPreference. Also, it analyzes
the application package Gradle file to uniform the imports
of all applications to the new version of the support library,
AndroidX. Hence, the module maps all references to the
support library packages into the corresponding androidx.*
packages.

2) ID Normalization: In this step, the module analyzes all
the layout files in the res or menu folder, to find widgets
without unique IDs. For those widgets, the module adds a new
programmatically-generated ID. The addition of unique IDs is
required because, in some cases, it is not possible to retrieve
a unique property to identify a widget in 2nd generation test
cases [23]. This step guarantees that, by construction, all the
widgets in the app have unambiguous locators or oracles for
a 2nd generation test case.

3) Addition of logging callbacks: In this step, the mod-
ule adds the required callbacks to the production code of
the AUT. The application logger generates logs for each
interaction with the application caused by the execution of

2https://github.com/javaparser/javaparser

the EyeAutomate test script. This action will help in the
reconstruction of the interaction sequence. The module defines
a custom class, called MyWindowCallback, which extends
android.view.Window.Callback, to intercept click or swipe op-
erations performed on the GUI of the AUT. The management
of type instructions will be based on information gathered
from the 3rd generation execution log. The instrumentor adds
the definition of the MyWindowCallback inside the onStart
method of each activity in the application package.

In the custom Callback, the tool modifies the onTouchEvent
method to intercept the operations ACTION DOWN (i.e.,
when the user touches the screen), and ACTION UP (i.e.,
when the user releases the screen).

Specifically, every time the module intercepts an AC-
TION DOWN event, it performs the following operations:

1) checks whether the operation is the first in the tap or
swipe sequence (long clicks or swipes will cause other
executions of the onTouchEvent callback);

2) stores the event time;
3) stores the event coordinates;
4) calculates the interacted view, as the uppermost clickable

view in the hierarchy whose bounding rectangle contains
the coordinates of the interaction.

Every time the module intercepts an ACTION UP event, it
checks whether the event is a tap or a swipe by checking the
distance between the starting and ending position and whether
it is a short or long-tap by comparing the starting and ending
time of the interaction.

The module also edits three other callbacks in the My-
WindowCallback class to cope with special cases discussed
in the next subsection. The onWindowFocusChanged callback
is used to check the current fragments on screen; the dis-
patchedKeyEvent is used to intercept the back button press; the
onDetachedFromWindow is used to intercept dialog dismissal.

4) Special Cases: Several special widgets required addi-
tional effort since they were not manageable by the usage of
the MyWindowCallback class. We list them in the following:

• Dialogs: A Dialog is a window that prompts information
to the user by floating on the rest of the GUI content
(e.g., Alerts, Time and Date pickers). The Dialog can
be created by a specific Builder class (like in the case of
objects of the MaterialDialog and AlertDialog classes) or
without a specific Builder class (like the DatePicker and
TimePicker dialog). To intercept clicks on the buttons
to close Android dialogs, the onDetachedFromWindow
method of the dialog class must be modified, because
it is called before the onTouch method of the window
callback. The Instrumentor hence searches for classes
extending known dialog types to add logging instructions
on the onDetachedFromWindow callback.

• Preferences: Preferences allow the user to change func-
tionality and behavior of an application and are typically
shown in the Settings menu. To be managed, Preferences
required an extension of the onPreferenceChanged call-
back.



Fig. 3: Steps performed by the Executor module

Fig. 4: Sample log of the 3rd generation test

• Spinners: Spinners provide a way to select a value from
a set, always showing only the selected one. The method
to be edited to manage the selection of a Spinner is
onItemSelected.

• Fragments: Android Fragments are portions of the screen
that can be instantiated at runtime inside a started Ac-
tivity, and are managed by the FragmentManager. The
onAttachFragment callback is in charge of managing the
rendition on the screen of the Fragment. Since, in some
cases, such callback is not called inside the onStart call-
back of the container activity, we modified the onAttach
Fragment itself, to explicitly add the Fragment to the
screens managed by the custom MyWindowCallback.

• Overflow menus: In some cases, the menus prompted to
the user are available in a window separated from the
activity. In these cases, the menu items do not have a
unique id, and we need to log the text as a locator. Also,
the closure of the menu requires the creation of a custom
onPanelClosed callback to log the information about it.

B. Executor

The Executor module is in charge of preparing and launch-
ing the 3rd generation starting test script, executing its in-
structions on an instrumented AUT emulated on an Android
Virtual Device (AVD). The execution of the script on the
instrumented AUT allows the generation of two different logs:
(1) an Application Log, created thanks to the callbacks injected
by the Instrumentor, and (2) a Script Log, created by the
3rd generation test runner. The flowchart in Figure 3 shows the

Fig. 5: Sample application log

TABLE I: Types of logged actions

Action Type Description

SHORT CLICK Normal click on a widget (press time ¡
400ms).

LONG CLICK Long click on a widget (press time ¿ 400
ms).

SWIPE Swipe, or drag and drop operations.
BACK Used when the back button is pressed during

the navigation.
SPINNER To indicate operation on a spinner. In this

case, the text is used as a locator.
PREFERENCE To indicate operation on a preference el-

ement. In this case, the text is used as a
locator.

MENU To indicate the opening of an overflow
menu. In this case, the text is used as a
locator.

MENU DISMISSED Called when the overflow menu is closed.
DIALOG CANCEL Called when a dialog is canceled.

artifacts and the operations performed by the Executor. Details
about each step and element are given in the following.

1) Initialization: Before the execution of the 3rd generation
test script, the Executor module initializes by creating a
temporary version of the script with sleep instructions (of
one second) added between each command. The addition of
sleep instructions allows us to easily differentiate between each
operation (referred to just with its timestamp) and to make time
for the generation of the screen dumps of the AUT.

The initialization phase also launches a thread (the Log
Watcher) in charge of reading the log generated by the
3rd generation testing tool and dumping the screen of the An-
droid applications. The motivation and details of the dumping
operations are provided in a later subsection.

2) Script execution and script log: The Executor launches
the application on the emulated device and then runs the
3rd generation test case against it.

3rd generation automation tools create logs with the trace
of the operations performed and its details. Each log line is
composed of a timestamp, and information about the executed
operation (type, referred screen capture, and relative coordi-
nates inside the screen capture; see Figure 4 for a sample log).

The Log Watcher thread is executed to monitor changes in
the script log, to determinate when the 3rd generation tests per-
form check operations. Such external monitoring is necessary
because 3rd generation checks verify the graphical appearance
of the rendered GUI without performing any interaction on the
emulated device. It is hence impossible to trigger callbacks
to record the screen state in the emulated applications. To
obtain information for the assertions, we hence triggered an
external command – from another thread, named LogWatcher –



to dump the information about the current screen when a check
operation is appended in the 3rd generation script log. To obtain
the screen dump (i.e., an XML file containing information
about all the views that are currently visible) we leveraged
the UIAutomator tool.

3) Generation of the application log: The application log is
generated by the application package executed on the Android
Virtual Device, thanks to the custom callbacks inserted by the
Instrumentor module. We used the built-in Android LogCat
tool for creating the logs. A LogCat line is composed by three
elements:

1) the timestamp, useful to associate each operation from
the 3rd generation script to the related application log-
line;

2) a tag used to filter out the log of the AVD;
3) the string containing the log message used to store the

required information.
Figure 5 reports an excerpt from the application log.
A logline contains the following information:
• Action: the type of action performed in the AUT. It is

the only mandatory component of a logline. The types of
logged interactions are reported in Table I.

• Locator: the locator used to identify the widget when the
2nd generation test will be created. The locator can be an
ID, a text value, or a list of numeric indexes followed by
an ID. IDs are used for widgets that had a unique ID in
the original application package, or for widgets that were
assigned a unique ID by the Instrumentor.
The text value is used for objects like Preferences or
Spinners, whose elements cannot be assigned a unique
ID with the Instrumentor, because of values that can be
added programmatically at runtime.
Finally, lists of indexes are used when the view does not
have an ID nor a unique text value: the indexes represent
the parent-child connection between the view and the first
parent with a unique id. The unique id of the parent is
then attached at the end of the string. This representation
is useful in the case of RecyclerViews and AdapterViews
populated at runtime.

• Coordinates: the position of the click inside the view,
represented as the offset in percent from the center on
both x and y axes. Logging the coordinates inside the
widget allows to perform clicks in different points of the
button than the center.

• Distances: used in case of swipes or drags, the distances
on both x and y axes from the starting position.

C. Log Parser

The Log Parser module is in charge of generating a tool-
agnostic list of objects, that can later be used to generate a
2nd generation test script. The module uses as input the script
log, the application log, and the related screen dumps. It also
receives the screen size of the emulator that launches the app.
The flowchart in Figure 6 shows the artifact and the operations
performed by the module. We provide details in the following.

Fig. 6: Steps performed by the Log Parser module

Fig. 7: Types of interactions created by the Log Parser

1) Script log parsing: Firstly, the Log Parser parses the
script log, generated by the 3rd generation test driver, and
deduces the list of the performed operations. The parser
searches in the script log for the commands that could be
used in the testing of an Android application: Click, DragStart,
DragDrop, Check, MouseLeftPress, MouseLeftRelease, Type,
Sleep.

For each parsed command, the module creates an Inter-
actionObject. Different subclasses are defined to represent
the various types of interactions that are considered by the
translator since different data is required based on the type of
command.

2) Application log parsing: Secondly, the Log Parser parses
the application log, generated by the custom MyWindowCall-
back when it intercepts clicks on the emulated AUT. The
logged timestamp is used to find correspondence between
lines in the script log and the application log. In the case
of check operations, the module needs to retrieve the locator
information about the checked view from the dump file with
the related timestamp.

3) Interaction Objects: Interaction Objects created and
populated by the Log Parser are summarized in the diagram



Fig. 8: Steps performed by the 2nd generation Script Creator
module

in Figure 7 and detailed in the following:
• ClickInteraction: it represent click operations, and can be

categorized in different subclasses:
– Back: represents a click on the Back button, i.e., back

navigation in the app;
– Spinner-Preference: represents a click that selected a

spinner or preference value, that is specified in the
object;

– Menu: represents a click that opened an overflow
menu item, or an item inside the menu. The locator
of the click can be either a string (the value in
the menu) or null (if the click represents the menu
opening);

– Normal: represents a short or long click on a view.
• MouseInteraction: it is used to represent swipe opera-

tions. The swipe is not limited to be horizontal or vertical
but can have custom angles.

• WriteInteraction: it represents a type operation on a
TextView. The object contains a string attribute with the
text to be typed in the view.

• CheckInteraction: it represents a check operations in the
3rd generation script, that has to be translated into an
assertion in the 2nd generation test.

• SleepInteraction: it represents a sleep operation, that has
to be translated into an equivalent sleep instruction in the
code of the created 2nd generation test.

D. 2nd generation Script Creator

The 2nd generation Script Creator is the last module of the
architecture. It receives a list of objects that must be translated
into 2nd generation method calls. The steps performed by the
module are shown in Figure 8 and detailed in the following.

1) Test Class Preparation: The first operation of the Script
Creator module is the creation of the test classes where the
test scripts will be translated. The tool maps 3rd generation
interaction sequences to 2nd generation test methods, inside a

Interaction Type Espresso method

MouseInteraction GeneralSwipeAction(Swipe.FAST)
Click GeneralClickAction(Tap.SHORT)
Long Click GeneralClickAction(Tap.LONG)
Menu Open openContextualOverflowMenu
Menu click onView(withText(...)).perform(click())
Back ViewActions.pressBack())
Spinner/Preference onView(withText(...)).perform(click())
Check check(matches(isDisplayed()))
Sleep Thread.sleep(3000)

TABLE II: Caption

single test class. The creation of the test class is performed
with the JavaParser tool.

The test class is placed in the androidTest folder of the
Android project (i.e., the default one used by GUI testing tools
like Espresso or UI Automator). Each test class is enriched by
a series of custom methods that are needed for the execution
of the translated operations:

• childAtPosition: the method is used to match a view in
the hierarchy inside a dynamically populated list of views,
identified by its index among all the children view of a
given parent;

• childAtPositionCheck: similar to the previous method but
used for check operations, in case the list of views had
been scrolled from the original position;

• typeMatcher: used to match a view to input text. It is
required because in the translated script click, and type
operations are separated into different method calls;

• coordinatesFunction: the method returns the coordinates
on which a view has to be clicked, in case the click does
not have to be performed in its center.

2) Object Translation: After completing the initialization
procedure, the module translates the individual operations to
calls to Espresso methods.

We report the translation of the supported interactions in
Table II. For readability reasons, we do not provide for each
method the full list of parameters.

Once the module completes the translation, it saves the
test, and it builds the application package. The module also
checks the outcome of the failure in order to avoid saving
non-working test scripts.

V. TOOL EVALUATION

This section describes the experimental evaluation that we
performed to verify the feasibility of the approach imple-
mented by the tool.

A. Experimental Subjects and Setup

We chose two open-source applications to evaluate the tool
performance: OmniNotes 3 (v6.0.0 Beta 7), a note manage-
ment application, and PassAndroid 4 (2.5.0), an electronic
tickets manager. The code of both applications is on GitHub,
and both of them are available on PlayStore as well. We

3http://github.com/federicoiosue/Omni-Notes
4http://github.com/ligi/PassAndroid



TABLE III: Characteristics of selected apps (as of September
2019)

OmniNotes PassAndroid
Number Of Downloads 100,000+ 1,000,000+
Number Of Releases 120 100
Tested release 6.0.0 Beta 7 2.5.0
Java LOCs 48,116 32,309
Number of Activities 13 17
Number of Layout Files 52 19

chose these two applications for their different appearances
and behavior. Their characteristics can be found in Table III.

For the evaluation, we wrote two test suites of 30 EyeAu-
tomate test cases each in order to cover most of the apps’
features and widgets. We designed each test to be executable
independently for avoiding cascading failures. All test cases
start from the Main application activity. The scripts contain
from 2 to 43 commands, mostly short clicks, and checks.

We run the test cases on a laptop PC with an Intel i7-
6700HQ CPU at 2.60GHz clock, with 16GB RAM and
Window 10 Operating System. We performed the test suites
development and the EyeAutomate test cases execution in
EyeStudio 2.1. We launched the apps on an emulated Nexus
6P API 26 (Android 8.0) with a disabled device frame and
disabled animations.

B. Procedure

The experimental evaluation aimed to answer the question:
RQ What is the success rate of the layout-based test scripts

generated through translation?
To answer the question for each of the two applications, we

computed the Success Rate (SR), defined as:

SRt =
Ns

Nex
, (1)

where Ns is the number of generated test scripts whose
execution ended with a success, and Nex is the total number
of scripts that we attempted to translate with the tool. Failed
tests can be of two types:

• The tool failed to generate the test;
• Test was generated but failed its execution.

C. Experimental Results

The experiment had a quite high success rate (96.7%, 29/30,
in both test suites with a total of 96.7%, 58/60).

Two failures occurred with the test suites selected for the
evaluation. One of the translations for the OmniNotes suite
failed during the generation step. The cause was due to the
keyboard closure without any input. The tool did not recognize
that situation because of a missing implementation of the
keyboard closing operation when no input is provided into
a TextView. This behavior represents a systematic issue that
requires engineering effort to be fixed in future versions of the
tool.

A correctly generated test case, which failed during the
execution, caused the failure in the PassAndroid test suite.
The script tried in fact to type inside a focused view, but no

view was focused during the script execution. The fix of this
type of error may require more careful handling of focus on
new activities during the execution of the obtained Espresso
test cases.

VI. RELATED WORK

Several Record & Replay tools, like the Espresso Test
Recorder [10] embedded in the Android Studio IDE, or Barista
[8], are available for testing Android apps. These testing tools
typically create sequences of layout-based interactions. The
added value of the proposed approach is to reuse existing
working visual test suites, generating 2nd generation assertions
automatically based on the visual checks already present in
the 3rd generation scripts. Normal 2nd generation testing tools,
on the other hand, usually require the tester to manually select
assertions to add after interactions with the GUI are performed.

Several approaches have been proposed in the literature to
repair broken test cases upon evolution of the AUT [25]. Most
of them base the repair of the broken locators on a model-
based representation of the app GUI [26] [27]. Our approach
would base, instead, the repair of broken 2nd generation lo-
cators on another existing representation of the testing tools,
with no need of a model (either manually or automatically
obtained) of its GUI. Obviously, the repair-based approach
remains applicable also when no visual test equivalents are
available.

Leotta et al. proposed a translation-based approach for the
migration of 2nd generation, DOM-based test cases to visual
tests with Sikuli [28]. The approach is similar to the 2nd to
3rd generation translator that we conceptualized for mobile
apps in our previous works [1]. The main difference between
the approach by Leotta et al. and ours is that the former
is only working in one direction, without any automated
translation from 3nd to 2rd generation test cases. To the best
of our knowledge, no equivalent of our approach exists in the
literature.

VII. THREATS TO VALIDITY

A. Threats to Construction Validity

We measured the tool effectiveness in terms of success rate.
A test translation is successful if the tool can complete it and
if it is possible to execute the generated test entirely.

Another aspect would be making sure that the translated
Espresso script executes the correct instructions in order to
avoid false positives. False positives can be the result of wrong
translations of 3rd generation interactions to 2nd generation
method calls, that however do not invalidate any of the
assertions in the test cases.

We did not take into account this aspect in the current
evaluation.

B. Threats to External Validity

The experimental design includes some bias as we only used
interactions and dialogs supported by the translator. Therefore
the results of this evaluation are not generalizable to any
EyeAutomate test suite.



Apps with a very different graphical appearance or logic or
used dialogs types may induce results that vary significantly
from those reported.

Also, 2nd generation tests may not be obtained for appli-
cations using complex custom components or re-definitions
of dialogs/fragments that would not be intercepted during the
project instrumentation.

It is worth mentioning also that the addition of sleep
instructions may render the usage of the proposed technique
not feasible for timing-sensitive test cases.

VIII. CONCLUSION AND FUTURE WORK

The results of the evaluation that we performed show that
the proposed tool can provide benefits in terms of an effective
translation from 3rd generation to 2nd generation test scripts. As
explained in the previous sections, however, several issues are
still open from the point of view of the tool implementation.
For instance, by now the tool provides a limited coverage of
Preferences, Menus and Spinners, on which the interactions
can be recorded only when different textual content is provided
for each element of the list.

The tool also will need extensive evaluation on a bigger set
of software objects, possibly with already existing test suites
to avoid biases and increase the external validity of the study.
We also plan to add empirical studies on the capability of
the proposed proof of concept to reduce the fragility issue of
layout-based test suites, and hence to quantify the reduction
of maintenance costs for testers/developers.

As final steps of our research plan, we foresee the full
implementation of our translation-based architecture in both
directions. Such tool, as conceptualized in our first work
[1], would enable gaining the benefits of both generations
whilst mitigating the costs and drawbacks of the individual
approaches. This complete tool would hence reduce the main-
tenance cost of both generations of testing techniques, while
enriching the bug-finding power providing verification of both
the layout properties and the graphical appearance of the app
widgets.

The present paper also provides a preliminary implementa-
tion of the technique, that is only applicable to two specific
tools (namely, EyeAutomate and Espresso). Future extensions
of this research will involve other testing tools allowing
comparisons between them, and enhanced applicability of the
technique.
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