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ABSTRACT In this paper, a review of the low-rank factorization method is presented, with emphasis
on their application to multiscale problems. Low-rank matrix factorization methods exploit the rank-
deficient nature of coupling impedance matrix blocks between two separated groups. They are widely
used, because they are purely algebraic and kernel free. To improve the computation precision and efficiency
of low-rank based methods, the improved sampling technologies of adaptive cross approximation (ACA),
post compression methods, and the nested low-rank factorizations are introduced. O(N) and O (NlogN)
computation complexity of the nested equivalence source approximation can be achieved in low and
high frequency regime, which is parallel to the multilevel fast multipole algorithm, N is the number of
unknowns. Efficient direct solution and high efficiency preconditioning techniques can be achieved with
the low-rank factorization matrices. The trade-off between computation efficiency and time are discussed
with respect to the number of levels for low-rank factorizations.

INDEX TERMS Integral equation, method of moments, low-rank, multiscale.

I. INTRODUCTION

INTEGRAL equation methods are the preferred meth-
ods when modeling and simulating large and multiscale

problems due to their high computation precision and
small number of unknowns. However, the method of
moments (MoM) discretized integral equations will lead to
dense impedance matrices [1], [2]. The computation time
and memory requirements have complexity O(N3) and
O(N2) respectively, where N is the number of unknowns,
when a straightforward direct solver is used.
To enhance the computational performance of MoM, there

are mainly three kinds of fast solvers based on different
computation acceleration techniques:
(1) Sparsification of the impedance matrix by using

specialized basis functions such as wavelet expansions [3]

and impedance matrix location [4]. Both computation time
and memory requirements can be saved due to the
reduced number of nonzero elements of the impedance
matrix.
(2) Reduction of the matrix size through compres-

sion of the impedance matrix by using macro basis
functions [5]. The characteristic basis functions [6], [7], syn-
thetic basis functions [8], [9], and sub-entire-domain (SED)
basis functions [10], [11] are proposed for the computation
of large-scale problems. Recently, similar to the macro basis
functions, dominant characteristic modes [12] are extracted
to reduce the dimensions of MoM impedance matrix for the
analysis of antenna arrays [13].
(3) To evaluate the dense off-diagonal sub-blocks of the

impedance matrix with multilevel fast multipole algorithm
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(MLFMA) [14], [15], FFT-based method [16]–[19], or low-
rank matrix factorization methods [20]–[32].
The MLFMA reduces the computational complexity to

O(N logN) when the targets are discretized with a fixed
mesh density with respect to the wavelength. However, the
MLFMA implementation depends on a priori knowledge of
the integral kernel (Green’s function). For the FFT based
methods, the current basis functions defined on discretized
cells are projected on to regular grids by interpolation and
projection, to reproduce the same fields as the original
currents [16]–[19]. The FFT based methods show better
performance for the volume integral equation than for the
surface integral equation, as in the former case the unknowns
are distributed throughout the entire space of the regular
grids. For surface integral equations, especially for the evalu-
ation of inhomogeneous and multiscale problems, the regular
grids in empty computation domain worsens the computa-
tion performance [41]. Moreover, the near-field interactions
cannot be evaluated correctly with interpolation and projec-
tion, therefore pre-corrected computations are required. The
multilevel recursive interpolation and subdomain FFT are
introduced in multilevel FFT [42], [43], where O(N) com-
putational complexity can be achieved for static capacitance
extraction [42].
The low-rank factorization methods exploit the rank-

deficient nature of coupling impedance matrix blocks
between two separated groups. The whole impedance matrix
of MoM is full-rank, while the off-diagonal matrix blocks
are low-rank due to the basis functions over sampling than
Nyquist limit for “far” couplings [44]. The typical use of
low-rank factorization techniques in the MoM consists of
a block decomposition of the impedance matrix, followed
by compression of those blocks that represent interac-
tions between well-separated regions of the target geometry.
This yields an approximate representation of the impedance
matrix that can be used for fast matrix-vector products
in iterative Krylov-subspace solvers such as GMRES or
BiCGStab [45].
An important appeal of the low-rank factorization methods

over other fast methods is that they are purely algebraic and
kernel free; the low-rank approximation matrices are usually
obtained by algebraic operations, such as QR decomposi-
tion, singular value decomposition (SVD), and adaptive cross
approximation (ACA) [23], [24]. As a result, the low-rank
factorization methods can be easily employed as black box
fast solvers for accelerating existing MoM codes.
Among the best-known algorithms for fast low-rank

factorization of off-diagonal impedance matrix blocks is
the ACA algorithm. Originally proposed by Bebendorf in
2000 [23] for problems with non-oscillating kernels, it was
first successfully applied to problems in computational elec-
tromagnetics (CEM) in 2005 by Zhao et al. [24]. The
algorithm is purely algebraic; it can be seen as a truncated
LU decomposition of a low-rank matrix sub block Z. If
Z has dimensions m × n, ACA generates an approxima-
tion of Z as a product UV, where U is m × r and V is

TABLE 1. Performance comparisons of the low-rank factorization methods, FFT

based methods, and MLFMA.

r × n, r being the rank that is necessary to approximate
Z with a predefined precision τ . The computational cost is
proportional to r2(m+ n).

Although the gain in efficiency with respect to direct inver-
sion of the full impedance matrix is impressive, the degrees
of freedom in the interaction between separate regions of the
target and hence the rank of the corresponding off-diagonal
impedancematrix block growswith the electrical size, initially
approximately proportional to the frequency but for asymp-
totically large frequency it will grow with the frequency
squared [49]. As a consequence, the computational burden
of the ACA compression will eventually grow proportionally
to O(N3) and the storage to O(N2). This severely limits the
applicability of ACA to electrically large problems.
Table 1 shows the performance comparisons of the low-

rank factorization methods with FFT based methods and
MLFMA, the low-rank factorization methods are the eas-
iest to implement but their computational performance is
worse than FFT methods and MLFMA. Different from
the MLFMA, the low-rank decomposition processes are
time consuming, since recursive relations between neigh-
boring levels are difficult to find for traditional low rank
methods [20]–[32], due to their fully algebraic nature. As
a result, despite their obvious advantages (kernel indepen-
dence, ease of implementation, well controlled accuracy),
ACA compressed iterative solvers eventually lose out to
the famed O(N logN) complexity of competing algorithms
such as MLFMA [14], [15]. Various approaches are cur-
rently under investigation by different research groups with
the aim of bringing down the complexity of the ACA and
other low rank methods.
The bottleneck of traditional low-rank methods can be

identified in the fact that, even for a multilevel algo-
rithm, the low rank approximations must be explicitly
computed and stored at each level, which in turn wors-
ens the setup time and storage requirements. A first step
in alleviating the above limitation is to define the sub
regions in a recursive-, hierarchical- or multiscale man-
ner, and adopt a judiciously chosen admissibility criterion
at every scale or level in the hierarchy. The admissibility
criterion determines whether a matrix block corresponding
to a given level is ACA compressed or not. If it is not,
then its children (the sub blocks inside of it) are either
ACA compressed or not, again depending on the admis-
sibility criterion. Since the rank not only depends on the
electrical size but also on the mutual distance between
regions, the admissibility criterion can be optimized with
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respect to these two parameters, yielding O(N3/2) complexity
both for computation time and memory requirements, as
shown in [49]. Matrices constructed according to this proce-
dure of hierarchical subdivision and block wise compression
according to an admissibility criterion have been known by
mathematicians since 1999 as H-matrices [22].
An alternative option exploits the concept, first proposed

in [21], of a butterfly decomposition of the low-rank
interaction matrix of well-separated sub-groups [46], [47].
As noted above, the rank r asymptotically depends lin-
early on the group size n, hence the growth of complexity
with the electrical size of the problem. However, as demon-
strated in [21], the interaction matrix can be decomposed into
a sequence of length O(logn) of sparse matrices, each with no
more than O(n) non-zero elements. Replacing all the ordinary
O(rn) low-rank blocks in the H-matrices format with butter-
fly decompositions results in an O(Nlog2N) representation.
The bottle-neck in this approach is the computational cost of
constructing the butterfly decomposition. In [21] and [27],
this was done with the help of “auxiliary” sources. Finding
optimum sets of such auxiliary sources in terms of accu-
racy and efficiency is presently the main obstacle for this
approach to be competitive. In [28], an entirely algebraic
algorithm was proposed, the multilevel ACA (MLACA) that
constructs the butterfly decomposition using only ACA com-
pression. This algorithm does indeed achieve the expected
high degree of compression and O(Nlog2N) memory scal-
ing. However, unfortunately the complexity of the matrix
compression is O(N2logN). Recently, a parallel hierarchi-
cal blocked ACA is proposed, where reduced computational
complexity for low-rank factorizations can be achieved [48].
The MLACA can be considered a post com-

pression technique. Other post compression technique
are SVD [27], [50]–[52], multilevel ACA [28], [53], [54],
multilevel matrix compression methods [30], and multilevel
simply sparse method (MLSSM) [55], [56]. They are applied
to the low-rank approximation matrices to achieve further
compression. The post compression techniques reduce the
memory requirements and matrix-vector product time signif-
icantly due to a relative smaller rank with respect to standard
low-rank factorization methods. However, the matrix factor-
ization setup time to construct the low-rank approximation
is typically increased [28]. Therefore they are the preferred
choice when the solution step dominates, for example for
computations with multiple right-hand vectors.
To enhance the computational performance of the low-rank

factorization methods, two kinds of low-rank factorization
methods for Green’s functions and impedance matrices have
been developed recently for realistic multiscale simula-
tions. For the H2 method, Lagrange interpolation methods
are employed to approximate the Green’s functions on
predefined interpolation points. Generally the number of
interpolation points (equivalent to the rank) is much smaller
than the number of unknowns in the coupling groups. The
compressed Green’s functions matrices are inserted in to
the integral equations for acceleration. Linear computational

complexity can be achieved in the low and medium
frequency regime [57]–[60]. The second method is to fac-
torize the impedance matrix directly, introducing dominant
basis functions denoted as skeletons [61]–[65] and equiva-
lent basis functions [32], [66]–[67] to represent the low-rank
impedance matrix in a recursive formulation. O(N) and
O(N logN) computational complexity is achieved for low
and high frequency problems, respectively.
An additional advantage of the low-rank methods is

that they allow for efficient direct (non-iterative) solu-
tion and high efficiency preconditioning techniques for the
matrix linear system [22], [68]–[71]. Avoiding the need for
an iterative solver has several advantages. To name the
most important ones, there is no need for precondition-
ing, which is often the bottle-neck of iterative methods,
and the system can be solved for several excitation vectors
simultaneously, for example in monostatic RCS computa-
tions. Most of the compressed direct MoM solvers proposed
in the literature use either single-level [68] or nested LU
factorization. An alternative approach, proposed in [69],
uses a nested block-decomposition based on the Sherman–
Morrison–Woodbury formula for the inverse of a partitioned
matrix. In [71], this approach, known as multiscale com-
pressed block decomposition (MSCBD), is shown to be
considerably more efficient than nested LU decomposition,
although both approaches have a high-frequency compu-
tational complexity of O(N2)for the factorization step.
Similarly, the H-Matrices [72], [73], H-LU [74]–[78], and
H2 matrix [79]–[83] methods are proposed for dense and
sparse matrix inversion, respectively. Unfortunately, to date
this approach has not yet been successfully applied to large-
scale high frequency problems [82]. Recently, a new and
promising approach has been proposed, using randomized
compression algorithms to reduce the complexity of the but-
terfly construction [29]. The approach is shown to achieve
the theoretical complexity of O(Nlog2N). The paper addi-
tionally presents an O(N3/2log2N) direct solver, also based
on randomized algorithms. More recently, the hierarchi-
cally off-diagonal low rank method has been proposed,
where the dense matrix is decomposed as the product of
several block diagonal matrices, direct inversion or highly
efficient preconditioners can be constructed for multiscale
simulations [87]–[91].
The remainder of the paper is organized as follows:

in Section II, the challenges from multiscale simulations
are proposed, the traditional low-rank methods are illus-
trated in Section III, the improved algorithm for ACA is
proposed in Section IV, post compression low-rank methods
are illustrated in Section V, the nested low-rank methods are
illustrated in Section VI, and the direct inversion of low-
rank methods is illustrated in Section VII. Finally, a brief
conclusion is given in Section VIII.

II. CHALLENGES FROM MULTISCALE SIMULATIONS
The multiscale problems are typical mixed low and high
frequency problems, where coexistence of dense meshes are
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to capture the geometric details and of large-scale inter-
actions. The difficulties associated to this scale variability
are enhanced in analyses requiring a large frequency range,
often with the requirement to change as little as possible the
mesh over the frequency range of interest. The challenges
for multiscale fast solvers are mainly:
(1) For standard fast multipole method, it would meet low-

frequency break down when the group size is smaller than
0.2 wavelength. Several low frequency stable technologies
have been developed to solve this problem [33]–[40].
(2) Ill-conditioned linear system, for dense mesh with

small electrical size, the vector potential is much smaller
than the scalar potential in the conventional electric field
integral equation (EFIE). Since the dominating scalar poten-
tial matrix is singular, the matrix system is ill-conditioned
and even breaks down due to finite machine precision. The
impedance matrix tends to be increasingly ill-conditioned as
the increase of ratio between the maximum and minimum
discretization size.
The so-called low-frequency breakdown is an important

aspect of the multiscale simulations; this problem arises in
two different ways, that are not separated in practice. On
the one hand, low-frequency issues are associated to dense-
meshes; by itself this is independent of the employed specific
fast factorization approach; it is associated to the problem
conditioning, and as such mitigated or solved by condi-
tioning techniques. However, this is crucial in association
with fast factorizations: these are always approximations,
and hence introduce a perturbation to the (ideal) system
matrix, whose effect on the solution is crucially dependent
on matrix conditioning. It is interesting to note that this
impacts direct inversions [22], [68]–[71], as well as the more
standard iterative solvers.
The other low-frequency issue is associated to possible

breakdown of the fast factorization itself, as well documented
for the MLFMA [14], [15]. In low-rank factorizations, the
computation accuracy is independent of the group size, they
are numerically stable at low frequency. In the algorithm,
the number of levels for geometric or matrix decomposition
is determined by the average number of unknowns at leaf
level. The low-rank factorization is error controllable by pre-
determined threshold [23], [24] and number of equivalence
points [27], [66], [67].
The hierarchical preconditioner [19] and direct

solvers [68]–[71] are proposed with low-rank factorization
methods to solve the matrix system from ill-conditioned
matrix system.

III. TRADITIONAL LOW-RANK METHODS
When the object is subdivided into groups according to the
average number of unknowns in the clustered groups, the
MoM discretization of the integral equation yields the linear
system

ZI = (Znear + Zfar)I = V, (1)

FIGURE 1. Impedance matrix subblock coupling two far groups is approximated
with traditional low-rank factorization methods.

where Znear denotes the near field coupling evaluated with
MoM directly, and Zfar denotes the far field couplings, which
can be evaluated with low-rank matrix factorization method
in this review. The admission condition for the two far
couplings groups t and s is defined as

R(s, t) ≥ 2Dl, (2)

where R(s, t) is the center-to-center distance between groups
t and s, Dl is the group size at the level l. As shown
in Fig. 1, for traditional low-rank methods, the impedance
matrix subblock between two far field groups can be
approximated as

Zm×n = Um×r × Vm×r. (3)

The multiplication of U and V gives a good approximation
of the actual interaction matrix with predetermined thresh-
old. The memory storage of the interaction matrix will be
O(r(m + n)) instead of O(mn), and the matrix multiplica-
tion with a vector I of size n requires only O(r(m + n))
operations instead of O(mn). The differences between tra-
ditional low-rank factorization methods are the strategies to
construct the low-rank approximation matrices in Eq. (3).
Equivalent sources are introduced in MDA to obtain the low
rank approximation, where the rank is equal to the number
of equivalent points [21]. The dominant columns and rows
are selected adaptively in ACA [22]–[24] with a predefined
precision. Uniform or random sampling of the columns and
rows are proposed in the UV method [24], [25]. Further
combination of the UV method with a multiresolution pre-
conditioner is proposed for the simulation of frequency
selective surface (FSS) arrays in [26].
Since the low-rank decompositions in Eq. (3) are imple-

mented for each pair of two groups, even for a multilevel
version, the low-rank approximation matrices should be
constructed repeatedly, which in turn leads to high com-
putational and memory resource costs. As a result, they
are only applicable for electrical small or medium prob-
lems. The computational complexity in this regime is
O(N4/3 logN) [24].

IV. IMPROVED ACCURACY FOR THE ADAPTIVE CROSS
APPROXIMATION ALGORITHM
The most popular algorithm for low-rank compression of
off-diagonal impedance matrix blocks is the ACA algorithm.
The ACA efficiently produces a low-rank approximation of
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FIGURE 2. (a) Monopole mounted on a PEC Ogive, surface current distribution at
the fundamental resonance, full non-compressed solution, (b) refined triangulation of
the Ogive surface near the monopole base.

a matrix with a relative error that is governed by a preset
accuracy threshold value. A number of publications have
drawn the attention to the fact that sometimes, the under-
lying mechanism fails and the error is much larger than
expected [92], [93]. This phenomenon is particularly rele-
vant for direct solution of large multiscale problems mainly
for two reasons: Firstly, direct solution methods are most effi-
cient when all off-diagonal blocks are compressed, including
those that represent touching regions. This is sometimes
referred to as the “weak admissibility criterion”. Any off-
diagonal blocks that are not compressed will lead to “fill-in”
of uncompressed blocks in the direct inversion stage and
rapidly growing computational and memory costs. However,
the error in the solution is very sensitive to compression
errors in these “near field” blocks. Secondly, multiscale prob-
lems typically lead to badly conditioned impedance matrices,
due to the disbalance in the matrix element sizes. While
direct methods generally deal with badly conditioned matri-
ces better than iterative methods, compression errors will
have a much larger effect on the error in the solution if the
matrix is badly conditioned.
Recently, a thorough study of the above-mentioned phe-

nomenon has been published in [94]. This paper proposes
a modified algorithm that largely remedies the problem.
The paper demonstrates that there exists an inherent ran-
dom uncertainty in the conventional ACA algorithm; the
choice of the row-index that initializes the ACA iterative
process, which highly influences the approximation error.
The proposed adaptation in [94] makes this randomness
explicit and allows to control its effect. We refer to [94]
for the details of the proposed algorithm. In [94], the
improved accuracy is illustrated with a numerical example
of an iterative solver accelerated with low-rank compression
and a “strong” admissibility criterion. Here we present an
example demonstrating that the improvement is much more
important for multiscale problems that are solved by direct
inversion with weak admissibility.
The target under investigation is the PEC ogive from [95]

(major axis 25.4 cm), shown in Fig. 2 (a), but with

FIGURE 3. Input impedance of a thin λ/4-monopole mounted on a PEC Ogive.
Computed with conventional ACA and with the new adapted ACA proposed in [94].
Each computation was repeated 50 times, with randomly chosen ACA initial row
indices. The reference value was obtained by full LU decomposition of the impedance
matrix.

a very small (0.0254 × 5.08 mm) flat strip monopole
antenna mounted on the ogive surface. The mesh-size of
the antenna and surrounding region on the ogive surface
is much smaller than that of the rest of the ogive, as
illustrated in Fig. 2 (b). The entire structure is meshed
into 19,692 triangular facets on which 29,338 RWG basis
functions are defined. The excitation is a 14.4 GHz delta-
gap on the monopole base, near the first resonance. The
problem is solved using the EFIE formulation, initially by
full non-compressed LU decomposition to obtain a refer-
ence solution. Subsequently the structure is decomposed
according to a 6-level binary tree and ACA compres-
sion is applied to all off-diagonal blocks. The compressed
system is then solved by direct inversion using the MSCBD
algorithm [71].
We solve the system repeatedly, with randomly chosen

initial row index for all ACA compressed blocks. Using
a typical ACA accuracy threshold of τ = 10−3 or τ = 10−4,
the solution fails completely, as a consequence of the high
condition number of the matrix, due to the presence of highly
unequal matrix elements. As seen in Fig. 3, with τ = 10−7

the error, defined as the difference in the monopole input
impedance with that of the full uncompressed solution, is
still considerable for a large proportion of the simulations.
Only for τ = 10−8 the result stabilizes. In contrast, when
we implement the adaptation of [94], a stable solution is
obtained already with τ = 10−4. Essentially, the algorithm
automatically detects that the convergence of the ACA fails
for touching regions involving highly disbalanced matrix ele-
ments and determines the necessary threshold for these cases.
The improvement in memory requirements and computation
time are considerable, as evidenced by Table 2 (All computa-
tions were done in MATLAB, double precision, on a laptop
with 16 GB of RAM and an Intel Core i7-8565U CPU at
1.80GHz).
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TABLE 2. Average matrix sizes and computation times for ACA compressed MoM analysis of monopole mounted on PEC Ogive.

FIGURE 4. SVD post compression of typical low-rank methods.

V. POST COMPRESSION LOW-RANK METHODS
Singular value decomposition (SVD) is usually employed for
the low-rank approximation matrices post compression [27].
The post compression process for typical low-rank methods
is shown in Fig. 4. Eq. (3) can be rewritten as

Zm×n = Um×r × Vr×n = Ũm×r′ × Ṽr′×n, (4)

where r′ is smaller than r.
However, as mentioned in Section III, for each pair of

far coupling groups, the low-rank approximation matrices
U and V need to be computed again, which is much less
efficient than the fast multipole method (FMM) [14], [15],
in which the aggregation and disaggregation operators
of a group are defined only once regardless of the far
field interaction groups. For each group, the multilevel
matrix compression method (MLMCM) [30] and recipro-
cal MLMCM (rMLMCM) [51] are proposed respectively to
formulate a single aggregation and disaggregation operator
of the far field interaction groups.
Fig. 5 shows the peer-level far field coupling lists of

group i. Let [Zij]m×n represent the impedance submatrix
between two groups i and j. The MLMCM starts by col-
lecting the columns Zi,1,Zi,2,Zi,3 · · · of [Zij]m×n of the
peer-level far field groups of group i, and then a modified
Gram-Schmidt (MGS) algorithm is applied and the receiving

FIGURE 5. Peer-level far field coupling groups (green color region) of group i.

compression matrix is defined as

Ui = MGS
[
Zi,1,Zi,2,Zi,3 · · · ]. (5)

Then the coupling matrix Zm×n is factorized as:
[
Zij
]
m×n = [Ui]m×r

[
Dij
]
r×r
[
Vj
]
r×n. (6)

where r is the ε-rank of Zij, and m and n are the num-
ber of basis functions in groups i and j, respectively.
Ui, Dij, and Vj are three relatively small dense matri-
ces. Inspired by [31] and [96], [97], a reciprocal algorithm
rMLMCM [51] is developed over [30], where the radiation
compression matrix Vj satisfies

Vj = UT
j . (7)

To compute all the column vectors in Eq. (5) is time con-
suming, so a subset of the column vectors (the skeletons) is
sampled with ACA, yielding an error controllable procedure.
By construction, Ui satisfies U†

t Ut = I, with I the identity
matrix, and (•)† denotes conjugate transpose; as a conse-
quence, the translation matrix Dts between groups t and s
can be explicitly written as:

Dij = U†
i Ui Dij Vj V

†
j = U†

i Zij V
†
j . (8)

Note that Zij in (8) is not explicitly computed, it is evalu-
ated with ACA instead. The translation matrix [Dij]r×r has
strongly reduced dimensions with respect to the original
matrix [Zij]m×n.
The computational complexity of the rMLMCM is

O(NlogN) for medium electrical sizes [51]. The computa-
tional complexity is tested for a series of cubic cavities
as shown in the inset in Fig. 6 (a). The edge length of
the cube is 2m with a fixed average mesh size of 6e-2λ.
The simulated frequencies are 125MHz, 250MHz, 500MHz,
and 1GHz, corresponding to a total number of unknowns
equal to 2,644, 10,495, 42,080, and 168,520, respectively.
Fig. 6 (a) and (b) show the computational complexity of
a matrix-vector product (MVP) and memory requirements
of the solver [51].
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FIGURE 6. Computational complexity of the proposed doubly hierarchical
MoM (a) MVP time (b) storage requirements. The figures are reprinted from [51].

For realistic large and multiscale problems, two strate-
gies are introduced for the rMLMCM: Firstly, a hybrid
rMLMCM/MLFMA [51] is proposed, where the rMLMCM
is employed to evaluate the low and mid frequency regime
due to the dense mesh of the fine structures installed on the
large platforms. The MLFMA [14], [15] is employed to eval-
uate the high frequency regime, where the rMLMCM will
suffer computation performance degeneration. Secondly, the
hierarchical multiresolution (MR) preconditioners [98], [99]
are introduced to rMLMCM/MLFMA to relieve the conver-
gence challenges stemming from the ill-conditioned matrix
equation due to multiscale discretization.
A morphed model of a realistic Evektor EV551 aircraft

is simulated, where all internal details, such as passenger
seats and the instrument board are considered. The aircraft
is 14.2m long, the wingspan is 16.1m, corresponding to
11.5 and 13λat 224MHz, respectively. The mesh size ranges
from 3.6e-3λ to 6.3e-2λ, leading to 171,763 unknowns.
The aircraft is illuminated by a plane wave impinging
from (θ i = 90◦, ϕi = 225◦). Single-level rMLMCM and
5-level MLFMA are employed, corresponding to a near field
evaluation region of 0.1λ.

With the MR-ILU precondtioner, the time and memory
requirements are 625 MB and 3.9 minutes, while for the
typical ILU preconditioner, 4.1 hours and 14.1 GB are
required. However, the number of iterations required is
comparable (the iterations of MR-ILU is 810, and the

1. http://www.evektoraircraft.com/en/aircraft/ev-55-outback/overview

FIGURE 7. Morphed EV55 aircraft simulated at 244 MHz: (a) surface current density;
(b) Electric field on a symmetry plane of the EV55 aircraft. The figures are reprinted
from [51].

ILU is 906). Hence, significant savings in total simulation
time and memory requirements are obtained. Meanwhile,
better convergence performances are achieved with the MR-
ILU preconditioner [19], [99]. Fig. 7 (a) and (b) show
the surface current density and electric field distribu-
tion inside the aircraft in the x-y plane of the morphed
EV55 aircraft, which demonstrates the capability of the
proposed rMLMCM/MLFMA to model realistic high def-
inition multiscale problems [51].

VI. NESTED LOW-RANK METHODS
As explained in Section V, the approximation framework of
MLMCM and rMLMCM is similar to the FMM. It is well
known that the MLFMA achieves lower computational com-
plexity due to the nested expression denoted as aggregation
and disaggregation between neighboring levels. Can we con-
struct a nested approximation framework like the MLFMA?
The low-rank approximation matrices are only computed
at the leaf level, the higher level matrices are expressed by
those at leaf level. This leads to the nested equivalent source
approximation (NESA) for low-to-high frequency, proposed
in [66], [67], [100], and [101].

A. NESTED MATRIX COMPRESSION VIA EQUIVALENT
AND SKELETON BASES
To obtain the nested matrix compression [32], the skeleton
and equivalent bases are introduced respectively in interpo-
lation decomposition (ID) [61], [62] and nested equivalent
source approximation (NESA) [66], [67] methods. As shown
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in Fig. 8 (a), the inner equivalent surface
∑s

τ and outer test-
ing surface

∑s
σ are defined respectively for group i , the

radius of the inner and outer sphere surface are S/2 and
3S/2 as in Fig. 8 (c), S is the group size.

When considering the coupling between group s and o, our
goal is to find the coefficients of the equivalent source τ s on∑s

τ , which radiates the same field on the testing surface
∑s

σ

as the actual source in group s. Then the far coupling with
group s can be substituted by the coupling with the equivalent
source τ s. The coefficients can be obtained by equating the
fields radiated by two sets of equivalent source τ sand actual
source on the testing basis functions σ sin a weak sense

Zσs,sIs = Zσs,τsIτs , (9)

where Is and Iτs are the current coefficients of the actual
and equivalent basis functions, respectively. Matrix Zi,j in
eq. (9) and following is defined as the coupling impedance
matrix between the basis i and j. Then equivalent current
coefficients Iτs can be derived as:

Iτs = (
Zσs,τs

)†Zσs,sIs. (10)

Here .† denotes the pseudo-inverse of the matrices formed
by basis functions on the equivalent and testing surface. We
define the radiation matrix for group s as

Vs = (
Zσs,τs

)†Zσs,s. (11)

Similarly, when considering the observation group o, the
receiving matrix can be derived as

Uo = Zo,σo
(
Zτo,σo

)†
, (12)

τ o and σ o are the equivalent and testing basis functions of
group o. The translation matrix between group s and o is
defined as

Do,s = Zτo,τs . (13)

Then the far coupling between group s and o can be evaluated
with NESA as

Zo,s = UoDo,sVs. (14)

It can be found from Eq. (14), when coupling with the far
group lists at the peer level, only one radiation and receiving
matrix needs to be computed.
The difference between ID [61], [62] and

NESA [66], [67] is the equivalent process as in Fig. 8
(a) and (b). For ID, only the testing equivalent surface∑s

σ is constructed, the skeleton basis functions (denoted
as red arrows) are sampled from the actual basis function
in group s instead of the equivalent basis functions. For
ID, combined with ACA, the number of skeleton basis
functions at low levels is usually smaller than the number
of equivalent basis functions of NESA. As a result, a faster
matrix-vector product is achieved. However, with NESA,
the equivalent and testing basis functions are the same for
every group hence the translation invariant symmetry can

FIGURE 8. Nested matrix approximation for two far coupling groups i and j
via equivalent and dominant bases, (a) equivalent bases on the inner sphere surface
are obtained by enforcing testing on the outer sphere surface, (b) dominant (skeleton)
bases are obtained from the original basis functions by enforcing testing on the outer
sphere surface, (c) three dimensional (3D) view of the inner equivalent surface and
outer testing surface, at each sampling points on the sphere surface, (d) three
orthogonal basis functions are defined, respectively.

be employed to reduce the setup low-rank approximation
time and memory requirements significantly [66], [67].
A mixed-form skeleton and NESA algorithm is proposed

in [101] for multiscale simulations, where at the low-levels,
the ID is employed to achieve smaller ranks, at the high-
levels, the NESA is employed to achieve setup memory
and time savings. Three orthogonal RWG basis functions [2]
are defined as the equivalent and testing basis functions for
NESA as in Fig. 8 (d). In the implementation, the size of the
triangles is smaller than λ/30 to achieve high computation
precision with only one integration point on the equivalent
testing surface when evaluating the impedance matrix in
Eq. (9) to Eq. (13).
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The low-rank approximation for NESA at leaf level is
obtained in Eq. (14). Like in the MLFMA, the transfer
matrices [66], [67] between neighboring levels are defined
to obtain a nested approximation

Vl−1
sp = Cl−1,lVl

s (15)

Ul−1
op = Ul

oB
l,l−1. (16)

The low-rank approximation matrices Vl−1
sp and Ul−1

op of the
parent groups sp and op at level l− 1 can be expressed with
the low-rank approximation matrices of child groups at level
l via the transfer matrices Cl−1,l and Bl,l−1. With the nested
low-rank approximation linear and O(N logN) complexity
can be achieved for low and high frequency multiscale
simulations, respectively. As demonstrated in [66], [67], the
low-rank approximation is error controllable through the
number of equivalent points Q on the equivalent sphere
surface.

B. LOW-TO-HIGH FREQUENCY NESTED EQUIVALENT
SOURCE APPROXIMATIONS
As we know, the key point which affects the computa-
tional complexity is the average rank. In the low frequency
regime, the average rank remains constant while in the high
frequency regime, the average rank increases very fast with
increasing group size, which leads to a high complexity,
approaching that of the full MoM [24], [49].
In the nested approximation, the admission conditions

are defined differently for low and high frequency regime.
D0 = λ is the threshold group size between low-frequency
and high-frequency couplings. In the low frequency regime
(Dl < D0), the admission condition is the same as tra-
ditional low-rank methods, i.e., groups s and o are not
neighbors

R(s, o) ≥ 2Dl. (17)

where R(s, o) is the center-to-center distance between
groups s and o. Nested approximation as shown in
Fig. 8 can be employed directly [66]. Conversely, in the
high frequency regime (Dl ≥ D0), the directional low-rank
property is exploited to guarantee constant rank in certain
directions [102], [103]. As shown in Fig. 9, the directional
low-rank property is invoked to define pyramids spanning
an angle of O(λ/Dl). The peer level far coupling region of
groups s and o at level l is defined as

R(s, o)

λ
≥
(
Dl
λ

)2

(18a)

R
(
sp, op

)

λ
<

(
Dl−1

λ

)2

, (18b)

where Dl−1 = 2Dl is the parent group size at level
l − 1, i.e., the far coupling interaction list of a source
group s includes groups o satisfying the admissibility
condition (18a), subject to their parents sp and tp not sat-
isfying (18b). The directional admission conditions shown
in Fig. 9 guarantee the “hierarchical directions,” i.e.,

FIGURE 9. Directional admission conditions for the NESA at high frequency regime,
(a) 2D view, (d) 3D view, the nested approximation of Eq. (9)-Eq. (10) is obtained with
the inner equivalent sphere surface and outer testing pyramid, The angle of the
pyramid is O(λ/Dl ) and the distance from the equivalent sphere to the pyramid is
(Dl )

2, Dl is the group size at level l.

TABLE 3. Computation complexity of the existing low-rank methods.

each direction of a group is completely enclosed by
the directions of its child groups [102], [103]. This in
turn guarantees that, if two groups satisfy the admissi-
bility condition of (18a), then their children satisfy the
admissibility condition naturally. The wideband NESA auto-
matically switching between low and high frequency can be
achieved with the admission conditions defined in Eq. (17)
and (18) [67], [101].
To achieve the O(N logN) computation complexity of the

MLFMA in the high frequency regime, two new contribu-
tions are introduced in NESA: firstly, the nested low-rank
approximation in Section VI-A, secondly, the rank Q is
independent of the group size [67], exploiting the direc-
tional low-rank property [102], [103]. Even more important,
the introduced equivalent and testing surfaces lead to an
intrinsically multiscale family of auxiliary sources, improv-
ing field representation in multiscale problems, which in
turn leads to a significant improvement in convergence
performance [66], [67]. Table 3 summarizes the computa-
tional complexity of the low-rank factorization methods,
it can be found the NESA can achieve much better
performance both in low frequency and high frequency
regime.

294 VOLUME 2, 2021



FIGURE 10. Simulated morphed P180 aircraft model at 686 MHz. A flexible GMRES
iterative solution with 10 inner iterations is employed, 100 iterations are required to
achieve convergence to a residual of 1e-3, (a) mesh model, surface currents of the
aircraft (b) and inside (c). The figures are reprinted from [67].

C. NUMERICAL RESULTS FOR MULTISCALE PROBLEMS
The NESA is employed in the European Community’s
Seventh Framework Programme FP7/2007-2013 HIRF SE
Project for realistic multiscale simulation from low to high
frequency [66], [67].
A morphed P1802 aircraft shown in Fig. 10 (a), has been

analyzed. The aircraft is 12.1 m long, and its wingspan
is 13.8 m, corresponding to, respectively, 27.6 and 31 · 5λ

at 686 MHz. All internal details such as passenger seats,
antenna array, and the instrument board are considered in the
model. The aircraft is illuminated by a plane wave impinging
along ŷ directions with the electric field polarized along ẑ as
in Fig. 10 (a). The number of unknowns is 1,086,083 with
discretization h/λ ranging from 2.3e-3 to 8.0e-2; two-levels
of low frequency and three-levels of high frequency are
defined, and the MR-ILU preconditioner [98], [99] is used

2. http://www.piaggioaero.com/#/en/products/p180-avanti-ii/overview

to improve the convergence. Factorization time and memory
required are 1.8 h and 9.1 GB; The MVP time is 28 s,
and overall solution time of the matrix equation amounts to
7.8 h. Fig. 10 (b) and (c) show the surface currents of the
details of the aircraft and the details inside, respectively.

VII. FAST DIRECT INVERSION LOW-RANK METHODS
A. H-MATRICES METHOD
When we have the low-rank factorization of the impedance
matrix, it can be represented by the H-matrices format [22].
The inverse matrix can also be expressed accordingly. A gen-
eral dense matrix Z from the MoM at level l = 1 can be
written as

Z =
(
Z(1)

11 Z(1)
12

Z(1)
21 Z(1)

22

)

, (19)

where Z(l)
ij denotes the coupling matrix between group i and

j at level l. The off-diagonal matrices Z(1)
12 and Z(1)

21 can
be evaluated with the low-rank matrix method, while (19)
can be used recursively to partition the diagonal matrix Z(1)

11
and Z(1)

22 . The off-diagonal matrices at level l = 2 can be
characterized with the low-rank matrix method as

Z =
(

Z(1)
11 U(1)

12 V
(1)
12

U(1)
21 V

(1)
21 Z(1)

22

)

, (20)

where

Z(1)
11 =

(
Z(2)

11 U(2)
12 V

(2)
12

U(2)
21 V

(2)
21 Z(2)

22

)

(21a)

Z(1)
22 =

(
Z(2)

33 U(2)
34 V

(2)
34

U(2)
43 V

(2)
43 Z(2)

44

)

. (21b)

The inversion of (19) can be obtained with the H-matrices
method [22]

Z−1 =
⎛

⎜
⎝

(
Z(1)

11

)−1+
(
Z(1)

11

)−1
Z(1)

12 S
−1Z(1)

21

(
Z(1)

11

)−1 −
(
Z(1)

11

)−1
Z(1)

12 S
−1

−S−1Z(1)
21

(
Z(1)

11

)−1
S−1

⎞

⎟
⎠,

(22)

with the Schur complement S = (Z(1)
22 ) − Z(1)

21 (Z(1)
11 )−1Z(1)

12 ,
the low computation complexity matrix-matrix addition
and multiplication can be achieved by the H-matrices.
The H-matrices is widely applied to the MoM and
finite element method (FEM) for dynamic electromagnetic
problems [73]–[83].
Specially, the H-matrices method is further extended to

hierarchically semiseparable (HSS) [84]–[86] and hierarchi-
cal off-diagonal low-rank systems (HODLR) [87]–[91] algo-
rithms for different admissibility conditions. For dynamic
electromagnetic problems, the sub-impedance matrix blocks
produced by neighboring couplings groups in MoM are
almost full-rank, as a result, the HODLR algorithm are
widely employed for large multiscale simulations [87]–[91].
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FIGURE 11. HODLR matrix and factorization with level L = 3. ZHODLRdenotes the hierarchically data-sparse representation of the impedance matrix Z. D3 is the
block-diagonal matrix, D2 to D0 is the remaining matrix after extracting the diagonal block matrix. The inversion of block-diagonal matrix can be obtained directly, while the
inversion of remaining matrix can be obtained by Sherman–Morrison–Woodbury algorithm [87]–[91]. The figures are reprinted from [91].

B. HIERARCHICALLY OFF-DIAGONAL LOW-RANK
ALGORITHM
If we extract the diagonal matrix at each level of (20), the
HODLR format can be achieved as the product of several
diagonal matrices as shown in Fig. 11. The matrix equation
in (21a) can be expressed with a two-level HODLR matrix
format [87]–[91]

Z =
(
Z(1)

11 0
0 Z(1)

22

)

·
(

|! I Ũ(1)
12 V

(1)
12

Ũ(1)
21 V

(1)
21 I

)

= D1D0,

(23)

I is the identity matrix, the matrices Ũ(1)
12 and Ũ(1)

21 are
updated by extracting the diagonal matrix Z(1)

11 and Z(1)
22

Ũ(1)
12 =

(
Z(1)

11

)−1
U(1)

12 (24a)

Ũ(1)
21 =

(
Z(1)

22

)−1
U(1)

21 . (24b)

Similarly, equation (23) can be further extended to an L level
HODLR matrix as

ZHODLR = DLDL−1 · · ·D3D2D1D0. (25)

The inversion of the ZHODLR can be easily obtained

Z−1
HODLR

= D−1
0 D−1

1 D−1
2 · · ·D−1

L−1D
−1
L . (26)

The inversion of DL can be computed directly, while the
inversion of the DL−1 to D0 can be computed with Sherman–
Morrison–Woodbury algorithm, without loss of generality,
D−1

0 can be computed as

D−1
0 =

(
I 0
0 I

)
−
(

0 Ũ(1)
12

Ũ(1)
21 0

)

S−1
1

(
V(1)

12 0
0 V(1)

21

)

(27)

S1 =
⎛

⎜
⎝

I
(
V(1)

12

)T
U(1)

12(
V(1)

21

)T
U(1)

21 I

⎞

⎟
⎠. (28)

Effective preconditioners can be constructed from
Eq. (26) with smaller number of HODLR factorization
levels [89] and large low-rank factorization tolerance [90].
When l level block diagonal matrices are selected to

express the impedance matrix, as in eq. (26), the expressed

FIGURE 12. Bistatic RCS of an 16 × 16 planar array simulated with HODLR
factorization and MLFMA, the average number of basis functions at leaf level is 80.

FIGURE 13. Convergence performance of the GMRES for the analysis of 16 × 16
planar array with SAI, preconditioning matrix constructed by HODLR with different
levels (l = 2, 4, 6), and without preconditioner.

matrix can be inverted as an approximation of the matrix
Z−1, to construct a preconditioner

M−1 = D−1
L−l+1 · · ·D−1

L−1D
−1
L (29)

The approximate matrix M−1 can be an effective precon-
ditioning matrix for the impedance matrix. When l = 1,
M is the block diagonal preconditioner, when l = L, it
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FIGURE 14. Simulated surface electric current distribution and bistatic RCS with preconditioning matrix constructed by HODLR in each subdomain. The figures are reprinted
from [91].

is the full inversion matrix of Z. When l is ranging from
1 to L, the trade-off between preconditioning performance
and matrix inversion computational cost can be tested and
adapted to the available resources. Both the computation time
and memory complexities for the HODLR fast direct inver-
sion are O(Nlog2N) [89], [90]. Parallel techniques based on
MPI and OMP can be employed to the algorithm to further
enhance the computation performance [89].

C. NUMERICAL RESULTS FOR MULTISCALE PROBLEMS
A 16 × 16 planar array with 333,056 unknowns is ana-
lyzed to demonstrate the performance of the proposed
preconditioner. A 12-level binary tree is obtained when
we fix the average number of basis functions at leaf
level as 80. The simulated bistatic RCS curves with the
direct HODLR factorization [89] and MLFMA [14], [15]
are shown in Fig. 12, excellent agreement is observed
between them. Fig. 13 shows the performance of the
GMRES for the simulation of the 16 × 16 planar array
with sparse approximate inverse (SAI) [104], [105], pre-
conditioning matrix constructed by HODLR with different
levels (l = 2, 4, 6), and without preconditioner. It can
be clearly observed that with increasing number of lev-
els for HODLR factorization, much better convergence can
be achieved, due to the increasing ratio of the HODLR
factorization parts to the whole matrix [89]. It should be
noted that, with the increase of the number of levels for
HODLR, the computation time and memory requirements
are increasing following the computation complexity of
O(Nlog2N) [87], [89]. Consequently, the proper number of
levels for HODLR factorization can be chosen to achieve
a balance between preconditioning performance and the
matrix inversion computational cost. In our experience, l
between L/3 ∼ 2L/3 is a reasonable choice.

For realistic multiscale simulations with domain decompo-
sition technique, the preconditioner constructed by HODLR
factorization is employed in the subdomain showing poor

convergence. As shown in Fig. 14, the dimensions of the air-
craft are approximately 22.6 m in length, 14.2 m in wingspan,
and 3.8 m in height. The incident wave is from the nose.
The whole aircraft is decomposed into 13 subdomains. The
number of unknowns is 3037,728 with discretization h/λ
ranging from 0.03 to 0.125. For the subdomain containing
open intakes cavity, with the preconditioner constructed by
HODLR factorization, only 44 iterations are required to reach
the residual of 0.01, showing much better performance than
a block diagonal preconditioner. The surface electric current
distribution and bistatic RCS results computed with left and
right preconditioners are shown in Fig. 14.

VIII. CONCLUSION
In this paper, a review of the low-rank factorization method
is proposed. The principles and differences between tra-
ditional low-rank based methods are illustrated. Advanced
techniques to achieve better performance in terms of com-
putation precision and efficiency are presented in detail.
The source codes of NESA for the evaluation of free space
Green’s functions matrix produced by two coupling groups
can be download freely [106].
The low-rank factorization methods are among the more

promising methods in computational electromagnetics, dras-
tical progress is achieved with the integration of mathematics
and electromagnetics. They are a necessary complement to
the MLFMA and FFT based methods to solve the challenges
in realistic multiscale simulations.
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