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Lp SPECTRAL MULTIPLIERS ON THE FREE GROUP N3,2

ALESSIO MARTINI AND DETLEF MÜLLER

Abstract. Let L be a homogeneous sublaplacian on the 6-dimensional
free 2-step nilpotent Lie group N3,2 on 3 generators. We prove a theorem
of Mihlin-Hörmander type for the functional calculus of L, where the
order of differentiability s > 6/2 is required on the multiplier.

1. Introduction

The free 2-step nilpotent Lie group N3,2 on 3 generators is the simply

connected, connected nilpotent Lie group defined by the relations

[X1, X2] = Y3, [X2, X3] = Y1, [X3, X1] = Y2,

where X1, X2, X3, Y1, Y2, Y3 is a basis of its Lie algebra (that is, the Lie al-

gebra of the left-invariant vector fields on N3,2). In exponential coordinates,

N3,2 can be identified with R3
x × R3

y, where the group law is given by

(x, y) · (x′, y′) = (x+ x′, y + y′ + x ∧ x′/2)

and x∧x′ denotes the usual vector product of x, x′ ∈ R3. The family (δt)t>0

of automorphic dilations of N3,2, defined by

δt(x, y) = (tx, t2y),

turns N3,2 into a stratified group of homogeneous dimension Q = 9.

Let L be a homogeneous sublaplacian on N3,2; without loss of generality,

we may assume that L = −(X2
1 +X2

2 +X2
3 ). L is a self-adjoint operator on

L2(N3,2), hence a functional calculus for L is defined via spectral integration

and, for all Borel functions F : R → C, the operator F (L) is bounded on

L2(N3,2) whenever the “spectral multiplier” F is a bounded function. Here

we are interested in giving a sufficient condition for the Lp-boundedness

(for p 6= 2) of the operator F (L), in terms of smoothness properties of the

multiplier F .

Let W s
2 (R) denote the L2 Sobolev space of (fractional) order s. Then our

main result reads as follows.
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2 A. MARTINI AND D. MÜLLER

Theorem 1.1. Suppose that a function F : R→ C satisfies

sup
t>0
‖η F (t·)‖W s

2
<∞

for some s > 6/2 and some nonzero η ∈ C∞c (]0,∞[). Then the operator

F (L) is of weak type (1, 1) and bounded on Lp(N3,2) for all p ∈ ]1,∞[.

Observe that the general multiplier theorem for homogeneous sublapla-

cians on stratified Lie groups by Christ [3] and Mauceri and Meda [16]

requires the stronger regularity condition s > Q/2 = 9/2. To the best of

our knowledge, in the case of N3,2 none of the results and techniques known

so far allowed one to go below the condition s > Q/2. Our result pushes

the regularity assumption down to s > d/2 = 6/2, where d = 6 is the

topological dimension of N3,2. We conjecture that this condition is sharp.

The problem of Lp-boundedness for spectral multipliers on nilpotent Lie

groups has a long history, and the theorem by Christ and Mauceri and Meda

is itself an improvement of a series of previous results (see, e.g., [4, 8, 5]).

Nevertheless it is still an open question, whether the homogeneous dimen-

sion in the smoothness condition may always be replaced by the topological

dimension.

It has been known for a long time [10, 17] that such an improvement of

the multiplier theorem holds true in the case of the Heisenberg and related

groups (more precisely, for direct products of Métivier and abelian groups;

see also [11, 14]). This class of groups, however, does not include N3,2, nor

any free 2-step nilpotent group Nn,2 on n generators (see [20, §3] for a defi-

nition), except for the smallest one, N2,2, which is the 3-dimensional Heisen-

berg group. The free groups Nn,2 have in a sense the maximal structural

complexity among 2-step groups, since every 2-step nilpotent Lie group is

a quotient of a free one. Our result should then hopefully shed some new

light and contribute to the understanding of the problem for general 2-step

nilpotent Lie groups.

2. Strategy of the proof

The sublaplacian L is a left-invariant operator on N3,2, hence any op-

erator of the form F (L) is left-invariant too. Let KF (L) then denote the

convolution kernel of F (L). As shown, e.g., in [14, Theorem 4.6], the previ-

ous Theorem 1.1 is a consequence of the following L1-estimate.

Proposition 2.1. For all s > 6/2, for all compact sets K ⊆ ]0,∞[, and

for all functions F : R→ C such that suppF ⊆ K,

(2.1) ‖KF (L) ‖1 ≤ CK,s‖F‖W s
2
.
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Let | · |δ be any δt-homogeneous norm on N3,2; take, e.g., |(x, y)|δ =

|x|+ |y|1/2. The crucial estimate in the proof of [16] of the general theorem

for stratified groups, that is,

(2.2) ‖(1 + | · |δ)αKF (L) ‖2 ≤ CK,α,β‖F‖Wβ
2

for all α ≥ 0 and β > α, implies (2.1) when s > 9/2, by Hölder’s inequality.

In order to push the condition down to s > 6/2, here we prove an enhanced

version of (2.2), that is,

(2.3) ‖(1 + | · |δ)αwr KF (L) ‖2 ≤ CK,α,β,r‖F‖Wβ
2
,

for some “extra weight” function w on N3,2, and suitable constraints on the

exponents α, β, r.

A similar approach is adopted in the mentioned works on the Heisenberg

and related groups. However, in [17] the extra weight w is the full weight

1 + | · |δ, while [10] employs the weight w(x, y) = 1 + |x|. Here instead the

weight w(x, y) = 1 + |y| is used, and (2.3) is proved under the conditions

α ≥ 0, 0 ≤ r < 3/2, β > α + r (see Proposition 4.6 below).

The proof of (2.3) when α = 0 is based on a careful analysis exploiting

identities for Laguerre polynomials, somehow in the spirit of [4, 17, 19], but

with additional complexity due, inter alia, to the simultanous use of gener-

alized Laguerre polynomials of different types. The estimate for arbitrary

α is then recovered by interpolation with (2.2). An analogous strategy is

followed in [15], where identities for Hermite polynomials are used in order

to prove a sharp spectral multiplier theorem for Grushin operators.

3. A joint functional calculus

It is convenient for us to embed the functional calculus for the sub-

laplacian L in a larger functional calculus for a system of commuting left-

invariant differential operators on N3,2. Specifically, the operators

(3.1) L,−iY1,−iY2,−iY3

are essentially self-adjoint and commute strongly, hence they admit a joint

functional calculus (see, e.g., [13]).

If Y denotes the “vector of operators” (−iY1,−iY2,−iY3), then we can

express the convolution kernel KG(L,Y) of the operator G(L,Y) in terms of

Laguerre functions (cf. [7]). Namely, for all n, k ∈ N, let

L(k)
n (u) =

u−keu

n!

(
d

du

)n
(uk+ne−u)
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be the n-th Laguerre polynomial of type k, and define

L(k)
n (t) = (−1)ne−tL(k)

n (2t).

Further, for all η ∈ R3 \ {0} and ξ ∈ R3, define ξη‖ and ξη⊥ by

ξη‖ = 〈ξ, η/|η|〉, ξη⊥ = ξ − ξη‖η/|η|.

Proposition 3.1. Let G : R4 → C be in the Schwartz class, and set

(3.2) m(n, µ, η) = G((2n+ 1)|η|+ µ2, η),

for all n ∈ N, µ ∈ R, η ∈ R3 with η 6= 0. Then

KG(L,Y)(x, y)

=
2

(2π)6

∫
R3

∫
R3

∑
n∈N

m(n, ξη‖ , η)L(0)
n (|ξη⊥|

2/|η|) ei〈ξ,x〉 ei〈η,y〉 dξ dη.

Proof. For all η ∈ R3 \ {0}, choose a unit vector Eη ∈ η⊥, and set Ēη =

(η/|η|)∧Eη; moreover, for all x ∈ R3, denote by xη1, x
η
2, x

η
‖ the components

of x with respect to the positive orthonormal basis Eη, Ēη, η/|η| of R3.

For all η ∈ R3 \ {0} and all µ ∈ R, an irreducible unitary representation

πη,µ of N3,2 on L2(R) is defined by

πη,µ(x, y)φ(u) = ei〈η,y〉ei|η|(u+x
η
1/2)x

η
2eiµx

η
‖φ(xη1 + u)

for all (x, y) ∈ N3,2, u ∈ R, φ ∈ L2(R). Following, e.g., [1, §2], one can see

that these representations are sufficient to write the Plancherel formula for

the group Fourier transform of N3,2, and the corresponding Fourier inversion

formula:

(3.3) f(x, y) = (2π)−5
∫
R3\{0}

∫
R

tr(πη,µ(x, y) πη,µ(f)) |η| dµ dη

for all f : N3,2 → C in the Schwartz class and all (x, y) ∈ N3,2, where

πη,µ(f) =
∫
N3,2

f(z) πη,µ(z−1) dz.

Fix η ∈ R3 \ {0} and µ ∈ R. The operators (3.1) are represented in πη,µ

as

(3.4) dπη,µ(L) = −∂2u + |η|2u2 + µ2, dπη,µ(−iYj) = ηj.

If hn is the n-th Hermite function, that is,

hn(t) = (−1)n(n! 2n
√
π)−1/2et

2/2

(
d

dt

)n
e−t

2

,

and h̃η,n is defined by

h̃η,n(u) = |η|1/4hn(|η|1/2u),
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then {h̃η,n}n∈N is a complete orthonormal system for L2(R), made of joint

eigenfunctions of the operators (3.4); in fact,

(3.5)
dπη,µ(L)h̃η,n = (|η|(2n+ 1) + µ2)h̃η,n,

dπη,µ(−iYj)h̃η,n = ηjh̃η,n.

Moreover the corresponding diagonal matrix coefficients ϕη,µ,n of πη,µ are

given by

ϕη,µ,n(x, y) = 〈πη,µ(x, y)h̃η,n, h̃η,n〉

= ei〈η,y〉eiµx
η
‖ |η|1/2

∫
R
ei|η|ux

η
2 hn(|η|1/2(u+ xη1/2))hn(|η|1/2(u− xη1/2)) du.

The last integral is essentially the Fourier-Wigner transform of the pair

(hn, hn), whose Fourier transform has a particularly simple expression (cf.

[9, formula (1.90)]); the parity of the Hermite functions then yields

ϕη,µ,n(x, y) = ei〈η,y〉eiµx
η
‖
(−1)n

π|η|

∫
R2

eiv2x
η
2eiv1x

η
1

×
∫
R
e−it(2v1/|η|

1/2) hn(t+ v2/|η|1/2)hn(t− v2/|η|1/2) dt dv,

that is,

(3.6) ϕη,µ,n(x, y) =
1

π|η|
ei〈η,y〉eiµx

η
‖

∫
R2

eiv1x
η
1eiv2x

η
2L(0)

n (|v|2/|η|) dv

(see [21, Theorem 1.3.4] or [9, Theorem 1.104]).

Note that KG(L,Y) ∈ S(N3,2) since G ∈ S(R4) (see [2, Theorem 5.2] or

[12, §4.2]). Moreover

πη,µ(KG(L,Y))h̃η,n = G(|η|(2n+ 1) + µ2, η)h̃η,n

by (3.5) and [18, Proposition 1.1], hence

〈πη,µ(x, y)πη,µ(KG(L,Y))h̃η,n, h̃η,n〉 = m(n, µ, η)ϕη,µ,n(x, y).

Therefore, by (3.3) and (3.6),

KG(L,Y)(x, y)

= (2π)−5
∫
R3\{0}

∫
R

∑
n∈N

m(n, µ, η)ϕη,µ,n(x, y) |η| dµ dη

=
2

(2π)6

∫
R3

∫
R3

∑
n∈N

m(n, ξ3, η) ei〈η,y〉ei〈ξ,(x
η
1 ,x

η
2 ,x

η
‖)〉L(0)

n ((ξ21 + ξ22)/|η|) dξ dη.

The conclusion follows by a change of variable in the inner integral. �
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4. Weighted estimates

For convenience, set L(k)
n = 0 for all n < 0. The following identities are

easily obtained from the properties of Laguerre polynomials (see, e.g., [6,

§10.12]).

Lemma 4.1. For all k, n, n′ ∈ N and t ∈ R,

L(k)
n (t) = L(k+1)

n−1 (t) + L(k+1)
n (t),(4.1)

d

dt
L(k)
n (t) = L(k+1)

n−1 (t)− L(k+1)
n (t),(4.2) ∫ ∞

0

L(k)
n (t)L(k)

n′ (t) tk dt =

{
(n+k)!
2k+1n!

if n = n′,

0 otherwise.
(4.3)

We introduce some operators on functions f : N× R× R3 → C:

τf(n, µ, η) = f(n+ 1, µ, η),

δf(n, µ, η) = f(n+ 1, µ, η)− f(n, µ, η),

∂µf(n, µ, η) =
∂

∂µ
f(n, µ, η),

∂αη f(n, µ, η) =

(
∂

∂η

)α
f(n, µ, η),

for all α ∈ N3. For all multiindices α ∈ N3, we denote by |α| its length

α1 + α2 + α3. We set moreover 〈t〉 = 2|t|+ 1 for all t ∈ R.

Note that, for all compactly supported f : N× R× R3 → C, τ lf is null

for all sufficiently large l ∈ N; hence the operator 1 + τ , when restricted to

the set of compactly supported functions, is invertible, with inverse given

by

(1 + τ)−1f =
∑
l∈N

(−1)lτ lf,

and therefore the operator (1 + τ)q is well-defined for all q ∈ Z.

Proposition 4.2. Let G : R4 → C be smooth and compactly supported in

R× (R3 \ {0}), and let m(n, µ, η) be defined by (3.2). For all α ∈ N3,

(4.4)

∫
N3,2

|yα KG(L,Y)(x, y)|2 dx dy

≤ Cα
∑
ι∈Iα

∑
n∈N

∫
R3

∫
R
|∂γιη ∂lιµ δkι(1 + τ)|β

ι|−kιm(n, µ, η)|2

× µ2bι |η|2|γι|−2|α|−2kι+|βι|+1〈n〉|βι| dµ dη,

where Iα is a finite set and, for all ι ∈ Iα,

• γι ∈ N3, lι, kι ∈ N, γι ≤ α, min{1, |α|} ≤ |γι|+ lι + kι ≤ |α|,
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• bι ∈ N, βι ∈ N3, bι + |βι| = lι + 2kι, |γι|+ lι + bι ≤ |α|.

Proof. Proposition 3.1 and integration by parts allow us to write

(4.5) yαKG(L,Y)(x, y)

=
2i|α|

(2π)6

∫
R3

∫
R3

[(
∂

∂η

)α∑
n∈N

m(n, ξη‖ , η)L(0)
n (|ξη⊥|

2/|η|)

]
ei〈ξ,x〉 ei〈η,y〉 dξ dη.

From the definition of ξη‖ and ξη⊥, the following identities are not difficult to

obtain:

(4.6)

∂

∂ηj
ξη‖ = (ξη⊥)j

1

|η|
,

∂

∂ηj
(ξη⊥)k = −ξη‖

∂

∂ηj

ηk
|η|
− (ξη⊥)j

ηk
|η|2

,

∂

∂ηj

|ξη⊥|2

|η|
= −ξη‖ (ξ

η
⊥)j

2

|η|2
− |ξη⊥|

2 ηj
|η|3

.

The multiindex notation will also be used as follows:

(ξη⊥)β = (ξη⊥)β11 (ξη⊥)β22 (ξη⊥)β33

for all ξ, η ∈ R, with η 6= 0, and all β ∈ N3; consequently

|ξη⊥|
2 = (ξη⊥)(2,0,0) + (ξη⊥)(0,2,0) + (ξη⊥)(0,0,2).

Via these identities, one can prove inductively that, for all α ∈ N3,

(4.7)

(
∂

∂η

)α∑
n∈N

m(n, ξη‖ , η)L(0)
n (|ξη⊥|

2/|η|)

=
∑
ι∈Iα

∑
n∈N

∂γ
ι

η ∂
lι
µ δ

kιm(n, ξη‖ , η) (ξη‖ )
bι (ξη⊥)β

ι

Θι(η)L(kι)
n (|ξη⊥|

2/|η|),

where Iα, γι, lι, kι, bι, β
ι are as in the statement above, while Θι : R3\{0} →

R is smooth and homogeneous of degree |γι|−|α|−kι. For the inductive step,

one employs Leibniz’ rule, and when a derivative hits a Laguerre function,

the identity (4.2) together with summation by parts is used.

Note that, for all compactly supported f : N× R× R3 → C,∑
n∈N

f(n, µ, η)L(k)
n (t) =

∑
n∈N

(1 + τ)f(n, µ, η)L(k+1)
n (t),

by (4.1). Since 1 + τ is invertible, simple manipulations and iteration yield

the more general identity∑
n∈N

f(n, µ, η)L(k)
n (t) =

∑
n∈N

(1 + τ)k
′−kf(n, µ, η)L(k′)

n (t),
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for all k, k′ ∈ N. This formula allows us to adjust in (4.7) the type of the

Laguerre functions to the exponent of ξ⊥, and to obtain that(
∂

∂η

)α∑
n∈N

m(n, ξη‖ , η)L(0)
n (|ξη⊥|

2/|η|)

=
∑
ι∈Iα

∑
n∈N

∂γ
ι

η ∂
lι
µ δ

kι(1 + τ)|β
ι|−kιm(n, ξη‖ , η)

× (ξη‖ )
bι (ξη⊥)β

ι

Θι(η)L(|βι|)
n (|ξη⊥|

2/|η|),

By plugging this identity into (4.5) and exploiting Plancherel’s formula

for the Fourier transform, the finiteness of Iα and the triangular inequality,

we get that∫
N3,2

|yαKG(L,Y)(x, y)|2 dx dy

≤ Cα
∑
ι∈Iα

∫
R3

∫
R

∫
R2

∣∣∣∣∣∑
n∈N

∂γ
ι

η ∂
lι
µ δ

kι(1 + τ)|β
ι|−kιm(n, µ, η)L(|βι|)

n (|ζ|2/|η|)

∣∣∣∣∣
2

× µ2bι |ζ|2|βι| |η|2|γι|−2|α|−2kι dζ dµ dη

A passage to polar coordinates in the ζ-integral and a rescaling then give

that∫
N3,2

|yαKG(L,Y)(x, y)|2 dx dy

≤ Cα
∑
ι∈Iα

∫
R3

∫
R

∫ ∞
0

∣∣∣∣∣∑
n∈N

∂γ
ι

η ∂
lι
µ δ

kι(1 + τ)|β
ι|−kιm(n, µ, η)L(|βι|)

n (s)

∣∣∣∣∣
2

s|β
ι| ds

× µ2bι |η|2|γι|−2|α|−2kι+|βι|+1 dµ dη,

and the conclusion follows by applying the orthogonality relations (4.3) for

the Laguerre functions to the inner integral. �

Note that τf(·, µ, η), δf(·, µ, η) depend only on f(·, µ, η); in other words,

τ and δ can be considered as operators on functions N→ C. The next lemma

will be useful in converting finite differences into continuous derivatives.

Lemma 4.3. Let f : N → C have a smooth extension f̃ : [0,∞[ → C, and

let k ∈ N. Then

δkf(n) =

∫
Jk

f̃ (k)(n+ s) dνk(s)

for all n ∈ N, where Jk = [0, k] and νk is a Borel probability measure on Jk.

In particular

|δkf(n)|2 ≤
∫
Jk

|f̃ (k)(n+ s)|2 dνk(s)

for all n ∈ N.
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Proof. Iterated application of the fundamental theorem of integral calculus

gives

δkf(n) =

∫
[0,1]k

f̃ (k)(n+ s1 + · · ·+ sk) ds.

The conclusion follows by taking as νk the push-forward of the uniform

distribution on [0, 1]k via the map (s1, . . . , sk) 7→ s1 + · · · + sk, and by

Hölder’s inequality. �

We give now a simplified version of the right-hand side of (4.4), in the

case where we restrict to the functional calculus for the sublaplacian L

alone. In order to avoid divergent series, however, it is convenient at first to

truncate the multiplier along the spectrum of Y.

Lemma 4.4. Let χ ∈ C∞c (R) be supported in [1/2, 2], K ⊆ ]0,∞[ be com-

pact and M ∈ ]0,∞[. If F : R → C is smooth and supported in K, and

FM : R× R3 → C is given by

FM(λ, η) = F (λ)χ(|η|/M),

then, for all r ∈ [0,∞[,∫
N3,2

||y|r KFM (L,Y)(x, y)|2 dx dy ≤ CK,χ,rM
3−2r‖F‖2W r

2
.

Proof. We may restrict to the case r ∈ N, the other cases being recovered a

posteriori by interpolation. Hence we need to prove that

(4.8)

∫
N3,2

|yα KFM (L,Y)(x, y)|2 dx dy ≤ CK,χ,αM
3−2|α|‖F‖2

W
|α|
2

for all α ∈ N3. On the other hand, if

m(n, µ, η) = F (|η|〈n〉+ µ2)χ(|η|/M),

then the left-hand side of (4.8) can be majorized by (4.4), and we are reduced

to proving that

(4.9)
∑
n∈N

∫
R3

∫
R
|∂γιη ∂lιµ δkι(1 + τ)|β

ι|−kιm(n, µ, η)|2 µ2bι |η|2|γι|−2|α|−2kι+|βι|+1

× 〈n〉|βι| dµ dη ≤ CK,χ,αM
3−2|α|‖F‖2

W
|α|
2

for all ι ∈ Iα.

Consider first the case |βι| ≥ kι. A smooth extension m̃ : R×R×R3 → C
of m is defined by

m̃(t, µ, η) = F (|η|(2t+ 1) + µ2)χ(|η|/M).
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Then, by Lemma 4.3,

∂γ
ι

η ∂
lι
µ δ

kι(1 + τ)|β
ι|−kιm(n, µ, η)

=

|βι|−kι∑
j=0

(
|βι| − kι

j

)∫
Jι

∂γ
ι

η ∂
lι
µ ∂

kι
t m̃(n+ j + s, µ, η) dνι(s),

where Jι = [0, kι] and νι is a suitable probability measure on Jι; consequently

(4.9) will be proved if we show that

(4.10)
∑
n∈N

∫
R3

∫
R
|∂γιη ∂lιµ ∂kιt m̃(n+ s, µ, η)|2 µ2bι |η|2|γι|−2|α|−2kι+|βι|+1

× 〈n〉|βι| dµ dη ≤ CK,χ,αM
3−2|α|‖F‖2

W
|α|
2

for all s ∈ [0, |βι|]. On the other hand, it is easily proved inductively that

∂γ
ι

η ∂
lι
µ ∂

kι
t m̃(t, µ, η)

=
lι∑

r=dlι/2e

|γι|∑
v=0

|γι|−v∑
q=0

Ψι,v,q(η) 〈t〉vµ2r−lιM−qF (kι+v+r)(|η|〈t〉+µ2)χ(q)(|η|/M)

for all t ≥ 0, where Ψι,v,q : R3 \ {0} → R is smooth and homogeneous of

degree kι + v + q − |γι|; hence

(4.11) |∂γιη ∂lιµ ∂kιt m̃(t, µ, η)|2 ≤ Cχ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M2kι+2v−2|γι|〈t〉2vµ4r−2lι

× |F (kι+v+r)(|η|〈t〉+ µ2)|2 χ̃(|η|/M),

where χ̃ is the characteristic function of [1/2, 2], and we are using the fact

that |η| ∼M in the region where χ̃(|η|/M) 6= 0. Consequently the left-hand
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side of (4.10) is majorized by

Cχ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M2v−2|α|+|βι|+1
∑
n∈N

〈n〉|βι|〈n+ s〉2v

×
∫
R3

∫
R
|F (kι+v+r)(|η|〈n+ s〉+ µ2)|2 µ2bι+4r−2lι χ̃(|η|/M) dµ dη

≤ Cχ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M2v−2|α|+|βι|+3
∑
n∈N

〈n+ s〉|βι|+2v

×
∫ ∞
0

∫ ∞
0

|F (kι+v+r)(ρ〈n+ s〉+ µ2)|2 µ2bι+4r−2lι χ̃(ρ/M) dµ dρ

≤ Cχ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M2v−2|α|+|βι|+3

∫ ∞
0

∫ ∞
0

|F (kι+v+r)(ρ+ µ2)|2

× µ2bι+4r−2lι
∑
n∈N

〈n+ s〉|βι|+2v−1χ̃(ρ/(〈n+ s〉M)) dµ dρ,

by passing to polar coordinates and rescaling. The last sum in n is easily

controlled by (ρ/M)|β
ι|+2v, hence the left-hand side of (4.10) is majorized

by

Cχ,αM
3−2|α|

lι∑
r=dlι/2e

|γι|∑
v=0

∫ ∞
0

∫ ∞
0

|F (kι+v+r)(ρ+µ2)|2µ2bι+4r−2lι ρ|β
ι|+2v dµ dρ

≤ CK,χ,αM
3−2|α|

lι∑
r=dlι/2e

|γι|∑
v=0

sup
u∈[0,maxK]

∫ ∞
0

|F (kι+v+r)(ρ+ u)|2 dρ,

because 2bι + 4r − 2lι ≥ 0 and |βι| + 2v ≥ 0 if r and v are in the range of

summation, and suppF ⊆ K. Since moreover kι+v+r ≤ kι+ |γι|+ lι ≤ |α|,
the last integral is dominated by ‖F‖2

W
|α|
2

uniformly in r, v, u, and (4.10)

follows.

Consider now the case |βι| < kι. Via the identity

(1 + τ)−1 = (1− τ)(1− τ 2)−1 = −δ(1− τ 2)−1 = −δ
∞∑
j=0

τ 2j,

together with Lemma 4.3, we obtain that

(4.12) ∂γ
ι

η ∂
lι
µ δ

kι(1 + τ)|β
ι|−kιm(n, µ, η)

= (−1)kι−|β
ι|
∞∑
j=0

(
j+kι−|βι|−1
kι−|βι|−1

) ∫
Jι

∂γ
ι

η ∂
lι
µ ∂

2kι−|βι|
t m̃(n+ 2j + s, µ, η) dνι(s),

where Jι = [0, 2kι − |βι|] and νι is a suitable probability measure on Jι. Note

that, because of the assumptions on the supports of F and χ, the sum on j
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in the right-hand side of (4.12) is a finite sum, that is, the j-th summand

is nonzero only if 〈n + 2j〉 ≤ 2M−1 maxK; consequently, by applying the

Cauchy-Schwarz inequality to the sum in j, and by (4.11),

|∂γιη ∂lιµ δkι(1 + τ)|β
ι|−kιm(n, µ, η)|2

≤ CK,αM
1+2|βι|−2kι

∞∑
j=0

∫
Jι

|∂γιη ∂lιµ ∂
2kι−|βι|
t m̃(n+ 2j + s, µ, η)|2 dνι(s)

≤ CK,χ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M1+2kι+2v−2|γι|
∞∑
j=0

∫
Jι

〈n+ 2j + s〉2vµ4r−2lι

× |F (2kι−|βι|+v+r)(|η|〈n+ 2j + s〉+ µ2)|2 χ̃(|η|/M) dνι(s).

Remember that |η| ∼ M in the region where χ̃(|η|/M) 6= 0. Hence the

left-hand side of (4.9) is majorized by

CK,χ,α

lι∑
r=dlι/2e

|γι|∑
v=0

∫
Jι

∑
n∈N

∑
j∈N

〈n+ 2j + s〉2v〈n〉|βι|
∫
R3

∫
R
M2+2v−2|α|+|βι|

× µ2bι+4r−2lι |F (2kι−|βι|+v+r)(|η|〈n+ 2j + s〉+ µ2)|2 χ̃(|η|/M) dµ dη dνι(s)

≤ CK,χ,α

lι∑
r=dlι/2e

|γι|∑
v=0

∫
Jι

∑
n∈N

∑
j∈N

〈n+ 2j + s〉2v+|βι|
∫ ∞
0

∫ ∞
0

M4+2v−2|α|+|βι|

× µ2bι+4r−2lι |F (2kι−|βι|+v+r)(ρ〈n+ 2j + s〉+ µ2)|2 χ̃(ρ/M) dµ dρ dνι(s)

≤ CK,χ,α

lι∑
r=dlι/2e

|γι|∑
v=0

M4+2v−2|α|+|βι|
∫ ∞
0

∫ ∞
0

|F (2kι−|βι|+v+r)(ρ+ µ2)|2

× µ2bι+4r−2lι
∫
Jι

∑
(n,j)∈N2

χ̃(ρ/(〈n+ 2j + s〉M))

〈n+ 2j + s〉1−2v−|βι|
dνι(s) dµ dρ,

by passing to polar coordinates and rescaling. The sum in (n, j) is dominated

by (ρ/M)2v+|β
ι|+1, uniformly in s ∈ Jι, and moreover suppF ⊆ K. Therefore

the left-hand side of (4.9) is majorized by

CK,χ,αM
3−2|α|

lι∑
r=dlι/2e

|γι|∑
v=0

sup
u∈[0,maxK]

∫ ∞
0

|F (2kι−|βι|+v+r)(ρ+ u)|2 dρ.

On the other hand, bι + |βι| = lι + 2kι, hence 2kι − |βι| + v + r ≤ 2kι −
|βι| + |γι| + lι = bι + |γι| ≤ |α| if r and v are in the range of summation,

therefore the last integral is dominated by ‖F‖2
W

|α|
2

uniformly in r, v, u, and

(4.9) follows. �
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Proposition 4.5. Let F : R→ C be smooth and such that suppF ⊆ K for

some compact set K ⊆ ]0,∞[. For all r ∈ [0, 3/2[,∫
N3,2

∣∣(1 + |y|)r KF (L)(x, y)
∣∣2 dx dy ≤ CK,r‖F‖2W r

2
.

Proof. Take χ ∈ C∞c (]0,∞[) such that suppχ ⊆ [1/2, 2] and
∑

k∈Z χ(2−kt) =

1 for all t ∈ ]0,∞[. Note that, if (λ, η) belongs to the joint spectrum

of L,Y, then |η| ≤ λ. Therefore, if kK ∈ Z is sufficiently large so that

2kK−1 > maxK, and if FM is defined for all M ∈ ]0,∞[ as in Lemma 4.4,

then

F (L) =
∑

k∈Z, k≤kK

F2k(L,Y)

(with convergence in the strong sense). Hence an estimate for KF (L) can

be obtained, via Minkowski’s inequality, by summing the corresponding

estimates for KF
2k

(L,Y) given by Lemma 4.4. If r < 3/2, then the series∑
k≤kK (2k)3/2−r converges, thus∫

N3,2

∣∣|y|r KF (L)(x, y)
∣∣2 dx dy ≤ CK,r‖F‖2W r

2
.

The conclusion follows by combining the last inequality with the correspond-

ing one for r = 0. �

Recall that | · |δ denotes a δt-homogeneous norm on N3,2, thus |(x, y)|δ ∼
|x| + |y|1/2. Interpolation then allows us to improve the standard weighted

estimate for a homogeneous sublaplacian on a stratified group.

Proposition 4.6. Let F : R→ C be smooth and such that suppF ⊆ K for

some compact set K ⊆ ]0,∞[. For all r ∈ [0, 3/2[, α ≥ 0 and β > α + r,

(4.13)∫
N3,2

∣∣(1 + |(x, y)|δ)α (1 + |y|)r KF (L)(x, y)
∣∣2 dx dy ≤ CK,α,β,r‖F‖2Wβ

2

.

Proof. Note that 1 + |y| ≤ C(1 + |(x, y)|δ)2. Hence, in the case α ≥ 0,

β > α + 2r, the inequality (4.13) follows by the standard estimate [16,

Lemma 1.2]. On the other hand, if α = 0 and β ≥ r, then (4.13) is given by

Proposition 4.5. The full range of α and β is then obtained by interpolation

(cf. the proof of [16, Lemma 1.2]). �

We can finally prove the fundamental L1-estimate, and consequently

Theorem 1.1.

Proof of Proposition 2.1. Take r ∈ ]9/2− s, 3/2[. Then s−r > 3/2+3−2r,

hence we can find α1 > 3/2 and α2 > 3 − 2r such that s − r > α1 + α2.
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Therefore, by Proposition 4.6 and Hölder’s inequality,

‖KF (L) ‖21 ≤ Ck,s‖F‖2W s
2

∫
N3,2

(1 + |(x, y)|δ)−2α1−2α2 (1 + |y|)−2r dx dy.

The integral on the right-hand side is finite, because 2α1 > 3, α2 + 2r > 3,

and

(1 + |(x, y)|δ)−2α1−2α2 (1 + |y|)−2r ≤ Cs(1 + |x|)−2α1 (1 + |y|)−α2−2r,

and we are done. �
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