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Summary 
 

 

Machine learning describes a class of algorithms that can combine inputs for 

prediction and classification purposes. Deep learning is a class of machine 

learning methods based on artificial neural networks with representation learning 

that uses multiple layers to progressively extract higher-level features from raw 

input. These algorithms, which represent subsets of the artificial intelligence (AI), 

have recently shown impressive results in a variety of domains, especially in 

medicine. Biomedical data are complex and often misunderstood. Hence, machine 

learning techniques can be particularly suited to solving these problems. 

This thesis addresses some of these issues, by using both shallow and deep neural 

networks.  

  

The first application deals with cardiovascular diseases, which represent the 

leading cause of deaths in the world. Arterial Blood Pressure (ABP) is a vital 

parameter that should be properly monitored for the purposes of prevention. The 

goal of this work is the continuous measurement of ABP through a non-intrusive 

approach. The approach is based on a neural network output-error and deep 

learning techniques to estimate ABP, starting from photoplethysmogram (PPG) 

and electrocardiogram (ECG) signals. The ABP was predicted first using PPG 

only and then using both PPG and ECG. The results show that the use of the ECG 

resulted in improved performance for each proposed configuration. The most 

performing configuration was obtained with a ResNet followed by three LSTM 

layers.  It is also proven to be compliant with the ANSI/AAMI/ ISO 81060- 

2:2013 regulation for non-invasive ABP methods. 

 

Another related problem is about the Short QT Syndrome (SQTS), an inherited 

cardiac ion channel disease linked with an increased risk of sudden cardiac death 

(SCD) in young and otherwise healthy individuals. Arrhythmic risk stratification 

is particularly challenging in asymptomatic subjects. AI-based electrocardiogram 



 

 

(ECG) analysis has never been applied to SCD risk stratification in patients with 

cardiac channelopathies. The purpose of this study is twofold: on one hand, 

digitize the ECG paper-based in order to preserve the history and evolution of 

patients without the risk of the paper degrading (also facilitating the 

implementation of algorithms considering the vision of data as signals); on the 

other hand to analyse ECG features from SQTS patients with the aid of an AI 

system to evaluate its ability to discriminate between subjects with and without 

documented life-threatening arrhythmic events. The analysis of ECG features 

from SQTS patients with the aid of neural networks shows promising results in 

terms of discriminating between subjects with and without documented 

arrhythmic events (100 % negative predictive value). This could pave the way to a 

refined ECG-based risk stratification in this group of patients, potentially helping 

in saving the lives of young and otherwise healthy individuals. 

 

This thesis also takes into considerations a completely different, but still very 

challenging medical problem: when nanomaterials are used in this field (bio-

sensor, drug-delivery, etc.), their production through the electrospinning process 

requires careful inspection of the nano material, to ensure that no structural 

defects are created. The presence of anomalies prevents from the practical 

application of the electrospun nano-fibrous material in nanotechnology. A new 

classification system is proposed to distinguish homogeneous nanofibers (without 

anomalies) from non-homogeneous ones (with defects). Specifically, the image to 

be analysed are used as input for an unsupervised-supervised hybrid machine 

learning system. In the first stage, an automatic encoder (AE) is trained to 

generate code that represents the input image with a vector of relevant 

characteristics. Next, a multilayer perceptron (MLP) uses the extracted 

characteristics to classify images with non-homogeneous nanofibers (NH-NF) and 

with homogeneous nanofibers (H-NF). The resulting AE-MLP system has been 

shown to outperform other standard machine learning models, reporting a high 

rate of accuracy. 

 

The last part of this work considers the current problem of Coronavirus disease, 

which is rapidly increasing, and contagions need to be kept under control to 

prevent their spread. Therefore, the development of algorithms for the diagnosis 

of COVID-19 is an open research area. Many studies have shown that Chest X-

Ray images can be used for COVID-19 testing. In this work, a deep transfer 

learning technique is used to classify infected patients. Experimental results reveal 

that the proposed deep transfer learning-based COVID-19 classification model 



 

 

provides efficient outcomes compared to other supervised learning models. In 

particular, the Vision Transformer achieved excellent performance with high test 

accuracy. 

All the results obtained by the proposed neural models are better than the 

traditional approaches. This consideration justifies their use and paves the way to 

new possible applications in the medical domain. 
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Introduction 

 
Artificial intelligence (AI) is the ability of a computer system to simulate human 

cognitive functions, such as learning and problem solving. It uses mathematics 

and logic to simulate the reasoning adopted by people to learn from new 

information and make decisions. Artificial intelligence seeks to emulate planning, 

language understanding, object and sound recognition, learning and problem 

solving. Artificial Intelligence (AI) can be described as a system capable of 

simulating the functioning of the human brain and making decisions based on the 

analysis of the processed data. It thus becomes possible to make machines 

perform tasks such as speech and visual recognition, decision-making and 

predictive processes. Machine Learning (ML) is an application of artificial 

intelligence. It is the process constituted using mathematical models that allows a 

computer system to continue to learn and improve autonomously, based on 

experience (without direct instructions). Machine learning is essentially the ability 

of machines to receive a series of data and learn for themselves, changing 

algorithms as they receive more information about what they are processing. 

Machine learning automates the construction of the analytical model using 

statistical modelling methods and operational research to find hidden information 

in the data. Deep learning is one of the approaches to machine learning that took 

its cue from the structure of the brain, from the interconnection of various neurons 

(artificial neural networks). The artificial neural networks (ANNs) are based on 

direct acyclic graph (DAG) models consisting of a set of variables and conditional 

dependencies. Deep neural networks (DNN) perform very well complex data and 

they can be easily updated with new data using batch propagation. DNN 

architectures (i.e., number and structure of layers) can be adapted to many kinds 

of problems, and their hidden layers reduce the need for feature engineering. 

The main advantages for the use of deep learning are: 

• Automation of feature generation: DL algorithms can generate new 

functionality from a limited number located in the training dataset without 

further human intervention. This means that deep learning can perform 

complex tasks that often require extensive feature design. 

• Working with unstructured data: DL algorithms are limited in their ability 

to analyse unstructured data, which means that this wealth of information 
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is often not exploited. In this sense, deep learning promises to have the 

greatest impact. 

• Improved Self-Learning Skills: multiple layers in DNN allow models to 

become more efficient at learning complex functions and performing more 

intensive computational tasks in parallel. It can check the accuracy of his 

predictions / outputs and make any necessary changes. On the other hand, 

classical ML models require varying degrees of human intervention to 

determine the accuracy of the output. 

• Advanced analysis: when DL algorithms are applied to data science, can 

offer better and more effective computing models. Its ability to learn 

without supervision drives the continuous improvement of accuracy and 

results. It also offers data scientists more reliable and concise analysis 

results. 

• Scalability: DL is highly scalable due to its ability to process huge 

amounts of data (Big Data) and perform many calculations in a cost and 

time efficient manner. This improves efficiency by automatically scaling 

the number of nodes in use based on request traffic. 

Artificial intelligence in healthcare is a general term used to describe the use of 

machine learning algorithms for presenting and understanding complex medical 

and health data. AI represents the automation of tasks to support the decision-

making process of doctors, giving them more time for human interactions, a 

fundamental part in the medical field [1][2]. Artificial intelligence algorithms 

address automating arduous tasks and can sometimes outperform humans in tasks 

due to the experience made available by large amounts of clinical data that are 

collected by many clinical institutes to improve learning. 

To generate an effective AI algorithm, computer systems are first fed with data 

that is typically structured, meaning that each data point has a recognizable label 

or annotation for the algorithm. After the algorithm has been exposed to enough 

data points and their labels, performance is analysed to ensure accuracy. This is 

done by entering test data for which programmers already know the answers, 

allowing them to evaluate the algorithms' ability to determine the correct answer. 

Based on the test results, the algorithm can be modified, fed with more data, or 

implemented to help make decisions for the person who wrote the algorithm. 

However, although some algorithms may compete with and sometimes 

outperform doctors in a variety of tasks, they have yet to be fully integrated into 

daily medical practice.  

So far, algorithms in medicine have shown many potential benefits for both 

doctors and patients. However, adjusting these algorithms is a difficult task. The 

United States Food and Drug Administration (FDA) has approved some assist 

algorithms, but there are currently no universal guidelines for approval. FDA has 

strict acceptance criteria for clinical trials, which require extreme transparency on 

scientific methods. Many algorithms rely on very intricate and difficult to decode 

mathematics to get from the input data to the result. This lack of interpretability 

means the results must be accepted in itself. For this reason, these algorithms are 
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considered as black boxes. Failure to clarify the inner workings of an algorithm 

would impact the likelihood of the FDA approving an AI-based trial [3]. 

The first chapter concerns the use of deep learning algorithms to predict the 

arterial blood pressure signal. Given two physiological input parameters to the 

system, namely the electrocardiogram and the photoplethysmogram signals, the 

neural algorithm estimates the systolic and diastolic pressure values.  

The second chapter is divided into two sub-projects: firstly, an automatic 

algorithm is implemented to transform the electrocardiogram signal on paper into 

a digital signal, secondly the features related to the ECG signal are used to 

estimate the probability of a cardiac event using shallow learning algorithms. 

The third chapter, which mainly concerns the industrial sector, involves 

nanomaterials used for medical applications such as sensors, drug delivery and 

bio-compatible fabrics. In this case an advanced hybrid supervising, and 

unsupervised algorithm was applied to classify the quality of the material. 

The fourth chapter relates to the implementation of very recent advanced neural 

networks, through the use of transfer learning, with the aim of diagnosing the 

coronavirus disease through X-Ray images. 

The last chapter yields the conclusions and proposes new paths for future work. 
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Chapter 1 

1 Deep Learning Techniques for 

Arterial Blood Pressure 

Estimation 

1.1  Cardiovascular Diseases (CVDs) 

Cardiovascular diseases (CVD) are disorders that involve the heart and the 

cardiovascular system.  They are the first cause of death in the world, taking an 

estimated 17.9 million lives each year:  80% of CVD deaths are due to heart 

attacks and strokes while the remainder of these deaths occur prematurely in 

people under the age of 70 [1].  Diseases involving the heart and blood vessels are 

due to genetic and behavioural risk factors. On one hand, in recent years, 

cardiology research has focused attention on identifying and understanding the 

genetic basis of cardiovascular diseases. Because of the defects of a single gene, 

heart disorders involving all parts of the organ structure have been identified. A 

feature common to nearly all genetic cardiovascular diseases is the clinical 

heterogeneity observed in affected individuals within a household. Despite 

carrying the same genetic mutation, affected individuals can often exhibit marked 

clinical variability, ranging from symptom-free to premature death [2]. To this 

aspect some considerations are added concerning the gender of individuals 

suffering from cardiovascular diseases. Women develop disorders about 10-15 

years later than men [3]. Today, the answer to this difference is focused on the 

hypothesis that endogenous estrogen is cardioprotective in women [4]. Therefore, 

the increase in coronary heart disease (CHD) rates after menopause and after 

ovariectomy confirms that endogenous estrogens can prevent CHD [5]. On the 

other hand, the behavioural causes that cause heart disease and stroke are an 

unhealthy diet, physical inactivity, tobacco use, and the harmful use of alcohol. 

The effects of behavioural risk factors can manifest in individuals as increased 

blood pressure (hypertension), increased blood sugar (diabetes mellitus), 



 

5 

 

increased blood lipids (dyslipidaemia), overweight and obesity. These risk factors 

strongly influence cardiovascular risk; consequently, the treatment and monitoring 

of these factors are the main steps in hospital care [6]. Drug therapy (such as 

aspirin, beta-blocker, diuretic and statins) is particularly effective because it can 

lead to a 75% reduction in myocardial infarction (heart attack). 

 

1.1.1 Cardiovascular System 

The heart can be considered one of the most important organs in human body, and 

even small anomalies in its functioning can lead to serious dysfunctions of 

different compartments of the body. It is located under the breastbone, in the 

centre of the chest and its main function is to transport oxygen and nutrients to all 

organs and tissues in the body. The heart is a muscle composed of involuntary 

striated muscle tissue but, unlike other muscles, it can generate the electrical 

signal that allows its movement independently. It is made up of several layers as 

shown in Figure 1.1 Heart anatomyFigure 1.1: 

• pericardium, fluid-filled double-walled structure that provides mechanical     

  protection; 

• epicardium, membrane that completely covers the external surface of the    

  heart, making it translucent and smooth; 

• myocardium, striated intermediate muscle tissue; 

• endocardium, the inner wall. 

 
Figure 1.1 Heart anatomy 

 

The heart is a hollow organ consisting of two atria and two ventricles. In addition, 

there are four valves: two atrioventricular valves (tricuspid and mitral valves) that 

allow the unidirectionality of blood between the atria and ventricles, and two 

semilunar valves (pulmonary valve and aortic valve) that control the flow between 

the heart and blood vessels [7].  
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The atria are cavities located in the upper part of the heart, they are not 

symmetrical but differ in position and size; they are separated from the atrial 

septum and communicate with the ventricles through two valves. The ventricles 

represent the main part of the organ and are located in the lower part; they are 

separated by the interventricular septum. In the right atrium, the venous blood 

comes rich in carbon dioxide, arriving from cells and tissues; through the tricuspid 

valve the blood passes from the right atrium to the right ventricle and is then 

pushed into the pulmonary artery. Inside the right atrium there is also the 

sinoatrial node which generates the impulses for the regulation of the heartbeat. 

The oxygen-rich blood from the four pulmonary veins arrives in the left atrium, 

passes to the left ventricle through the mitral valve and is finally pushed into the 

aorta, to be brought back to the cells and tissues. The left ventricle is characterized 

by thicker muscle walls than the right one. 

The blood circulation can therefore be divided into systemic and pulmonary 

circulation (Figure 1.2): 

• The systemic circulation (or large circulation) transports oxygenated and 

nutrient-rich blood to the body's cells, and then it to the right side of the heart 

once the exchanges have taken place. 

• The pulmonary circulation (or small circle) carries the blood rich in carbon 

dioxide to the lungs and then returns it rich in oxygen to the left side of the heart, 

to be reintroduced into the systemic circulation [8]. 

 

 

Figure 1.2 Circulatory/Vascular system 

To allow the four chambers to contract in the correct way and with the right 

timing, a conduction system is needed that generates the impulses and makes 

them propagate appropriately among the cells of the myocardium. The action 

potential (excitatory signal) is generated within the sinoatrial node, located in the 

right atrium at the outlet of the superior vena cava. The heart rate can be modified, 

to adapt to the needs of the organism, through the intervention of the autonomic 

nervous system: the sympathetic stimulus (adrenergic) intervenes for example 

during physical exercise and allows to increase the speed of contraction and heart 
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rate, parasympathetic (or vagal) stimulation decreases the number of beats and 

intervenes in situations of rest or during sleep. The action potential propagates 

through the internodal tracts, causing the contraction of the atria, to reach the 

atrio-ventricular node.  

 

 

Figure 1.3 Cardiac cycle description 

The cardiac cycle (Figure 1.3) is a set of coordinated movements divided into two 

main phases, which are repeated on average 70-80 times per minute in resting 

conditions: there is a contraction phase, called systole, and a relaxation phase, 

called diastole. The closing and opening of the valves that flow retrograde flow is 

controlled by the pressure that the blood exerts on these structures. 

During diastole, blood flows from the superior and inferior vena cava into the 

right atrium. While the left atrium fills with oxygenated blood from the 

pulmonary veins, increasing the pressure. The opening of the mitral and tricuspid 

valves and subsequent filling of the ventricles occurs when the pressure in the 

atria exceeds that of the ventricles. 

During systole, following the electrical impulse originating from the SA node, the 

atria contract, pushing blood into the ventricles. When the electrical impulse 

reaches the ventricles, these begin to contract (isometric contraction) but the force 

is not sufficient to open the aortic and pulmonary valves. Only when the pressure 

in the ventricles exceeds that of the aortic arch, the valves open allowing blood to 

circulate [9]. 

1.1.2 Blood Pressure 

Arterial blood pressure ABP is one of the so-called vital signs and is accepted as 

an index of the circulatory condition. 
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Blood pressure can be measured in both arteries and veins, and, for this reason, it 

is called venous blood pressure (VBP) or arterial blood pressure (ABP). Since the 

veins do not receive the blood pushed by the heart, the venous pressure is always 

lower than the arterial pressure, in conditions of rest, and for this reason it is not 

considered as a descriptive parameter of the individual's state of health [10]. 

Blood pressure is one of the fundamental parameters for identifying several 

diseases of the circulatory system.  

As shown in Figure 1.4, the waveform of the ABP signal can be considered a 

periodic signal in which peaks and valleys alternate, due to the different phases of 

the cardiac cycle, the greater the blood volume present in the aorta, the higher the 

blood pressure. Following the contraction of the ventricles, the systolic peak 

occurs and the blood is pushed into the aorta, the peak value represents the 

systolic pressure (also called maximum) which is normally around 120 mmHg.  

 

 

Figure 1.4 Arterial Blood Pressure (ABP) signal waveform: Diastolic Blood Pressure (DBP), Systolic 

Blood Pressure (SBP), Dicrotic Notch (DN) and PP (Pulse Pressure) 

Then, there is a descending stroke since the ventricular ejection decreases and the 

blood moves towards the periphery, up to a depression (dicrotic notch) due to a 

small part of blood returning to the ventricle. Finally, it arrives at the lowest point 

which represents the diastolic (or minimum) pressure, usually around 80 mmHg 

[11] . The blood pressure values considered normal in the adult population are 

around 120/80 mmHg. If the blood pressure is lower or higher than the normal 

values, there incur diseases called hypotension and hypertension respectively. 

 

Hypotension (Low Blood Pressure)  

Hypotension is the condition in which the pressure is below normal values; a 

subject is considered hypotensive if his systolic pressure is less than or equal to 90 

mmHg and his diastolic pressure is less than or equal to 60 mmHg. A sudden drop 

in blood pressure can cause a decrease in the blood supply to the brain and other 

organs with the possibility of fainting. In severe cases, hypotension may be due to 
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bleeding, heart failure, anaphylactic shock, severe infections, while in the less 

severe ones we may have orthostatic hypotension due to sudden changes in 

position. Younger people most commonly suffer from neuro-mediated 

hypotension, which may appear after long periods of standing. Hypotension 

usually occurs with the onset of dizziness, drowsiness, blurred vision, nausea, and 

confusion. It is important to treat hypotension to prevent organs from suffering 

due to a poor supply of blood and nutrients, and to avoid falls due to fainting [12]. 

 

Hypertension (High Blood Pressure) 

Hypertension represents the condition in which blood pressure is higher than 

normal; it can cause damage related to cardiovascular diseases such as stroke or 

myocardial infarction. If both blood pressure values (systolic and diastolic) are 

higher than the norm we speak of systolic-diastolic hypertension, otherwise it is 

systolic or diastolic hypertension. Due to aging and increased stiffness of the 

vessels, the elderly suffer more often from isolated systolic hypertension, while 

diastolic hypertension is more common in young people [13]. 95% of 

hypertensive subjects have primary (or essential) arterial hypertension, which has 

no precise cause; it is thought to be due to imbalances in complex regulatory 

mechanisms, such as the autonomic nervous system, or to the presence of 

particular substances in the circulation. 

The remaining 5% have secondary hypertension, caused by congenital diseases of 

the kidneys, heart, adrenals or vessels; this type of hypertension can also affect 

young people. One of the main problems of hypertension, also due to its high 

danger, is the fact that it often occurs asymptomatically, especially if it does not 

happen suddenly. In fact, the body gets used to high pressure values and does not 

give signs to the subject. In the case of the presence of symptoms these, being 

very common, are often associated with other causes; the main symptoms, in fact, 

are headache, tinnitus, nosebleed, altered vision and dizziness. It is therefore of 

fundamental importance to carry out periodic and, in some cases continuous, 

blood pressure checks to prevent this over time from creating serious damage to 

the circulatory system [14].  

According to the consensus of the experts, the cardiovascular risk increases to the 

point of justifying a therapeutic intervention, including pharmacological, in the 

presence of blood pressure values equal to or greater than 140 mm Hg as regards 

the systolic pressure and/or equal to or greater than 90 mm Hg as regards diastolic 

blood pressure. Table 1.1 shows 2018 guidelines of the European Society of 

Cardiology (ESC) and the European Society of Hypertension (ESH). Optimal 

systolic pressure is less than 120 mmHg and a diastolic pressure less than 80 

mmHg, above 140 mmHg maximum and / or 90 mmHg minimum the subject is 

hypertensive, while it is isolated systolic hypertension when only the maximum is  

high (i.e. ≥140 mmHg) [15] . 
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Table 1.1 Hypertension classification suggested by the ESH based on blood pressure levels in adults 

aged 18 years or over. 

 Systolic blood 

pressure (mmHg) 

Diastolic blood 

pressure (mmHg) 

Optimal <120 <80 

Normal 120-129  80-84 

Normal-High 130-139  85-89 

Grade 1 hypertension 140-159  90-99 

Grade 2 hypertension 160-179  100-109 

Grade 3 hypertension ≥ 180  ≥ 110 

Isolated systolic hypertension ≥ 140  ≤ 90 
 

1.1.3 Current Arterial Blood Pressure (ABP) Measurement 

Methodologies 

Blood pressure in the arteries can be measured both directly (invasive) and 

indirectly (non-invasive). In the first case, a tube (catheter) is introduced into the 

artery and connected to a specialized measuring device (pressure transducer). This 

happens in particular circumstances, such as during surgery.  

On the other hand, the common measurement of blood pressure is carried out 

indirectly, using special devices that can assess blood pressure from the outside, in 

a non-bloody way [16]. 

 

Invasive Method 

The invasive monitoring is the gold standard for direct measurement of blood 

pressure (IBP) in patients in intensive care. It is an indicator to estimate the effect 

of drugs, blood gas values in patients supported by ventilation, to monitor patients 

at risk of a potential sudden situation or if, due to skin lesions, it is not possible to 

use other methods. The measurement takes place through the cannulation of an 

artery using an arterial cannula; everything is connected to a sensor and to a 

transduction system that outputs systolic (SBP) and diastolic (DBP) pressure on 

the monitor. 

 

 

Figure 1.5 Invasive ABP monitoring 
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Non- invasive method 

Among the non-invasive techniques the most used are the auscultatory method 

(generally identified as a sphygmomanometer), the oscillometric method and the 

no-load method. 

 

Auscultatory method 

In 1856 blood pressure was first recorded in humans using a U-shaped device, a 

manometric tube connected to a brass cannula connected directly to the artery. 

However, there have been efforts since then to obtain a non-invasive BP 

measurement. The first instrument to accurately measure BP was the 

sphygmomanometer  by Scipione Riva-Rocci in 1896 [17]. 

A sphygmomanometer consists of an inflatable cuff to collapse and then release 

the artery under the cuff in a controlled way, and is based on the auscultatory 

method. The auscultatory method consists of listening the Korotkoff sounds in the 

brachial artery (see Figure 1.6). When a cuff is inflated to a level above systolic 

pressure, the brachial artery is occluded. When the artery is fully compressed, 

there is no blood flow and no sounds are heard. Then the cuff is gradually deflated 

and blood flow is restored and Korotkoff sounds are first heard with a stethoscope 

under the cuff. When the sound is heard for the first time the pressure value is 

significant. Korotkoff's sounds will continue to be heard and the pressure drops 

further. However, when the cuff pressure reaches DBP, the sounds disappear. This 

method has always been the gold standard for clinical blood pressure 

measurement. It is performed by a qualified healthcare professional. Blood 

pressure values are obtained from an aneroid device.  

There are many variables that affect the accuracy of this method, such as the size 

of the bracelet, and numerous studies have shown that doctors and healthcare 

professionals rarely follow up established guidelines for making correct manual 

blood pressure measurements [18]. When the cuff size is too small, the 

sphygmomanometer will emit more pressure, while when the cuff is too large it 

will produce lower values.  

 

 

Figure 1.6 Auscultatory method 
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Oscillometric method 

The oscillometric method was first introduced in 1876 and involves the 

observation of oscillations in the sphygmomanometer cuff pressure which are 

caused by the oscillations of blood flow. 

This method uses a sphygmomanometer cuff, like the auscultatory method, but 

with an electronic pressure sensor (transducer) to observe cuff pressure 

oscillations[19]. It employs either deformable membranes that are measured using 

differential capacitance, or differential piezo resistance, and includes a 

microprocessor to automatically interpret the sensor results.  The pressure sensor 

should be calibrated periodically to maintain accuracy.  Initially the cuff is 

inflated to a pressure higher than SBP and then it is reduced to below DBP over a 

period of about 30 seconds. The sphygmomanometer records a constant pressure 

when the blood flow is blocked or unimpeded, while when the blood flow is 

present, but restricted the recorded pressure will vary periodically in synchrony 

with the cyclic expansion and contraction of the brachial artery. 

This method makes it possible to create devices that can be used by the entire 

population, even non-experts, but has some limitations due to the accuracy of the 

algorithm and some factors that influence the measurement. In particular, the 

movements of the arm create unwanted vibrations, while the heart rhythm, for 

example in the case of arrhythmia, does not allow a correct measurement of the 

pressure. 

 

Unloaded Method 

The unloaded method was first developed by Penaz and works on the principle of 

the unloaded arterial wall and allows continuous BP measurements [20]. 

It is performed through a pulse oximeter, in general a photoplethysmography 

(PPG or PLETH). Indeed, it can measure finger blood volume changes using 

light. However, transforming volume changes into pressure is not easy because of 

the non-linearity of the elastic components in the finger (arterial walls and 

muscles). 

The PPG output is used to drive a loop, which rapidly changes the cuff pressure to 

keep blood volume constant, so that the artery is held in a partially opened state.  

This method gives an estimate of the changes of systolic and diastolic pressure, 

although both may be underestimated when compared with brachial artery 

pressures. 

1.2 Related Works 

Two clinical gold standards exist to measure arterial blood pressure: the invasive 

and direct catheter system and the cuff-based methods. The former is very 

accurate but could cause pain and infection, the second is not invasive but the 

measure is subject to inaccuracy [21][22]. Continuous non-invasive arterial 

pressure (CNAP) measurement combines the advantages of the two approaches. 

For this reason, several non-invasive methods have been studied. One of the first 

approaches concerns the Pulse Wave Velocity (PWV) propagation estimates 
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blood pressure values by using the mathematical description by Moens and 

Korteweg [23]. In [24] it is shown the inverse proportionality between the blood 

pressure value and the PWV. However, in this case, the proposed mechanical-

mathematical model uses patient physiological parameters that are difficult to 

detect, such as the artery diameter or the distance from heart to fingertip. Another 

useful parameter to detect the arterial blood pressure is the Pulse Transit Time 

(PTT), defined as the time the pulse wave takes to travel between two arterial sites 

within the same cardiac cycle and is another attribute for blood pressure 

estimation process [25]. The model proposed by [26] overcomes the problem of 

the availability of the patient's physiological parameters; however, the 

mathematical relation between PTT and BP is subject to approximations and non-

linearity, which make the model not very general and robust.  To overcome the 

non-linearity of the problem Neural Networks (NN) appear to be an ideal 

framework, for system identification. Neural networks are conceptually simple, 

easy to train and use and can approximate a target function in an excellent way; 

however, the biggest criticism is that the models produced are completely opaque 

(black box): it is therefore very difficult analyse the model and compute dynamic 

characteristics from the model. PPG has emerged as a potentially useful signal to 

measure arterial blood pressure [27]; indeed, many studies in the literature 

confirm a clear relationship between PPG and ABP. Since PPG and ECG can be 

easily integrated into wearable devices [28][29][30]. 

In [31], it is demonstrated neural networks can perform better than linear 

regression. They extracted a set of features from PPG recordings, taken out from 

MIMIC database. The achieved 3.80 ± 3.41 mmHg on SBP and 2.21 ± 2.09 

mmHg on DBP on a very small dataset dataset (15000 heartbeats are analysed, 

which means roughly 4 hours of recordings). A complex recurrent neural network 

(RNN) has been employed in [32], which uses 22 ECG and PPG features 

extracted from MIMIC II [33]; the RMSE was 3.63 on SBP and 1.48 on DBP, 

which is an excellent result. Nowadays, thanks to advances in deep neural 

techniques, new approaches using  raw vital signals are considered. In [34], ABP 

is measured by using only four features of the PPG signal in three different 

configurations: rest, exercise and recovery.  This was one of the first studies based 

only on PPG and showed a good correlation between ABP and some PPG 

features: the results were good, but only a few healthy people were included in the 

cohort. Paper [35] had a huge impact on current research: the pre-processing 

approach is suitable for removing noise signals in MIMIC and the validation 

system that was adopted is the most robust applied to regression methods for 

estimating the ABP. However, the goal was limited to measure the ABP starting 

from PPG and, therefore, the ECG was not considered for better performance. 

This was one of the first approaches based on deep learning that analyses both 

temporal and spectral characteristics.  

In this chapter, blood pressure has been estimated by using a typical regression 

approach with two configurations: the first adopts only the PPG signal as input, 

while the second employs both ECG and PPG in combination as input for the 

neural networks, whose output is the ABP. 
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1.3 Vital Parameters: Electrocardiogram and 

Photoplethysmogram 

In recent years, to estimate blood pressure in a non-invasive way, a set of 

physiological signals taken from patients are used. Electrocardiogram (ECG) and 

photoplethysmogram signals are high correlated with arterial blood pressure 

(ABP).  

 

1.3.1 Electrocardiogram 

An electrocardiogram (ECG) is a graph which shows the electrical activity of the 

heart; it is obtained using electrodes placed on the skin. Rhythmic cardiac activity 

is based on repetitive depolarization and repolarization of the entire heart [36]. 

An ECG is an indirect indicator of heart muscle contraction, and is measured on 

the skin surface using electrodes. Through the analysis of the trace, it is possible 

to identify anomalies in the conduction of muscle fibers or other problems related 

to the heart. The examination at rest is carried out by applying electrodes in a 

variable number to the patient's skin, lying on a bed. 

 

Figure 1.7 Electrocardiogram signal 

Figure 1.7 shows the electrocardiogram signal, which usually has an amplitude 

that reaches up to 1-3 mV and is included in the 0.05-200 Hz band (it can also 

reach 1 kHz). The signal consists of intervals that represent the time between two 

cardiac events. Each segment corresponds to a function that the heart performs 

during the entire cardiac cycle [37]: 
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• The P wave begins when the sino-atrial (SA) node is activated and 

represents the depolarization of the atria. 

• The PR segment is located on the baseline between the end of the P wave 

and the beginning of the QRS complex; it represents the transmission of 

the electrical impulse through the AV node to the Purkinje fibers. 

The PR interval represents the time interval between the beginning of the 

P wave and the beginning of the QRS complex; it contains all the 

electrical events ranging from the activation of the SA node to the 

depolarization of the ventricles. 

• The QRS complex is composed of three different waves (Q, R and S) 

which, in some cases, may not all be present; it represents the 

depolarization of the ventricles. In conjunction with this event, the 

repolarization of the atria (wave TP) also occurs but it is not visible as the 

QRS complex prevails. 

• The ST segment is located between the end of the QRS complex and the 

beginning of the T wave; it is an electrically neutral period for the heart, 

between the depolarization and repolarization of the ventricles. It is the 

time in which the heart remains contracted in order to be able to expel 

most of the oxygenated blood. 

• The T wave represents the repolarization of the ventricles. 

• The QT interval begins with the QRS complex and ends with the end of 

the T wave, it can have a variable duration depending on age, gender, and 

heart rate; it represents all events of ventricular systole. 

Leads  

The distance between two electrodes is called lead, which is associated with an 

electric vector that changes by following the electric field generated by the heart 

during the cardiac cycle. 

The standard ECG is performed using 12 leads, which observe the same 

phenomenon from different points of view  [38]. The Einthoven Triangle, shown 

in Figure 1.8, is the physiological principle on which the detection of the electrical 

activity of the heart is based. Einthoven's Triangle is based on the imaginary 

arrangement of an inverted equilateral triangle on the patient's chest, whose centre 

coincides with the heart. Each corner of the geometric figure is electrically 

coincident with a point of a specific limb which is assigned a name: VL (left arm) 

VR (right arm) and VF (left foot). The remaining limb, i.e., the right foot, is 

defined as neutral and does not participate in the formation of the triangle. Each of 

these points electrically looks at the heart from its own point of view, VL from the 

left, VR from the right and VF from below, but it is in the reciprocal vision of two 

points at a time that the cardiac bipole (a positive pole and a negative pole) 

manages to record the electrical events that unfold from the heart placed in the 

centre. 
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Figure 1.8 Einthoven Triangle Representation, bipolar leads 

From the potential differences between two peripheral electrodes at a time, three 

bipolar leads are obtained: 

• Lead I or D1: measured between the positive electrode on the left arm and 

the negative one on the right arm. 

• Lead II or D2: measured between the positive electrode on the left leg and 

the negative one on the right arm. 

• Lead III or D3: measured between the positive electrode on the left leg and 

the negative one on the left arm. 𝐷1 = 𝐿𝐴 − 𝑅𝐴  (1)  𝐷2 = 𝐿𝐿 − 𝑅𝐴  (2) 𝐷3 = 𝐿𝐿 − 𝐿𝐴 (3) 

 

The sum of the voltages around any closed path around the triangle is equal to 

zero. Consequently, a virtual ground point can be derived from limb leads: the 

Wilson’s central terminal, which is defined as the average of the vertices of the 

triangle. 𝑉𝑤 = 13 (𝐿𝐴 + 𝑅𝐴 + 𝐿𝐿) 
 

(4) 

 

 

The unipolar leads of the limbs (or Goldberger leads) allow to carry out an 

absolute measurement, but it is necessary to have a reference point (central 

terminal) with zero potential,  Figure 1.9. This is obtained by joining the three 

electrodes at the ends (RA, LA, LL) through resistances, typically 5 kΩ. By 
joining each positive electrode to the indifferent electrode, the lead axes are 

obtained. The Goldberger leads (aVL, aVR and aVF) are also named increased as 

they have an amplitude increased by 50%, through a system incorporated in the 

electrocardiograph.  
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Figure 1.9 Goldberger leads 

Unipolar precordial leads, placed on the patient's chest surround the heart and 

further increase the points of view of observation. In this way, it is possible to 

observe the electrical vector on a transverse plane, in a position close to the heart, 

with the possibility of identifying some anomalies not visible through the other 

leads. There are six leads (V1, V2, V3, V4, V5, V6) of the bipolar type, obtained 

through an indifferent electrode (zero potential). To position all the electrodes 

correctly, it is necessary to identify the landmarks between the intercostal spaces. 

 

1.3.2 Photoplethysmogram 

The photoplethysmogram is a method for measuring changes in blood volume in 

tissue microvascular. PPG, introduced in 1937 by Alrick Hertzman, is often 

obtained by using a pulse oximeter which illuminates the skin and measures 

changes in light absorption [39] . Pulse oximeter is one of the most popular 

wearable devices, it is mainly used to determine heart and respiratory rates, 

however, PPG signal is almost only displayed ICU applications [40]. As shown in 

Figure 1.10 the operation of the photoplethysmograph consists of a sensor 

consisting of an LED (Light Emitting Diode) applied to the subject's skin, which 

emits a beam of light at a certain intensity and wavelength. Part of the light, 

passing through the tissues, is absorbed and the remaining one reaches a 

photodetector, capable of translating the attenuation into a proportional electrical 

signal.  

 

Figure 1.10 Photoplethysmogram sensor 

The blood, by varying its volume inside the vessels with each heartbeat, produces 

a variable attenuation over time; on the contrary, the more superficial and less 
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vascularized tissues produce a practically constant attenuation. This results in an 

alternating component (AC) due to the variation of the blood inside the vessels, 

and a continuous component (DC) due to tissue absorption Figure 1.11[41]. 

 

 

Figure 1.11 AC and DC components of blood volume variation 

The DC component changes slowly with respiration, while the alternate 

component shows blood volume changes, which occur during the cardiac cycle. 

The fundamental frequency of the AC component depends on the HR and is 

added to the DC component. The interaction of light with biological tissue is quite 

complex and may involve scattering, absorption, and/or reflection, however, it can 

be fairly approximated by Beere Lambert’s law: 

 𝐴 = ln IinIout = 𝑙 ∑ ε𝑖𝑁
𝑖=1  𝑐𝑖 

 

  

(5) 

 

 

 

where N represents the attenuating species in case of uniform attenuation. The 

absorbance A depends on the path length of the beam of light through the material 

sample l, the concentration c and the molar attenuation coefficient ε. The 

absorption clearly depends on the amount of light provided Iin and the amount of 

light, which is transmitted through the volume (Iout, which refers to both reflected 

and transmitted light). The shape of the PPG waveform differs from subject to 

subject, and varies with the location and manner in which the pulse oximeter is 

attached.  The PPG amplitude is the result of a complex interaction of several 

factors: stroke volume, vascular compliance, and tissue congestion effects. A 

large PPG pulse does not imply a high arterial pressure, absurdly, PPG amplitude 

can decrease during significant increases in blood pressure that are due to 

increased sympathetic tone, e.g. this phenomenon is usually seen in an incision on 

a subject under general anaesthesia. 
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1.4 MIMIC Database Description 

The MIMIC Database (Multi-parameter Intelligent Monitoring for Intensive Care) 

is a collection of free access physiological signals recorded in the Intensive Care 

Units of medicine, surgery and cardiology at Boston's Beth Israel Hospital [42]. 

Recordings include continuous signals and periodic measurements (“numerics”) 
taken from patient monitors. MIMIC Database is a representative clinical database 

because of the full range of pathophysiologies that result in sudden blood pressure 

changes [43]. This database consists of different physiological signals recorded 

from 121 ICU patients; however, only 72 patients were available. The data 

include signals and periodic measurements obtained from a bedside monitor as 

well as clinical data obtained from the patient’s medical record. The recordings 

vary in length from 1 to 80 hours depending on patients. The data obtained from 

the bedside monitors are divided into files each containing 10 minutes of recorded 

signals, which can then be assembled without gaps to forma continuous recording 

[44]. The data were written in ten-minute segments in order to limit possible loss 

of data from power interruptions. The ECG, PPG and ABP signals (Figure 1.12) 

are sampled at 125 Hz with 12-bit precision and negligible jitter.  

 
Figure 1.12 ECG, PPG and ABP signals 

 

1.4.1 Data Cleaning 

MIMIC was extracted via WFDB [42], a Python library supported by Physionet 

[39], and therefore any record without the required signals was discarded. Systolic 

Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) values were extracted, 

representing the desired output. 

The pre-processing pipeline is shown in Figure 1.13 
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Figure 1.13 Data pre-processing pipeline 

After deleting recordings without the requested signals (ECG, PPG, ABP), NaN 

values were managed replacing them with the first available value. The NaN 

values were simply replaced with the closest value because in some cases there 

were long stretches with missing values, so it was impossible to reconstruct the 

missing signal. Moreover, replacing the NaNs with the nearest value was not a 

problem because they were associated to flat lines, which are managed in the next 

step of the pipeline.  

Then, it was necessary to exclude low quality recordings, i.e. those containing the 

so-called flat lines and flat peaks, which are recording errors mostly due to sensor 

problems, for example, a simple disconnection. Flat lines are long periods of time 

where the same value is always detected, while flat peaks are peaks with a 

flattened tip. 

Subsequently, anomalies in ABP signal were managed: within the 10-minute 

recording the ABP signal should always be between a minimum of 15 and a 

maximum of 300 mmHg. In addition, a control on the pressure and 

plethysmography signal derivatives has been introduced, in particular the 

recordings that had first derivative always more than zero, or always less than 

zero, for more than 170 samples have been deleted. In practice, recordings in 

which the trend was increasing monotonous or decreasing monotonous for at least 

1.36 seconds were eliminated. The remaining PPG recordings were then filtered 

through a 4th order band pass Butterworth filter with a bandwidth between 0.5 

and 8 Hz, and then both PPG signals and ABP were filtered with a Hampel filter 

according to [45]. Those frequencies were chosen because anything below 0.5Hz 

is due to baseline wandering, while above 8Hz it is high frequency noise.  

For computational reasons, the patients with less than 3.10 hours of recordings 

were discarded, while only the first 3.10 hours were taken from those with longer 

recordings. Out of 72 patients in the MIMIC dataset, only 61 had at least both 

ECG and PPG. Following the pre-processing pipeline, the dataset was created by 

extracting exactly 3.10 hours of the registration of each of the 50 patients 

remained. Also, in this case the distribution of systolic and diastolic BP was 

traced, and it is possible to notice that they are strongly biased towards 
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physiological values. Finally, the PPG signal was standardized and the ABP was 

normalized. Since the output is normalized, the predictions made by the networks 

must be denormalized using the minimum and maximum values calculated on the 

training set. 

1.4.2  Data Building 

Blood pressure, as mentioned, is closely related to photoplethysmography. 

However, ABP is a signal dependent on the cardiac cycle; for this reason, several 

prediction techniques use also the electrocardiogram signal. Two datasets have 

been created: the former uses the PPG signal to predict the arterial blood pressure, 

the latter uses both the PPG and the ECG (ECG could also help deep learning 

approaches). ECG lead V was used to obtain the largest possible data set, which 

represents the most frequent ECG lead recorded in the MIMIC database. An 8th 

order feedthrough and a type 1 Chebyshev filter were used to clean the ECG 

signals, with cut frequency of 2 and 59 Hz to avoid motion artifacts and 

alternating current artifacts. Out of 72 patients in the MIMIC dataset only 51 had 

at least both PPG, ECG lead V and PPG. After the pre-processing pipeline, the 

dataset was created by extracting exactly 3.10 hours of registration from 40 

patients. 

1.5 Blood Pressure Estimation with Neural Networks 

Output-Error 

Arterial Blood Pressure (ABP) is an important physiological parameter that 

should be properly monitored for the purposes of prevention and detection of 

cardiovascular diseases, which represent one of the leading causes of death in the 

world. This section explains a blood pressure prediction technique based on 

system identification [46][47][48]. In order to predict the ABP values (both 

systolic and diastolic), electrocardiographic and photoplethysmographic signals 

are used as inputs of the networks. The Neural Networks Output-Error  (NNOE) 

architectures are evaluated in terms of RMSE and absolute error.  The neural 

networks output-error belong to the system identification algorithms and 

represents a synonym for mathematical modelling of dynamic systems using 

measurements of the input and output signals. Prediction-error methods are based 

on the observation that predictors which can be used to compare how well 

different LTI models can predict the desired output y(t). The main idea is to use 

some kind of measure of the distance between the predicted output and the desired 

output (target) t and to minimize this distance by adjusting some parameters in the 

model [49]. 
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1.5.1 Neural Network Description 

The purpose of Neural Network Output-Error (NNOE) is the identification of 

nonlinear dynamic systems in stochastic environment [50].  

Figure 1.14 describes the procedure required to identify a dynamic system.  

 

 

Figure 1.14 System identification procedure 

 

The experimental phase is represented by the description of the dataset 𝑍𝑁, which 

describes the entire system in its operating region with a proper choice of 

sampling frequency: 

 𝑍𝑁 = {[𝑢(𝑡), 𝑦(𝑡)|𝑡=1,…,𝑁]} (6) 

 𝑢(𝑡) is the control signal, 𝑦(𝑡) represents the measured output signal and 𝑡 

specifies sampling instant number. 

For the selection of the model structure, it is necessary to choose a set of 

regressors. The goal is to select a certain number of regressors based on the idea 

of a linear system identification and then determine the best possible network 

architecture. The selection of regressors as inputs of the neural network is carried 

out by Lipschitz method [15], as showed in Figure 1.15Errore. L'origine 

riferimento non è stata trovata.. 

For NNOE, the shape of regression vector is given by: 

 𝜑(𝑡) = [𝑦̂(𝑡 − 1|𝜃) … 𝑦̂(𝑡 − 𝑛|𝜃)   𝑢(𝑡 − 𝑑) … 𝑢(𝑡 − 𝑑 − 𝑚)]𝑇 (7) 

 

where 𝜃 is a vector containing the weights, 𝑛 is the y-predicted lag, 𝑚 is the input 

lag and 𝑑 the delay to obtain the prediction (also called skip). 
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Figure 1.15 The NNOE model structure 

The prediction vector is the following: 

 

 𝑦̂(𝑡|𝜃) = 𝑔(𝜑(𝑡), 𝜃) (8) 

 

where 𝑔 is the function realized by the neural network. The functions for 

estimating model are based on recurrent networks. The most common method of 

validation is to investigate the residuals (prediction errors) by cross-validation on 

a test set. 

 

1.5.2 Evaluation Metrics 

The output of the network is the ABP signal, estimated from an input which can 

be the PPG signal or both ECG and PPG signals (at the same time). The 

algorithm, implemented as supervised learning, associates, for each input, a real 

output (target) which is compared to the estimated one (output). The purpose of 

this first analysis is to estimate the waveform of the pressure signal and extract 

from it the minima and maxima points, i.e. the systolic and diastolic pressure 

values. An algorithm has been implemented for the identification of the 

characteristic points, i.e., the systolic peak, the diastolic peak, the dicrotic notch 

and the lowest point of the curve (foot), as shown in Figure 1.16. 

 

 

Figure 1.16 Waveform characteristic points 

The characterizing parameters were extracted from the target signal and from the 

output signal and then applied different criteria for evaluating the results. The 
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points corresponding to the systolic pressure (systole) and diastolic (foot) pressure 

were taken into consideration. The parameters calculated to evaluate the errors 

made in the estimation of the peaks and valleys are the following: 

 

• RMSE (Root Mean Square Error) measures the differences between 

values (sample or population values) predicted by a model or an estimator 

and the values observed. The RMSE represents the square root of the 

second sample moment of the differences between predicted values and 

observed values or the quadratic mean of these differences. These 

deviations are called residuals when the calculations are performed over 

the data sample that was used for estimation and are called errors (or 

prediction errors) when computed out-of-sample [51]. 

RMSE is calculated as: 

RMSE =  √∑ (𝑦𝑖 − 𝑦̃𝑖)2𝑛𝑖=1 𝑛  

(9) 

where n is the number of measurements, 𝑦𝑖 is the prediction and 𝑦̃𝑖 the           

desired true value (target).   

 

 

• MAE (Mean Absolute Error) measures the errors between paired 

observations expressing the same phenomenon. Examples of 𝑦𝑖 versus 𝑦̃𝑖 
include comparisons of predicted versus observed, subsequent time versus 

initial time, and one technique of measurement versus an alternative 

technique of measurement [52]. MAE is calculated as: 

MAE =  ∑ |𝑦𝑖 − 𝑦̃𝑖|𝑛𝑖=1 𝑛   
 

(10) 

 

where n is the number of measurements, 𝑦𝑖 is the prediction and 𝑦̃𝑖 the           

desired true value (target).   

1.5.3 Results 

The NNOE networks presented in the previous section have been tested on 

systolic and diastolic blood pressure estimation task. ABP has been estimated with 

IBP as target and PPG as input and PPG+ECG as inputs, respectively. Then, their 

performances have been compared in terms of RMSE and mean absolute ABP 

error (in mmHg). At the beginning, the number of regressors of the network has 

been determined with the Lipschitz quotients method [53]. Figure 1.17 shows the 

Lipschitz graph, which can be used to reveal the order of the system. The indices 

for system orders from 1 to 10 are investigated; the system can be modelled by a 

sixth order model, since the slope of the curve is decreased for model orders 

greater than 5. 
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Figure 1.17 . The order index criterion evaluated with Lipschitz quotients method 

In this analysis, the output-error architecture was implemented by a multi-layer 

perceptron (MLP), because of its capability to learn nonlinear relationship from a 

set of data. The hidden layer has 35 units and the activation function is the 

hyperbolic tangent. To train the network Levenberg-Marquardt method is used 

[54], which is the most effective method for feed-forward neural networks w.r.t. 

the training precision. It acts like a gradient-descent method when the parameters 

are far from their optimal value, and like the Gauss-Newton method when the 

parameters are close to their optimal value [55]. The error function is, of course, 

the sum of squared errors. The network is trained twice: first with PPG signal as 

input and then with both ECG and PPG signals as inputs. Before comparing the 

output of the network with the target, a moving mean filter (window length equal 

to 25 and 10, respectively) is applied to the output signal to remove noise artifacts. 

Figure 1.18 show the comparison between target (blue solid line) and output (red 

dashed line) signals with PPG and ECG+PPG as inputs, respectively. In both 

cases, the prediction is accurate. The model is evaluated in terms of RMSE; in 

particular, RMSE shows better performances for NNOE with ECG+PPG input 

than PPG. Table 1.2 summarizes the performances of the NNOE architecture. 

Table 1.2. RMSE and MAE performances 

 RMSE [mmHg] MAE [mmHg] 

Dias Sys Dias Sys 

PPG 1.43 1.73 1.06 1.54 

PPG+ECG 0.49   1.47 0.46 1.19 
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Figure 1.18 NNOE - Target (blue solid line) and Output (red dashed line) signals with PPG (a) and 

ECG+PPG (b) as inputs. 

1.5.4 Future Works 

The analysis compares the output-error neural networks (NNOE) for time series 

prediction in two configurations: PPG as input and PPG + ECG as inputs.  NNOE 

is a network with a certain number of regressors as inputs, which try to identify 

nonlinear dynamic systems. The regression results are evaluated in term of RMSE 

and MAE. In particular, because of the regressors choice as input, NNOE 

approximates well the function that predicts the blood pressure value. 

Future work will deal with improving the blood pressure estimation with NNOE 

method. In addition, an increase in the number of data is expected to ensure 

generalization. 

 

1.6 A Comparison of Deep Learning Techniques for 

Arterial Blood Pressure  

The purpose of this section is the continuous measurement of the arterial blood 

pressure (ABP) through the use of deep learning (DL) techniques with a cuffless 

and non-intrusive approach. Several deep neural networks (DNNs) are used to 

infer ABP, starting (also in this analysis) from photoplethysmogram and 

electrocardiogram signals [56]. The ABP was predicted first by exploiting only 

PPG and then by using both PPG and ECG. Convolutional neural networks 

(ResNet and WaveNet) and recurrent neural networks (LSTM) were compared 

and analysed for the regression task . 

1.6.1 Methodology 

In order to analyse the DNN architectures two different setups were implemented: 

• direct SBP/DBP prediction: the network analyses 5 seconds of recording and 

then directly outputs a single value for SBP (peak) and another one for DBP 

(valley). 

• entire ABP signal prediction: the network predicts the entire ABP in real time. 
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Predicting the entire signal could be better for hospital clinical applications, while, 

for commercial healthcare device implementation only systolic and diastolic   

values are predicted. DNNs for both setups were trained with both datasets and 

evaluated on a validation set, and then the best performing networks were cross 

validated using Leave-One-Out (LOO) since it is the most robust approach in 

terms of generalization performance [45]. DNNs were trained utilizing the Adam 

optimizer, the learning rate of 0.001, the Huber loss and the mini-batch training. 

Because the Adam optimizer is an adaptive learning rate algorithm, it didn’t 
require a lot of tuning and therefore the default learning rate was used, while 

Huber loss was chosen because it is a robust metric, unaffected by outliers, 

considering that the dataset did not have bell-shaped distribution as shown in 

Figure 1.19. So, Adam's learning rate using Adam optimizer helps to optimize the 

choice of the learning rate so that its variation does not particularly affect the 

algorithm's performance. The choice of architecture in order to find the best 

configuration through the validation set technique, in order to avoid overfitting of 

the network. While the choice of the number of training epochs has been defined 

by a stop criterion defining the accuracy you want. 

 

 

Figure 1.19 Dataset distribution 

Data samples in direct SBP / DBP prediction are 5 seconds long, while in entire 

BP prediction are 2 seconds long. This difference is due to Long Short-Term 

Memory (LSTM); indeed, this cell has problems in managing too long sequences. 

LSTMs are used also in the first setup, however in this case it was possible to 

down-sample the input, through convolutional layers, since it was not necessary to 

output a value for every input. 

In direct SBP / DBP prediction recordings were divided in 5 seconds chunks and 

hen on the samples was applied an  algorithm that  extracts SBP and DBP values. 

Since in 5 seconds usually there are between 4 and 6 cardiac cycles, it was taken 

the mean SBP and DBP among the cardiac cycles, as target values. 
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1.6.2 Convolutional Neural Networks 

Convolutional neural networks (CNN) algorithms are inspired by the human 

visual cortex and are mainly known for their applications in image recognition. 

However, CNN are not limited to visual perception because they perform 

functions that are related to speech recognition, natural language processing and 

in general the analysis of time series. 

The neurons in the visual cortex that they react only to visual stimuli localized in 

a limited region of the visual field (small receptive field). Neurons are organized 

on receptive field levels (Figure 1.20): because of higher-level neurons react to 

more complex patterns than they are combinations of lower level models they are 

led to the idea that the higher-level neurons rely on the outputs of neighbouring 

lower-level neurons [57]. 

 

Figure 1.20 Receptive field of each neuron in different layers 

The schematic architecture of a convolutional neural network is shown in Figure 

1.21. The fundamental element of a CNN is the convolutional layer. Neurons in 

each convolutional layer are not connected to any single input point, but only to 

those in their receptive fields. The transition from one receptive field to the next is 

called step. This architecture allows the network to focus on small, low-level 

features in the first hidden level, then assemble them into larger higher-level items 

in the next hidden layer, and so on. 

 

 

Figure 1.21 Schematic convolutional neural network 

Convolutional levels are built on top of so-called convolutional kernels or filters, 

during the forward passage each filter is convolved on its inlet producing a 2- 
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dimensional activation map of that filter. This map is called a feature map. All 

neurons within a given feature map share the same weights and biases. 

The receptive field of a neuron is the same as described above, and it extends over 

the feature maps of the previous levels. As a result, the network learns which 

filters are activated when it detects a specific type of feature in a spatial position 

in the input. Another important concept of CNNs is the pooling layer, which is a 

form of non-linear downsampling in order to reduce the computational load, the 

memory usage, and the number of parameters. Just like the convolutional layer, it 

has a receptive field, but it has no weights: it just aggregates the inputs using a 

dedicated function. The most common pooling function is the max pooling 

(Figure 1.22): in this case, the function partitions the input image into a set of 

non-overlapping rectangles and, for each such sub-region, outputs the maximum 

[58]. 

 

 

Figure 1.22 Max pooling function example 

Fully Connected 

Fully connected neural networks (FCNNs) are a type of artificial neural network 

where the architecture is such that all the neurons in one layer are connected to the 

neurons in the next layer. Such networks require many parameters and can be 

prone to overfitting. The major advantage of fully connected networks is that they 

are “structure agnostic”, i.e., there are no special assumptions needed to be made 

about the input. While being structure agnostic makes fully connected networks 

very broadly applicable, such networks do tend to have weaker performance than 

special-purpose networks tuned to the structure of a problem space [59]. 

 

 

ResNet 

The Residual Network (ResNet) is an architecture based on pyramid cells in the 

cerebral cortex, initially used for image classification. The effectiveness of neural 

networks is closely related to the depth of convolutional neural networks, 

however, ResNet are used to facilitate the training that is usually affected by the 

problem of evanescent/explosive gradients, degrading accuracy. Such degradation 

is not caused by overfitting and adding more layers to a suitably deep model leads 

to higher training error [60].  To avoid degradation, it introduced skip connections 

(Figure 1.23); the signal power in one layer is also added to the output of a layer 

located a little higher than the stack. This new technique made it possible to train 
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very deep networks like the original ResNet, a CNN made up of 152 layers. There 

are many variations of this network depending on about how deep it is. Usually, 

during the neural network training, the goal is to have a model target function h 

(x), which best approximates the network output starting from the input data. 

However, it is difficult to optimize the function when the network is very deep. 

For this reason, the input x is added to the network forcing output the network to 

learn the so-called residual map 𝑓(𝑥) =  ℎ(𝑥) − 𝑥. 

When a regular neural network is initialized, its weights are close to zero, if there 

is a jump connection, the resultant network outputs only a copy of its inputs; in 

other words, it initially shapes identity function. If the target function is close 

enough to the identity function this will greatly accelerate the training [57] . 

Thanks to skip connections, the signal can easily make its way through the entire 

network. 

 

 

Figure 1.23 Skip connections 

The classic ResNet architecture in illustrated in Figure 1.24. It starts with a 

convolutional layer and ends with a fully connected layer, if the final goal is a 

classification task the last layer is based on a softmax as an activation function, 

and in the middle there is only a very deep stack of simple residual units. Each 

residual unit is composed of two convolutional layers, with batch normalization 

and activation of ReLU, using 3 × 3 kernels and preserving the spatial 

dimensions. 

There is no need to group levels into residual units because downsampling is 

performed directly from convolutional layers that have a stride of 2. 

Convolutional layers mainly have 3 × 3 filters and follow two simple design 

rules: for the same size of the output characteristics map, the layers have the same 

number of filters; if the size of the feature map is halved (using a convolutional 

level with step 2), the number of filters is doubled in order to preserve the time 

complexity per level. When the height and the width are halved, the inputs cannot 

be added directly to the outputs of the residual unit because they do not have the 

same shape. To solve this problem, inputs are passed through a 1 × 1 

convolutional layer with stride equal to 2 and the right number of output 

capabilities maps [57]. 
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Figure 1.24 Classic ReseNet Architecture 

 

WaveNet 

The WaveNet architecture is a model originally designed to operate directly on 

the raw audio waveform. The classic model is composed of a stack of 

convolutional layers with no pooling layers and with causal padding. This padding 

allows the output to have the same temporal dimensionality as an entrance. Since 

this model does not require recurring connections, it is typically faster to train 

compared to RNN, especially when applied to very long sequences. However, one 

of the problems of causal convolutions is that they require many layers or large 

filters to augment the receptive field [61]. To solve this problem, WaveNet uses a 

dilation rate (Figure 1.25), which represents how far the inputs of each neuron are. 

A dilated convolution is a convolution in which the filter is applied over a larger 

area relative to its length by skipping the input values with a certain step. In this 

way, the lower layers they learn short-term patterns, while the upper layers learn 

long-term patterns. Thanks to the dilation rate of doubling, the network can 

process extremely large sequences in very efficient way. 

 

 

Figure 1.25 Dilated convolution layers 
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1.6.3 Recurrent Neural Network  

A recurrent neural network (RNN) is an artificial neural network in which the   

connections among neurons make up a graph directed along a sequence. Thanks 

to this characteristic, it is possible to reconstruct a dynamic temporal behaviour of 

a phenomenon. Unlike feedforward neural networks, RNNs use internal memory 

to process input sequences. This makes them applicable to activities that extend 

over a certain period of time: handwriting recognition, speech recognition, 

automatic translation etc. The recurrent neural network aims to model a function 

that can provide output based on input.  In most artificial neural networks, all 

inputs are independent of each other. But in RNN, all inputs are related to each 

other because it maintains all these relationships while the training. 

 

LSTM 

The Long Short Term Memory are a type of recurrent network that has the 

advantage of managing information in memory for a long period of time 

compared to RNN. Therefore, LSTMs are able to maintain long-term temporal 

dependencies, remembering less information (only the most important) for a long 

period of time. Indeed, LSTM networks remember past data in memory, resolving 

the vanishing gradient problem of RNN [62]. The LSTMs are based on special 

units called memory blocks (Figure 1.26).  

 

Figure 1.26 LSTM memory block 

 

The working memory is represented by the hidden state ℎ𝑡. The cell regulates its 

state using the gates: at first, there is a forget gate where some memories are 

dropped, then the memories are replaced with new ones selected by the input gate. 

The forget gate rule is given by:   

 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡) 
(11) 

where 𝑊 presents the weights vector, 𝑏 the bias, σ the sigmoid function and 𝑡 the 

current instant.  
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One copy of the new state is sent to the next iteration; the other one is passed 

through a tanh function and filtered by the output gate, as follows: 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

(12) 

This is combined with the current inputs and the previous outputs to create the 

new output. The hidden state contains information on previous inputs and it is also 

used for predictions. Its output is given by: 

  ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (13) 

The input gate recognizes important inputs and stores them into the long-term 

state, the forget gate deletes input that are no longer needed, and the output gate 

decides when to extract a specific input from the long-term state [63].  

The current input and the previous output, also called short-term state, are fed to 

four different fully connected layers. The ones controlled by a sigmoid function 

are the layers that control the gates, their outputs range between 0 and 1 and are 

fed to element-wise multiplication operations; in this way, if they output is zero, 

they close the gate, while if the output is one, they open it. The forget gate 

controls which parts of the long-term state should be erased, the input gate 

controls which new memories should be added to the long-term state, and the 

output gate controls which parts of the long-term state should be read and output 

at this time step. The new memories are calculated in the layer controlled by the 

tanh function. 

1.6.4 Results 

In order to perform experiments and delve into the topic of blood pressure 

prediction, a study analysis was carried out with the neural networks analysed in 

the previous section and creating new hybrid networks that contain both recurrent 

and convolutional networks. Very simple convolutional neural networks and 

recurrent neural networks were initially trained, but the hybrid approach between 

CNN and RNN produced the best results. 

Direct SBP/DBP Prediction  

The first experiment was carried out by using a ResNet18 and testing different 

batch sizes. Smaller batches allowed a faster training and achieved better results, 

probably because they did not get stuck in some local minimum. Therefore, also 

for a regression task, mini-batch training is the best way to train a neural network. 

In particular, three settings were tested: in the first, 650 samples per batch were 

used maximum size permitted, before performing backpropagation; in the second, 

128 samples, and in the third 32 samples were adopted. In every setup, the 

number of training steps is always the same: this is important because it represents 

the number of times the weights are updated; therefore, the networks are 

comparable only if their weights are updated the same number of times: 
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𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠 ∗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒  (14) 

 

Classical feature selection has been automated by convolutional layers and skip 

connections; in addition, it is possible to stack layers creating a deep neural 

network, which can better analyse input data. 

The next experiment for Direct SBP/DBP prediction employed a ResNet, like the 

previous one, followed by three LSTM layers, each one made up of 128 neurons. 

The first LSTM layer is bidirectional. Convolutional layers are activated when 

they are combined with recurrent layers: they extract features from a signal, and 

they can also downsample the input sequence using the right kernel size, stride 

and padding. The model can learn how to preserve the useful information 

dropping only the unimportant details and shortening the sequences; the 

convolutional layer may help the following recurrent layers to detect longer 

patterns. This network was the best performing to directly predict SBP/DBP 

values for both datasets. The results are shown in Table 1.3. 

Table 1.3. Errors (mmHg) for Direct SBP/DBP prediction task on SBP and DBP prediction for 

different setups with MIMIC databases 

Neural network  SBP DBP SBP DBP 

 MAE (mmHg) RMSE (mmHg) 

ResNet (PPG) 9.556 4.217 13.572 6.012 

ResNet (PPG+ECG) 4.667 2.445 6.227 3.042 

ResNet +LSTM (PPG) 7.122 3.534 11.214 5.029 

ResNet+LSTM (PPG+ECG) 4.118 2.228 5.682 2.986 

     

 

Entire ABP Signal Prediction 

Initially the entire ABP signal was tried to predict through a simple fully 

connected neural network. However, due to the simplicity of the model, good 

results were not achieved. Deeper models appear to converge faster, but still give 

high errors.  

Another experiment for Entire ABP signal prediction task used a network which 

consists of three stacked LSTM layers, each with 128 cells. The first layer is bi-

directional, while the output layer is a fully connected neuron with no triggering 

function. Bi-directional long-term memory (BLSTM) looks for contextual 

features both forward and backward, which is useful because the location of the 

feature the network wants to forget is not known. This approach is used to 

increase the amount of incoming information available to the network [32]. 

BLSTM is usually positioned as the top tier of the network because it has access 

to context on a much larger scale than the input sequence. BLSTMs greatly 

increase the computational cost; therefore, it is reasonable to use only one 

bidirectional layer. Each sample consists of 2 s of recording; as explained above: 

this value length was defined because LSTMs have trouble handling long 

sequences. It is difficult to remember long-term patterns if the sequence is too 

long; furthermore, this makes calculating the gradient over time too difficult. For 
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this reason, only the 2 seconds preceding the current instant t are taken as the 

input time window to predict a single output value at instant t.  

The third experiment for the task used a simplified version of the WaveNet, 

composed of two blocks each one with four convolutional layers. The dilation rate 

is the double (from 1 to 8) in every convolutional layer inside a block. The output 

layer is a fully connected neuron without any activation function. Since the 

network is composed only by convolutional layers, it converges fast and, thanks to 

the doubling dilation rate, it can process extremely large sequences very 

efficiently. Afterwards, a second network was built stacking three LSTM layers 

(fourth experiment), each composed by 128 neurons, where the first layer was 

bidirectional. On top of this simplified WaveNet, convolutional layers extract 

features that are then analysed by the LSTM layers. 

The last experiment was carried out using both LSTM and convolutional layers. 

In particular, here a ResNet is followed by three LSTM layers, being the first bi-

directional. This network differs from the one presented in the Direct Prediction 

section of SBP / DBP because max-pooling levels are not used and convolutional 

levels have causal padding, like WaveNet. This is a crucial step: to predict the 

entire signal, it was necessary to output a sequence of the same length as the input 

sequence. This network performed best in predicting the entire signal. In this 

experiment, each ResNet is made up of four ResNet blocks. The convolutional 

layers have kernel size equal to 3 and strides equal to 2, while the number of 

filters increases in each block starting from 64 up to 512. Each layer consists of 

128 cells. Each convolutional operation is here followed by a batch normalization, 

which centres and normalizes each input; then, resize and move the results using 

two new parameter vectors per layer: one for resizing, the other for moving. In 

other words, this procedure causes the model to learn the optimal scale and mean 

of each of the level inputs.  As shown in Figure 1.27, this hybrid network was the 

best performing one to predict the entire BP signal for both datasets because the 

network was built specifically on this problem. It can be observed that the three 

peaks are well estimated (there is only a small error of 3 mmHg for the first peak). 

 

 

Figure 1.27 ABP prediction on a validation set sample made with ResNet+LSTM trained with PPG 

dataset: original signal (light blue) vs network output (orange). 
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A performance comparison among the analysed neural network architectures for 

Entire BP prediction task is summarized in Table 1.4. 

 
Table 1.4. Errors (mmHg) for Entire BP prediction task on SBP and DBP prediction for different 

setups with MIMIC databases 

Neural network  SBP DBP SBP DBP 

 MAE (mmHg) RMSE (mmHg) 

Fully Connected (PPG) 36.559 10.602 45.013 13.417 

Fully Connected (PPG+ECG) 29.753 12.759 39.330 15.198 

LSTM (PPG) 12.118 5.018 17.875 6.890 

LSTM (PPG+ECG) 7.603 3.688 11.846 5.320 

WaveNet (PPG) 18.539 8.154 26.638 11.441 

WaveNet(PPG+ECG) 14.501 7.224 22.922 10.477 

WaveNet +LSTM (PPG) 14.353 6.311 21.323 9.150 

WaveNet +LSTM (PPG+ECG) 8.812 3.471 12,967 4.864 

ResNet +LSTM (PPG) 8.660 3.843 13.439 5.718 

ResNet +LSTM (PPG+ECG) 4.507 2.209 6.414 3.101 

 

Leave-One-Out (LOO) cross-validation 

In order to understand the performance of the generalization, a Leave-One-Out 

(LOO) cross-validation was conducted on the best architecture, i.e., the hybrid 

network which consists of ResNet followed by LSTM, for both datasets: the one 

built using PPG only and the one built using both PPGs and ECG. 

LOO is better than the k-fold cross validation [90] in case of very few data. 

Indeed, this is the best possible way to exploit the experimental dataset of this 

work. Specifically, the dataset, created using only PPG, had 50 patients, while the 

dataset, created using PPG and the ECG, had only 40 patients. During the training 

phase, it was important to have access to as much data as possible; like this, all 

available data were used; conversely, to compare performance, it was useful to 

have the same data set. The ECG signal generalization also improved when used 

at best ResNet + LSTM model, as shown in Table 1.5; however, errors were lower 

than the case in which nets were trained and tested on the same patients (different 

records). This  phenomenon appears in many other types of research [64], and is 

generally called personalization. With individual calibration, PPG and ECG can 

be used to directly estimate SBP and DBP on new data obtained from the same 

individual. According to to the American National Standards Institute (ANSI) for 

the “Development of medical instrumentation” [65], in order to validate a new 

device, there should be an average difference of ± 5 mmHg between the standard 

and the newly developed device [66]. The mean square error for SBP is 5.682, 

while for DBP it is 2.986. 
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Table 1.5. LOO results on MIMIC Database with the best neural network (ResNet+LSTM). 

Tested set MAE  RMSE MAE S MAE D RMSE S RMSE D 

   Direct SBP/DBP prediction 

PPG (50 pat)   23,5976 10,7459 27,6430 12,3444 

PPG (40 pat)   24,2227 11,1056 28,2470 12,6419 

ECG(40 pat)   20,3667 9,5484 23,0699 10,8475 

 Entire BP prediction 

PPG (50 pat) 15,3419 19,1549 21,4666 10,6841 25,3825 12,3489 

PPG (40 pat) 15,6788 19,5598 22,4095 10,8180 26,2460 12,4111 

ECG(40 pat) 14,6093 18,0184 22,0995 10,1053 24,5865 11,5292 

 

1.6.5 External Validation on Polito Dataset 

To test the pressure prediction algorithm, a customized dataset (for external 

validation) was created at the Neuronica Lab of the Politecnico di Torino.  

The dataset consists of nine healthy volunteers (5 males, 4 females, aged 22.84 ± 

1.7 years) who were recruited to participate in the PPG, ECG and ABP signal 

acquisition experiment. Recordings were collected using a GE Healthcare B125 

Patient Monitor, which is a certified clinical device, generally appreciated for its 

intuitiveness and reliability in a variety of acuities. The monitor offers proven 

NIBP technology, using GE patented smart cuff pressure control to improve 

measurement time, patient comfort and artifact rejection. It meets the 

requirements of both AAMI ISO81060-2 and IEC 80601-2-30. PPG, ECG and 

ABP were measured three times using the following recording protocol: first, PPG 

and ECG were recorded simultaneously; then, BP was measured using a 

sphygmomanometer. PPG and ECG recordings were 15 s long. The PPG was 

sampled at 300 Hz, while the ECG at 100 Hz; therefore, both signals were 

resampled both at 125Hz, respectively with the down-sampling (the samples were 

skipped) and the linear interpolation method. A sphygmomanometer was used 

because a CNAP system was not available, while invasive methods can only be 

performed by specific clinical staff. 

 

Results on Polito Dataset 

The best performing DNN (ResNet + LSTM) trained on PPG and ECG (Lead I) 

was used to predict SBP and DBP (point values) on Polito volunteers: MAE was 

12.435 mmHg on SBP and 8.567 mmHg on DBP (see Table 1.6, which shows the 

results for the collection of data from Polito volunteers). The network was also 

trained using only the PPG. This configuration achieved MAE equal to 9.916 

mmHg on SBP and 5.905 on DBP. In this case, the ECG improved the 

performance on the data extracted from the MIMIC database but did not affect 

generalization. Furthermore, it negatively affected the results on the Polito. The 

reason is probably due to the small training set; in fact, only 12 patients had ECG 

in MIMIC Database. Unexpected results on the Polito dataset could be due to 

different methods of pressure acquisition (invasive in the case of the MIMIC, non-

invasive in the case of the Polito Dataset). In this case, for technical reasons, the 



 

38 

 

pressure was not acquired with a invasive method, but measured with a 

sphygmomanometer, which can introduce epistemic uncertainty.  

Table 1.6. SBP and DBP prediction errors (mmHg) on Polito database using the best neural network 

(ResNet+LSTM) trained on MIMIC dataset (built using PPG and ECG lead I). 

Tested set MAE SBP MAE DBP RMSE SBP RMSE DBP 

 PPG 

Validation set 7,409 3,706 9,875 4,883 

Leave-One-Out 15,706 7,251 17,792 8,171 

Polito dataset 9,916 5,905 11,879 7,273 

 PPG+ECG 

Validation set 4,546 2,515 5,766 2,982 

Leave-One-Out 16,128 6,743 17,875 7,902 

Polito dataset 12,435 8,567 14,082 10,211 

 

1.6.6 Discussion 

Blood pressure measurements are performed based on PPG only; however, the 

results are influenced by the inter-operator variability; to get around this problem 

and obtain a greater generalization, ECG signals should be considered. Different 

people show different ABP and PPG waves; however, the results also depend on 

the average pressure of the patients: the biggest mistakes were made on patients 

with the highest mean ABP.  To obtain better results, it would be appropriate to 

use a larger dataset to have a Gaussian distribution of BP. Large datasets are of 

utmost importance in deep learning and the reason is clearly shown in Polito 

results: although the ECG importance was proven, it did not improve the 

performance, because the network was trained on a very small dataset.  

Among the analysed neural networks, the hybrid networks ResNet+LSTM, which 

contain both recurrent and convolutional networks, have gained the best 

performances.  

Table 1.7 shows the comparison of all the neural networks employed for arterial 

blood pressure detection in term of complexity. In particular, for convolutional 

neural networks, the complexity affects the length of the signal, the dimension of 

the input vector (1 for only PPG input and 2 for PPG and ECG as inputs), and the 

kernel size, while for recurrent neural network, the complexity affects only the 

length and the dimension of input vector. The ResNet + LSTM represents the best 

model in terms of performance, but, at the same time, the most expensive model 

in terms of computational complexity. 

The goal for blood pressure estimation is twofold: on one hand to predict the 

entire pressure signal and on the other hand to estimate the point values of 

diastolic and systolic pressure. The objective is because it strictly depends on the 

application: the detection of the entire signal at a medical level is certainly more 

significant because it describes the morphology of the entire signal and allows to 

study the signal more thoroughly; instead, the detection of the values is useful for 

monitoring vital parameters in wearable devices, a simpler task as the purpose is 

to predict only two points and not an entire signal. 
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Table 1.7. Neural networks complexity order 

Neural network Complexity Order Cost Estimation (FLOPs) 

  PPG PPG+ECG 

Fully Connected 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ × (𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)2 ) ~ 625 ~ 2500 

LSTM 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ × (𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)2 ) ~ 625 ~ 2500 

WaveNet 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ × (𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)2  × 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒) 
~ 1850 ~ 7500 

WaveNet+LSTM 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ × (𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)2  × 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒) 
~ 1850 ~ 7500 

ResNet+LSTM 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ × (𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)2  × 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒) 
~ 4375 ~ 17500 

 

1.7 Conclusion 

PPG-based techniques enable continuous and automated ABP measurements; they 

are also well tolerated by patients and are inexpensive and portable. These 

techniques are based on the direct detection of the blood volume in the arteries 

under the cuff. In this study, the ECG improved the performance of the PPG in 

each proposed configuration and allowed the network to generalize better: it is 

therefore important to collect ECG data, firstly with regressive approaches and 

secondly with deep learning approaches. Such systems are easy and non-invasive 

techniques for measuring blood pressure. The experiments were conducted on a 

subset of patients from the MIMIC database. In first section, the non-invasive 

blood pressure estimation technique is presented with a regressive neural network 

NNOE. To determine the best input between a single configuration (PPG) and a 

double channel (synchronized ECG and PPG) configuration, a comparative 

analysis is carried out. Because the goal is the ABP forecasting, the NNOE 

method is used based on MLP, employing only the previous predictions in the 

regression vector. The double channel configuration yields the best results w.r.t. 

mean absolute error, which results to be, on average, 2.42 mmHg and 3.17 mmHg 

for SBP and DBP, respectively; in this sense, this configuration is compliant with 

the legislation because the estimated values are within +/- 5 mmHg w.r.t. real 

invasive measurements.  Despite the excellent results, regressive techniques have 

generalization problems; for this reason, in the second section an analysis was 

carried out by carrying out a comparison based on deep learning techniques. 
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In this more general case, thanks to the deep learning approach, the validation was 

in accordance with ANSI guidelines: the best performing network achieved an 

MAE of 4.118 mmHg on SBP and 2.228 mmHg on DBP. The selected network 

was also tested on a different custom dataset, created at Neuronica Labs 

(Politecnico di Torino), which performed better than the cross-validation of 

MIMIC LOO. This is likely since this dataset was smaller and, therefore, had a 

lower variance. Indeed, Polito's volunteers were all young and healthy subjects, 

while MIMIC is a particularly complicated dataset, because its patients have a 

huge variety of pathophysiologies that cause blood pressure changes.  

The proposed neural algorithm can be incorporated into wearable portable devices 

to perform continuous health monitoring of blood pressure in order to prevent the 

onset of irreversible damage, such as cardiovascular disease and hypertension. 

Implemented in a device, this algorithm can prove to be a powerful tool for 

diagnosing aggressive covid-19 virus at an early stage.  
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Chapter 2 

2 Development and Validation of a 

Shallow-Learning Model to 

Screen for Channelopathies from 

the Digitized Electrocardiogram 

with ECG-Dig GUI 

2.1 ECG Digitalization: from ECG Paper to ECG Digital 

Signal  

The electrocardiogram (ECG) signal describes the electrical activity of the heart, 

allowing to detect several health conditions, including cardiac system 

abnormalities and dysfunctions. Nowadays, most patient medical records are 

paper based. The importance of collecting digitized ECGs is twofold: firstly, all 

medical-engineering applications can be easily used if the ECGs are treated as 

signals; secondly, paper ECGs can deteriorate over time, therefore not 

guaranteeing a correct evaluation of the clinical condition of the patient. The goal 

of this paper is the realization of an automatic conversion algorithm from paper-

based ECGs (images) to digitized ECGs signals. The algorithm has been tested on 

17 scanned ECGs, also with pathologies. Quantitative analysis of the digitization 

method was carried out by evaluating the repeatability and reproducibility of the 

algorithm.  The digitization accuracy was evaluated both on the entire signal and 

on ECG fiducial points (R-R peaks, QRS complex, QT interval, PQ interval, P 

wave amplitude, heart rate). Results demonstrate the quality of the algorithm with 

an average Pearson correlation coefficient of 0.94. Due to the promising 

experimental results, the algorithm could be embedded in a graphical interface, 

becoming a measurement and collection tool for cardiologists. 
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2.1.1 Related works 

The digitization process is an essential process for the analysis and processing of 

signals. In recent decades the in-depth study of medical signals has been made 

possible thanks to its digital nature. 

The fundamental advantages of digital signals are noted in terms of security, 

storage, and non-deterioration due to paper. Furthermore, saving the patient's 

history guarantees ease of knowing the patient's clinical evolution. Knowing the 

entire time series of each signal, it is possible to implement algorithms for the 

automatic detection of pathologies [67].  

The ECG signal is an electrical signal that describes cardiac activity. The graph 

represents the trend of the heart potential over time. Nowadays, digital signals can 

be collected in the cloud and stored using the latest generation 

electrocardiographs. However, to know in depth the patient's medical history and 

build automatic algorithms it is essential to know the ECG signals of the past, 

which in most cases is paper based. Modern recording electrocardiographs cannot 

analyse preserved paper ECG records because it requires input in terms of 

digitized signal. For this reason, it is important to extract ECG signal from these 

preserved paper ECG records using digitization method. In [68], an entropy-based 

methodology is proposed. It is based on the bit plane slicing (EBPS) in which pre-

processing is performed using dominant colour detection and local bit plane 

slicing. The adaptive bit plane selection based on maximum entropy is applied to 

the pre-processed image. Discontinuous ECG correction (DECGC) is then 

performed to produce a continuous ECG signal. 

To increase the accuracy of the digitizing process, it is necessary to reduce noise 

with image-processing algorithms (often characterized by annotation include 

some characters) [69]. In [70], scanned images are enhanced by applying skew 

correction operation using the Hough transformation and noise removal is done 

using median filtration. Asymmetry and noise are common mistakes in the scans 

of the images and should be avoided to capture better results. Next, the grid is 

removed from the ECG images, using colour segmentation.  

In this work, a Matlab-based tool, the ECG-dig, for digitizing paper-ECG data is 

presented. The conversion technique is validated by carrying out a similarity study 

based on the Pearson coefficient between the digital signal and the digitized one 

and evaluating the algorithm in terms of repeatability and reproducibility. 

 

2.1.2 Paper Collection 

The proposed data acquisition system is shown in Figure 2.1.  Two medical 

instruments in cascade were used to build the database for our study: the ProSim 4  

Vital Signs Simulator and the GE MAC 2000 electrocardiograph. 
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Figure 2.1. Data acquisition system 

ProSim 4 patient simulator allows the simulation of several ECG functions, while 

the GE MAC 2000 is an electrocardiograph which, in addition to allowing the 

display of the simulated conditions through the monitor, guarantees the 

acquisition of signals both in digital format (.xlm file) and by printing the images 

on graph paper [71].  

The simulated ECG signals had the following heart conditions:  

• Normal sinus rhythm: the rhythm of a healthy heart. It means the electrical 

impulse from your sinus node is being properly transmitted. 

• Bradycardia: the presence of a slow or irregular heartbeat, usually below 60 

beats per minute. 

• Tachycardia: the increase in the number of heart beats per minute (heart rate) 

under resting conditions. 

• Atrial Fibrillation: the heart failure in which the heartbeat becomes irregular 

and, often, accelerated. 

• Atrial Flutter: the heart failure when the electrical activity in the atria is 

coordinated. Therefore, the atria contract but at a much increased rate (250-350 

beats per minute). 

• Muscle tremor artifact: a type of movement artifact. It usually happens because 

the patient is trembling. 

• Premature Ventricular contractions (PVCs): single ventricular impulses caused 

by abnormal automatism of the ventricular cells or to the presence of re-entry 

circuits in the ventricle. 

• Premature Atrial contractions (PACs):  a common cardiac dysrhythmia (similar 

to PVCs) characterized by premature heartbeats in the upper chambers of the 

heart, the atria. 

• Acute pericarditis: the inflammation of the pericardium characterized by an 

accumulation of fluids in the pericardial space. 

• Supra Ventricular Tachycardia: the high-rate heart rhythm originating above the 

ventricle. 

• Ventricular Fibrillation: the hyperkinetic arrhythmia characterized by a high 

ventricular rate (100-150 beats per minute). 

Table 2.1 summarizes the database artificially created with the ProSim4 simulator.  
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The images printed with the electrocardiograph GE MAC 2000 are scanned with 

the Kyocera TASKalfa 5053ci scanner, with a scanning speed of 220 ipm and a 

scan resolution of 600 dpi x 600 dpi, with 256 levels of grey per colour. 

Finally, to make the image more suitable, the contrast and sharpness have been 

increased by 70%. The waveform speed of the ECG signal on the printout is set to 

25 mm / s. The purpose of the digitization algorithm is to transform the signal 

printed on the graph paper into a digital signal that respects the measurements of 

mV (ordinate axis) and ms (abscissa axis). However, the conversion error due to 

the digitization process is combined with the error due to the electrocardiograph 

printing process of the signal on graph paper. In this last case, the error is not 

considered in the study because all cardiologist specialists evaluate the patient's 

health condition using the paper ECG trace. 
 

Table 2.1. Dataset description 

HR (bpm) CONDITION Amplitude (mV) 

30 Bradycardia 1 

45 Bradycardia 1 

60 Normal sinus rhythm 0,5 

60 Child normal sinus rhythm 1 

60 Normal sinus rhythm 1 

60 Normal sinus rhythm 0,5 

80 Acute Pericarditis 0,2 

100 Normal sinus rhythm 1 

120 Sinus Tachycardia 1 

76 Atrial Fibrillation 1 

82 Atrial Flutter 1 

60 

60 

75 

Breath artifact 

Muscle artifact 

Premature Atrial contractions 

(PACs) 

1 

1 

1 

 

78 Premature Ventricular contractions 

(PVCs) 

1 

200 

152 

Supra Ventricular Tachycardia 

Ventricular Fibrillation 

1 

1 

2.1.3 ECG-dig Algorithm 

In order to convert the image into digital signals, an algorithm was implemented 

by using MATLAB® platform. The algorithm is able to digitize the image, 

distinguishing the signals from the background and respecting time and voltage 

proportions of the ECG signals. It is based on a step-by-step automatic processing 

which involves the operations summarized in Figure 2.2.  
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Figure 2.2 Automatic algorithm pipeline  

 

Binary mask 

The first block of the pipeline is the extraction of the binary masks, which has 

been inspirated by MathWorks Community [72]. It is based on the 

implementation of a colour threshold: some colour values have been chosen to 

extract the signal from the rest of the image. The result is a black and white 

image, where the signal will be afterwards smoothed, in order to have one black 

pixel in every column and a white background. The black pixels correspond to the 

signals. 

 

Scale Factor (SF) calculation 

The standard ECG leads are printed on a graph paper (Figure 2.3Errore. 

L'origine riferimento non è stata trovata.). When the image is scanned, the 

correspondence between pixels and millimeters is not always the same and it 

depends on some factors (e.g. the printer resolution and the available type of 

image). In  order to find out how much a pixel is worth in each image, a specific 

function was created.  To obtain the signals of all the ECG-leads, 12 crops (one 

for each lead) are made on the image by framing the image patch of the 

corresponding lead. Each crop is transformed in a grayscale image and the signal 

is extracted as in the previous paragraph (in this case, the signals become white).  
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Figure 2.3 ECG leads printed on graph paper 

Two thresholds have been chosen quite close to the greyscale extremes, in order 

to isolate the grid. Nevertheless, it is not certain that remaining black points and 

white background have a shade of grey exactly corresponding to the extremes. 

Therefore, the thresholds have been chosen not too much high (for white) or low 

(for black): in this way, black points and the white background and signal are 

excluded. In the proposed data set, the images have two grids, one less dense 

(with larger squares) and one denser. The first one is composed by dots, very 

close to each other, which form the perimeter of squares with a 5 mm side. In the 

second one, dots are further away and delimit squares with a 1 mm side as shown 

in Figure 2.4. 

 

 

Figure 2.4 Squares in ECG graph paper 

Thus, the algorithm joins the nearest to each other and deletes the furthest. In this 

way, we obtain a binary image with a grid, composed by horizontal and vertical 

lines, that form 5 mm side squares. The squares area (in pixels) is calculated as 

the mean of all the squares areas and, taking the square root, we have the inner 

side of the mean square. By doing the sum of the latter and the width of one line, 

the length in pixels of the square side is found. Knowing that it should be 5 mm, 

the scale factor SF is obtained as: 

5 mm 

1 mm 
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𝑆𝐹 = 5𝐿 (15) 

 

 

where L is the measurement of the side in pixels and SF indicates how many 

millimetres a pixel corresponds to. 

Since the SFs are not always the same (because of random inaccuracies during the 

binary grid creation), a mean value is calculated between the twelve scale factors. 

This one will be used in the next parts of the algorithm. 

 

Signal Reconstruction 

After obtaining the binary images, the algorithm takes only the pixels of the signal 

and uses their y-positions to know the amplitude value of each point. Then, the 

width is converted from pixels to millimetres, multiplying them by SF. 

To align the isoelectric line on the 𝑦 =  0 line, the mode of each lead is calculated 

and subtracted from the signal itself. 

 

Amplitude Correction 

The amplitude is often less than reality in the area where more black pixels are 

usually concentrated. This is especially the case with R peaks because the leads 

are generally tighter at that point. 

The per-pixel reconstruction leads to a subsampling with respect to the signals 

produced by the electrocardiograph. The result is that the amplitude is sometimes 

less than reality. Also, this happens where more black pixels are usually 

concentrated, especially near the R peaks, because the leads are usually narrower 

here. Therefore, the algorithm automatically detects the positions of the R peaks 

and adjusts the amplitude value, adding 1mm to those points (when the peak is 

positive) or subtracting 1mm (when it is negative). This quantity was 

experimentally chosen by observing the differences between the reconstructed 

leads and the real signal and taking the average. Furthermore, this value agrees 

with the uncertainty due to the thickness with which the signal is printed (≃ 

1mm). 

 

Image Plot 

Since 10 mm correspond to 1 mV, signals amplitude is converted from 

millimeters to voltage. About time scale length, each lead has a samples number 

equal to the number of pixels (voltage values). In order to create the time scale to 

be visualized, the samples are before converted in millimetres thanks to SF and 

then, in milliseconds, knowing that paper speed is 25 mm/s. 

Each lead is plotted with a pink grid background which reproduces the graph 

paper: the x-axis is time (ms) and the y-axis is voltage (mV). 

Lastly, the algorithm saves the images, voltage data of the 12 leads and the time 

samples.  
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2.1.4 Algorithm Validation Technique 

The algorithm created to digitize and save the ECG signal in digital format of 

each patient must be validated. As the algorithm is intended to be a tool for 

clinical support it must be rigorously tested. To validate the algorithm, it must be 

evaluated in terms of similarity of the entire signals using the Pearson coefficient 

[73] and in terms of repeatability and reproducibility using the absolute error of 

the fiducial parameters of the ECG signal. Signal (digitized ECG and GE digital 

ECG) similarity refers to the provision of accuracy measures as an indicator of a 

qualitative assessment. The accuracy of statistical information is the degree to 

which the information correctly describes the phenomena it was designed to 

measure. The repeatability indicates the agreement between repeated tests 

performed with similar measurement conditions [74]. The reproducibility is 

defined as the agreement between two measurements done under different 

circumstances [75].  Figure 2.5 shows the algorithm validation scheme. 

 

Figure 2.5 Algorithm validation scheme 

2.1.5 Metrics  

To assess the validity of the algorithm, both Pearson correlation coefficient (r) 

and the absolute Error (aE) between the entire sequence and ECG fiducial points 

of digital signal and the entire sequence and ECG fiducial points of digitized 

signal. The Pearson’s correlation coefficient, used to test signals similarity,  

measures the statistical relationship between two continuous variables, using the 

covariance method [76] . It is defined as follow: 

𝑟 = 𝑛 ∗ ∑ 𝑦𝑖 ∗ 𝑦̃𝑖 − ∑ 𝑦𝑖 ∑ 𝑦𝑖̃𝑛1=1𝑛1=1𝑛𝑖=1√[𝑛 ∗ (∑ 𝑦𝑖2𝑛1=1 )] − (∑ 𝑦𝑖)𝑛1=1 2] ∗ [𝑛 ∗ (∑ 𝑦𝑖̃2𝑛1=1 ) − (∑ 𝑦𝑖̃𝑛1=1 )2] (16) 

where y is the desired output (target), 𝑦̃ is the predicted values and 𝑛 is the total 

number of data. It is ranged in [−1, 1]: 𝑟 = 1 indicates perfect positive correlation 

between y and 𝑦̃; 𝑟 = −1 perfect negative correlation; 𝑟 = 0 no correlation.  

Absolute Error is the amount of error in your measurements. It is the difference 

between the measured value and true value. It is regulated by the followed 

formula: 
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𝐸 = 𝑋experimental – 𝑋true (17) 

2.1.6 Results 

Similarity  

The signal similarity represents how close the result of the measurement of a 

quantity (scanned and digitized signal) is to the true value, in comparison with the 

reference samples (digital signal).  

Table 2.2. Pearson coefficient for each pathology 

Pathologies Pearson coeff 

30bpm 0.879820668516074 

45bpm 0.944761283387962 

60bpm__amplitude_0.5mV 0.925484754099535 

60bpm__child 0.688046907949100 
60bpm__sano 0.943397146029686 

60bpm__ST_0.5mV 0.982079964352914 

80bpm__ST_0.2mV 0.914497157149535 

100bpm 0.914742016773946 

120bpm 0.945884822424869 

Atrial_Fibrillation_1c76bpm 0.924478232419820 
Atrial_Flutter__82bpm 0.911780065556839 
Breath__60bpm 0.968371447342140 

Muscle_artifact__60bpm 0.908480703197358 

Prem_Atrial_contractions75bpm 0.930018043693811 

SupraVentricular_Tachycardia 0.923616360525127 

Ventricular_Fibrillation152bpm 0.985244543581722 

 

Figure 2.6 and Figure 2.7 show the similarity between the signals for the normal 

sinus 60 bpm case. In particular, Figure 2.6 shows the similarity between the 

scanned signal and the digital one for I, II, II, aVR, aVL and aVF leads. While 

Figure 2.7 shows the similarity between the scanned signal and the digital one for 

the precordial leads. As it is possible to notice the morphology is respected and 

faithfully adheres to the original signal. Table 2.2 illustrates the Pearson 

coefficient for each pathology. If the signals are highly correlated and 

superimposable, the Pearson coefficient is close to 1. In the best case (normal 

sinus rhythm 60 bpm) the Pearson coefficient is equal to 0.9821; in the worst case 

(child 60 bpm), the Pearson coefficient is equal to 0.6880. The reason is the 

morphology of the ECG of children, which is very different from that of adults. 
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Figure 2.6 Digital and scanner signal comparison for I, II, II, aVR, aVL, aVF leads 

 

 

Figure 2.7 Digital and scanner signal comparison for precordial leads 

 

Repeatability  

In order to evaluate the repeatability, an image of the data set (normal sinus 

rhythm and 60 bpm) is chosen, and 12 leads crops are done for ten times on the 

same image. Since SF is slightly dependent on the made crop (causing a variation 

in the time length of the signal), each of the 10 times SF was collected and 

compared with the others. The variation of fiducial points was also analysed, by 

calculating mean and standard deviation of each point. Below, there is an example 

of how the mean heart rate is calculated: 
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𝐻𝑅𝑚 =  110 ∙ ∑ 𝐻𝑅𝑚10𝑛=1       (18) 

where n = 1,2, …,10 indicates the repetitions number and 𝐻𝑅𝑚  is the heart rate 

obtained with m = 1,2…, 12 crop. The same was done for the other parameters.  

Considering repeatability, SF is equal to (on average) 0.0430 ± 0.000524, with a 

minimum value of 0.042374 and a maximum value of 0.043802. Instead, the 

values of fiducial points, expressed with mean and standard deviations, are: 

102.98 ms ± 7.95 ms (QRS complex); 369.65 ms ± 11.22 ms (QT distance); 

176.38 ms ± 9.69 ms (PQ distance); 108.75 ms ± 1.34 ms (P-P points distance);                  

1012.18 ms ± 12.09 ms (R-R peaks); 59.30 ms ± 0.72 ms (heart rate). All the 

parameters are shown in Table 2.3Table 2.3. Last row has the values written on 

the original graph paper. During the 10 repeatability’s tests, the maximum 

variation of SF was 0.01428. 

Table 2.3. Variation of scale factor and fiducial points obtained by cropping 10 times the same ECG 

image (Normal sinus rhythm, 60 bpm).  

 

 

SF 

 

QRS 

complex 

(ms) 

 

QT 

distance 

(ms) 

 

 

PQ 

dist. 

(ms) 

 

P-P 

dist. 

(ms) 

 

R-R 

peaks 

(ms) 

 

Heart 

Rate 

(bpm) 

0.042829 96.51 360.33 183.31 108.50 1008 .62 59.49 

0.043802 98.70 368.52 187.47 110.96 1031.53 58.17 

0.042374 110.17 375.72 163.28 106.78 997.49 60.15 

0.043552 

0.042838 

113.82 

97.10 

386.75 

361.55 

167.24 

182.21 

109.75 

108.52 

1025.22 

1008.84 

58.52 

59.47 

0.043690 

0.042555 

113.59 

95.89 

387.39 

358.03 

168.35 

182.14 

110.10 

107.81 

1028.46 

1002.18 

58.34 

59.87 

0.042388 110.77 376.41 162.77 106.82 999.78 60.13 

0.042932 96.74 361.41 183.75 108.76 1011.05 59.34 

0.042833 96.51 360.35 183.31 108.50 1008.65 59.49 

- 88 368 164 86 1000 60 

 

Reproducibility 

In this case, the test was performed by using an image (the chosen patient is the 

same as repeatability) with two different formats: one is the JPEG produced by 

the electrocardiograph; the other is another JPEG with a different structure of 

graph paper (Figure 2.8). The resolution of the two formats is different.  
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Therefore, after the crops on the two images, SF and the fiducial points were 

extracted and compared. 

 

 
Figure 2.8 Reproducibility on normal person with 60 HB 

Table 2.4Table 2.4 shows the comparison of scale factor and fiducial points 

obtained by cropping two versions of the same ECG image (normal sinus rhythm, 

60 bpm). The bigger variation of SF (0.130231) is caused by the different images 

resolution. Besides, the maximum variation of the parameters is 22.45 ms (for R-

R peaks), which corresponds to a difference of 0.56 mm on the graph paper. In 

this way, the heart rate calculation differs by 1.33 beats. The extent of each of 

these errors can be tolerate by cardiologists and considered acceptable according 

to our study. Indeed, it is in accordance with what we expected because of 

printing and reconstructions errors, i.e., an error < 1 mm. 

Table 2.4 Comparison of scale factor and fiducial point for the same image in two formats 

Parameters (mm) 

JPEG image 

(1st version) 

JPEG image 

(2nd version) 

Absolute Error 

(ms) 

SF 0.042285 0.172516 0.130231 

QRS complex (ms) 110.51 101.21 9.3 

QT distance (ms) 375.49 368.04 7.45 

PQ distance (ms) 

P-P  distance (ms) 

162.38 

106.56 

163.32 

89.71 

0.94 

16.85 

R-R peaks (ms) 

Heart Rate (bpm) 

995.40 

60.28 

1017.85 

58.95 

22.45 

1.33 

 

 

2.1.7 ECG-dig Graphical Interface 

This section will present the graphical interface implemented as a support tool for 

the physician. The steps of the program are the following:  
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1) Open the ECG-dig software and save the patient data with the Fiscal Code 

which represent a unique key for the database construction (Figure 2.9).

 

Figure 2.9 Opening figure 

2) Select the scanned paper-based ECG (Figure 2.10)

 

Figure 2.10 Figure selection 

3) Open the scanned ECG image in the ECG-dig tool

 

Figure 2.11 Opening ECG-image in ECG-dig tool 
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4) Make the crop for each lead (Figure 2.12). 

  

Figure 2.12 Lead I crop 

5) Each crop is displayed individually, saved, and numbered (Figure 2.13). 

     

Figure 2.13 Displayed Lead I 

6) This represents the software output, the reconstructed and digitized signals 

are placed in a graph and displayed respecting the real proportions (Figure 

2.14). 

 

Figure 2.14 Digitized signals 
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7) For each patient, a folder with name and surname will be created in which 

both the images of each lead and an excel file that saves each lead in 

digital format will be saved (Figure 2.15). 

 

Figure 2.15 ECG folder 

8) This is an example of the reconstructed V5 lead (Figure 2.16). 

  

Figure 2.16 V5 lead digital signal 

 

9) This is the .xls file (Figure 2.17). 
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Figure 2.17 Digital signal in .xls format 

10)  The final contents of the folder are shown in Figure 2.18. 

 

Figure 2.18 Folder contents 

 

Table 2.5 summarizes the basic steps that characterize the software implemented 

for storing digital ECG traces. 

Table 2.5 ECG-dig tool fundamental steps 

Step 1 Saving patient data 

Step 2 Scanned paper-based ECG selection 

Step 3 ECG image in the ECG-dig tool display 

Step 4 Crop for each lead 

Step 5 Saving and Numbering each crop 

Step 6 Software output representation 

Step 7 Saving folder with name and surname 

Step 8 Images with reconstructed signals 

Step 9 Saving Excel files 

Step 10 Showing final contents of the folder 
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2.2 Channelopathies: Short-QT 

Short QT syndrome (SQTS) is an inherited arrhythmic disorder due to mutations 

in cardiac ion channels (cardiac channelopathies), characterized by the propensity 

to develop life-threatening ventricular arrhythmias in young and otherwise healthy 

individuals. An important difficulty related to the syndrome consists in correctly 

assessing the arrhythmic risk during the first contacts with patients. It is well 

known that, even among patients who share the same mutation that causes the 

disease, clinical manifestations can range from no symptoms to repeated cardiac 

arrest and sudden death (SD) [77]. So, the short QT syndrome constitutes a new 

clinical entity that is associated with a high incidence of sudden cardiac death, 

syncope, and/or atrial fibrillation even in young patients and new-borns [78]. This 

project focuses on the use of the electrocardiogram (ECG) signal, for the 

prediction of syncope, sudden death, and heart attack. Track analysis powered by 

artificial intelligence (AI), has recently gained tremendous momentum, showing 

promising results in the medical field. This research project aims to develop 

artificial neural network (ANN) algorithms for AI-enhanced ECG analysis in 

patients with cardiac channelopathies, to help refine risk stratification, particularly 

in asymptomatic patients. The analysis was carried out extracting features from 

ECG: RR interval, cardiac frequency, QT interval, corrected QT, QRS complex 

distance, J-Tpeak distance, J-Tend distance, Tpeak-Tend distance, predicted QT 

and QT/QTp. 

This algorithm could be seen as a clinical support which will allow cardiologists 

to input ECGs and clinical data to obtain a patient-specific risk estimate based on 

AI-powered ECG analysis. Finally, to test the generalizability of our results, the 

models will be externally validated on independent datasets. 

2.2.1 Short QT Definition 

The risk of death and of presenting an event is highly correlated with the length of 

the QT segment of the ECG signal [79]. In 1993 Algra et al. observed that both 

prolonged and shortened corrected QT (QTc) intervals were associated with an 

increased risk of an event relative to intermediate QTc values [80]. An event was 

defined as the occurrence of SCD, major ventricular arrhythmias (ventricular 

tachycardia or ventricular fibrillation, requiring both resuscitation or 

defibrillation) and/or arrhythmogenic syncope. In 2003 the short QT syndrome 

(SQTS) was recognized as a new clinical entity related to the familiarity with 

autosomal dominant inheritance [78]. Although the upper limit of normal QT 

values is well defined, the lower limit has not yet been determined. Accordingly 

to European Society of Cardiology guidelines [81], diagnosis of SQTS can be 

established in the presence of a QTc ≤ 340 ms  (or a QT/QTp ratio ≤ 88%), 
however should be considered in the presence of a QTc ≤ 360 ms and one or more 
of the following: confirmed pathogenic mutation, family history of SQTS, family 

history of SD at age 40 years; survival from a ventricular fibrillation in absence of 
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heart disease. Figure 2.19 shows the difference between normal QT interval and 

short QT interval. 

 

Figure 2.19 Normal QT interval and Short QT interval 

 

2.2.2 State of the Art 

Channelopathies are disorders caused by mutations in genes that code for cardiac 

ion channels and / or their regulatory proteins, which result in electrocardiogram 

(ECG) repolarization abnormalities that eventually lead to electrical instability 

and life-threatening ventricular arrhythmias in the absence of structural heart 

disease, especially in young and otherwise healthy people.   Cardiac arrest is often 

the first clinical presentation in previously asymptomatic subjects with these 

syndromes. In SQTS, 30-40% of patients have a clinical presentation with sudden 

death (SD) or interrupted SD [82] [83]. The data mentioned above suggest the 

vital importance of predicting SD risk in these patients, as adequate assessment of 

arrhythmogenic potential can lead to improved treatment decisions that can 

potentially prevent premature death of young individuals. However, risk 

stratification in asymptomatic patients, who represent most of these subjects, is 

still far from satisfactory. Risk scores derived with traditional statistical 

techniques, such as logistic or Cox regression showed suboptimal results in their 

accuracy [84] [85]. The use of AI in medicine is relatively recent compared to 

other fields, but is rapidly gaining widespread interest due to the high expectations 

in terms of improving healthcare and reducing its costs [86]. In particular, the 

application of AI in ECG analysis and signal analysis has recently gained 

tremendous momentum.  

However, despite its invaluable potential, AI has never been applied to risk 

stratification of sudden death in patients with Short-QT. This is essentially since 

Short QT syndrome is so rare that it is considered "familiar" and therefore not 

very well understood. The most precious resource for artificial intelligence 

systems to be efficient is the amount of data used to train AI systems: the greater 

the number of data, the greater the performance of the neural network used. 

The algorithm implementation is intended to help clinicians stratify the risk of 

life-threatening arrhythmias in patients with cardiac channelopathies from a 

simple, readily available, and inexpensive tool such as the 12-lead ECG. 
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2.2.3 Shallow Learning for Event Prediction System  

Shallow learning techniques are learning algorithms that learn the parameters of 

the statistical model directly from the characteristics of the examples in the 

training dataset. Most supervised machine learning algorithms belong to this 

category. The features extraction in Shallow Machine Learning is a manual 

process that requires domain knowledge of the data that we are learning from.  

Deep Learning is a sub-class of Machine Learning algorithms whose peculiarity is 

a higher level of complexity. Shallow learning has a lower level of complexity 

because it works with a little amount of data. The goal of this research is a 

regression task: learning occurs using numerical labelled data to predict a quantity 

of an input. 

Shallow neural networks are a type of neural network with a limited number of 

hidden layers. Understanding a superficial neural network gives us an idea of 

what exactly is going on inside a deep neural network. Figure 2.20 Shallow 

learning neural network scheme that shows a surface neural network with one 

hidden layer, one input layer and one output layer. 

 

Figure 2.20 Shallow learning neural network scheme 

 

2.2.4 Study Populations 

The study group included a total of 155 subjects. 45 patients were symptomatic at 

presentation: 4 had died suddenly, 21 had an aborted SD, 3 had pre-syncope, 10 

had syncope and 6 had palpitations (2 of whom had documented atrial fibrillation 

or flutter). In the following period, 23 patients, 9 of whom previously 

asymptomatic, reported the following symptoms: pre-syncope (n = 5), syncope (n 

= 5) and palpitations (n = 13). Overall, 39 patients developed an event, both at 

presentation and/or during follow-up. 94 patients presented with relevant familial 

history: 58 had familiarity for both SQTS and SCD, while the remaining showed 

familiarity only for SCD (n = 11) or SQTS (n = 25). Genetic test was performed 

in 82 patients, although pathogenetic mutations were found only in 43 patients, 

with most frequent genes affected being KNCH2 and KCNQ1. Overall, 38 
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patients developed a major arrhythmic event (i.e., SCD and/or arrhythmic 

syncope), both at presentation and/or during follow-up, while 117 did not. Table 

2.6 summarizes the study population described. 

 

Table 2.6. Study population description 

Variables N = 155 

Family history, No. (%) 94 (60,6) 

SCD 

SQTS 

SCD and SQTS 

11 (7,1) 

25 (16,1) 

58 (37,4) 

Symptoms at presentation, No. (%) 44 (28,4) 

SD 

aSD 

Pre-syncope 

Syncope 

Palpitations 

4 (2,6) 

21 (13,5) 

3 (1,9) 

10 (6,5) 

6 (3,9) 

Symptoms during follow-up, No. (%) 23 (14,8) 

Pre-syncope 

Syncope 

Palpitations 

5 (3,2) 

5 (3,2) 

13 (8,4) 

Event occurrence, No. (%) 38 (24,5) 

 

2.2.5 Dataset Description  

For each patient, data regarding both personal and family history were recorded. 

12-lead ECGs with a paper speed of 25 and 50 mm/s and a gain of 10 mm/mV 

were collected. ECG parameters were measured independently by 3 expert 

cardiologists from lead V2 and from the lead with the highest T-wave amplitude 

(namely Vh; usually ranging from V2 to V5). 

The features put into the network to predict the percentage of the occurrence of an 

event are the following: 

• RR interval (ms): measured from the peak of an R-wave to the next one. It 

expresses the duration of a complete cardiac cycle. 

• HR (bpm): derived from RR interval.  It expresses the discharge frequency 

of the dominant pacemaker (usually sinus node): 𝐻𝑅 = 1𝑅𝑅(𝑠𝑒𝑐) (19) 

 

• QT interval (ms): measured from first deflection of QRS complex to the 

end of T-wave (defined using tangential method). QT interval expresses 
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global duration of ventricular electrical activity, although used almost 

exclusively to evaluate ventricular repolarization.  

• QTc interval (ms): calculated with Bazett’s formula [87]. QT correction 

formulas are necessary, as QT duration varies considerably with HR: 𝑄𝑇𝑐 = 𝑄𝑇√𝑅𝑅 (20) 

 

• QRS (ms): measured from first deflection of QRS complex to the 

beginning of the ST segment (Jpoint). It expresses the duration of 

ventricular depolarization. 

• Jpoint-Tend (ms): measured from J point (junction between the 

termination of the QRS complex and the beginning of the ST segment) to 

end of T-wave (defined using tangential method). 

• Jpoint-Tpeak (ms): measured from J point to the peak of the T-wave, 

representing early repolarization. 

• Tpeak-Tend (ms): measured from the peak of the T-wave to its end 

(defined using tangential method). This interval as emerged as a correlate 

of global dispersion of repolarization. J-Te, J-Tp and Tp-Te values have 

been also corrected with Bazett’s formula. 

• QTp (ms): predicted QT value using Rautaharju et al. formula [88]: 𝑄𝑇𝑝 = 𝑄𝑇(120 + 𝐻𝑅)180  (21) 

 

• QT/QTp (%): ratio between measured and predicted QT interval.  

• T-wave amplitude (mV): measured from isoelectric line to T-wave peak. 

 

Figure 2.21Figure 2.21 shows the characteristic points for the definition of the 

features  

 

Figure 2.21 ECG signal fiducial points  
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2.2.6 AI Model Building and Internal Validation 

Due to the dataset size and the use of human-engineered features, it was chosen to 

use a shallow learning model based on neural networks. 

Neural networks are modelled on the human brain functions, designed to 

recognize the relationship between the input and the labelled output (target) [89].  

This AI model is based on a standard multi-layer perceptron (MLP) configuration. 

The main layers of this system are the input layer, the hidden layer and the output 

layer. The input layer works as an entry point to the neural network. It consists of 

passive nodes, which do not modify the input, but only transmit the information to 

each neuron of the subsequent layer (also known as fully connected). The hidden 

layer has an arbitrary number of neurons, which depends on the complexity of the 

problem at hand. Each hidden node combines the information received from each 

unit of the input layer to achieve a complex representation of the phenomenon 

under investigation. At this purpose, a non-linear activation function is employed, 

such as the hyperbolic tangent sigmoid. At the end, the output layer yields the 

input data classification by means of the softmax function [90].   A feed-forward 

fully connected neural network with one hidden layer has been designed using 

MATLAB® R2020b [91] and trained on a single CPU of LENOVO Y50-70 

workstation with 16 GB RAM. To compute the best performance several hidden 

layer sizes have been tested using a trial-and-error approach. The best performing 

architecture has 10 and 1 neurons in the hidden and output layers, respectively, 

while the input layer size depends on the experiment set up. 

 Hidden units were equipped with hyperbolic tangent sigmoid transfer function, 

while the output layer used softmax to yield classification. The network training 

was performed using the scaled conjugate gradient (SCG) technique to minimize 

the cross-entropy error function. In order to guarantee the quality of input data, 

avoid bias and reduce noise the input dataset has been processed during the 

network training. 

Many machine learning algorithms attempt to find trends in the data by comparing 

features of data points. For this reason, data have been statistically normalized (Z-

score) so that the network was able to intrinsically determine each input feature 

importance for classification. 

Z-score normalization is a strategy of normalizing data that avoids this outlier 

issue[92]. The formula for Z-score normalization is below: 

 𝑍 − 𝑠𝑐𝑜𝑟𝑒 = 𝑣𝑎𝑙𝑢𝑒 − μσ  (22) 

 

Here, μ is the mean value of the feature and σ is the standard deviation of the 
feature. If a value is exactly equal to the mean of all the values of the feature, it 

will be normalized to 0. If it is below the mean, it will be a negative number, and 

if it is above the mean it will be a positive number. The size of those negative and 

positive numbers is determined by the standard deviation of the original feature. If 

the unnormalized data had a large standard deviation, the normalized values will 
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be closer to 0. Without this step, it would have been possible that some features 

masked some others, preventing the network to understand the real contribution of 

each input attribute to SQTS.  

Both the input and target have been randomly divided into three sets as follows: 

70% for training; 15% to validate that the network is generalizing and to stop 

training before overfitting; and the remaining 15% to independently test the 

network classification performance. To ensure that the distribution of the input 

data (equally distributed amount of event and non-event cases) was preserved 

across the three sets, random splitting was performed separately for the event and 

non-event subsets. Indeed, due to a strong target classes imbalance (117 without 

event and 38 with event), it was necessary to fictitiously increase the amount of 

data with event. At this purpose, there exists several possible data augmentation 

techniques, such as interpolation or data replication. Since they were medical 

records, it was chosen to use the latter approach to avoid introducing fake data in 

the cohort, which could have misled result interpretation. Therefore, the event 

data were replicated three times. 

2.2.7 Metrics 

The classification performance was estimated analysing the confusion matrices 

and the associated AUC. 

The former measures the number of times the network correctly classifies the 

input; in this sense, it yields, an estimate of how much a single class, i.e., a 

medical condition (event/non-event), was understood by the neural model. 

Therefore, to better analyse the network performance, also the True Positive rate 

(sensitivity) and the True Negative rate (specificity), the false positive ratio 

(probability of false alarm) and the false negative ratio (probability of no alarm) 

were computed.  

• True Positive (TP) is the number of correct predictions that an example is 

positive which means positive class correctly identified as positive. 

• False Negative (FN) is the number of incorrect predictions that an 

example is negative which means positive class incorrectly identified as 

negative. 

• False positive (FP) is the number of incorrect predictions that an example 

is positive which means negative class incorrectly identified as positive. 

• True Negative (TN) is the number of correct predictions that an example is 

negative which means negative class correctly identified as negative. 

The advanced classification metrics based on confusion matrix are mathematically 

expressed as follow: 

• Sensitivity is also referred as True Positive Rate or Recall. It is a measure 

of positive examples labelled as positive by classifier. It should be higher. 

For instance, proportion of emails which are spam among all spam emails.  

In medicine, highly sensitive tests are generally used for screening 

purposes, due to their ability to rule out the disease/event occurrence. 
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• Specificity is also known as True Negative Rate. It is a measure of 

negative examples labelled as negative by classifier. There should be high 

specificity. For instance, proportion of emails which are non-spam among 

all non-spam emails. In medicine, highly specific tests are typically used 

for confirmation purposes, due to their ability to rule in the disease/event 

occurrence 

• Positive predictive value (PPV), also known as Precision: the ratio 

between the total number of correctly classified positive examples and the 

total number of predicted positive examples. It yields the correctness 

achieved in positive prediction. 

• Negative predictive value (NPV): the ratio between the total number of 

correctly classified negative examples and the total number of predicted 

negative examples. It yields the correctness achieved in negative 

prediction. 

• Accuracy is the proportion of the total number of predictions that are 

correct. 

Figure 2.22 shows the key to understanding a confusion matrix. 

 
Figure 2.22 Confusion matrix example: rows yield the real (actual) labels, columns the predicted ones, 

i.e., the network output. 

Despite accuracy provides a single global measure of the classification quality, it 

is just an average value of the network performances. On the contrary, the area 

under the ROC curve (AUC) yields a more precise measure (the higher the best) 

of the predictive accuracy because it represents the probability that a randomly 

chosen positive sample is ranked higher than a corresponding negative one.  

2.2.8 Results 

The classification ability of the proposed neural system has been tested on 

different input configurations, i.e. different input features, in order to study which 

features were the most relevant to correctly discriminate among subject who will 

have an event from those who will not. In this sense, it was investigated the 

importance of the QT interval and the T wave in distinguishing the two classes 
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(i.e., non-event/event). Therefore, the experiments could be grouped into four 

categories as per: 

• QT: only the QT related features were considered, 

• Twave: only the T wave features were considered, 

• QT + Twave: both the QT related and T wave features were considered, 

• All: all the input features were considered. 

Table 2.7 shows the input dataset taxonomy. 

Table 2.7. Input dataset taxonomy 

 Datasets 

Feature QT Twave QT + Twave All 

RR (ms) ✓  ✓ ✓ 

HR (bpm) ✓   ✓ 

QT (ms) ✓  ✓ ✓ 

QTc (ms) ✓  ✓ ✓ 

QTp (ms) ✓   ✓ 

Tamp (mV) ✓ ✓ ✓ ✓ 

QRS (ms)   ✓ ✓ 

J-Tp (ms)  ✓ ✓ ✓ 

Tp-Te (ms)  ✓ ✓ ✓ 

J-Te (ms)  ✓ ✓ ✓ 

cJ-Tp (ms)    ✓ 

cTp-Te (ms)    ✓ 

cJ-Te (ms)    ✓ 

QT/QTp    ✓ 

 

Figure 2.23 shows the error over time (epochs) for the training, validation, and 

test subsets. The QT (Figure 2.23.a) and Twave (Figure 2.23.b) behaviour is quite 

similar: the best performance is around 0.31 and the error is coherent in the three 

subsets; in this sense the networks seems to have learnt the phenomenon at hand. 

On the contrary, despite the best performances reach similar values in Figure 

2.23.c (~ 0.18) and Figure 2.23.d (~ 0.17), the network behaviours are quite 

different, as clearly shown by the three curves. The network trained on the QT + 

Twave dataset learn properly the training set (blue and green curves are 

superimposed), while slightly worsen the test set (red curve stays above the best 

performance intersection point). Figure 2.23.d exhibits an opposite behaviour: the 

network validation performance is much closer to the test one rather than training, 

which keeps the lowest error values of all the experiments.  
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Figure 2.23. Error over time for training, validation, and test subsets for the four input sets: QT (a), 

Twave (b), QT + Twave (c), All (d) 

In order to deepen the network classification performances, a more specific 

analysis was made by means of sensitivity, specificity, PPV, NPV, and accuracy. 

The results can be summarized as follows (Table 2.8): 

- Sensitivity: it is identical in the QT and Twave cases, while increases up to 

80.0 % and 100.0 % for QT + Twave and All datasets, respectively. In the 

latter case, it means the network always predicts an event when it occurs. 

- Specificity: except for the All dataset, this metric is always lower in 

training than in test and never above 90 %. In this sense, the negative 

predictive power should be further investigated. 

- PPV:  the first two input configurations do not allow the network to 

properly predict an event, while, when combining the QT related features 

with the T wave shapes, it raises above 80 %. 

- NPV: in case of the fourth and most complete configuration (All), a 

negative output from the network has up to 100% probability of being 

correct; in other words, it means that the network does not predict an event 

when it does not occur. 

- Accuracy: w.r.t. precision, the first two datasets reach good but not 

satisfactory performances, while the other two exhibit a much higher 

classification quality even on the test subset (82.9 % and 88.6 %).  

 

 

 

 

  
a) QT b) Twave 

  
c) QT + Twave d) All 
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Table 2.8 Classification performances: sensitivity, specificity, PPV, NPV, accuracy 

 QT Twave QT + Twave All 

 Training Test Training Test Training Test Training Test 

Sensitivity 73.8 % 60.0 % 73.4 % 63.2 % 92.7 % 80.0 % 94.9 % 100.0 % 

Specificity 69.1 % 85.0 % 78.0 % 81.3 % 81.0 % 85.0 % 88.0 % 76.5 % 

PPV 70.2 % 75.0 % 76.3 % 80.0 % 83.5 % 80.0 % 88.1 % 81.8 % 

NPV 72.7 % 73.9 % 75.3 % 65.0 % 91.4 % 85.0 % 94.8 % 100.0 % 

Accuracy 71.4 % 74.3 % 75.8 % 71.4 % 87.0 % 82.9 % 91.3 % 88.6 % 

 

Table 2.9 reports the AUC values for the four datasets. As before, the QT and 

Twave datasets have similar performances but not enough to properly 

discriminate between the two classes. The QT + Twave behaves quite well, 

reaching an impressive 0.87 in test, while the dataset made by all features further 

improves this value.  

 

Table 2.9. Classification performances: AUC 

 QT Twave QT + Twave All 

 Training Test Training Test Training Test Training Test 

AUC 0.72 0.70 0.76 0.73 0.92 0.87 0.96 0.90 

 

2.2.9 Discussion 

In this study, the objective is the estimation, given the patient's ECG, of the 

probability of presenting an event. To this end, considering the small number of 

data made available (since short-QT disease is present in very few individuals in 

the world), a shallow learning system was trained. 

The neural network was developed to perform event and non-event classification. 

To compare the performance of the different network configurations, the study 

was divided into four macro areas. In the first case the performances are related to 

a neural network with input features exclusively related to the duration of the QT 

and of all the measurements concerning this measurement (RR, HR, QRS, QTc, 

QTp, QTc / QTp). In the second case, instead, the features related to the T wave 

(J-Tpeak, J-Tend, Tpeak-Tend) were exclusively analysed, the network is the 

consequence of some observations by cardiologists according to which patients 

with short-term QT they would present during the disease a little more 

accentuated than the height of the T wave with consequent shortening of the J-

Tend interval. The third configuration considers both the QT related and T wave 

features. The fourth configuration, which achieved the best performance, all the 

input features were considered. 
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2.3 Conclusion 

The first part of this project is based on the implementation of a Matlab-based 

graphic interface for the digitization of ECG traces. The need for digitization 

arises for two fundamental reasons: the digital archiving of the traces to avoid 

deterioration and the use of digital signals for research purposes based on neural 

networks. The GUI developed in this research project, ECG-dig, can be widely 

adopted as an aid to medical diagnosis. The GUI therefore represents a single 

digital container, always updated, which represents the patient's medical record. 

The medical support tool is designed to maximize the impact of the proposed 

research and make its dissemination as pervasive as possible. 

The second part of the project concerns the realization of a predictive neural 

system, based on a shallow learning approach, to estimate the probability of the 

occurrence of a cardiac event.  The implantable cardioverter defibrillator (ICD) 

still represents the mainstay of treatment for SQTS patients who have survived SD 

or who have documented spontaneous sustained ventricular tachycardia (VT), 

despite the significant risk of device-related complications. For this reason, in this 

work, a non-invasive system was created to monitor SQTS cases. The results 

suggest that AI-based ECG analysis could help refine risk stratification in SQTS 

patients, supporting clinical decision making. 

The main part of the research is centered on the detection of the QT-short 

pathology given the fiducial points of the ECG by means of a shallow learning 

algorithm. With the second part, research is enriched by implementing a platform 

for digitizing the ECG signal from the printed ECG image. 

Future studies should focus on the automatic calculation of the characteristics of 

digital ECG recordings. This will ensure greater reproducibility than manually 

extracting relevant ECG features. In parallel, the supervised deep learning model 

that evaluates the entire row digital ECG signal should also be explored, as it 

could potentially show greater accuracy than a features extraction approach. 
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Chapter 3 

3 An Automatic Defect-detection 

System Based on Hybrid 

Unsupervised and Supervised 

Machine Learning for 

Electrospun Nanomaterials 

3.1 Nanofibers in Industry 

The production of nanomaterials by the the electrospinning process requires a 

detailed inspection of related scanning electron microscope (SEM) images of the 

electrospun nanofiber, to ensure that no structural abnormalities they are 

produced. The presence of defects prevents the success of applications of electro-

spun nano-fibrous material in nanotechnology. Hence, automatic tracking and 

quality the control of nanomaterials is an objective challenge in the context of 

Industry 4.0. In the last decade, nanostructured materials have gained interest in 

both scientific research and industrial contexts, for their versatility. The 

combination of nanotechnology and information and communication technologies 

(ICT) represent the frontier of the fifth industrial revolution: in fact, the small size 

of products can facilitate the automation of  tasks, previously limited by physical 

restrictions [93].  

Nanomaterials working at molecular level, allow generating wide structures 

endowed with different properties, useful to improve quality of life in different 

areas [94]. In biomedical engineering, the huge progress of nanomaterials research 

suggests that they could yield interesting alternative solutions to many healthcare 

problems. In tissue engineering application, nanofibers are used for the 

reproduction of tissue architecture at the nanoscale, thus giving an impulse to 

wearable applications. Nanofiber materials act as excellent structures for 
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adhesion, proliferation and cells scaffolding differentiation for musculoskeletal, 

skin, vascular and tissue engineering and as potential vectors for the controlled 

delivery of proteins and DNA [95]. Among many nanofibers synthesis techniques, 

electrospinning appears to be the most promising technology able to meet these 

industrial objectives. Electrospun fibers can indeed be applied to study drug 

delivery, encapsulating the therapeutic agent in the fibers and maintaining the 

integrity and bioactivity of molecules due to slight processing parameters. Indeed, 

as the drug release depends on the degradation of the polymer fibers, it can be 

adequately controlled. In bioengineering, the nanofibers could allow to include 

substrate-based optical antenna systems for improved bio-sensing applications 

[96]. 

3.1.1 Biomedical Applications 

The use of electrospun nanofibers materials is widely spread in different fields 

due to their significant characteristics: the high surface-to-mass (or volume) ratio 

and the porous structure with excellent pore-interconnectivity. These properties 

make electrospun nanofibers employable in advanced applications [97][98]. One 

of the most important applications of nanomaterials concerns the biomedical 

sector. Most of the studies focused on their safety and their bio-compatibility with 

human tissues. Nanofibers are used for tissue engineering for reconstructing 

damaged tissues or organs. Notably, cells are generally seeded on biomaterial 

scaffolds and microenvironments in order to enhance tissue development; 

biomedical nanomaterials play a key role in this medical application because they 

may better support tissue regeneration [99]. Due to the high specific surface area 

and the high variability of the process variables, electrospun nanofibers are also 

used in drug delivery. Electrospun nanofibers prepared with an accurate analysis 

of polymers are used to deliver antibiotic and anticancer agents, DNA, RNA, 

proteins and growth factors. During drug delivery, the electrospun nanofibers 

enclose the medicinal agent to maintain the integrity and bioactivity of the drug 

molecules and reduce the side effects of the drugs through a localized inoculation 

[100]. 

3.2 Related Works 

The automatic detection of any possible structural anomaly plays a key role in 

industrial manufacturing of nanomaterials. Indeed, the automatic recognition of 

the materials quality entails an acceleration in the production chain for the use in 

the industrial sector. In this context, ML-based systems have been emerging for a 

more efficient anomaly detection. Conventional algorithms identify the surface of 

a specific defect by extracting suitable features and more specifically analysing 

texture, skeleton, edge and spectrum of the image.  

In [101], spatial correlation functions (conveniently defined between the bands of 

a sensor) are used to recognize the colour structure. A linear model for surface 

spectral reflectance is used to show that changes in illumination and geometry 
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correspond to a linear transformation of both correlation functions and their 

coordinates. In [102] a low computational method for classification of gray scale 

and rotation invariant texture based on local binary models and nonparametric 

discrimination, is presented. The technique is based on recognizing the local 

binary models, defined as uniform, that represent the main properties of the local 

image texture. Other automatic defects detection algorithms are based on the 

selection of a suitable threshold. In this regards, the Otsu method is typically 

employed to perform thresholding by exploiting bimodal distributions [103].  

Therefore, the method fails when the image histogram is unimodal. At this 

purpose, to improve the Otsu method, the weighted object variance method 

(WOV) is proposed by [104], capable of detecting surface defects, by means of 

the defect occurrence cumulative probability weighted on the variance between 

classes. In [105] a new double-visual geometry group16 (DVGG16) is first 

developed to the automatic classification and localization of surface defects. Next, 

gradient-weighted class activation mapping (Grad-CAM) is applied to the original 

images. The achieved heat maps are processed through a threshold segmentation 

method in order to automatically detect anomalies in the input image. Recently, 

advanced ML techniques (i.e., deep learning (DL) [106],[107]) are used to reduce 

production times and simultaneously increase the quality of nanomaterials. It is 

worth noting that DL has been successfully employed in several applications, such 

as cyber security [108], neuroscience [109], sentiment analysis [110], remote 

sensing [111], image decomposition [112],  and fault detection systems [113]. 

With regards to the automatic nanomaterial anomalies detection in SEM images, 

some works have been proposed in the recent literature. Boracchi et al. [114] 

addresses the issue of automatic detection of anomalies in SEM images, allowing 

an intelligent system to control independently the validity of the data acquired by 

a sparse-based representation. Carrera et al. [115] proposed a detection algorithm 

based on a dictionary of normal patches, subsequently used to detect defects in a 

patch-wise mode. Napoletano et al. [116] presented a region-based method for 

detection and anomaly localization in SEM images.  

The degree of anomaly is assessed by means of a CNN, considering a dictionary 

generated from anomalies-free sub-images belonging to the train set. The 

automatic detection of defects by using DL models has been addressed also by 

[117] and [118]. In particular, a CNN has been proposed to automatically classify 

SEM images of H-NF and NH-NF, interpreted as two different categories. As a 

difference with most of the previous papers, in this work both samples with and 

without anomalies are analysed. This approach appears more significant as the 

images are typically generated with different sets of configuration parameters, 

which implies a variety of possible ranges of presentation for the nanofibers also 

in absence of anomalies [117] [119]. However, being it a fully data-driven 

approach, it is data hungry, requiring the collection of lot of examples through 

suitably designed laboratory experiments. In contrast, in this work, a novel 

automatic classification system based on hybrid unsupervised and supervised ML 

able to discriminate H-NF/ NH-HF SEM sub-images (i.e., nanopatches) was 

created, by avoiding the use of the redundant full SEM representation. It is worth 
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noting that the use of sub-images allows to improve the detection of possible 

defects and reduces the computational complexity and cost of the network. 

Further, the originality of the proposed approach lies also in extracting the most 

relevant features via unsupervised learning, hence, without using the class 

information, that is not known in advance during realtime use. In addition, the 

cardinality of the available dataset is augmented by generating extra-latent 

vectors: this is carried out by corrupting available data with white Gaussian noise. 

This procedure enabled a rough emulation of new electrospinning experiments, 

eliminating the requirement for a costly laboratory test. Experimental results 

reported encouraging performance achieving accuracy rate up to 92.5%. 

3.3 Electrospinning Process  

Electrospinning is the most successful process for nanofibers fabrication as it is 

characterized by the ability to improve the product’s performance allowing 
specific modifications for each type of application [120]. The nanofiber 

fabrication method requires an instrumental apparatus (Figure 3.1) comprised of a 

high-voltage supply, an extruder and a grounded metallic collector screen where 

the fibers are collected. A polymeric solution is initially contained into a dosing 

syringe, regulated by the volumetric pump, which allows controlling the flow-

rate. A high-voltage (HV) is applied between the needle of the syringe (anode) 

and the collector (cathode), which are electrostatically charged to a different 

electric potential. By increasing the applied voltage, the surface charge of the 

polymeric solution increases while the radius of the polymeric solution drop 

decreases, until a critical voltage value. At this moment, the drop takes the form 

of a cone, referred to as Taylor cone [121]. Due to the electric field, a jet is 

generated from the cone to the collector; meanwhile, the solvent evaporates and is 

deposited on the collector in the form of nanofibers. Viscosity, electrical 

conductivity and surface tension of the polymer solution affect the diameter and 

the morphology of the generated fibers [122]. Specifically, increasing the 

viscosity also increases the diameter of the fibers, because the solution opposes 

more resistance to the elongation by the electric field, and consequently the jet 

stabilizes and makes a shorter path. The increase of the electrical conductivity of 

the solution causes a greater repulsion of charge jet, and a higher ironing of the 

fibers, which decrease in diameter. Hence, in order to produce the nanofibers, the 

applied electrical charge must exceed the surface tension of the solution. 
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Figure 3.1 Electrospinning apparatus 

3.3.1 Electrospinning Set-up 

The main parameters used in electrospinning to control the morphology of 

nanofibers are: concentration (p1), applied voltage (p2), flow rate (p3), and tip-to-

collector distance (TCD, p4). In the laboratory experiments here carried out, a CH-

01 Electrospinner 2.0 (Linari Engineering s.r.l.) was used with a 20 mL glass 

syringe, equipped with a stainless steel needle of 40 mm length and 0.8 mm thick. 

The solution was instead composed by polyvinylacetate (PVAc) as polymer and 

ethanol (EtOH) as solvent. In order to obtain a homogeneous polymer solution, it 

was placed in a test tube and then in a magnetic stirrer (a tool used to mix solvent 

and solute, by rotating a magnetic latch). To analyze the materials produced by 

electrospinning, the scanning electron microscope (SEM) Phenom Pro-X was 

used. It is an electro-optical instrument based on the emission of an electron beam 

on material surface. After the material production, the Fibermetric SEM images 

analyzer was used to evaluate the average diameter, the distribution of the 

nanofibers and the presence of anomalies (i.e., structural defects).  

3.3.2 Dataset Construction 

Sixteen laboratory experiments were carried out at different working conditions, 

as reported in Table 3.1.  It is to be noted that the experiments were developed by 

varying the aforementioned parameters (p1, p2, p3, p4) in the well-defined working 

range: p1 [10; 25] %wt; p2 [10; 17.5] kV; p3 [100; 300] μL/min; p4 [10; 15] cm. 

The e-th nanofibrous material (with e = 1, 2, ..., 16), under- went to the SEM 

analyzer and 10 relevant and representative areas were selected by an expert 

operator. Hence, a total of 16 × 10 = 160 SEM images (sized 128 × 128) were 

collected [34]. Each SEM image was then partitioned into four patches 

(hereinafter referred to as nanopatches) of the same size 64 ×64 (as shown in 

Figure 3.2). Each SEM patch was manually classified by the nanomaterials expert 

in two different classes: H-NF and NH-NF images. It is worth mentioning that 
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homogeneous nanomaterial fabrication is typically observed with high values of 

voltages and concentrations; while non- homogenous nanomaterial fabrication is 

affected by the presence of anomalies, such us beads or films, that can occur when 

the polymeric solution is made up with low values of concentrations or when the 

tip-to-collector distance is too high. 

 

 

Figure 3.2  Example of a SEM image sized 128 × 128 partitioned into four SEM nanopatches sized 

64*64. In the reported example, all the sub-images belong to the homogeneous nanofiber (H-NF) class. 

Table 3.1. Setup of the Experimental Electrospinning Parameters 

# 
p1 (%wt) 

Concentration 

p2 (kV) 

Voltage 

p3 (μL/min) 

Flow-rate 

p4 (cm) 

TCD 

1 10 15 100 10 

2 15 10 100 10 

3 15 13.5 100 10 

4 15 15 100 10 

5 15 15 200 10 

6 15 15 300 10 

7 15 15 100 12.5 

8 15 15 100 13.5 

9 15 15 100 15 

10 20 10 100 10 

11 20 11.5 100 10 

12 20 13.5 100 10 

13 20 15 100 10 

14 20 16 100 10 

15 20 17.5 100 10 

16 25 15 100 10 

 

3.4 Filters Pre-processing  

In order to make the classification task easier each NHNF/HNF SEM image I(x; 

y), has been pre-processed by reducing the number of grey-scale levels but, 

simultaneously, maintaining the texture of the individual image as much as 

possible . For this reason, edge detection techniques are excellent candidates as 

they segment images based on information on the edges providing information on 

the object contours using some edge- detection operators finding discontinuity in 

the grey levels, colour, texture, etc. the edge pixel (x; y) are pixel in which the 

intensity of brightness, f(x; y), of the image changes abruptly and the edges (or 



 

76 

 

segments of edge) are sets of connected pixels . By means of Sobel technique [, 

edge detection is achieved by of a differential operator consisting of two 

convolution matrices  3 ∗ 3 with integer values, 𝐺𝑥 =  [0 1 2; −1 0 1; −2  −1 0] and 𝐺𝑦 =  [−2 − 1 0; −1 0 1;  0 1 2], which convoluted with the image I 

calculate an approximate value of  ∇f (x, y) = [fx(x, y),  fy(x, y)] = [Gx  I,  Gy   I] 

identifying the direction of greater variation of  f (x, y), θ = tan−1(fy(x, y)/fx(x, 
y)) together with its speed in the same direction identified by its magnitude | f (x, 

y) |  =  √𝑓𝑥(𝑥, 𝑦)2  +  𝑓𝑦(𝑥, 𝑦)2. According to Marr and Hildred, instead, edge 

detection can be implemented using the filter ∇2G, with: 

 

                                                 G(x, y) = 𝑒−𝑥2+𝑦22𝜎2  

 
(23) 

 

which represents the LoG filter (Laplacian of the Gaussian). 

 

However, to reduce the computational complexity of LoG, usually a convolution 

matrix 5*5, such as [0 0 -1 0 0; 0 -1 -2 -1 0; -1 -2 16 -2 -1; 0 -1 -2 -1 0; 0 0 -1 0 0], 

is used that approximates ∇2G. Fuzzy edge detection is an alternative approach to 

edge detection which considers the image to be fuzzy because, often, in most of 

the images the edge are not clearly defined, so that detection can becomes very 

difficult. In this paper, a modified Chaira and Ray approach [123] exploiting the 

fuzzy divergence between the image window and each of a set of 16 convolution 

matrices (3 * 3, whose elements belong to the set {0:3; 0:8} to ensure good edge 

detection) which represent the edge profile of different types is presented.  

Specifically, after normalizing the image I, the center of each convolution matrix 

is place on each pixel (x; y) of I. Then, fuzzy divergence measure, Div(x; y), 

between each of the elements of the image window and the template is calculated 

and the minimum value is selected. This procedure is repeated for all of 16 

convolution matrices selecting the maximum value among the 16 divergence 

values obtained. Then, we obtain a divergence matrix on which a threshold 

technique must be applied. For this purpose, in this paper a new entropic 2D fuzzy 

thresholding method based on minimization of fuzzy entropy is proposed. In 

particular, for each threshold T, set a square matrix W of size r centred on (x; y) 

and considered another window W0 of the same dimensions centred on another 

pixel (x0; y0), their distance is first calculated by the fuzzy divergence. The 

average value of all the fuzzy divergences obtained by moving (x0; y0) in all 

possible positions is then calculated. Moreover, we calculate the further average 

value obtained by moving (x; y) in all possible position.  𝑀𝑒𝑎𝑛𝑟 is the latter 

average value obtained. The procedure was repeated for square windows of size 𝑟 + 1, obtaining 𝑀𝑒𝑎𝑛𝑟+1. Then, Fuzzy Entropy depending on T, FE(T) can be 

computed as 𝐹𝐸(𝑇)  =  𝑙𝑛(𝑀𝑒𝑎𝑛𝑟 = 𝑀𝑒𝑎𝑛𝑟+1) so that the optimum threshold, 𝑇 − 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 can be computed by means of 𝑇𝑜𝑝𝑡𝑖𝑚𝑢𝑚 =  𝑎𝑟𝑔; 𝑚𝑖𝑛𝑇 |𝐹𝐸(𝑇)|. 
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Obviously, if necessary, a pre-treatment such as contrast enhancement could be 

implemented to improve the image quality globally [124][125][126]. 

3.5 Hybrid Unsupervised-Supervised Machine Learning 

System 

The proposed ML-based architecture is a series of the below detailed network 

topologies, i.e., an autoencoder and a multilayer perceptron.  

3.5.1 Networks Description 

Autoencoder (AE) 

 

Autoencoders (AEs) are neural networks trained with unsupervised learning 

technique that are commonly used for the tasks of representation learning and 

dimensionality reduction [127][128]. The most typical topology includes an 

encoding and a decoding stage. AEs commonly exploit backpropagation learning 

algorithm with a suitable cost function with the objective of making the output as 

similar as possible to the input while building an internal latent representation of 

reduced size. AEs thus project the input image into a lower-dimensional hidden 

layer (called latent- space representation) and then try to reconstruct the output 

from this reduced representation. After the compression phase, the number of 

neurons of the hidden layer should be smaller w.r.t. the input layer and the output 

layer. In the encoding stage, the network is forced to learn the hidden features 

behind the input data. In the decoding stage, the AE reconstructs the input layer 

data at the output layer with optimal accuracy [129]. In this way, the internal 

representation extracts the most significant aspects (i.e., features) of the image 

presented at the input by exploiting its redundancy. AE works in two steps: an 

encoding stage represented by the function y = f (x) and a decoding one that 

generates the reconstructed original vector/image 𝑧 =  𝑔(𝑦). In short, AEs can be 

described by the function: 𝑔( 𝑓 (𝑥))  =  𝑧  (24) 

where z is as close as possible to the original input x. The encoder contains the 

input layer and the hidden layer, where input data is mapped to obtain a 

deterministic latent-space representation y. 𝑦 =  σ(𝑊𝑇 𝑥 + 𝑏)    (25) 

where σ is typically a sigmoid or other nonlinear functions; x the input image, W 

represents the encoder’s weight matrix and b is an offset vector. The decoder 

consists of the hidden layer and the output layer. In this case, the latent space 

representation is inversely mapped to obtain 𝑧 =  𝑊̂𝑇 𝑥 + 𝑏̂    (26) 

Where 𝑊̂ is the reconstruction decoder’s weights 𝑏̂ matrix and is the 

reconstruction offset vector. Finally, in order to reproduce the outputs more and 

more similar to the inputs, the error function J(x, z) is minimized. 
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𝐽(𝑥, 𝑧)  = 12 (𝑥 − 𝑧)2  (27) 

 

The ideal AE should be sensitive enough to the input to build an accurate 

reconstruction, while, at the same time, insensitive enough to it in order to avoid 

the model may simply overfit the training data. This trade-off is achieved by 

taking advantage of the redundancies of the input [130].  

 

Multilayer Perceptron (MLP) 

 

The second stage of the proposed network is a well-known multilayer perceptron 

(MLP). MLP is the commonest feedforward neural network that consists of an 

input layer, an output layer and of one or more hidden layers. If the MLP is used 

for classification, the successive layers are trained to build a complex decision 

boundary between the classes. It belongs to the supervised learning networks that 

exploit the class label information to minimize a loss function through standard 

gradient-based backpropagation technique. Each neuron in a MLP computes a 

weighted sum of all its inputs that is passed through a non-linear activation 

function to determine its output. In a classification problem, the output yields the 

probability that the input vector belongs to a specific class. 

 

Hybrid Model 

Figure 3.3 shows the architecture of the proposed hybrid unsupervised and 

supervised machine learning system for SEM images produced by electrospinning 

procedure. Specifically, the proposed system includes two main modules: the 

unsupervised processor (Figure 3.3(a)), i.e., an AE that performs the features 

extraction operation, and the supervised processor (Figure 3.3 (b)), i.e., a MLP 

that performs the classification task: NH-NF vs. H-NF. The AE extracts a reduced 

representation of the input, i.e., a feature vector. Figure 3.3(a) illustrates the 

architecture of the proposed AE-based unsupervised processor employed for 

features extraction. It includes an AE [4096: 256: 4096]. Notably, given the nth 

NHNF/ H-NF SEM sub-image (i.e., nanopatch) sized 64 × 64, it is flattened into a 

vector 1 × 4096. Next, the AE compresses the input representation (x, sized 1 × 

4096) into a latent-space (y , sized 1 × 256) subsequently used to decode the same 

input space (z ≈ x, sized 1 × 4096). In this work, the AE [4096:256: 4096] is 

trained in unsupervised learning mode for 103 epochs on a workstation Intel (R) 

Core (TM) i7-8700K CPU @ 3.7 GHz with 64 GB RAM and 1 NVIDIA GeForce 

RTX 2080 Ti GPU installed (training time ≈120 s). The hyperbolic tangent is 

employed for the encoder and the linear function for the decoder module. 

Actually, the hidden layer size (1 × 256) of the AE was set after several 

experimental tests, by estimating the minimum reconstruction error. In particular, 

the minimum mean squared error was of 0.4416. Hence, overall, a features matrix 

of 640 × 256 (i.e., number of SEM patches by the number of features) was 
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extracted (respectively, 320 belonging to NH-NF and 320 to H-NF). However, 

due to the limited size of such datasets with respect to the number of free 

parameters of the network, the accuracy in the training and test phases were quite 

different; hence, a simple data augmentation technique was used to enlarge the 

database size. Specifically, all the features data vectors were corrupted by a white 

Gaussian noise at a SNR = 10 dB, and the generated vectors were included in the 

dataset. A grand total of 1280 × 256 instances were taken into account (640 

belonging to NHNF and 640 belonging to H-NF). Figure 3.3(b) shows the 

proposed MLP. Specifically, the features vector (sized 1 × 256) previously 

extracted from the unsupervised processor is used as input to a MLP with 2 

hidden layers of 100 and 80 hidden. units, respectively. Note that the hyperbolic 

tangent is used as activation function for each hidden neuron. The network ends 

with a softmax output layer employed to perform the 2-way classification task: 

NH-NF vs. H-NF. The architecture, here referred to a MLP with 100 neurons in 

the first hidden layer and 80 in the second one, was trained over 103 epochs on 

the aforementioned workstation (i.e., Intel (R) Core (TM) i7- 8700K CPU @ 3.7 

GHz with 64 GB RAM and 1 NVIDIA GeForce RTX 2080 Ti GPU installed). 

Training time was on average of about 40 minutes using the leave-one-out (LOO) 

technique over the whole dataset. 
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Figure 3.3 Architecture of the proposed hybrid unsupervised and supervised machine learning system. 

(a) Unsupervised processor composed of an AE [4096: 256: 4096]. The SEM nanopatch is reshaped into 

a single vector sized 1 × 4096 and used as input to the proposed AE that allows to extract the most 

relevant features (sized 1 × 256) from the input data. (b) Supervised processor composed of a MLP 

[256: 100: 80: 2]. The extracted features are the input to the proposed 2-hidden layers MLP for 

performing the 2-way classification task: NH-NF vs. H-NF. As an example, in the figure, a NH-NF 

SEM nanopatch inputs the hybrid unsupervised and supervised classification system. 

3.5.2 Metrics (ROC, Permutation Analysis) 

The performance of the proposed hybrid unsupervised and supervised ML system 

were assessed using a set of standard metrics, i.e., Precision, Recall, F-score, and 

Accuracy, defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟)  =  𝑇𝑃𝑇𝑃 + 𝐹𝑃  
 

(28) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐)  =  𝑇𝑃𝑇𝑃 + 𝐹𝑁   
 

(29) 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 × 𝑃𝑟 × 𝑅𝑐𝑃𝑟 + 𝑅𝑐   
 

(30) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁    
 

(31) 

 

where TP, FP, TN, FN are the acronyms of true positive, false positive, true 

negative, false negative, respectively. In this study, TP denotes SEM images with 

defects correctly identified as NH-NF; FP denotes SEM images of homogeneous 

nanofibers misclassified as NH-NF; TN is the number of SEM images of 

homogeneous nanofibers correctly identified as H-NF; FN is the number of SEM 

images of nanofibers with defects misclassified as H-NF. The augmented features 

dataset of 1280 instances (640 belonging to H-NF and 640 belonging to NH-NF) 

was used as input to our proposed MLP. It is worth mentioning that the LOO 

technique was applied to validate the efficiency and generalization ability of the 

developed model. Specifically, LOO consists in partitioning repeatedly the dataset 

into train set, composed of all instances excluded the ith, and test set composed of 

the ith left-out observation. Here, the LOO procedure was applied to the whole 

dataset. Hence, N= 1280 networks were trained on N–1 data-points and tested on 

the held-out case. 

3.6 Results 

Note that the best MLP architecture was determined using a trial-and-error 

approach, namely, estimating the performance of different numbers of hidden 

neurons and hidden layers. 

Table 3.2 reports comparative classification performance in terms of Precision, 

Recall, F-score, and Accuracy. First, the 256-dimensional input representation 

was used as input to MLP classifiers with 1-hidden layer of different size. 

Specifically, 40, 60, 80, 100, 120, 140 hidden units were tested. Experimental 

results show that the 1-hidden layer MLP with 100 neurons (denoted as 𝑀𝐿𝑃100) 

achieved the highest F-score and Accuracy: 92.04% and 91.80%, respectively. 

The metrics used in the experiments are chosen to consider classification 

performance. In particular, the F-score is the metric that best expresses the 

goodness of a classifier compared to the images it analyses. This research, unlike 

the others, does not really have a medical background, in fact it was conducted 

with the aim of evaluating the goodness of nanomaterials that can be used for 

medical purposes of biocompatibility, drug delivery and other medical 

application. 
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Table 3.2. Classification Performance in Terms of Precision, Recall, F-score, and Accuracy of MLP 

with Different Hidden Layers (HL) and Hidden Units 

 

Next, additional layers were used in order to find out possible better 

configurations.  In particular, MLP classifiers with 2-hidden layers were tested, 

that is: 𝑀𝐿𝑃100,40, 𝑀𝐿𝑃100,60, and 𝑀𝐿𝑃100,80.  

As can be seen, among these architectures, 𝑀𝐿𝑃100,80 reported the highest F-score 

and Accuracy: 92.68% and 92.50%, respectively. Finally, MLP classifiers with 3-

hidden layers were tested: 𝑀𝐿𝑃100,80,20, 𝑀𝐿𝑃100,80,40, and 𝑀𝐿𝑃100,80,60. Here, the 

highest scores were achieved by 𝑀𝐿𝑃100,80,60with F-score of 90.88% and 

Accuracy of 90.63%. Hence, comparative results show that the 2-hidden layer 𝑀𝐿𝑃100,80,60 achieved the best classification performance in terms of Precision 

(95%), Recall (90.48%), F-score(92.68%), and Accuracy (92.50%). 

The proposed 𝑀𝐿𝑃100,80 was also compared with other standard ML techniques. 

Notably, support vector machine with linear kernel (SVM, [131]) and linear 

discriminant analysis (LDA, [132]) were developed to perform the 2-way 

discrimination task (NH-NF vs. H-NF). For fair comparison, LOO procedure was 

applied to the whole dataset.  

 

Table 3.3. Classification Performance in Terms of Precision, Recall, F-score and Accuracy of the 

Proposed MLP (i.e., ), SVM and LDA Classifiers 

 

Table 3.3 reports the performance of each classifier evaluated on the test sets: 𝑀𝐿𝑃100,80, SVM, and LDA. Specifically, SVM classifier achieved F-score of 

65.87% and Accuracy of 66.72%; whereas LDA classifier achieved F-score of 

64.06% and Accuracy of 64.84%. As can be observed from Table 3.3, the 

proposed 𝑀𝐿𝑃100,80,  outperformed all of the other models. In support of this 

outcome, the receiver operating characteristic (ROC) and the corresponding area 

under the curve (AUC) measure of the developed MLP, SVM, LDA based 

classifiers were evaluated. As can be seen in Figure 3.4, MLP achieved the 

highest AUC score of 0.90. 

Model HL1 HL2 HL3 Precision Recall F-score Accuracy 

MLP40 40 - - 94.06% 89.58% 91.76% 91.56% 

MLP60 60 - - 94.53% 88.19% 91.25% 90.94% 

MLP80 80 - - 94.68% 88.85% 91.67% 91.40% 

MLP100 100 - - 94.84% 89.40% 92.04% 91.80% 

MLP120 120 - - 94.37% 89.61% 91.93% 91.71% 

MLP140 140 - - 92.34% 86.03% 89.07% 88.67% 

MLP100,40 100 40 - 93.59% 89.81% 91.66% 91.48% 

MLP100,60 100 60 - 92.03% 88.70% 90.34% 90.16% 

MLP100,80 100 80 - 95% 90.48% 92.68% 92.50% 

MLP100,80,60 100 80 60 93.44% 88.46% 90.88% 90.63% 

MLP100,80,40 100 80 40 91.25% 88.75% 89.98% 89.84% 

MLP100,80,20 100 80 20 90.31% 85.76% 87.98% 87.66% 
 

Model Precision Recall F-score Accuracy 
 

 

MLP100,80 95% 90.48% 92.68% 92.50% 

SVM 64.22% 67.60% 65.87% 66.72% 

LDA 62.66% 65.52% 64.06% 64.84% 
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Figure 3.4. ROC curves and corresponding AUC values of the proposed MLP, SVM and LDA 

classifiers for the NH-NF vs. H-NF classification. Note that the figure refers to the best MLP 

architecture 

3.6.1 Permutation Analysis 

In order to assess the dependency of the proposed classifier on the available 

dataset the standard permutation-based p value statistical test is carried out [133]. 

This test estimates the p-value under a certain null hypothesis that is: features and 

class labels are independent. Specifically, the labels are repeatedly permuted and 

for each iteration the statistical metric of interest (here, the accuracy 𝐴𝑖 , with i = 

1, 2,..., 𝑁𝑝𝑒𝑟𝑚) is computed. Finally, p-value is empirically calculated as the total 

number of all 𝐴𝑖 equal or greater than the performance estimated with the original 

dataset (i.e., accuracy 𝐴0), divided by the number of permutations (𝑁𝑝𝑒𝑟𝑚). p-

value smaller than a threshold (typically, α= 0.05) results in rejecting the null 

hypothesis and  consequently concluding that the classifier is statistically 

significant. It is worth noting that, ideally, all of the possible labels permutations 

should be taken into account in order to evaluate the exact p-value. As this is 

computationally expensive, in this study, 𝑁𝑝𝑒𝑟𝑚= 100 were performed [133]. 

Experimental results reported that p-value = 0.00/100 = 0.00 < 0.05. Hence, the 

null hypothesis is rejected. In conclusion, the proposed classifier is statistically 

significant. 

3.7 Discussion 

An innovative hybrid unsupervised and supervised ML system is proposed aiming 

to automatically reject defective electrospun nanofibers by processing the related 

SEM images. The dataset here used for training the classification system is 

composed of 160 SEM images of PVAc nanofibrous materials [134]. However, in 

order to reduce the complexity of the classification task, the available full images, 
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generated by the microscope, were divided into four sub-patches. The cardinality 

of the resulting dataset is now 640: 320 images belonging to NH-NF and 320 to 

H-NF classes, respectively. Each SEM image sized 64 × 64 was reshaped into a 

single vector (sized 1 × 4096) and used as input to the first module of our 

proposed hybrid ML system, i.e., the AE. The developed AE [4096: 256: 4096] 

was trained off-line using unsupervised learning and was employed to 

automatically extract the most relevant features from the input representation. As 

an example, the presence of beads in the original image reflects in segment of the 

feature vector with consecutive high values, whilst the presence of a regular 

texture gives rise to a quasi-periodic representation with low and high values. 

 

 

Figure 3.5. (a) Representation of the 256-dimensional features vector extracted by a SEM H-NF image 

(sized 64 × 64) via the proposed AE. (b) Examples of 10 reconstructed H-NF images. 

Next, the compressed 256-dimensional features vector was used as input to the 

second (supervised) module of the hybrid ML system, i.e., the MLP. The 

proposed 2-hidden layer MLP performed the binary discrimination task: NH-NF 

vs. H-NF. The decomposition of the original SEM image in sub-patches simplifies 

the processing and allows to zoom in small sections of the image that can include 

some defects. This contrasts with the standard processing of the full image 

information. Furthermore, the originality of the proposed methodology lies in 

coding the information of the SEM subregions (i.e., their texture) into a 

compressed features’ vector achieved by the AE processor, by using only 

unlabeled data Such unsupervised data compression allowed to facilitate the 

supervised training of the classification processor (i.e., MLP). 

It is worth noting that the average reconstruction error of the AE [4096: 256: 

4096] was very small, namely, of only 0.4416; thus, the loss of information in the 

compression stage is rather acceptable as being finalized to reveal the presence of 
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defects, not to regenerate the original image. As an example, Figure 3.5(a) and 

Figure 3.6(a) report the representation of the 256-dimensional features vector 

extracted by a H-NF and a NHNF images with the proposed AE. The figures also 

show the decoded images of 10 H-NF (Figure 3.6(b)), and 10 NH-NF (Figure 

3.5(b)). As can be seen, the original NH-NF/H-NF image and the corresponding 

reconstructed NH-NF/H-NF image (produced by the AE) are visually similar. 

Note that the size of AE was empirically defined after several trial-and-error 

simulations. Furthermore, in order to find out the best MLP architecture, different 

numbers of hidden layers and hidden units were also tested (Table 3.2). 

 

 
Figure 3.6. (a) Representation of the 256-dimensional features vector extracted by a SEM NH-NF 

image (sized 64 × 64) via the proposed AE. (b) Examples of 10 reconstructed NH-NF images. 

 

Experimental results show that our proposed hybrid unsupervised and supervised 

ML system, that is, the combination of AE and MLP architectures, reported the 

highest performance when compared with other ML-based classifiers (i.e., SVM, 

LDA). Specifically, the 𝑀𝐿𝑃100,80 proposed achieved F-score and Accuracy rate 

up to 92.68% and 92.50%, respectively. Furthermore, a permutation test was 

carried out to assess the statistical significance of the estimated classification 

accuracy. 

 

3.8 Conclusion 

In this work, a novel automatic classification system for homogenous (anomaly-

free) and non-homogenous (with defects) nanofibers is proposed. The inspection 

procedure aims at avoiding direct processing of the redundant full SEM image. 
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Specifically, the image to be analysed is first partitioned into sub-images (nano-

patches) that are then used as input to a hybrid unsupervised and supervised 

machine learning system. In the first step, an autoencoder (AE) is trained with 

unsupervised learning to generate a code representing the input image with a 

vector of relevant features. Next, a multilayer perceptron (MLP), trained with 

supervised learning, uses the extracted features to classify non-homogenous 

nanofiber (NH-NF) and homogenous nanofiber (H-NF) patches. The resulting 

novel AE-MLP system is shown to outperform other standard machine learning 

models and other recent state-of-the-art techniques, reporting accuracy rate up to 

92.5%. In addition, the proposed approach leads to model complexity reduction 

with respect to other deep learning strategies such as convolutional neural 

networks (CNN). 

To evaluate the quality of the material, an evaluation of this type will be made: if 

at least one quadrant is not homogeneous, the entire SEM image will be classified 

as non-homogeneous and therefore automatically discarded. Furthermore, the 

proposed methodology based on unsupervised AE can form the basis of a 

generative model (e.g., [135], [136]) which will allow to increase the database by 

designing a reduced number of new expensive laboratory experiments. 
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Chapter 4 

4 Classification of COVID-19 in 

Chest X-Ray Images Using 

Transfer Learning and Vision- 

Transformer (ViT) 

4.1 Covid- 19 Pandemic  

Coronavirus disease (COVID-19) was confirmed as a pandemic disease on 

February 11, 2020. The pandemic has already caused thousands of victims and 

infected several million people around the world. The aim of this work is to 

provide a Covid-19 infection screening tool. Currently, the most widely used 

clinical tool for detecting the presence of infection is the reverse transcription 

polymerase chain reaction (RT-PCR), which is expensive, less sensitive and 

requires the resource of specialized medical personnel. The use of X-ray images 

represents one of the latest challenges for the rapid diagnosis of the Covid-19 

infection. This work involves the use of advanced artificial intelligence techniques 

for diagnosis using algorithms for classification purposes. The goal is to provide 

an automatic infection detection method while maximizing detection accuracy. A 

public database was used which includes images of COVID-19 patients, patients 

with viral pneumonia, patients with pulmonary opacity, and healthy patients 

[137][138]. The methodology on which the study is based is transfer learning or 

pre-trained networks to alleviate the complexity of calculation. In particular, three 

different types of convolutional neural networks, namely InceptionNet and 

XceptionNet, ResNet50 and the Vision Transformer are implemented. The high 

accuracy of this computer-assisted diagnostic tool can significantly improve the 

speed and accuracy of COVID-19 diagnosis. 

On December 31, 2019, Chinese health authorities reported an outbreak of 

pneumonia cases of unknown aetiology in the city of Wuhan (Hubei Province, 
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China). Many of the initial cases reported exposure to Wuhan's South China 

Seafood City market. For this reason, the involvement of live animals in the chain 

of transmission was hypothesized. Over the last year, research has been carried 

out to validate this hypothesis, without finding a specific link with the Wuhan fish 

market. More recently, it has been speculated that the virus had a natural reservoir 

in bats, but that these animals are likely to be in Wuhan a year ago. On January 9, 

2020, the China CDC (the Center for Disease Control and Prevention of China) 

identified a new coronavirus (tentatively named 2019-nCoV) as the etiological 

cause of these diseases. Chinese health authorities have also confirmed the inter-

human transmission of the virus. On 11 February, the World Health Organization 

(WHO) announced that the disease transmitted since 2019-nCoV has been called 

COVID-19 (Corona Virus Disease). The Coronavirus Study Group (CSG) of the 

International Committee on Taxonomy of Viruses has officially classified with the 

name of SARS-CoV-2 the virus provisionally named by the international health 

authorities 2019-nCoV and responsible of cases of COVID-19 (Corona Virus 

Disease). The CSG - responsible for defining the official classification of viruses 

and the taxonomy of the Corona viridae family, after evaluating the novelty of the 

human pathogen and on the basis of phylogeny, taxonomy and established 

practice, has formally associated this virus with the coronavirus it causes severe 

acute respiratory syndrome (SARS-CoVs, Severe acute respiratory syndrome 

coronaviruses) classifying it as Severe Acute Respiratory Syndrome CoronaVirus 

2 (SARS-CoV-2)[139]. After assessing the severity levels and global spread of the 

SARS-CoV-2 infection, WHO declared that the COVID-19 epidemic can be 

considered a pandemic. 

 

4.1.1 Covid-19 Clinical Stages 

As shown in Figure 4.1, during Covid-19-induced disease, three distinct stages 

have been demonstrated [140]: 

• The first phase is that in which the virus, through the respiratory tract, 

enters the organism and replicates inside the cells. The symptoms of this 

phase are the same as those related to flu syndromes: malaise, widespread 

arthralgia, fever, dry cough. When the disease stops at this stage, 

spontaneously or thanks to drugs, the prognosis is excellent, and the 

course is benign. 

• The second phase is that of interstitial pneumonia, which unlike classic 

lobar pneumonia, affects the two lungs very extensively, both through the 

direct effects of the virus and the inflammatory response of our body. In 

this phase, very important respiratory symptoms may appear, associated 

with a reduction in oxygen saturation and hospitalization is often 

necessary. The prognosis of this phase is variable and depends, in addition 

to the treatment, on the type of patient affected: evidently those with pre-
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existing cardiac or pulmonary pathologies, the older ones and those with 

chronic pathologies of any kind are more at risk. 

• Finally, the disease evolves into a third phase, characterized by a 

worsening clinical picture, caused by a hyper-inflammatory response that 

determines, among other things, a picture of both arterial and venous 

vasculopathy, with a state of hypercoagulability, small vessel thrombosis, 

evolution towards even extremely serious and potentially permanent 

pulmonary lesions (fibrosis) and extra-pulmonary involvement. In this 

case the prognosis can be very bad, even in less elderly patients and 

without associated pathologies. 

 

From a cardiovascular point of view, inflammation can highlight a pre-existing 

picture or cause the appearance of a new disease involving the heart: myocarditis, 

heart attack, heart failure and arrhythmias. Furthermore, some drugs used to treat 

the infection, such as azithromycin and hydroxychloroquine, have rare but 

possible effects on the heart, being able to cause arrhythmias, even lethal through 

the lengthening of the QTc interval. 

A very frequent consequence was pulmonary thrombo-embolism, which manifests 

itself through a sudden worsening of the clinical picture with oxygen desaturation, 

confirmed by CT pulmonary angiogram. Neurological complications have also 

been described, including ischemic and even haemorrhagic stroke. 

 

 

Figure 4.1. Covid-19 Disease Course 

4.1.2 Vaccinations 

A variety of COVID-19 vaccines are currently in use around the world. Actually. 

in Italy, the following vaccines are administered: 

• Pfizer-BioNTech (BNT162b2), approved by the United States Food and 

Drug Administration (FDA). 

• Modern (mRNA-1273) 

• Janssen (Johnson & Johnson; formerly JNJ-78436735, also known as 

Ad26.COV2.S) 
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Vaccines target the virus's characteristic spike protein which is essential for the 

virus to attack host cells through various methods. The Pfizer-BioNTech and 

Moderna vaccines do not contain the viral antigen, but instead provide a small 

synthetic fragment of mRNA that codes for the targeted antigen (the spike 

protein). After being taken up by the cells of the immune system, the mRNA 

vaccine degrades after instructing the cell to produce the viral antigen. The 

antigen is then released and triggers the desired immune response to prevent a 

serious infection following subsequent exposure to the virus. The Janssen vaccine 

uses an adenoviral vector platform that contains a piece of DNA, or genetic 

material, which is used to produce the SARS-CoV-2 virus signature spike protein 

which then triggers the desired immune response. 

Pfizer-BioNTech and Moderna vaccines are contraindicated in people with a 

known history of severe allergic reactions (e.g., anaphylaxis) to a previous dose of 

the vaccines or any component of the vaccines (including polyethylene glycol). 

Janssen vaccine is contraindicated in individuals with a history of severe allergic 

reactions to some of its components (including polysorbate 80). 

 

4.1.3 Worldwide Covid-19 Pandemic Statistics 

This section presents the coronavirus statistics in the world, updated to October 

2021, in particular the situation of those infected with Covid-19, the situation of 

the dead, the data of the healed and the currently positive (active) coronavirus 

cases [141]. The Figure 4.2 represents the coronavirus map with the affected 

states. The size of the diameter of the circle explains the contagions by territorial 

extension and therefore the population density affected by the pandemic. 

 

 

Figure 4.2 Population density affected by the pandemic worldwide 
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The graph in Figure 4.3 shows the daily growth of the coronavirus from January 

2020 (first alarms on the circulation of the virus) until today. As can be seen from 

the graph, after the peak of April 2021, there is an attenuation, considering the 

start of vaccinations. Currently, there are about 246,459,876 infected in the world, 

about 4,999,695 dead and about 223,302,678 recovered. 

 

Figure 4.3 Coronavirus daily growth in the world 

4.2 Related Works 

After the World Health Organization (WHO) declared the rapid spread of the 

aggressive COVID-19 virus, the world of scientific research went to great lengths 

to propose a solution for the early diagnosis of the virus [142]. Indeed, the rapid 

detection of COVID-19 can help control the spread of the disease.  

Nowadays, the most used and most reliable method of diagnosing infection is the 

Reverse Transcription-Polymerase Chain Reaction (RTPCR). A sample is taken 

by nose / mouth and pharyngeal swab and analysed by real-time molecular 

methods through the amplification of the viral genes most expressed during the 

infection. This analysis can only be carried out in highly specialized laboratories, 

identified by the health authorities and requires on average from 2 to 6 hours to 

return a result. Another category of tests that have a lower sensitivity and 

specificity than the previous molecular tests, are the antigen swabbing. This type 

of test is based on the search for viral proteins (antigens) in respiratory samples. 

The sampling methods are the same as for molecular tests (nasal and throat swab) 

but the response time is shorter (about 15 minutes). Finally, the serological tests 

highlight the presence of antibodies against the virus and tests reveal that there 

has been exposure to the virus; but only in a few cases can they detect that an 

infection is in progress. In the current state of scientific development, serological 
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tests cannot replace molecular tests based on the identification of viral RNA 

[143]. 

In recent times, the attention for the diagnosis of infection is focusing on imaging 

tests. Chest X-ray (CXR) and computed tomography (CT) are the most popular 

imaging techniques for diagnosing COVID-19 disease. The historical conception 

of diagnostic imaging systems has been fully explored through several approaches 

ranging from automation engineering to deep learning[144]. 

Convolutional neural network (CNN) is one of the most popular and effective 

approaches in the diagnosis of COVID-19 from digitised images. Several reviews 

have been carried out to highlight recent contributions to COVID-19 detection 

[145]. In [146] pre-trained CNN models were used for feature extraction using 

SVM classifiers with various kernel functions. Then, several pre-trained CNN 

models were further trained using chest X-ray images for COVID-19 detection. 

The accuracy of the classification was used to evaluate the performance of the 

proposed methods. The pre-trained deep CNN models used in the study were 

ResNet18, ResNet50, ResNet101, VGG16, and VGG19. Since testing the study, 

the deep characteristics model (ResNet50) and SVM with linear kernel function 

produced an accuracy score of 94.7%, which was the highest of all results. Test 

results for fine-tuning the ResNet50 model and end-to-end training of the 

developed CNN model were 92.6% and 91.6% respectively. Since the number of 

COVID-19 X-Ray samples is limited, transfer learning appears as the reference 

method for classifying disease data to develop accurate automated diagnosis 

models. In this context, networks are able to acquire knowledge from pre-trained 

networks on large-scale image datasets or alternative data-rich sources. In [147] 

the classification algorithm based on transfer learning acquired results with an 

accuracy of 97.66% and an F1 score of 97.61%. 

The studies suggested that transfer learning can extract significant features related 

to the COVID-19 disease diagnosis. In this study, the classification and diagnosis 

of Covid-19 was by means of transfer learning, first with the classic convolutional 

neural networks and subsequently through the Vision Transformer. 

4.3 Dataset Description: Chest X-Ray Images 

The clinical database used for the study was created with chest X-ray images for 

COVID-19 positive cases along with normal and viral pneumonia images. The 

database consists of 3616 COVID-19 positive cases, 10,192 normal images, 6012 

pulmonary opacity (non-COVID lung infection), and 1345 viral 

pneumonia[137][138]. The lungs are the two organs responsible for supplying 

oxygen to the body and for the elimination of carbon dioxide from the blood, or 

the gaseous exchanges between air and blood (a process known as haematosis). 

Located in the thoracic cavity, they are surrounded by a serous membrane, the 

pleura, which is essential for the performance of their functions. The lungs are 

separated by a space between the spine and the sternum, the mediastinum, which 

includes the heart, oesophagus, trachea, bronchi, thymus and great vessels. each of 

the two lungs has at the upper end, an apex that extends upwards to the base of the 
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neck and, at the lower end, rests on the diaphragmatic muscle. Their main blood is 

to receive the load of carbon dioxide and waste products from the peripheral 

circulation and to clean it up: once cleansed the blood is then sent to the heart, 

from where it is sent to organs and tissues. Figure 4.4 shows an X-Ray image of 

healthy lungs (without any lung ailments). 

 

Figure 4.4. Normal lungs 

In general, in pneumonia, the lungs fill with fluid and become inflamed, causing 

difficulty breathing. For some cases, breathing problems can become severe and 

require hospitalization with oxygen and ventilator treatments. Pneumonia caused 

by COVID-19 tends to take hold in both lungs. The air sacs in the lungs fill with 

fluid (Figure 4.5), limiting their ability to absorb oxygen and causing shortness of 

breath, cough, and other symptoms. Even after the disease has passed, lung 

lesions can cause breathing difficulties that could take months to improve. The 

white portions on the are scars inside the lungs. In those areas the lung is not 

functioning. 

 

Figure 4.5 Covid-19 pneumonia 

Pulmonary opacity is represented by spots that appear on the lungs and usually do 

not exceed 3 cm in diameter (as shown in Figure 4.6). In most cases they are 

benign, meaning they are not cancerous. A pulmonary nodule is usually seen by 

means of chest X-ray or computed tomography (CT). They may appear as single 

nodules or there may be several. A cancerous lung lump is usually larger than 3 

cm and can be irregular in shape. 
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Figure 4.6 Pulmonary opacity 

Viral pneumonia is defined as a pathological entity in which there is the viral 

cause of abnormal oxygen and carbon dioxide gas exchanges in the alveoli, 

secondary to virus-mediated inflammation and / or immune response [148]. As 

shown in Figure 4.7, in the Xray image, areas of the chest are visible in which the 

region or regions are highlighted pneumonia (lighter, whitish spots). 

 

Figure 4.7 Viral pneumonia 

 

4.4 Methodology 

Figure 4.8 shows the proposed methodology. The new methodology of the 

transformer, in particular the Vision Trasformer (ViT), is compared to the classic 

convolutional neural networks, in particular InceptionNet. 

 
Figure 4.8 Covid Detection Methodology 
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4.4.1 Transfer Learning 

In recent years, deep learning has achieved great success for its wide range of 

applications, as it is possible to extract models from pre-trained data to predict or 

classify future outputs [149] [150].  

Machine learning leverages training datasets and test data with the same data 

distribution. When there is a difference in data distribution between the training 

data and the test data, the performances do not show promise. [151]. Given the 

large amount of data, obtaining training data that matches the functionality space 

and expected data distribution characteristics of the test data can be difficult and 

costly. Thus, using transfer learning it is possible to implement a high-

performance learner for a target domain trained by a related source domain. 

Through non-technical experiences, it is possible to learn from the real world to 

understand because learning can be transferred. 

So, the need for transfer learning occurs when there is a limited supply of target 

training data.  There are many machine learning applications in which transfer 

learning has been successfully applied to including text sentiment classification 

[152], image classification [153], human activity classification [154], software 

defect classification [155], and multi-language text classification [156]. 

4.4.2 InceptionNet 

InceptionV3 originated as a module for GoogLeNet[157], with the purpose of 

allowing for deeper networks without increasing too much the number of 

parameters. Figure 4.9 shows the structure of a single Inception module: 

 

 

Figure 4.9 Inception Module 

• 1x1 convolutional layers act as rectified linear activators as well, so their p

urpos e is two-fold.  

• 1x1 convolution blocks were introduced to reduce dimensionality. 

 The overall architecture is depicted in Figure 4.10: 



 

96 

 

 

Figure 4.10 InceptionV3 architecture 

4.4.3 XceptionNet 

The next CNN chosen for analysis and comparison is Xception [158], which was 

described as an extreme version of InceptionV3 with the exploitation of the so-

called depthwise separable convolution, and a subsequent redefinition of 

the Inception module, as shown in Figure 4.11.   

  

 
Figure 4.11 Xception Module 

   

The basic underlying concept is the assumption that cross-channel correlation 

and  patial correlation can be mapped separately. This leads to the idea of using 

a 1x1 convolution to map cross-channel correlations at first and apply 3x3 

convolutions to map spatial correlations later on. This has been proved to slightly 

outperform InceptionV3. shows the Xception architecture:   
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Figure 4.12 Xception architecture 

   

4.4.4 ResNet50 

Remarkably, the “middle flow” section of the network presents a skip connection, 
which is indeed the key element of the next CNN to be described, ResNet50.  

ResNet had the peculiarity of using skip connections to tackle the problem of 

vanishing gradients[159]. This approach was successful and resulted in a number 

of variations of the original topology. ResNet50 is depicted in Figure 4.13:  

 

 

 

Figure 4.13 ResNet50 architecture 

  

4.4.5 Vision Trasformer 

CNNs do exhibit some issues, such as the inability to retain information about the 

composition and position of specific elements within an image, and to pass such 

information on to subsequent layers. For this reason, several architectures were 

developed and presented in recent years. Specifically, Transformers have aroused 

great interest, especially in NLP applications [160]. In this work the focus is 

centered on what is probably the most popular version of the Transformer 
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architecture for image classification, the Vision Transformer, or ViT [161]. The 

peculiar structure and basic working principles of this network are represented in 

Figure 4.14: 

 

 

Figure 4.14 Transformer Architecture 

 

4.5 Experimental Setup 

The first step of the process consisted in training and testing the three 

aforementioned CNNs over the chest X-ray dataset. All of the networks were 

trained by exploiting the transfer learning technique, which allows to retain and 

freeze network weights derived from previous training sessions over specific 

datasets. In this case, weights obtained over the ImageNet21k database were used. 

Subsequently, only some of the top layer weights were set to be trainable. Indeed, 

the differences among the chosen architectures caused the number of trainable 

layers to change from one neural network to another. The reduced number of 

unfrozen layer weights were trained and tested over the chest X-Ray database. 

This method allowed to significantly reduce the overall amount of time dedicated 

to the training and testing phases for all convolutional networks.   

All networks were trained and tested on a PC with a CPU@3.70GHz with 

TensorFlow 2.5.0 and Keras. Hyperparameters were configured in the very same 

fashion for all architectures: initial learning rate was set to 0.0001; fine-tuning 

learning rate to 0.00001; the chosen optimizer was Adam; batch size was set to 

32; dropout coefficient equal to 0.5; loss function of choice was the Sparse 

Categorical Cross Entropy function. The same number of 60 epochs was set both 

for the initial training epochs and for fine-tuning epochs, for a total of 120 epochs. 

The hyperparameters selection criteria are the same as Chapter 1. However, in this 

case the maximum number of epochs instead of the stop criterion was used. The 

choice of the drop out coefficient was empirical, and the Sparse Categorical Cross 

Entropy function was chosen because the classes of the experiment are mutually 

exclusive, i.e. each sample belongs to exactly one class. 
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A difference was set in the layer selected to start the fine-tuning process, just as 

previously mentioned, as follows: the fine-tune was set at layer 308 (over 311 

total layers) for InceptionV3; at layer 128 (over 132 total layers) for Xception; at 

layer 172 (over 175 total layers) for ResNet50.  

The next step was the deployment of the Vision Transformer architecture, or ViT, 

which is the equivalent of the BERT Transformer applied to vision and image 

classification. Once again, transfer learning was exploited in order to reduce the 

total amount of time spent on training, validating and testing.   

The following hyperparameters were used: the base architecture is ViT-B_32; 

batch size was set to 32; learning rate was set to 0.00001; the selected optimizer 

was Rectified Adam; loss function of choice was the Categorical Cross Entropy 

function; label smoothing was set to 0.2; overall number of epochs was 30. All 

settings and hyperparameters were chosen in order to make a fair comparison 

against CNNs, and to take into account the significant architectural differences 

between CNNs and the Vision Transformer.  

Data augmentation with random horizontal flipping and random rotation (set to 

0.2), as well as Mitchell-Netravali filtering were applied to the database images 

before feeding them to the CNNs. On the other hand, no operation of any kind 

was performed before feeding the images to the Vision Transformer, with the 

exception of resizing them from an initial resolution of 229x229x3 to 224x224x3 

in order to fit the ViT input layer. 

4.6 Results 

Table 4.1 shows a comparison of the results of the Vision Transformer versus 

convolutional networks: 

 

Table 4.1 Covid-19 Classification Accuracy 

Network Architecture  Test Accuracy  

InceptionV3  0.7936  

Xception  0.8362  

ResNet50  0.8558  

ViT  0.9930  

 

ResNet50 exhibits the best performance among the convolutional neural networks 

of choice, with a test accuracy of about 86%. However, the Vision Transformer 

architecture clearly outperforms the selected CNNs on this specific image 

classification task with an outstanding accuracy of 99.3%. A few more indicators 

are shown in Table 4.2 and Figure 4.15 to further describe the performance of the 

ViT architecture over the four classes of the database: 

Table 4.2 Classification indicators for each class 

  Precision  Recall  F1-score  Support  
COVID (Class: 0)  0.97  0.94  0.96  353  
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Lung Opacity 

(Class: 1)  
0.87  0.93  0.90  602  

Normal (Class: 2)  0.95  0.92  0.94  1019  
Viral Pneumonia 

(Class: 3)  
0.96  0.98  0.97  135  

 

 

Figure 4.15 Vision Transformer Confusion Matrix 

  

These results shows that the Vision Transformer is highly capable to correctly 

classify images in each category. This is verified when evaluating the ratio of 

correctly classified over total classified images per category (precision), the ratio 

of correctly classified over total actual images per category (recall), and a sort of 

balance in between the two (F1-score). The poorest results are associated to the 

Lung Opacity class, which might be due to often the small spots that indicate the 

presence of the disease are often indistinguishable from the cloud that 

characterizes the other diseases. Indeed, it is worth highlighting that the Vision 

Transformer is able to reach a significantly higher accuracy with respect to 

Convolutional Neural Networks after iterating for only 30 epochs, as opposed to 

60 + 60 = 120 overall epochs to train and fine tune the other architectures.   

4.7 Conclusion 

The Deep Transfer Learning technique is used to build a COVID-19 infected 

patient classification model. Experimental results demonstrated that the proposed 

deep transfer learning-based COVID-19 classification model achieves efficient 

outcomes compared to other supervised learning models. In particular, three 

convolutional networks (InceptionNet, XceptionNet and ResNet50) and the 
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Vision Transformer were used. The ViT (best performing model) achieves a 

training and test accuracy of 99.30%.  

The main research insights are based on the detection of Covid-19 infection 

without the use of antigenic swabs (the most used method to detect the infection). 

This could represent an alternative method because it is based on the detection of 

X-ray images of the lungs. 
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Chapter 5 

5 Conclusions 

The goal of the thesis consists of a double aspect. On the one hand, the focus of 

the thesis is of a medical nature; indeed, the topics, addressed with recent 

intelligent techniques, are aimed at solving important medical issues that have not 

yet been answered in the medical literature. On the other hand, a neural thesis 

based on the search for nuances of machine learning from shallow learning to 

deep learning is applied to different fields and different applications concerning 

the medical field.  

From a medical point of view, various issues were treated and for each one, 

methods and approaches customized ad hoc for the problem were chosen.  

Depending on the fields of biomedical application, several networks were treated 

considering the inputs, i.e., the data available to us (images, signals, and time 

series).  

The first field of application concerns cardiovascular problems, and in particular 

hypertension. Currently, the wearable devices for health-monitoring control the 

heart activity by means of the electrocardiogram signal and the blood oxygenation 

by means of the photoplethysmogram signal. However, to keep cardiovascular 

problems under control, the monitoring of arterial blood pressure becomes 

essential. For this reason, a forecasting problem is addressed to trace the blood 

pressure signal and detect any anomalies. 

The second field of application is based on the stratification of the risk of death in 

patients suffering from channelopathies, that is rare diseases involving the heart 

system. In this case, by means of a digitization algorithm, the ECG images were 

transformed into signals and then through the fiducial parameters of the ECG a 

neural network with a hidden layer was trained. 

Another task, considered in this thesis, relates to the classification of 

nanomaterials used for biocompatible sensors for tissues. The images of the 

nanomaterials are placed at the entrance of the neural network, which classifies 

the nanomaterials without anomalies by means of a defect detection model. 
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The last topic concerns diagnostic using chest X-Ray images. Radiographic 

images represent an essential resource for the diagnosis of pathologies (here only 

Covid-19 is analysed). For this reason, artificial intelligence will play an 

important role as a diagnostic support tool in the medical field because it is very 

fast and economical. 

From a neural point of view, a wide range of neural networks have been studied 

and applied. 

First of all, shallow learning systems were applied to medical problem, i.e., with a 

single hidden layer neural network.  

Before testing a deep learning approach to predict the blood pressure signal, a 

network with an input regression vector was trained to understand the dynamics of 

the system. However, due to the large amount of samples that a signal contains, 

good performance cannot be achieved by using the neural network. A case in 

which the network with the single hidden layer has given promising results is 

related to the classification for the risk stratification of channelopathies: since the 

approach for the classification was based on features extraction, the results of the 

system are optimized with a shallow approach. 

Deep learning approaches are widely used to solve problems that exploit the logic 

of artificial intelligence. In the case of the diagnosis of Covid-19 infection, 

various deep learning networks were examined and compared. In particular, 

convolutional neural networks (InceptionNet, XceptionNet and ResNet50) and 

very recent networks called transformers (ViT- Vision Transformer). The latter 

represent the new frontier of artificial intelligence; indeed, even in the proposed 

application, transformers have obtained interesting results. 

Finally, neural networks may be combined to generate custom neural models that 

acquire characteristics of two or more networks. 

In the proposed thesis work several hybrid approaches were examined. In the case 

of pressure signal detection, the best approach requires a cascade of a 

convolutional and recurrent networks, the former to perform feature extraction 

automatically from the signal and the latter to predict the entire signal. 

Another hybrid approach was used to build a defect detection classification 

system for the evaluation of the goodness of nanomaterials. In this case, an 

AutoEncoder (unsupervised system) was trained to compress an image in an 

encoding and a multilayer perceptron (with two hidden layers) was used for the 

classification of the encodings (associated with each image of the nanomaterial). 

This hybrid approach turns out to be the most performing among those studied in 

literature for the same purpose. 

Although there are two different and apparently opposite aspects, these two 

aspects integrate harmoniously since the neural aspect proves to be efficient and 

effective in a field that highlights its capabilities; instead, from a medical point of 

view the most relevant contribution stems from the fact that artificial intelligence 

represents the best way to solve medical problems, which cannot be solved with 

classical methods. Recently the importance of investing in health technologies 

enabled by artificial intelligence has taken on considerable interest for the health 

system. On the medical level, technology is at the service of health for purposes of 
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real-time monitoring and telemedicine, storing electronic records to maintain data 

quality, disease prediction and making early and accurate diagnoses. 

The technological support based on artificial intelligence for medicine represents 

an evolving process that will acquire more and more value and credibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 

 

 

References 

[1] “Cardiovascular diseases.” https://www.who.int/health-

topics/cardiovascular-diseases#tab=tab_1 (accessed Aug. 24, 2021). 

[2] M. Kelly and C. Semsarian, “Multiple Mutations in Genetic Cardiovascular 

Disease,” Circ. Cardiovasc. Genet., vol. 2, no. 2, pp. 182–190, Apr. 2009, 

doi: 10.1161/CIRCGENETICS.108.836478. 

[3] J. E. Rossouw, “Hormones, genetic factors, and gender differences in 
cardiovascular disease,” Cardiovasc. Res., vol. 53, no. 3, pp. 550–557, Feb. 

2002, doi: 10.1016/S0008-6363(01)00478-3. 

[4] M. E. Mendelsohn and R. H. Karas, “The Protective Effects of Estrogen on 
the Cardiovascular System,” 
http://dx.doi.org/10.1056/NEJM199906103402306, vol. 340, no. 23, pp. 

1801–1811, Oct. 2008, doi: 10.1056/NEJM199906103402306. 

[5] G. A. Colditz, W. C. Willett, M. J. Stampfer, B. Rosner, F. E. Speizer, and 

C. H. Hennekens, “Menopause and the Risk of Coronary Heart Disease in 
Women,” http://dx.doi.org/10.1056/NEJM198704303161801, vol. 316, no. 

18, pp. 1105–1110, Jan. 2010, doi: 10.1056/NEJM198704303161801. 

[6] D. Mozaffarian, P. W. F. Wilson, and W. B. Kannel, “Beyond Established 
and Novel Risk Factors,” Circulation, vol. 117, no. 23, pp. 3031–3038, Jun. 

2008, doi: 10.1161/CIRCULATIONAHA.107.738732. 

[7] E. M. Cherry and F. H. Fenton, “Heart Structure, Function and 
Arrhythmias.” 

[8] J. R. Bradford and H. P. Dean, “The Pulmonary Circulation1,” J. Physiol., 

vol. 16, no. 1–2, pp. 34–158, Mar. 1894, doi: 

10.1113/JPHYSIOL.1894.SP000493. 

[9] J. Segen, “Concise Dictionary of Modern Medicine,” eweb:292340. 

[10] “The Seventh Report of the Joint National Committee on Prevention, 
Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7).” 
https://web.archive.org/web/20070824210934/http://www.nhlbi.nih.gov/gu

idelines/hypertension/ (accessed Aug. 30, 2021). 

[11] R. E. Klabunde, “Neurohumoral Control of the Heart and Circulation,” 
Cardiovasc. Physiol. Concepts, pp. 117–140, 2005. 

[12] “Low Blood Pressure | NHLBI, NIH.” https://www.nhlbi.nih.gov/health-

topics/low-blood-pressure (accessed Aug. 30, 2021). 



 

106 

 

[13] “High Blood Pressure | NHLBI, NIH.” https://www.nhlbi.nih.gov/health-

topics/high-blood-pressure (accessed Aug. 30, 2021). 

[14] J. R. Chiong et al., “Secondary hypertension: Current diagnosis and 
treatment,” Int. J. Cardiol., vol. 124, no. 1, pp. 6–21, Feb. 2008, doi: 

10.1016/J.IJCARD.2007.01.119. 

[15] B. Williams et al., “2018 ESC/ESH Guidelines for the management of 
arterial hypertensionThe Task Force for the management of arterial 

hypertension of the European Society of Cardiology (ESC) and the 

European Society of Hypertension (ESH),” Eur. Heart J., vol. 39, no. 33, 

pp. 3021–3104, Sep. 2018, doi: 10.1093/EURHEARTJ/EHY339. 

[16] B. N. Van Vliet, L. L. Chafe, V. Antic, S. Schnyder-Candrian, and J. P. 

Montani, “Direct and indirect methods used to study arterial blood 
pressure,” J. Pharmacol. Toxicol. Methods, vol. 44, no. 2, pp. 361–373, 

Sep. 2000, doi: 10.1016/S1056-8719(00)00126-X. 

[17] A. Roguin, “Scipione Riva-Rocci and the men behind the mercury 

sphygmomanometer,” Int. J. Clin. Pract., vol. 60, no. 1, pp. 73–79, Jan. 

2006, doi: 10.1111/J.1742-1241.2005.00548.X. 

[18] T. Tamura and W. Chen, “Seamless healthcare monitoring: Advancements 
in wearable, attachable, and invisible devices,” Seamless Healthc. Monit. 

Adv. Wearable, Attach. Invis. Devices, pp. 1–469, Nov. 2017, doi: 

10.1007/978-3-319-69362-0. 

[19] T. Dieterle, “Blood pressure measurement - an overview,” Swiss Med. 

Wkly. 2012 3, vol. 142, no. 3, Jan. 2012, doi: 10.4414/SMW.2012.13517. 

[20] G. P. Molhoek et al., “Evaluation of the Penàz servo-plethysmo-manometer 

for the continuous, non-invasive measurement of finger blood pressure,” 
Basic Res. Cardiol. 1984 795, vol. 79, no. 5, pp. 598–609, Sep. 1984, doi: 

10.1007/BF01910489. 

[21] K. Tegtmeyer, G. Brady, S. Lai, R. Hodo, and D. Braner, “Placement of an 
Arterial Line,” 2006. 

[22] P. Verdecchia et al., “White coat hypertension and white coat effect 
similarities and differences,” Am. J. Hypertens., vol. 8, no. 8, pp. 790–798, 

Aug. 1995, doi: 10.1016/0895-7061(95)00151-E. 

[23] F. J. Callaghan, C. F. Babbs, J. D. Bourland, and L. A. Geddes, “The 
relationship between arterial pulse-wave velocity and pulse frequency at 

different pressures,” http://dx.doi.org/10.3109/03091908409032067, vol. 8, 

no. 1, pp. 15–18, 2009, doi: 10.3109/03091908409032067. 

[24] R. Wang, W. Jia, Z. H. Mao, R. J. Sclabassi, and M. Sun, “Cuff-free blood 

pressure estimation using pulse transit time and heart rate,” Int. Conf. 

Signal Process. Proceedings, ICSP, vol. 2015-January, no. October, pp. 

115–118, 2014, doi: 10.1109/ICOSP.2014.7014980. 

[25] A. Hennig and · A Patzak, “Continuous blood pressure measurement using 



 

107 

 

pulse transit time,” Somnologie, vol. 17, pp. 104–110, 2013, doi: 

10.1007/s11818-013-0617-x. 

[26] P. Fung, G. Dumont, C. Ries, C. Mott, and M. Ansermino, “Continuous 
noninvasive blood pressure measurement by pulse transit time,” Annu. Int. 

Conf. IEEE Eng. Med. Biol. - Proc., vol. 26 I, pp. 738–741, 2004, doi: 

10.1109/IEMBS.2004.1403264. 

[27] M. Hosanee et al., “Cuffless Single-Site Photoplethysmography for Blood 

Pressure Monitoring,” J. Clin. Med., vol. 9, no. 3, p. 723, Mar. 2020, doi: 

10.3390/jcm9030723. 

[28] V. Randazzo, J. Ferretti, and E. Pasero, “ECG WATCH: A real time 

wireless wearable ECG,” Jun. 2019, doi: 10.1109/MeMeA.2019.8802210. 

[29] Randazzo, Ferretti, and Pasero, “A Wearable Smart Device to Monitor 
Multiple Vital Parameters—VITAL ECG,” Electronics, vol. 9, no. 2, p. 

300, Feb. 2020, doi: 10.3390/electronics9020300. 

[30] V. Randazzo, E. Pasero, and S. Navaretti, “VITAL-ECG: A portable 

wearable hospital,” in 2018 IEEE Sensors Applications Symposium, SAS 

2018 - Proceedings, Apr. 2018, vol. 2018-January, pp. 1–6, doi: 

10.1109/SAS.2018.8336776. 

[31] Y. Kurylyak, F. Lamonaca, and D. Grimaldi, “A Neural Network-based 

method for continuous blood pressure estimation from a PPG signal,” Conf. 

Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 280–283, 2013, doi: 

10.1109/I2MTC.2013.6555424. 

[32] U. Senturk, I. Yucedag, and K. Polat, “Repetitive neural network (RNN) 
based blood pressure estimation using PPG and ECG signals,” Dec. 2018, 
doi: 10.1109/ISMSIT.2018.8567071. 

[33] “MIMIC II Databases.” https://archive.physionet.org/mimic2/ (accessed 
Aug. 31, 2020). 

[34] C. P. Chua and C. Heneghan, “Continuous blood pressure monitoring using 
ECG and finger photoplethysmogram,” in Annual International Conference 

of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, pp. 

5117–5120, doi: 10.1109/IEMBS.2006.259612. 

[35] G. Parati and M. Valentini, “Prognostic relevance of blood pressure 
variability,” Hypertension, vol. 47, no. 2.         Lippincott Williams & 

Wilkins      , pp. 137–138, Feb. 01, 2006, doi: 

10.1161/01.HYP.0000198542.51471.c4. 

[36] “Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine - 
Leonard S. Lilly, Eugene Braunwald - Google Libri.” 
https://books.google.it/books?hl=it&lr=&id=blq42K8AY5AC&oi=fnd&pg

=PP2&dq=E.+Braunwald,+5a+ed.,+Philadelphia,+W.B.+Saunders+Co&ots

=_g6t3akJaq&sig=1-

LwXov_Q8WMilwn4dxd0PUIdSc&redir_esc=y#v=onepage&q&f=false 

(accessed Sep. 02, 2021). 



 

108 

 

[37] “Rapid ECG Interpretation - M. Gabriel Khan - Google Libri.” 
https://books.google.it/books?hl=it&lr=&id=Id6xAn4g8nEC&oi=fnd&pg=

PP2&dq=ecg+interpretation&ots=RrihEoxWzD&sig=3f4Vix7BmtOTgy91

sPMXt81tLoU&redir_esc=y#v=onepage&q=ecg interpretation&f=false 

(accessed Sep. 08, 2021). 

[38] H. P. Selker et al., “Standard ECG,” Ann. Emerg. Med., vol. 29, no. 1, pp. 

17–20, Jan. 1997, doi: 10.1016/S0196-0644(97)70299-3. 

[39] K. H. Shelley, “Pulse Oximeter Waveform: Photoelectric 
Plethysmography,” 2001. 

[40] A. AA and S. KH, “Photoplethysmography,” Best Pract. Res. Clin. 

Anaesthesiol., vol. 28, no. 4, pp. 395–406, 2014, doi: 

10.1016/J.BPA.2014.08.006. 

[41] J. Allen, “Photoplethysmography and its application in clinical 
physiological measurement,” Physiol. Meas., vol. 28, no. 3, p. R1, Feb. 

2007, doi: 10.1088/0967-3334/28/3/R01. 

[42] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: 

components of a new research resource for complex physiologic signals.,” 
Circulation, vol. 101, no. 23, Jun. 2000, doi: 10.1161/01.cir.101.23.e215. 

[43] G. B. Moody and R. G. Mark, “A database to support development and 
evaluation of intelligent intensive care monitoring,” Comput. Cardiol., vol. 

0, no. 0, pp. 657–660, 1996, doi: 10.1109/cic.1996.542622. 

[44] “MIMIC Database v1.0.0.” https://physionet.org/content/mimicdb/1.0.0/ 
(accessed Apr. 06, 2021). 

[45] G. Slapničar, N. Mlakar, and M. Luštrek, “Blood Pressure Estimation from 

Photoplethysmogram Using a Spectro-Temporal Deep Neural Network,” 
Sensors 2019, Vol. 19, Page 3420, vol. 19, no. 15, p. 3420, Aug. 2019, doi: 

10.3390/S19153420. 

[46] A. Paviglianiti, V. Randazzo, E. Pasero, and A. Vallan, “Noninvasive 

Arterial Blood Pressure Estimation using ABPNet and VITAL-ECG,” May 
2020, doi: 10.1109/I2MTC43012.2020.9129361. 

[47] A. Paviglianiti, V. Randazzo, G. Cirrincione, and E. Pasero, “Neural 
Recurrent Approches to Noninvasive Blood Pressure Estimation,” 2020. 

[48] A. Paviglianiti, V. Randazzo, G. Cirrincione, and E. Pasero, “Double 
Channel Neural Non Invasive Blood Pressure Prediction,” Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 12463 LNCS, pp. 160–171, Oct. 2020, doi: 

10.1007/978-3-030-60799-9_14. 

[49] M. Enqvist, “Linear Models of Nonlinear Systems,” 2005. 

[50] M. Nørgaard, Neural networks for modelling and control of dynamic 

systems : a practitioner’s handbook. Springer, 2000. 



 

109 

 

[51] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast 
accuracy,” Int. J. Forecast., vol. 22, no. 4, pp. 679–688, Oct. 2006, doi: 

10.1016/J.IJFORECAST.2006.03.001. 

[52] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error 
(MAE) over the root mean square error (RMSE) in assessing average 

model performance,” Clim. Res., vol. 30, no. 1, pp. 79–82, Dec. 2005, doi: 

10.3354/CR030079. 

[53] X. He and H. Asada, “New method for identifying orders of input-output 

models for nonlinear dynamic systems,” Am. Control Conf., pp. 2520–
2523, 1993, doi: 10.23919/ACC.1993.4793346. 

[54] K. Levenberg1 and F. Arsenal, “NOTES-A METHOD FOR THE 

SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST 

SQUARES*.” 

[55] H. P. Gavin, “The Levenberg-Marquardt algorithm for nonlinear least 

squares curve-fitting problems,” 2020. 

[56] A. Paviglianiti, V. Randazzo, S. Villata, G. Cirrincione, and E. Pasero, “A 
Comparison of Deep Learning Techniques for Arterial Blood Pressure 

Prediction,” Cogn. Comput. 2021, vol. 1, pp. 1–22, Aug. 2021, doi: 

10.1007/S12559-021-09910-0. 

[57] A. Géron, Hands-On Machine Learning With Scikit-Learn, Keras, And 

TensorFlow: Concepts, Tools, And Techniques To Build Intelligent Systems 

. 2019. 

[58] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural 

networks for image classification,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., pp. 3642–3649, 2012, doi: 

10.1109/CVPR.2012.6248110. 

[59] “4. Fully Connected Deep Networks - TensorFlow for Deep Learning 

[Book].” https://www.oreilly.com/library/view/tensorflow-for-

deep/9781491980446/ch04.html (accessed Sep. 15, 2021). 

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” 2016. 

[61] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” 
Sep. 2016. 

[62] H. H. Sak, A. Senior, and B. Google, “Long Short-Term Memory 

Recurrent Neural Network Architectures for Large Scale Acoustic 

Modeling.” 

[63] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning Precise 
Timing with LSTM Recurrent Networks,” J. Mach. Learn. Res., vol. 3, pp. 

115–143, 2002. 

[64] C. P. Chua and C. Heneghan, “Continuous blood pressure monitoring using 



 

110 

 

ECG and finger photoplethysmogram,” in Annual International Conference 

of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, pp. 

5117–5120, doi: 10.1109/IEMBS.2006.259612. 

[65] R. Maronna, R. Martin, V. Yohai, and M. Salibián-Barrera, “Robust 
statistics: theory and methods (with R),” 2019. 

[66] Ü. Şentürk, I. Yücedağ, K. P.-2018 2Nd international, and  undefined 2018, 

“Repetitive neural network (RNN) based blood pressure estimation using 

PPG and ECG signals,” ieeexplore.ieee.org. 

[67] S. Mishra et al., “ECG Paper Record Digitization and Diagnosis Using 
Deep Learning,” J. Med. Biol. Eng., vol. 41, pp. 422–432, 1234, doi: 

10.1007/s40846-021-00632-0. 

[68] R. Patil and R. Karandikar, “Image digitization of discontinuous and 
degraded electrocardiogram paper records using an entropy-based bit plane 

slicing algorithm,” J. Electrocardiol., vol. 51, no. 4, pp. 707–713, Jul. 

2018, doi: 10.1016/J.JELECTROCARD.2018.05.003. 

[69] J. Chebil, J. Al-Nabulsi, and M. Al-Maitah, “A novel method for digitizing 
standard ECG papers,” Proc. Int. Conf. Comput. Commun. Eng. 2008, 

ICCCE08 Glob. Links Hum. Dev., pp. 1308–1312, 2008, doi: 

10.1109/ICCCE.2008.4580816. 

[70] P. R. K. Shrivastava, S. Panbude, and G. Narayanan, “Digitization of ECG 
Paper Records using MATLAB,” Int. J. Innov. Technol. Explor. Eng., no. 

6, pp. 2278–3075, 2014. 

[71] M. Woś, G. Kłosowski, D. Wójcik, and T. Rymarczyk, “A complete 
system for an automated ECG diagnosis,” doi: 10.15199/48.2021.01.32. 

[72] “ecg-kit - File Exchange - MATLAB Central.” 
https://it.mathworks.com/matlabcentral/fileexchange/50769-ecg-kit 

(accessed Sep. 30, 2021). 

[73] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson Correlation 
Coefficient,” Springer Top. Signal Process., vol. 2, pp. 1–4, 2009, doi: 

10.1007/978-3-642-00296-0_5. 

[74] J. M. Bland and D. G. Altman, “Measurement error and correlation 
coefficients.,” BMJ  Br. Med. J., vol. 313, no. 7048, p. 41, Jul. 1996, doi: 

10.1136/BMJ.313.7048.41. 

[75] R. Khattree, “Ch. 22. Repeatability, reproducibility and interlaboratory 
studies,” Handb. Stat., vol. 22, pp. 795–822, Jan. 2003, doi: 

10.1016/S0169-7161(03)22024-1. 

[76] J. Adler and I. Parmryd, “Quantifying colocalization by correlation: The 
Pearson correlation coefficient is superior to the Mander’s overlap 
coefficient,” Cytom. Part A, vol. 77A, no. 8, pp. 733–742, Aug. 2010, doi: 

10.1002/CYTO.A.20896. 



 

111 

 

[77] O. Campuzano, G. Sarquella-Brugada, E. Arbelo, J. Brugada, and R. 

Brugada, “Short QT syndrome,” Horizons World Cardiovasc. Res., vol. 8, 

pp. 137–147, Apr. 2015, doi: 10.1161/01.CIR.0000085071.28695.C4. 

[78] C. Giustetto et al., “Short QT syndrome: Clinical findings and diagnostic-

therapeutic implications,” Eur. Heart J., vol. 27, no. 20, pp. 2440–2447, 

Oct. 2006, doi: 10.1093/eurheartj/ehl185. 

[79] C. Giustetto et al., “Long-Term Follow-Up of Patients With Short QT 

Syndrome,” J. Am. Coll. Cardiol., vol. 58, no. 6, pp. 587–595, Aug. 2011, 

doi: 10.1016/J.JACC.2011.03.038. 

[80] A. Algra, J. G. Tijssen, J. R. Roelandt, J. Pool, and J. Lubsen, “QT interval 
variables from 24 hour electrocardiography and the two year risk of sudden 

death.,” Heart, vol. 70, no. 1, pp. 43–48, Jul. 1993, doi: 

10.1136/HRT.70.1.43. 

[81] Y. Sun, X. Quan, S. Fromme, R. Cox, … P. Z.-J. of molecular and, and  

undefined 2011, “A novel mutation in the KCNH2 gene associated with 
short QT syndrome,” Elsevier. 

[82] C. Giustetto et al., “Long-term follow-up of patients with short QT 

syndrome,” J. Am. Coll. Cardiol., vol. 58, no. 6, pp. 587–595, Aug. 2011, 

doi: 10.1016/j.jacc.2011.03.038. 

[83] A. Mazzanti et al., “Novel insight into the natural history of short QT 
syndrome,” J. Am. Coll. Cardiol., vol. 63, no. 13, pp. 1300–1308, Apr. 

2014, doi: 10.1016/j.jacc.2013.09.078. 

[84] Y. Sun et al., “A novel mutation in the KCNH2 gene associated with short 

QT syndrome,” J. Mol. Cell. Cardiol., vol. 50, no. 3, pp. 433–441, Mar. 

2011, doi: 10.1016/J.YJMCC.2010.11.017. 

[85] B. Yaman, E. Açıkgöz, S. K. Açıkgöz, and A. Abacı, “Early Repolarization 
and Short QT Interval Correlation in Healthy Population,” J. Am. Coll. 

Cardiol., vol. 62, no. 18, p. C220, Oct. 2013, doi: 

10.1016/J.JACC.2013.08.622. 

[86] E. J. Topol, “High-performance medicine: the convergence of human and 

artificial intelligence,” Nature Medicine, vol. 25, no. 1. Nature Publishing 

Group, pp. 44–56, Jan. 2019, doi: 10.1038/s41591-018-0300-7. 

[87] A. Van de Water, J. Verheyen, R. Xhonneux, and R. S. Reneman, “An 
improved method to correct the QT interval of the electrocardiogram for 

changes in heart rate,” J. Pharmacol. Methods, vol. 22, no. 3, pp. 207–217, 

Nov. 1989, doi: 10.1016/0160-5402(89)90015-6. 

[88] A. Towfighi, L. Zheng, and B. Ovbiagele, “Sex-specific trends in midlife 

coronary heart disease risk and prevalence,” Arch. Intern. Med., vol. 169, 

no. 19, pp. 1762–1766, Oct. 2009, doi: 10.1001/archinternmed.2009.318. 

[89] Z. Z.-A. of translational medicine and  undefined 2016, “A gentle 
introduction to artificial neural networks,” ncbi.nlm.nih.gov. 



 

112 

 

[90] M. Svensén and C. M. Bishop, “Pattern Recognition and Machine Learning 
Solutions to the Exercises: Web-Edition,” 2002. 

[91] “MathWorks - Creatori di MATLAB e Simulink - MATLAB e Simulink - 

MATLAB & Simulink.” https://it.mathworks.com/?s_tid=gn_logo 
(accessed Sep. 21, 2021). 

[92] “Systems of Units. Some Important Conversion Factors.” 

[93] S. RAI and A. RAI, “Review: Nanotechnology- The secret of fifth 

industrial revolution and the future of next generation,” Nusant. Biosci., 

vol. 7, no. 2, 2015. 

[94] A. Cappy, D. Stievenard, and D. Vuillaume, “Nanotechnology : the Next 
Industrial Revolution ?” 

[95] R. Vasita and D. S. Katti, “Nanofibers and their applications in tissue 
engineering,” International Journal of Nanomedicine, vol. 1, no. 1. Dove 

Press, pp. 15–30, 2006, doi: 10.2147/nano.2006.1.1.15. 

[96] A. Rakovich, “Nanomaterials for biosensing and phototherapy 
applications,” in Proceedings - International Conference Laser Optics 

2018, ICLO 2018, Aug. 2018, p. 540, doi: 10.1109/LO.2018.8435651. 

[97] M. S. Islam, B. C. Ang, A. Andriyana, and A. M. Afifi, “A review on 
fabrication of nanofibers via electrospinning and their applications,” SN 

Appl. Sci., vol. 1, no. 10, Oct. 2019, doi: 10.1007/s42452-019-1288-4. 

[98] J. Fang, H. T. Niu, T. Lin, and X. G. Wang, “Applications of electrospun 
nanofibers,” Chinese Science Bulletin, vol. 53, no. 15. pp. 2265–2286, Aug. 

2008, doi: 10.1007/s11434-008-0319-0. 

[99] A. K. Gaharwar, S. Sant, M. J. Hancock, and S. A. Hacking, 

“Nanomaterials in tissue engineering: Fabrication and applications,” 
Nanomater. Tissue Eng. Fabr. Appl., pp. 1–444, 2013. 

[100] R. Bhattarai, R. Bachu, S. Boddu, and S. Bhaduri, “Biomedical 
Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery,” 
Pharmaceutics, vol. 11, no. 1, p. 5, Dec. 2018, doi: 

10.3390/pharmaceutics11010005. 

[101] L. Wang and G. Healey, “Using Zernike moments for the illumination and 
geometry invariant classification of multispectral texture,” IEEE Trans. 

Image Process., vol. 7, no. 2, pp. 196–203, 1998, doi: 10.1109/83.660996. 

[102] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and 

rotation invariant texture classification with local binary patterns,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002, 

doi: 10.1109/TPAMI.2002.1017623. 

[103] N. Otsu, “THRESHOLD SELECTION METHOD FROM GRAY-LEVEL 

HISTOGRAMS.,” IEEE Trans Syst Man Cybern, vol. SMC-9, no. 1, pp. 

62–66, 1979, doi: 10.1109/tsmc.1979.4310076. 



 

113 

 

[104] X. C. Yuan, L. S. Wu, and Q. Peng, “An improved Otsu method using the 
weighted object variance for defect detection,” Appl. Surf. Sci., vol. 349, 

pp. 472–484, Sep. 2015, doi: 10.1016/j.apsusc.2015.05.033. 

[105] F. Zhou, G. Liu, F. Xu, and H. Deng, “A generic automated surface defect 
detection based on a bilinear model,” Appl. Sci., vol. 9, no. 15, Aug. 2019, 

doi: 10.3390/app9153159. 

[106] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 

7553. Nature Publishing Group, pp. 436–444, May 27, 2015, doi: 

10.1038/nature14539. 

[107] Y. Bengio, “Deep Learning of Representations for Unsupervised and 

Transfer Learning,” 2012. 

[108] C. Ieracitano, A. Adeel, F. C. Morabito, and A. Hussain, “A novel 
statistical analysis and autoencoder driven intelligent intrusion detection 

approach,” Neurocomputing, vol. 387, pp. 51–62, Apr. 2020, doi: 

10.1016/J.NEUCOM.2019.11.016. 

[109] C. Ieracitano, N. Mammone, A. Bramanti, A. Hussain, and F. C. Morabito, 

“A Convolutional Neural Network approach for classification of dementia 
stages based on 2D-spectral representation of EEG recordings,” 
Neurocomputing, vol. 323, pp. 96–107, Jan. 2019, doi: 

10.1016/j.neucom.2018.09.071. 

[110] E. Ragusa, P. Gastaldo, R. Zunino, M. J. Ferrarotti, W. Rocchia, and S. 

Decherchi, “Cognitive Insights into Sentic Spaces Using Principal Paths,” 
Cogn. Comput. 2019 115, vol. 11, no. 5, pp. 656–675, Jul. 2019, doi: 

10.1007/S12559-019-09651-1. 

[111] F. Gao, T. Huang, J. Sun, J. Wang, A. Hussain, and E. Yang, “A New 
Algorithm for SAR Image Target Recognition Based on an Improved Deep 

Convolutional Neural Network,” Cogn. Comput. 2018 116, vol. 11, no. 6, 

pp. 809–824, Jun. 2018, doi: 10.1007/S12559-018-9563-Z. 

[112] Q. Lian, W. Yan, X. Zhang, and S. Chen, “Single image rain removal using 
image decomposition and a dense network,” IEEE/CAA J. Autom. Sin., vol. 

6, no. 6, pp. 1428–1437, Nov. 2019, doi: 10.1109/JAS.2019.1911441. 

[113] E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric 
motor fault detection by using deep autoencoders,” IEEE/CAA J. Autom. 

Sin., vol. 6, no. 2, pp. 441–451, Mar. 2019, doi: 

10.1109/JAS.2019.1911393. 

[114] G. Boracchi, D. Carrera, and B. Wohlberg, “Novelty detection in images by 
sparse representations,” in IEEE SSCI 2014 - 2014 IEEE Symposium Series 

on Computational Intelligence - IES 2014: 2014 IEEE Symposium on 

Intelligent Embedded Systems, Proceedings, Jan. 2014, pp. 47–54, doi: 

10.1109/INTELES.2014.7008985. 

[115] D. Carrera, F. Manganini, G. Boracchi, and E. Lanzarone, “Defect 
detection in SEM images of nanofibrous materials,” IEEE Trans. Ind. 



 

114 

 

Informatics, vol. 13, no. 2, pp. 551–561, Apr. 2017, doi: 

10.1109/TII.2016.2641472. 

[116] P. Napoletano, F. Piccoli, and R. Schettini, “Anomaly detection in 
nanofibrous materials by CNN-based self-similarity,” Sensors 

(Switzerland), vol. 18, no. 1, Jan. 2018, doi: 10.3390/s18010209. 

[117] C. Ieracitano, F. Pantó, N. Mammone, A. Paviglianiti, P. Frontera, and F. 

C. Morabito, “Toward an Automatic Classification of SEM Images of 

Nanomaterials via a Deep Learning Approach,” in Smart Innovation, 

Systems and Technologies, vol. 151, Springer Science and Business Media 

Deutschland GmbH, 2020, pp. 61–72. 

[118] C. Ieracitano, A. Paviglianiti, N. Mammone, M. Versaci, E. Pasero, and F. 

C. Morabito, “SoCNNet: An Optimized Sobel Filter Based Convolutional 
Neural Network for SEM Images Classification of Nanomaterials,” Smart 

Innov. Syst. Technol., vol. 184, pp. 103–113, 2021, doi: 10.1007/978-981-

15-5093-5_10. 

[119] C. Ieracitano, N. Mammone, A. Paviglianiti, and F. C. Morabito, “Toward 
an Augmented and Explainable Machine Learning Approach for 

Classification of Defective Nanomaterial Patches,” pp. 244–255, Jun. 2021, 

doi: 10.1007/978-3-030-80568-5_21. 

[120] Z. M. Huang, Y. Z. Zhang, S. Ramakrishna, and C. T. Lim, 

“Electrospinning and mechanical characterization of gelatin nanofibers,” 
Polymer (Guildf)., vol. 45, no. 15, pp. 5361–5368, Jul. 2004, doi: 

10.1016/J.POLYMER.2004.04.005. 

[121] S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of 
the governing parameters in the electrospinning of polymer solutions,” 
Polymer (Guildf)., vol. 45, no. 6, pp. 2017–2030, Mar. 2004, doi: 

10.1016/j.polymer.2004.01.024. 

[122] A. Abutaleb, D. Lolla, A. Aljuhani, H. U. Shin, J. W. Rajala, and G. G. 

Chase, “Effects of surfactants on the morphology and properties of 
electrospun polyetherimide fibers,” Fibers, vol. 5, no. 3, Sep. 2017, doi: 

10.3390/fib5030033. 

[123] T. Chaira and A. Ray, “Fuzzy image processing and applications with 
MATLAB,” 2017. 

[124] M. Versaci, F. C. Morabito, and G. Angiulli, “Adaptive Image Contrast 
Enhancement by Computing Distances into a 4-Dimensional Fuzzy Unit 

Hypercube,” IEEE Access, vol. 5, pp. 26922–26931, Nov. 2017, doi: 

10.1109/ACCESS.2017.2776349. 

[125] M. Versaci, S. Calcagno, and F. C. Morabito, “Image contrast enhancement 
by distances among points in fuzzy hyper-cubes,” Lect. Notes Comput. Sci. 

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 

9257, pp. 494–505, 2015, doi: 10.1007/978-3-319-23117-4_43. 

[126] M. Versaci, … S. C.-2015 I. I., and  undefined 2015, “Fuzzy geometrical 



 

115 

 

approach based on unit hyper-cubes for image contrast enhancement,” 
ieeexplore.ieee.org. 

[127] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked 
Convolutional Denoising Auto-Encoders for Feature Representation,” 
IEEE Trans. Cybern., vol. 47, no. 4, pp. 1017–1027, Apr. 2017, doi: 

10.1109/TCYB.2016.2536638. 

[128] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” 
2012. 

[129] Y. Ollivier, “Auto-encoders: reconstruction versus compression,” Mar. 
2014. 

[130] P. Liu, P. Zheng, and Z. Chen, “Deep Learning with Stacked Denoising 
Auto-Encoder for Short-Term Electric Load Forecasting,” Energies, vol. 

12, no. 12, p. 2445, Jun. 2019, doi: 10.3390/en12122445. 

[131] P. S. Bradley and O. L. Mangasarian, “Massive data discrimination via 
linear support vector machines,” Optim. Methods Softw., vol. 13, no. 1, pp. 

1–10, 2000, doi: 10.1080/10556780008805771. 

[132] S. Balakrishnama, A. G. information Processing, and  undefined 1998, 

“Linear discriminant analysis-a brief tutorial,” music.mcgill.ca. 

[133] M. Ojala, G. G.-J. of M. L. Research, and  undefined 2010, “Permutation 

tests for studying classifier performance.,” jmlr.org, vol. 11, pp. 1833–
1863, 2010. 

[134] C. Ieracitano, F. Pantó, N. Mammone, A. Paviglianiti, P. Frontera, and F. 

C. Morabito, “Toward an Automatic Classification of SEM Images of 

Nanomaterials via a Deep Learning Approach,” Smart Innov. Syst. 

Technol., vol. 151, pp. 61–72, 2020, doi: 10.1007/978-981-13-8950-4_7. 

[135] H. Jiang, K. Huang, R. Zhang, and A. Hussain, “Style-Neutralized Pattern 

Classification Based on Adversarially Trained Upgraded U-Net,” Cogn. 

Comput. 2019 134, vol. 13, no. 4, pp. 845–858, Sep. 2019, doi: 

10.1007/S12559-019-09660-0. 

[136] “Generalized adversarial training in riemannian space,” ieeexplore.ieee.org. 

[137] M. E. H. Chowdhury et al., “Can AI Help in Screening Viral and COVID-

19 Pneumonia?,” IEEE Access, vol. 8, pp. 132665–132676, 2020, doi: 

10.1109/ACCESS.2020.3010287. 

[138] T. Rahman et al., “Exploring the Effect of Image Enhancement Techniques 

on COVID-19 Detection using Chest X-rays Images,” Comput. Biol. Med., 

p. 104319, Mar. 2021, doi: 10.1016/j.compbiomed.2021.104319. 

[139] L. EJ, D. DM, H. RC, O. RJ, S. SG, and S. DB, “Virus taxonomy: the 

database of the International Committee on Taxonomy of Viruses (ICTV),” 
Nucleic Acids Res., vol. 46, no. D1, pp. D708–D717, Jan. 2018, doi: 

10.1093/NAR/GKX932. 



 

116 

 

[140] “COVID-19: polmonite, infiammazione, rischio tromboembolico ed effetti 

sul sistema cardiovascolare - Gradenigo.” 
https://www.gradenigo.it/news/covid-19-polmonite-infiammazione-rischio-

tromboembolico/ (accessed Oct. 29, 2021). 

[141] “Le statistiche del coronavirus nel mondo.” https://statistichecoronavirus.it/ 
(accessed Oct. 29, 2021). 

[142] “Coronavirus disease (COVID-19).” 
https://www.who.int/emergencies/diseases/novel-coronavirus-2019 

(accessed Jul. 02, 2020). 

[143] “Covid-19 PCR test: how does it work? are there any alternatives? | 

Auxologico.” https://www.auxologico.com/covid-19-pcr-test-how-does-it-

work-are-there-any-alternatives (accessed Oct. 29, 2021). 

[144] A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of 
COVID-19 in chest X-ray images using DeTraC deep convolutional neural 

network,” Appl. Intell. 2020 512, vol. 51, no. 2, pp. 854–864, Sep. 2020, 

doi: 10.1007/S10489-020-01829-7. 

[145] D. D et al., “The Role of Imaging in the Detection and Management of 
COVID-19: A Review,” IEEE Rev. Biomed. Eng., vol. 14, pp. 16–29, 2021, 

doi: 10.1109/RBME.2020.2990959. 

[146] “Deep learning approaches for COVID-19 detection based on chest X-ray 

images | Elsevier Enhanced Reader.” 
https://reader.elsevier.com/reader/sd/pii/S0957417420308198?token=8A7F

6CAC26D35E27E9FE1D731673FC47A4D885B43A53A556D428619885

FE0D1DD7FAEF6162B7B244059B7266CCA06413&originRegion=eu-

west-1&originCreation=20211029145645 (accessed Oct. 29, 2021). 

[147] I. Katsamenis, E. Protopapadakis, A. Voulodimos, A. Doulamis, and N. 

Doulamis, “Transfer Learning for COVID-19 Pneumonia Detection and 

Classification in Chest X-ray Images,” doi: 10.1101/2020.12.14.20248158. 

[148] A. M. Freeman and J. Townes R. Leigh, “Viral Pneumonia,” Encycl. 

Respir. Med. Four-Volume Set, pp. 456–466, Jul. 2021. 

[149] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer 
learning,” J. Big Data 2016 31, vol. 3, no. 1, pp. 1–40, May 2016, doi: 

10.1186/S40537-016-0043-6. 

[150] H. Witten, E. Frank, M. Kaufmann, and J. Geller, “Data Mining: Practical 
Machine Learning Tools and Techniques with Java Implementations 

Review by,” 2000. 

[151] H. S.-J. of statistical planning and inference and  undefined 2000, 

“Improving predictive inference under covariate shift by weighting the log-

likelihood function,” Elsevier. 

[152] C. Wang, S. M.-T. international joint conference on, and  undefined 2011, 

“Heterogeneous domain adaptation using manifold alignment,” aaai.org. 



 

117 

 

[153] Y. Zhu et al., “Heterogeneous transfer learning for image classification,” 
aaai.org. 

[154] M. Harel and S. Mannor, “Learning from multiple outlooks,” Proc. 28th 

Int. Conf. Mach. Learn. ICML 2011, pp. 401–408, 2011. 

[155] J. Nam, W. Fu, S. Kim, T. M.-… on S. Engineering, and  undefined 2017, 
“Heterogeneous defect prediction,” ieeexplore.ieee.org. 

[156] P. Prettenhofer, B. S.-P. of the 48th annual meeting of the, and  undefined 

2010, “Cross-language text classification using structural correspondence 

learning,” aclweb.org, pp. 11–16, 2010. 

[157] B. Zhao, J. Feng, X. Wu, and S. Yan, “A Survey on Deep Learning-based 

Fine-grained Object Classification and Semantic Segmentation,” Int. J. 

Autom. Comput., vol. 14, no. 2, pp. 119–135, 2017, doi: 10.1007/s11633-

017-1053-3. 

[158] F. Chollet, “Xception: Deep Learning With Depthwise Separable 
Convolutions.” pp. 1251–1258, 2017. 

[159] Y. Tai, J. Yang, and X. Liu, “Image Super-Resolution via Deep Recursive 

Residual Network.” pp. 3147–3155, 2017. 

[160] T. Wolf et al., “Transformers: State-of-the-Art Natural Language 

Processing,” pp. 38–45, Nov. 2020, doi: 10.18653/V1/2020.EMNLP-

DEMOS.6. 

[161] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, 

“Transformers in Vision: A Survey,” Jan. 2021. 

 

 


