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Predictive maintenance in the production of steel
bars: a data-driven approach

Paolo Bethaz, Xanthi Bampoula, Tania Cerquitelli, Nikolaos Nikolakis, Kosmas
Alexopoulos, Enrico Macii, and Peter van Wilgen

Abstract The ever increasing demand for shorter production times and reduced
production costs require manufacturing firms to bring down their production costs
while preserving a smooth and flexible production process. To this aim, manu-
facturers could exploit data-driven techniques to monitor and assess equipment’s
operational state and anticipate some future failure. Sensor data acquisition, analy-
sis, and correlation can create the equipment’s digital footprint and create awareness
on it through the entire life cycle allowing the shift from time-based preventive
maintenance to predictive maintenance, reducing both maintenance and production
costs.
In this work, a novel data analytics workflow is proposed combining the evaluation
of an asset’s degradation over time with a self-assessment loop. The proposed work-
flow can support real-time analytics at edge devices, thus, addressing the needs of
modern cyber-physical production systems for decision-making support at the edge
with short response times. A prototype implementation has been evaluated in use
cases related to the steel industry.
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1 Introduction

Predictive maintenance policies have been used throughout the years, mostly based
on human knowledge and intuition as a result of experience. As technology advances,
intuition is seeked to be enhanced by computer techniques [1]. The large volume of
data generated on a shop floor allow for the use of artificial intelligence techniques
that can analyse and create insight over production processes, and as a result com-
plement or support the human knowledge. Nevertheless, selecting the appropriate
analysis methods as well as the availability of proper datasets remain a challenge.

VDL Weweler designs, develops, and produces trailing arms, among others, to
manufacture trailers, trucks, buses, and cars. The production line of VDL Weweler
is fully automated, including both machinery and robots. Maintenance activities,
however, are in their great majority either preventive or corrective. Knowing the
equipment’s working condition and causes of the production interruptions could help
identify the maintenance’s root cause and restore the system to an operating state.
To this aim, proper data-driven predictive maintenance techniques and scheduling
for the replacement of segments on the rolling milling machine are discussed and
tested. As a result, adequate maintenance planning facilitates further cost reduction
and better production management.

We propose and discuss several approaches regarding features extraction and
data labelling, considering different subsets of features extracted from the collected
data, and labeling the historical set using two different strategies. All combinations
between subset of extracted features and data labelling strategy have been tested and
evaluated on real data in order to estimate which one is the most performing.

The chapter is organized as follows. Section 2 describes the previous state-of-
the-art works present in literature and related to the proposed scenario. Section 3
offers an overview of the Steel production bar production industry, while section 4
details the real-life setting under analysis, focusing on its manufacturing process and
the resulting maintenance needs. Then, section 5 describes all the methodology and
architecture implemented to provide a data analytics service to the proposed use case,
including the obtained experimental results. Finally, section 6 draws conclusions,
offering a general summary of what is proposed in this paper.

2 Literature Review

With the introduction of Industry 4.0, smart environments have become very popular,
promoting the frequent use of the Cyber-Physical System (CPS), which promotes full
integration of manufacturing IT and control systems with physical objects embedded
with software and sensors. In this new type of industry, the increased communica-
tion between production components leads to a large amount of data. In addition, the
integration of Cyber-Physical Systems are encouraging modern industries to trans-
form massive data into valuable knowledge, extracting knowledge about production
systems and yielding the support to optimal decision-making [2], helping managers
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to improve the production processes. The new challenge of modern industries is
therefore to be able to effectively collect, process and analyze large amounts of data
in real time. To do these tasks, several existing works [3, 4, 5, 6] use Big Data
frameworks, facing the necessity of knowledge extraction. In particular, in [3] a Big
Data analytics framework is presented, capable of providing a health monitoring ap-
plication for an aerospace and aviation industrial. In [4] the authors use open source
technologies such as Apache Spark and Kafka to implement a scalable architecture
capable of processing data both online and offline. The same open source Big Data
technologies are also used in [5], in order to implement an integrated Self-Tuning
Engine for Predictive maintenance in Industry 4.0. The topic of predictive mainte-
nance in a big data environment is also addressed in [6], where, with the purpose
of monitoring the operation of wind turbines, a data-driven solution deployed in the
cloud for predictive model generation is presented.

The applications of predictivemaintenance have had a considerable diffusionwith
the advent of Industry 4.0, thanks to the introduction of sensors able to constantly
monitor the performance of machinery. This work [7] presents how recent trends in
Industry 4.0 solutions are influencing the development of manufacturing execution
systems, while in [8] authors present a framework able to implement scalable, flexible
and pluggable data analysis and real-time supervision systems for manufacturing
environments. In [9, 5, 10] three data-driven methodologies related to the predictive
maintenance services in an Industry 4.0 context are discussed.

But predictive maintenance does not only refer to failures detection, in fact it
can also be used to estimate the Remaining Useful Life (RUL) of a machine. In
many real-life settings, the time component (sensors measure signals that evolve
over time) need to be considered, as mentioned in [11]. Possible approaches to time
series data mining are wavelets, recurrent neural networks and convolutional neural
networks. In [11] the authors discussed the different approaches, highlighting how
neural networks work better than other models, though not significantly.

Work on a context similar to this study is described in [12], where authors present
an application of an image processing system in the monitoring and control of
the hot-rolling of steel bars. Unlike in that work, this study does not use visual
recognition to characterise the products, but appropriate features extracted from the
measurements taken by the sensors during the process.

3 Maintenance needs and challenges in the Steel bar production
industry

VDL Weweler systems are robust and deliver reliability and cost-effective opera-
tion for on-highway applications in the most demanding operating environments.
Manufacturing facilities in Apeldoorn (The Netherlands) are highly automated with
robotics to play an essential role in the cost-effective and reliable production.

The newly designed production line of VDL Weweler brings together a series
of processes that were previously operated separately. The trailing arms are now
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hot-formed and then tempered in a single continuous process, in which the residual
heat from the forming process can be reused for the tempering process. This process
cut energy requirements by 35% and significantly reduce production time.

Another significant benefit of the new production line is the ability to perform 3D
forming, making it possible to build a suspension system with fewer parts that are
lighter and lend themselves better to modular construction. This whole new system
integrates a series of production processes, previously performed separately due to
space limitations, to form a single line.

VDL Weweler provides data for testing the data-driven solution presented in
this chapter as well as the SERENA’s architecture. Maintenance/repairing activi-
ties within the monitored equipment are provided as output. VDL Weweler gives
technical feedback to validate the project developments and suggestions to improve
the overall methodology to transfer it to other industrial sectors needing similar
maintenance solutions quickly.

4 Steel bar production case study: present and future

The prediction of the behavior of the segments and their maintenance is of high
importance. The current cycle time of trailing arms production is estimated to forty-
five seconds in a working day that no unexpected failures occur. The replacement of
parts takes place approximately after the presentation of 18.000 pieces, and the visual
inspection of the components usually allows increasing their lifetime at least after
25.000 repeats. In this industrial scenario, the SERENAplatform aims to increase the
segment’s lifetime, enabling predictive maintenance techniques to replace the details
on the rolling machine and provide the operators with relevant information through
Augmented Reality (AR) technology for maintenance operations. In parallel, by
reducing the stoppages in the production line, products’ quality should be improved.

The API-pro software, currently in use, manages and schedules the mainte-
nance activities, which experienced operators usually perform. The entire replace-
ment/maintenance process is estimated to be around one hour. Unfortunately, it is
not a fixed time, as it can vary depending on the segments’ temperature, and it can
reach up to four hours, including the wait time for the parts to cool.

The rolling machine supplier does maintenance activities on the hydraulics unit
and the device once per year. While maintenance operations are taking place, the
production line stops because of serial production and the strict relationship among
all the activities. The waiting time for maintenance activities on the rolling mill can
vary from 1 to 4 hours. Through API-Pro Software, instructions are provided by
documents and/or smart devices to the maintenance personnel.
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4.1 Maintenance needs

For the SERENA pilot case, the focus is on the forming of trailing arms through
a rolling mill type machine by predicting the in-time replacement of the coating
segments used by the device. The trailing components are designed to suit specific
vehicle models as well as detailed operational areas. Better comfort, payload, driv-
ability, and lifetime are assured through the high quality and long service life of
the VDLWeweler production line, ensuring better comfort and road-holding needed
for safe and economical transportation. The trailing arms production line starts by
heating steel bars of 1000x100x50 (mm) in the responsible station while the rolling
process follows as depicted in Figure 1.

Fig. 1 VDL WEWELER Production Line

The current situation of the maintenance and repairing activities does not include
a predictive maintenance approach. The SERENA platform discussed technically in
Chapters 2, 3, and 4 allows exploring this possibility in various industrial sectors.
The rolling mill machine used for the forming process is monitored by applying
multiple sensors to the device. The acquired data is compensated with a digital twin
model or a physics-based model and eventually achieves an accurate prediction of
the replacement of segments. Additionally, the main benefits focus on decreasing the
downtimes, reducing the exchange of components related costs, and improving the
final product quality by exploiting the segments’ life-cycle efficiently.

The SERENA platform gathers data from the rolling machine within the VDL
Weweler, creates models for predicting maintenance needs, correlates the rolling
machine data with the digital model, and then predicts the exchange of segments.
The technical feedback received from VDL Weweler during the 36-month dura-
tion improves the SERENA developments orienting the results in real industrial
applications.

The most critical equipment for monitoring includes the rolling mill machine.
The focus is on predicting and scheduling the replacement of the coated segments,
aiming at increasing, on the one hand, their lifetime and, on the other, improving the
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trailing arms quality. The main three parameters that affect the segment’s lifetime
are high temperature, the friction between the trailing arms and components, and
finally, the forces applied.

The purpose of the SERENA platform is to predict the replacement of segments
of the rolling mill machine. The target is to accurately predict when the components
need to be replaced through a collection of data from the milling machine’s sensors
and their correlation with a digital twin model. Additionally, and as the product’s
quality is strictly related to the milling machine’s working conditions, a measuring
system is designed and developed. This measuring system precisely calculates the
formed trailing arms’ straightness once the milling process is completed. Based on
the measured values and their correlation with the milling machine’s status, accurate
maintenance predictions are foreseen. Moreover, the SERENA platform schedules
the maintenance activities to reduce the production stoppage time and avoid any
interruptions with the production plan. The maintenance operators are equipped
with AR technologies for guiding them through correct task execution and training.

4.2 Equipment description

The steel parts production pilot case is focused on the rolling milling machine in
Figure 2. This machine is composed of two rolling cylinders which are rotating
through the use of torque motors. The lower rolling cylinder has a fixed position, and
only the upper cylinder can move vertically. Three different geometrically coated
segments are attached to the rolling cylinders. The segments are used in order to
form the trailing arm by applying force. Currently, the segments are replaced after
18.000 repeats as preventative maintenance and for safety reasons in order not to
completely destroy the segments.

4.3 Steel bar production process

The stretching process of the rolling mill machines includes several steps. The blank
entering from the heating unit is fed sequentially to the individual passes by a robot.
The blank is formed analogously to the contours of the individual roller grooves.
The robot arbitrarily rotates the blank by up to 180° around its longitudinal axis
between the separate passes. As the rollers can be removed from the forging roll
for a tool or groove change, it is possible to work with entirely circular, closed
roller grooves or with grooves in the form of circular segments. The robot and
the rollers work in a master-slave mode during the rolling process, with the roller
rotation angle acting as the master signal. This operation mode allows shock-free
working and ensures almost zero wear compared to mechanical, rigidly coupled
drive systems. The robot movement is synchronized with the rollers’ servo drives so
that the stretched workpiece is moved according to the prevailing peripheral speed
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Fig. 2 Equipment Description

of the rollers. Thus, during operation, the rate of workpiece movement is matched
to the speed profile.

A high-level illustration of the global architecture is displayed in Figure 4. As
mentioned earlier, a steel metal bar is inserted in the heating station. The heating
process takes approximately five minutes. Afterward, the robot R2 is responsible for
picking up the heated metal bar and proceeds with the rolling mill’s rolling process.
For this operation, another robot, R3, is used, and the two robots are cooperating to
achieve the required functions of the rolling process. At the end of the rolling process
production, the robot R3 further inspects the outcome. In case of deviations in the
steel bar geometry, the process parameters of the rolling mill need to be modified to
reach the desirable geometrical characteristics.
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Fig. 3 Production Process Description

5 SERENA system in the steel bar production case

5.1 Architecture

The SERENA cloud platform is built on a lightweight micro-services architecture,
that allows the core cloud services and the edge gateway to be managed as a single
domain. The edge gateways are located close to the factory equipment that generates
the data used to perform the maintenance predictions.

Fig. 4 High level architecture of the global system

All services running on the SERENA cloud platform are implemented as Docker
containers andmanaged byDocker Swarm. The use of containers enables modularity
in the SERENA cloud platform, making it simple to remove a given service and sub-
stitute it with an alternative implementation. Thus, the “plug-and-play” requirement
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of the SERENA platform is achieved, giving end-users the freedom to choose the
technology implementation that best suits their unique needs and corporate guide-
lines. It also helps to future-proof the platform. Older technologies can easily be
updated and/or replaced with newer alternatives as they become available without
modifying the underlying platform architecture. The plug-and-play concept is also
applied to the repositories, which uses a RESTapi and canonical JSON-LD message
format to facilitate communication with the repositories. In cases where tight inte-
gration is required, the APIs and the data warehouses are packaged as a group of
services, and the whole group can be replaced as necessary. Services communicate
via HTTP RESTapi, although other protocols, like MQTT, are also supported. The
RPCA (Reverse Proxy Certification Authority) middleware acts as the interface to
the edge gateways and external systems, providing security and routing services.
Apache NiFi serves as the central communications broker between services.

5.2 Data connections

Figure 5 depicts the data connections for the rolling mill machine. Data from the
rolling mill sensors are pre-processed to link the values collected from the force,
torque, and position sensors to the rolling angle of machines’ cylinders. To this aim,
the data collected from the pressure, torque, and position sensors are converted into
degrees in the historical data.

Fig. 5 Data Connections
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5.3 Data acquisition

Several sensors have been integrated into the machine to acquire measurement over
key parameters to support the inference of insight from machine processes data.
Table 1 provides a list of the sensors applied in the rolling mill as well as to the
standalone measuring system.

Table 1 Sensors.

Parameter Equipment Sensor Measurements Com Protocol Location

Oil
Temperature

Rolling Mill Temperature
transducer

Oil
temperature

Profinet Rolling
Machine

Oil Pressure Rolling Mill Pressure
transducer

Oil pressure Profinet Rolling
Machine

Roughness Standalone
Measuring
device

Roughness
sensor

Oil pressure Rolling
Machine

Dimensions
of the product

Standalone
Measuring
device

Thickness
sensor

Thickness,
width, and
straightness of
the product

After the
rolling
machine

Thickness of the
coating layer

Standalone
Measuring
device

Thickness
sensor

Thickness of
the coating
layer

Rolling
Machine

5.4 Data Analytics

The objective of the implemented methodology is to estimate the RUL (residual
useful life) value of machine cylinders, as these components are expensive and they
wear out differently over time, making difficult to estimate their degradation. Having
a real time prediction of the machine’s RUL value every time a new product is
produced is important for the company to be able to estimate the level of degradation
of the machinery, thus intervening promptly with maintenance, saving time and
money. The proposed methodology consists of 3 main building blocks, which are: i)
Feature engineering, ii) Data labeling, iii) Model training and validation.

5.4.1 Feature Engineering

In this block we have extracted significant features from the various input signals
collected by the machinery. Each signal is summarised through the use of several
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features, able to characterise it. The extraction of these features has been done taking
into account both the measuring machines and the rolling mill measurement.
From each input signal, we extracted the following 7 statistical features from the
data collected by the measuring machine: minimum value, maximum value, mean
value, standard deviation, variance, kurtosis (statistical index relating to the form
of the distribution reflecting the concentration of data around its own average) and
skewness (symmetry index of a distribution). In addition to this feature set we also
include an eighth feature calculated as the distance between the signal collected
in the measuring machine and the corresponding signal measured in the rolling
mill. The error between the two series was calculated using the measure root-mean-
square error (RMSE). In addition, the error of one measurement cycle also takes into
account the errors of previous cycles, by adding them cumulatively, thus assuming
the ever-increasing error over time.

5.4.2 Data Labeling

In some industrial context, it may be possible that no label is associated with the
signals collected by the machinery. In these cases, in order to use a predictive
methodology able to estimate the residual value of a machine, a previous data
labelling step is required. This step is usually done manually by a domain expert,
who is able through his knowledge to evaluate various signals and label themproperly.
However, this operation is very time-consuming and in an industry 4.0 context, where
the various processes are robotized and automized, it would be useful to have an
automatic methodology able to perform also the data labelling step.

So, in this section we offer two different methodologies able to automatically
label the data collected by the machinery, using as a label the estimation of the
degradation of the machinery itself. In particular, the label we want to assign is
a decreasing numerical value that represents the RUL (residual useful life) of the
machine. The smaller this value, the greater the risk of the machine breaking down.
Knowing in advance the dates on which some components of the machinery have
been replaced or in which maintenance has been done, we have assigned the same
range of labels (from the highest to the lowest value) to each time interval between
two of these consecutive dates. In this way, a cycle immediately after the replacement
had amaximum label value, while a cycle just before the replacement had aminimum
label value. In particular, we defined the RUL using two different strategies:

• the first strategy assigns the RUL a linearly decreasing trend over time;
• the second strategy assigns the RUL an exponentially decreasing trend over time.

The difference between these two strategies lies in the trend of the RUL over time.
While the first strategy assumes that the degradation is constant during the various
production cycles, the second strategy is based on the idea that in the first production
cycles the performance of the machinery degrades much more slowly than in the
final cycles.
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In the first strategy, the formula for defining the RUL labels can be expressed as
follows:

'*! = 248;8=6[(1 − -/- tot) ∗ =]

where X represents the current day or the current cycle (depending on whether
we want to consider the RUL as linearly dependent with production cycles or with
working days), Xtot is the total number of days or the total number of cycles, n is a
parameter that we can set manually in order to define the maximum value we want
to use in our labels, and ceiling is a function that can transform a floating number
into its immediately greater integer.

In the second strategy, the formula defining the exponential trend of the RUL is
as follows:

'*! = 248;8=6[−4
;=(= + 1)

-tot ∗- + (= + 1)]

where the parameters take on the same meaning as in the previous formula. Here,
since the generic exponential function -ex is -1 when the x value is 0, we have
introduced the term n+1 so that when x is 0 (first production cycle considered), the
RUL of the machine is assigned the maximum label value. Moreover, the fraction
that multiplies X to the exponent causes the RUL to be 0 (the machinery needs an
intervention) when the value on the x-axis is equal to the number of total cycles.

5.4.3 Model training and validation

Finally, the purpose of this block is to build a classification model capable of pre-
dicting the correct RUL value of a new cycle, based on the values learned from the
historical data. The training of the model is done using the features extracted in the
features computation block, in addition to the label assigned in the data labelling
block (if no original labels were present). Two state-of-the-art supervised learning
algorithms have been tested in these blocks: Decision Tree and Random Forest,
where the most performing parameters of each algorithm are chosen thanks to a self-
tuned strategy based on a grid optimisation search over the classification algorithm
parameters. The proposed methodology compares the performances obtained with
the two different algorithms, highlighting the best one.
To compare the performances of different models, the accuracy is given for each one
of them. Moreover, for each of the predicted labels, we also report the recall and
precision metrics, which are particularly useful in case the dataset is not balanced.
The metrics are defined as follows:
Accuracy: Correct Predictions / Total Predictions
Recall = True Positive / (True Positive + False Positive)
Precision = True Positive / (True Positive + False Negative)
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5.5 Results

This section shows the results obtained on the analyzed use case using the techniques
described in Section 5.4. Here, the purpose is to verify how well the real-time pre-
diction methodology performs on the data under analysis, using both the approaches
reported in 5.4.2 to label the data.

The available data are composed of 9756 production cycles collected between
22/01/2020 and 24/02/2020. During this period, the segment was replaced on the
machine at two different times: 04/02/2020 and 19/02/2020. Thesemaintenance dates
allow us to divide the production cycles into three different production groups within
which the RUL of the machinery will assume all the values from the maximum (first
cycle) to the minimum (cycle close to maintenance). In order to correctly assign the
RUL labels, we need to know for each group the start date and end date of production.
Because when we collected the data, the third production group was not yet finished,
we have considered in our training model only the first two groups: a total of 5233
production cycles collected between 22/01/2020 and 19/02/2020.

Since the number of cycles is not very high and we have only two complete
production groups available, we used the leave one out cross validation (loocv) tech-
nique to test the performance of the predictive model. Loocv allows us to use a single
production cycle as a test set, and all other cycles as a training set. This operation is
repeated iteratively, using each time a different production cycle as a test set. Then,
at each iteration a new predictive model is built to predict the RUL value of the cycle
used in the test set. So, at the end of this process, each cycle was used once in the
test set and was labeled with a predictive RUL value.

In the following paragraphs, for each proposed configuration, the results are com-
pared with those obtained from a baseline methodology, a more traditional approach
to address feature engineering in use cases similar to the one discussed here. This
baselinemethodology adopts the same approach as ours with regard to data labelling;
instead, in the feature engineering block, the only features extracted are the seven
statistics: cumulative error between rolling mill measurements is not considered.

All the following experiments were conducted using the current production cycle
as the X value in the formula introduced in section 5.4.2. This means that we consider
the life of the machinery to be decreasing over the production cycles.

5.5.1 Experiment with linear approach

Since in this case we assume that the RUL has a linear trend over time, each
production group will be divided into n subgroups of equal size (production cycles),
where n is the number of labels we want to use in our experiments. We have
manually set this parameter to 10 and 100. Table 2 and Table 3 show the accuracy
results obtained using these two configurations, while the confusion matrices shown
in Figure 6 and Figure 7 refer to the case with 10 labels using the Decision Tree
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classifier. The columns represent the predicted labels, while the rows represent the
real labels. Values in bold on the diagonal are the correct predictions.

Table 2 Accuracy using 10 labels.

Decision Tree Random Forest

cumulative error (c.e) 0.26 0.30
Baseline 0.68 0.72
Baseline + c.e. 0.99 0.97

Table 3 Accuracy using 100 labels.

Decision Tree Random Forest

cumulative error (c.e.) 0.19 0.22
Baseline 0.28 0.32
Baseline + c.e. 0.93 0.69

From these results we can see that only the statistical features (baseline) or only the
cumulative error are not sufficient input variables to guarantee a good performance
of the predictive model, while their combination allows to reach very good results.
The low level of accuracy obtained by using only the error as an input variable can
be explained by the fact that very different signals can be equally distanced from
a Rolling Mill’s signal measurements; so the error alone is not able to effectively
characterize the signal. The same thing can be said if we use the baseline approach
with only the statistical features, as signals with different trends can be characterized
by very similar set of features.
The best performance obtained using both variables is confirmed in Figure 7: from
this confusion matrix we can see that only 47 cycles out of a total of 5233 were not
correctly labeled. In addition, most of the errors are near the diagonal of the matrix,
indicating that almost all of the errors made by the classifier occurred between
adjacent classes. A cycle with a high residual value has never been labeled with a
low label, or vice versa.
Using a higher number of labels, obviously the possibilities of error increase and
consequently the accuracy values decrease, but, as shown in Table 3, the results are
still good and in line with what was obtained with 10 labels.
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Fig. 6 Baseline Confusion Matrix

Fig. 7 New Methodology Confusion Matrix
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5.5.2 Experiment with exponential approach

The purpose of this section is to evaluate the performance of the predictive model,
assuming that the degradation of the machinery has an exponentially decreasing
trend. Labeling the production cycles based on this hypothesis, the dataset will no
longer be balanced; in fact, since the degradation will increase much faster at the
end of the production group, the cycles that will be assigned a high RUL value
will be more numerous than those with a low RUL value. In particular, each class
will contain always fewer elements than the previous class. Table 4 contains the
percentages of elements that have been assigned to each class after the data labelling
step.

Table 4 Labels percentage distribution.

Label 10 9 8 7 6 5 4 3 2 1

Occurrences(%) 28.9 16.8 12.0 9.3 7.6 6.5 5.6 4.9 4.5 3.9

Also in this case the results obtained are very good and are on average even better
than those obtained in the linear case. Table 5 contains the accuracy values with
the different variables used as inputs and we can see that with our methodology the
performance of the predictive model is improved compared with other conditions,
as also demonstrated by the two confusion matrices shown in Figure 8 and Figure 9.

Table 5 Accuracy value using exponential approach.

Decision Tree Random Forest

cumulative error (c.e.) 0.39 0.42
Baseline 0.70 0.75
Baseline + c.e. 0.99 0.97

A comparison between the matrices shows that the baseline methodology per-
forms well when it has to recognise the optimal condition of the machinery (label
9 or 10), as, due to the exponential trend in degradation, these labels are the most
numerous. However, when degradation increases and the labels defining the RUL
of the machinery rapidly change, this methodology is no longer able to assign each
production run to the correct label, as demonstrated by the recall and accuracy values
in Figure 8. Instead, using our new approach, the predictive model is able to cor-
rectly recognise the labels not only of the initial classes, but also of those in which
degradation is greater, like shown in Figure 9.
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Fig. 8 Baseline Confusion Matrix

Fig. 9 New Methodology Confusion Matrix
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5.6 System deployment

The proposed data-driven methodology has been implemented in a python package
and integrated as a service in the SERENA cloud platform described in Chapters
2 and 4. The cloud platform is built upon lightweight micro-services bridging the
gap between the edge and the cloud. The services enabling its functionalities are
implemented as Docker containers enabling scalability and modularity. Whilst edge
devices usually consist of a separate network from the cloud infrastructure, cloud
services and edge gateways along with edge devices/sensors can be managed as a
single domain.

Edge components are deployed at the edge gateway as docker containers. All the
services are centrally managed via the Docker Swarm. The use of containers allows
for a single service to be easy to replace in terms of functionality and/or technology.
Therefore, the cloud platform with its functionalities is implemented onto a stack of
indicative technologies that can be replaced with alternative ones, granting its user
with the freedom to select the technologies that suit his/her specific needs.

The communication throughout the system is enabled usingHTTPRESTAPIs and
canonical JSON-LDmessages without excluding other types of communication such
as MQTT. The JSON data format is partially built upon the MIMOSA open standard
for asset maintenance and, in particular, the CRIS 3.2 schema. The JSON messages
are forwarded from the edge gateways to the cloud via RPCA, creating a security
middleware between edge gateways and external systems. A central communication
broker is implemented using Apache NiFi.

The platform is designed and implemented to store and process vast volumes of
semi-structured data. To this end, the Apache Hadoop framework has been adopted,
allowing for distributed processing across computer clusters. Data are consumed by
integrated applications for analytic, scheduling, visualization purposes that can be
extended to include additional functionalities. In this work, the focus is placed on
the analytics service.

6 Discussion and Conclusion

The steel products manufacturing industry represents one of the SERENA use cases
where the platform’s innovative solutions were deployed and tested. The main cloud
platform was instantiated to best address the specific requirements of the use case,
while the focus was paid upon data driven analytics.

The aforementioned use case provides a testbed for testing and validating the
proposed analytics methodology towards detecting abnormal events and imminent
failures. It should be noted that while the SERENA solutions were fitted in the
existing production facilities relatively seamlessly, the proper training of the AI
algorithms was challenging. However, the results obtained on a collection of real-
data are promising. There is a clear improvement over the performance obtained
with the traditional approach. This indicates that considering both rolling mill and
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measuring machine measurements can bring significant benefit to the predictive
model. Moreover, the proposed methodology is general purpose and takes into
account different degradation functions over time. A methodology like the one
proposed in this chapter is able to adapt to theRULprediction of different components
with different degradation trends.
The proposed approach can therefore be decoupled from the specific use-case on
which it was tested in this chapter, generalising it to other contexts of industrial steel
production.
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