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Abstract: Shape memory alloy actuators have been studied for more than thirty years. Many experi-
mental tests have been performed, and several patents have been registered. However, designing
such devices is still a challenging task. On the one hand, models are not yet able to provide the
accuracy required to replace a substantial portion of the experimental tests; on the other hand, it seems
that a gap exists in the literature between the main ideas behind SMA torsional actuators and their
actual implementation. This work is a systematic effort to fill this gap, helping researchers and
designers in developing SMA torsional actuators with a particular focus on aeronautical applications.
This paper reports all the steps toward the preliminary design of such devices, using a state-of-the-
art, commercially available FEM software. Moreover, the SMA rods’ behaviour under mechanical
and thermal loading is thoroughly examined, looking at monitoring stress, temperature, torque
and martensite evolution simultaneously, and thus providing a holistic vision of the macroscopic
phenomena involved during phase transformations. Simple aerodynamic load predictions are also
performed, using Xfoil for three classes of aircraft (medium size UAV, Four-Seat Aircraft and Regional
Transport Aircraft).

Keywords: shape memory alloy; torsional actuator; hinge moment; flap; adaptive trailing edge; UAV;
Cessna 172; ATR 42; Xfoil; nastran

1. Introduction

Shape Memory Alloys are metals capable of undergoing large deformations (up to
10% and beyond) [1] as a consequence of lattice swap and crystallographic reorientation
during a solid-state transformation. Moreover, SMAs can recover most of the residual-
stress-induced deformation upon heating. This unique property makes them promising
candidates as solid-state actuators. The main idea underlying the implementation of shape
memory, alloy-based torsional actuators is fairly straightforward. Let us consider an SMA
rod, or tube, clamped at one end and deformed under torque in such a way as to rotate its
free edge up to a certain angle, enough to induce phase transformation (from an austenite to
martensite phase). Heating the specimen to bring it over a so-called activation temperature,
until the full-transformation temperature is reached (Austenite finish temperature, or A f ),
will bring it back to its original undeformed shape, generating rotary actuation. The
main advantage of such devices is a reduced part number, and lower maintenance issues,
resulting in them becoming simpler, more efficient, and more reliable. Furthermore, they
can be integrated into structures as further load-bearing elements, therefore reducing the
added weight. Generally, SMA actuators may provide a way to morph wing technologies’
industrial applications, since they allow distributed actuator arrays to be spread along
the aerodynamic surfaces, with minimal impact in terms of volume occupation, general
increases in cost, and weight penalties. An essential aspect concerns SMA energy density,
which is over 1000 J/kg, [1].
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Recently, many shape memory, alloy-based actuators have been developed and
patented to improve the overall performance of movable surfaces. Among others, those
presented by the Boeing Company, and particularly [2–5], may be considered as the most
relevant examples. Mabe et al. [2] developed an SMA actuator for movable surfaces,
including locking mechanisms and a clutch or spline coupling between the driver and the
driven system. This device also includes a spring, which can work together with the locking
mechanism to achieve a faster actuation. Arbogast et al. [3,4] NiTinol actuator is integrated
into the rotor blade as a structural element, controlling the blade twist. The active part of
the actuator is composed of two parallel SMA torque tubes that simultaneously activate
during each actuation. Thus, by leveraging two-way SME, it is possible to overcome the
necessity for a return spring, which is needed for configurations in which stress-assisted
SME is required. Moreover, thermal electric modules and a thermosyphon are used to
optimise temperature management. Calkins et al. [5] developed an Adaptive Trailing Edge
(ATE) consisting of a little split-flap of 2% of the local chord, which can deflect in a range
between 30 degrees up and 60 degrees down. The overall apparatus is redundant for safety
reasons and includes secondary components that also provide a locking and damping
function. A dual-tube design is adopted to control the flap motion from a martensite to
austenite transformation for both deployment and retraction via heating. This device was
tested in flight on a Boeing 737–800, leading to maturation from TRL4 to TRL7.

Other remarkable studies in the field were developed by NASA, inside the Spanwise
Adaptive Wing (SAW) programme [6], and by the European Consortium of Universities
and Research Centers, coordinated by the University of Bristol (Shape Adaptive Blades
for Rotorcraft Efficiency, SABRE), whose results led to a patent application concerning
an SMA actuation system to increase rotor blade efficiency [7]. The SAW programme
was developed to articulate outboard wing sections using SMA torsional actuators. The
project’s aim is twofold: saving aeroplanes planform space for specific applications as
aircraft carrier missions, and augmenting lateral–directional stability. While static actuation
was performed on a full-scale F18 wing, flight tests were carried out on a UAV platform,
denominated Area-I PTERA, in 2017. Furthermore, the patent proposal from [7] consists
of a morphing system, based on an SMA solid torsional actuator that can alter the twist
law of the blade to improve helicopter performance in specific flight regimes (hover and
vertical flight), which are generally penalized by the conventional design, in favor of more
extended phases of the flight envelope (cruise).

Speaking of SMA systems modelling, it can be stated that the reference works in the
sector are represented by the works reported in [8,9]. Indeed, Auricchio et al. [8] devel-
oped a refined and general three-dimensional phenomenological constitutive model for
shape memory alloys, accounting for a variety of physical phenomena, such as martensite
reorientation and different kinetics between forward- and reverse-phase transformations,
as well as smooth thermo-mechanical response, low-stress phase transformations, and
transformation-dependent elastic properties. Moreover, Popov et al. [9] designed a 3D
constitutive model for SMAs based on a modified phase-transformation diagram. This
model considers both the direct conversion of austenite into detwinned martensite and the
detwinning of twinned martensite, making it suitable to predict the behaviour of SMAs
undergoing complex thermomechanical loading paths in a stress–temperature space.

If the behaviour of both rods and tubes under torque loading are referenced, a signifi-
cant contribution to the literature may be found in [10,11]. In these latter cases, remarkable
original models are proposed, based on the same 3D general constitutive law, developed
from considerations related to the Gibbs free energy.

In the latest thirty years, many design approaches have been presented, and several
mathematical models were developed in response to the increasing demand for accuracy in
predicting SMA behavior. However, despite this effort, the design of such devices still has
unsolved issues. This work presents a novel approach for designing torsional SMA-based
devices, from the early concept to the preliminary layout definition. Moving from shape
memory alloys’ fundamental diagrams, an original interpretation of the actuator diagrams
is introduced, and guidelines for implementing a specifically suited design strategy within
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the commercial software are given. Patterns are introduced to estimate the SMA behaviour
in operational conditions and to evaluate the impinging aerodynamic loads. In summary,
the paper aims to provide a reference for conceiving shape-memory-alloy-based torsional
actuators with a particular focus on their aeronautical applications; the proposed approach
uses preferentially commercial off-the-shelf engineering solutions. A final discussion
analyses both its potential and its current limitations.

2. Materials and Methods
2.1. Preliminary Remarks
2.1.1. Phase Diagram

Depending on the applied stress and temperature, SMA can exist in two different
phases: austenite, exhibiting a high-symmetry crystal lattice, and martensite, with a low-
symmetry monoclinic lattice. While austenite is associated with a unique macroscopic
specimen shape, martensite exhibits different macroscopic shapes according to the amount
and direction of the induced deformation strain (i.e., the deformation obtained from lattice
swap and crystallographic reorientation). This mechanism is known as detwinning; indeed,
reference is made to twinned and detwinned martensite for the states of 0% and 100% of
the transformation strain associated with the specimen under examination.

The alloy considered in this work is NiTiNol due to its superior performance in terms
of mechanical properties and strain recovery, which makes it preferable with respect to
other SMAs for the examined application. Within this alloy’s typology, a class with su-
perelastic behavior at room temperature and characterized by stress transformation values
below 350 MPa was selected. For typical stress/temperature gradients of 6–7 MPa/◦C,
the austenite start and finish temperatures remain in the range between −20 and 30 ◦C at
zero stress. As a pre-load is applied, inducing a stress field within the SMA, such transfor-
mation temperatures arise well over the maximum operational temperature of a vehicle,
typically 80 ◦C.

Phase diagrams, simplified in Figure 1c, show the existence of different phases, de-
pending on temperature and stress, for a simple unidirectional loading test. Moreover,
their great utility is to show the interdependence between transformation temperatures
and stresses. Indeed, stress-induced phase and shape transformation begins and finishes at
different values depending on temperature, and temperature-induced transformation, in
the same way, is influenced by the applied stress.

2.1.2. Stress–Strain Diagram

For a given temperature, it is possible to load and unload an SMA under unidirectional
stress, obtaining a hysteresis loop in the stress–strain diagram, as shown in Figure 1a. The
corners of the parallelogram are, in order, the martensite start, martensite finish, austenite
start and austenite finish stresses for the investigated temperature. This behaviour, known
as the pseudoelastic effect, occurs because the considered temperature is sufficiently high
to activate the strain recovery when the load expires. Changing the temperature will affect
the values of the transformation stresses. The shape memory effect occurs in cases where
the temperature is low enough that, upon unloading, the strain is not instantly recovered,
but a heat source is required.

2.1.3. Strain–Temperature Diagram

A similar hysteresis loop can be represented in the Strain-Temperature field at a given
stress, as illustrated in Figure 1b. In this case, the corners of the parallelogram represent
the austenite start, austenite finish, martensite start and martensite finish temperature at
a given stress. Again, different stress magnitudes correspond to different transformation
temperatures values.
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(a) Stress Strain diagram.

(b) Strain Temperature diagram.

(c) Stress Temperature diagram.

Figure 1. Simplified representation of the fundamental diagrams.
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2.2. Graphical Analysis
2.2.1. Theoretical Approach Based on Stiffness Curve Comparison

The three charts mentioned above can be manipulated and combined into what will be
referred to hereafter as the actuator’s diagram. First of all, it is interesting to note that the
torque-angle characteristic of SMA tubes and rods shows a similar behaviour with respect
to the stress–strain diagram under unidirectional loading. Similarly, the angle temperature
response recalls that of the strain-temperature, again showing a hysteresis loop. It is
important to underline that, in rods subjected to torque loading, the transition between
austenite and martensite begins in the outer section of the component, where the stress is
higher, and subsequently spreads toward the inside of the same, so the linear segments
of the hysteresis loops should be replaced by smoother curves in both torque-angle and
temperature-angle diagrams. Moreover, the stress in the inner core along the radius of the
specimen will never be high enough to trigger the austenite-to-martensite transformation.
As a result, for torque rods, the lines referred to in the 100% martensite phase actually
represent an asymptote. Experimental data on the thermal and mechanical cycle of torque
SMA torque tubes can be found in [12,13]. To provide a more intuitive representation of the
phenomena under investigation, the diagrams illustrated below are represented as those
referring to a unidirectional loading case. Moreover, because stress varies with the radius
in a rod subjected to a torsional load, the applied torque will be reported instead of stress
to avoid ambiguity. The actuator’s diagram is built beginning from the torque-angle field.

The following approach consists of a series of steps in which classical torque-angle
charts are manipulated to represent SMA actuators’ behaviour more directly. Figure 2 rep-
resents the torque-angle characteristic (C and θ, respectively) for two different components
in the same reference frame. In particular, the red and orange lines show a simplified SMA,
exhibiting a pseudoelastic effect at temperature T1. In particular, red segments represent
the loading path, while the orange ones represent the unloading path. The blue line, instead,
shows a linear elastic response, such as that of a torsional spring. For the coupled deflection
angles, θ1 and θ2, the reaction torque of the two components is equal and opposite, so that
C1 = C2 in absolute value.

Figure 2. Actuator diagram—Step 1.

A graphical representation of these components is presented in Figure 3, in which,
moreover, the torsional spring torque is substituted by its modulus. This representa-
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tion aims to immediately obtain that the reaction torque of the components is equal in
absolute values.

Figure 3. Actuator diagram—Step 2.

A more functional representation is achieved in Figure 4. Indeed, the origin of the
θ axis related to the torsional spring is translated rightward, overlapping θ1 and θ2 in
their respective reference frame. Despite having two θ–axis could appear less intuitive, the
advantage of this representation method is that any change in the equilibrium position θ1,
θ2 is immediately recognised for both the SMA and the linear elastic spring.

Figure 4. Actuator diagram—Step 3.

Indeed, as shown in Figure 5, the coupling of the two preloaded components con-
strains both of them to rotate on the same angle around the original equilibrium position,
upon a perturbation. At this point, thermal-induced transformation comes into play. As
temperature rises, a martensite to austenite transformation occurs. This leads to a modi-
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fication in the torque-angle SMA characteristic that can be visualised as an upward and
rightward translation of the hysteresis loop.

Figure 5. Actuator diagram—Step 4.

Consequently, at a given temperature T2 > T1, a new equilibrium point is established,
as shown in Figure 6. The recovery of austenitic shape leads to an angular actuation of ∆θ
under a variable load. This representation immediately shows how the SMA component
returns toward its undeformed configuration while the torsional spring increases its de-
formation (note that a rigorous representation of ∆θ sign has been sacrificed for greater
clarity). Consequently, during the forward actuation, the SMA is heating and unloading;
meanwhile, in the reverse actuation, the SMA undergoes cooling and loading. This con-
sideration is crucial to understand that, upon heating and shape recovery, the equilibrium
point is obtained from the intersection of the load line with the unloading segment of the
SMA loop (M→ A segment), while, during cooling, the loading section (A→ M) has to be
considered. It is clear at this point that aspects of both thermal-induced and stress-induced
transformation are involved.

The aspects described above are further illustrated in [14], where SMA elements
were used for the actuation of morphing trailing edges. The actuator design moved from
the force equilibrium, and the displacements’ congruence conditions, between the shape
memory alloy and the driven structure. A graphical tool, overlapping SMA load–unload
cycles and the equivalent structural elastic line, was used to describe the evolution of the
working points of the morphing system vs. the temperature.

The angle-temperature chart and the torque-temperature diagram are included to
monitor torque, rotation and temperature continuously with time. Note that, operating un-
der high-stress and -temperature conditions, a simplified version of the stress-temperature
diagram is reported.
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Figure 6. Actuator diagram—Step 5.

2.2.2. Actuator Architecture

The actuator architecture is a compromise between an overall simplicity of the system
and the accomplishment of real-world loading conditions. Actual actuators usually employ
two torque tubes, avoiding the use of a contrast spring and thus optimizing the system
weight. Moreover, leveraging on the two-way shape memory effect, both tubes can provide
torque in both direct and reverse motions. However, aiming to provide a general procedure,
and to keep the general architecture as simple as possible, the architecture proposed here
includes an SMA torque rod and a return torque spring, which are collinearly coupled.
In this way, the forward actuation exploits direct transformation (M → A), while the
backward phase transformation is assisted by the applied contrast element force (stress-
assisted, two-way memory effect). To achieve real-world loading conditions, a blocking
mechanism is encluded that enables the SMA component to cool down once the desired
position is reached. The principal advantage of this choice is the resulting energy savings;
however, even with a simple upgrade, the results are not trivial. Examples of the utilisation
of this kind of devices can be found in a flap or adaptive trailing edge. With the intention
of keeping operations simple, the actuator is designed to only provide movement in the
forward direction, while a further damped return spring system controls the backward
motion. A similar solution was implemented in [2]. To deactivate the SMA tube while
maintaining an unaltered control surface position, a spline coupling system or a clutch
is required. These components are essential to decouple the driving SMA rod rotation
from that of the driven shaft during cool-down. In this way, upon cooling, the SMA can
recover the shape associated with its martensitic phase, while the driven shaft keyed with
the control surface maintains its angular position thanks to the locking mechanism. Upon
locking release, the driven shaft recovers its original position. In the case of an adaptive
trailing edge, in which upward deflection is also needed, the equilibrium position of the
return mechanism can be set with a certain offset with respect to the hinge zero angular
displacement, so that the actuator can provide either negative or positive deflections,
despite always operating in the same direction. A spline assembly similar to that presented
in [2] and its working scheme is illustrated in Figure 7. Two different configurations are
examined, considering an architecture with and without a clutch, to decouple the driving
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shaft from the driven one. Figure 8 shows a schematic image of the architecture described
above.

Figure 7. Spline coupling working principle.

Figure 8. Outline of the SMA actuator under investigation.

2.2.3. Actuator with Clutch

At this point, it is possible to examine the working scheme and the expected re-
sponse of the SMA rod during actuation. All the steps are enumerated coherently in
Figures 9 and 10, which represent a simplified schematic of the actuator. Note that the
numbers presented on the top of each box represent a hypothetical angle of deflection for
the related assembly, while the red and green dots represent an activated or de-activated
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locking mechanism, respectively. Moreover, a continuous rectangle between the “SMA+EL
box” and the rest of the system represents a disengaged clutch (the systems are coupled);
meanwhile, a discontinuity between the two of them represent that the clutch is engaged
(the systems are decoupled). Point 1 represents the initial equilibrium condition between
the SMA rod and the driven system, represented by the green line. Upon heating, before
reaching Aσ

s (which indicates the temperature intercepted on the As line for a given stress
σ. This kind of notation will often be reported hereafter); no significant changes can be
appreciated on the stress–strain diagram (Point 2). Further temperature increases, beyond
Aσ

s induce the martensite-to-austenite transformation, resulting in the original shape re-
covery. Consequently, from point 2 to 3, the SMA rod angle and strain decrease following
the load line equilibrium condition. This means that the 2→ 3 transformation induced by
temperature rise undergoes a variable load. The yellow shaded lines in stress-temperature
and strain-temperature diagrams are hypothetical paths based on the expected starting
and finishing equilibrium points. Note that point 3 also represents the SMA rod’s angular
position at the end of the forward actuation. At this step, the locking system is activated to
hold the flap in position, and the clutch is engaged, enabling the SMA rod to cool down
and return to its martensitic phase. As the driver and driven systems are decoupled, the
overall torque applied to the SMA drops down to the horizontal load line, as shown in
points 3 and 4. Simultaneously monitoring all three charts, it is evident that temperatures
remain constant, and stress decreases as well as strain, following the high-temperature
SMA characteristic. Again, the 3→ 4 loading path on stress–strain and strain-temperature
diagrams are based on starting and finishing equilibrium points. Cooling the SMA rod
down to Mσ

s does not involve any macroscopic stress–strain change, as shown in points 4
and 5. Further decreases in temperature trigger the stress-assisted shape memory effect.
The transformation ends on Point 6 as Mσ

f is reached. Strictly speaking, cooling down the
SMA from point 6 to 7 under constant torque should induce a further increase in the rod
strain, moving to the 100% martensite characteristic. Still, to simplify this dissertation, it
can be assumed that Points 1 and 7 are sufficiently close to Mσ

f so that no macroscopical
effects can be observed.

Figure 9. Graphical analysis—Actuator with clutch.
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Figure 10. Functioning scheme—Actuator with clutch.

2.2.4. Actuator without Clutch

The working scheme and the graphical analysis of the actuator without clutch are
reported in Figures 11 and 12. Most of the transformations involved in an actuator without
a clutch are the same as illustrated in the previous section. Indeed, nothing changes up to
Point 3. The spline coupling allows to decouple the SMA rod backward motion from that of
the driven system, however, the forward motion still remains constrained. Differently from
the case presented above, upon cooling the SMA rod cannot undergo strain decreasing
since the lower angular position is imposed by the flap position. Consequently, as Aσ

s for
the point 3 stress level is reached, A→ M transformation begins but no strain changes can
occur, since the returning force at this step is not high enough. Further temperature drop
increases the martensitic volume fraction, lowering the component stiffness. As a result,
stress must decrease, while strain remains constant during the 4 to 5 transformation. At
step 5, the returning force is sufficient to trigger the stress-assisted two-way memory effect,
so that the original shape is recovered at point 6. The following steps are not different with
respect to the clutch provided actuator. In the light of this working sequence, a big concern
emerges. During the transformation 4→ 5 according to established literature, austenite to
twinned martensite transformation cannot occur in a high-stress, high-temperature region
of the phase diagram as in this case. On the other hand, 4 → 5 transformations don’t
involve any macroscopic shape recovery, thus suggesting that detwinned martensite, which
is associated with macroscopic shape deformation, is not forming. Consequently, two
possibilities can be found:

• The 4 → 5 transformation generates twinned martensite, eventually decaying the
SMA actuator performance due to retained martensite and the consequent decrease in
of transformation strain over time. On the other hand, this would open a new region
in the phase diagram, that has not been considered before.

• The 4 → 5 transformation generates detwinned martensite, even without a macro-
scopic shape change, thus preserving the transformation strain and the SMA perfor-
mance over time.
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Figure 11. Graphical analysis—Actuator without clutch.

Figure 12. Functioning scheme—Actuator without clutch.

In this context, Popov and Lagoudas [9] examined a similar situation, obtaining the
response predicted by their model, considering, for simplicity, a rod in a uniaxial stress state.
Under high-stress and -temperature conditions with 100% austenite phase, the specimen
is constrained and then gradually cooled. They observed that the transformation strain
has a maximum value that is an order of magnitude greater than the elastic strain (which
is fixed during the cooling). As a result, just a small amount of phase transformation
is necessary to produce transformation strains that are comparable to the elastic strain,
resulting in a significant reduction in stress. In view of this, the second possibility appears
to be more realistic; however, it is worth mentioning that the results presented above are
not experimental data, but model-predicted. Moreover, it would be a good measure to
perform an experimental test on long-term response to dispel any remaining doubt.
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2.3. FEM Validation
2.3.1. FEM Model and Material Validation

The conceptual design based on the graphical analysis was validated, creating original
models using MSC Patran and Nastran (v2017.1), which adopts Auricchio’s formulation [15,16].
Specific criteria drove their realization. These include the non-linearity of the elements, to
support the constitutive law of the SMA, and the number of elements along the radius, to
adequately describe the stress–strain–martensite phase behaviour within the cross-section.

The shape memory alloys were defined using MATSMA material property [17], origi-
nally designated for MSC Marc and compatible with Nastran SOL400 (implicit non-linear
static solution). The NiTi alloy material parameters for the model under examination were
extrapolated from Taheri et al. [11] and summarized in Table 1.

Table 1. MATSMA entries (N, mm, ton).

1 2 3 4 5 6 7 8 9 10

MATSMA MID MODEL T0 L

Ea νa ρa σAS
s σAS

f Ca

Em νm ρm σSA
s σSA

f Cm

MATSMA 1 1 24 0.023

25× 103 0.330 6.5× 10−9 150 325 6.8

15× 103 0.330 6.5× 10−9 175 45 7.6

For the specimen discretisation, solid elements CHEXA-20 and CPENTA-15 were
adopted, which are modified isoparametric elements that use selective integration points
for different strain components [18]. Moreover, to achieve simple outputs, two RBE2 spider
elements were connected at either end to apply loads and constraints. The subject of the
finite-element analysis is an SMA rod, 200 mm long and with a radius of 5 mm, whose
expected performance is compatible with a UAV flap actuator device, as shown later in this
article. Despite a tube offering higher torque outputs for the same weight, rods are less
susceptible to buckling effects; moreover, this work aims to discover the SMA behaviour in
the inner radial parts, as the generated lower stress should lead to partial transformations.
To validate the model, the FEM results under uniaxial loading at different temperatures
were compared to experimental data from Taheri et al. [11]. As expected, the transformation
stresses were accurately predicted. At the same time, the strain seems to be over-estimated
with respect to the experimental data. It is thought that the main reason behind these
differences could derive from the reduced integration method adopted for the CHEXA
element, which could underestimate the element stiffness. As an example, Table 2 compares
the theoretical transformation stresses with those obtained from the FEM model at 24 ◦C.

Table 2. Theoretical vs. FEM analysis transformation stresses at 24 ◦C.

Th FEM Err%

σM f (MPa) 325 314.5 3.2
σMs (MPa) 150 147 2.0
σA f (MPa) 175 173.8 0.7
σA f (MPa) 45 41.4 8.0

2.3.2. Mechanical and Thermal Cycles

To obtain an idea of the SMA rod behaviour, the torque-angle diagram at different
temperatures (Figure 13), and the angle-temperature diagram at different torque values
(Figure 14), obtained by the FEM analysis, are reported. Note that the angle is measured at
the loaded end of the rod.
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Figure 13. Torque-Angle diagram at 24 ◦C 40 ◦C and 50 ◦C.

Figure 14. Angle-Temperature diagram under constant torque of 20 Nm, 40 Nm and 60 Nm.

The SMA rod behaviour is thoroughly examined, looking at monitoring stress, temper-
ature, torque and martensite evolution simultaneously, thus providing a holistic vision of
the macroscopic phenomena involved in phase transformations. The torque loading cycle
is performed, imposing an angular displacement of 180◦ at 24 ◦C. For the thermal cycle,
the rod is loaded to 40 Nm of torque at 10 ◦C; subsequently, a complete thermal cycle is
obtained, heating the specimen to 80 ◦C and then cooling it back to 10 ◦C.

The Martensite volume fraction was considered in the element centroid to avoid
physically meaningless results, as in the grid points to higher figures than those that
emerged due to data interpolation. Moreover, to reduce border effects, elements in the
mid-section along the length of the rod were considered, as shown in Figure 15. The
stress was considered in the same points to match the radial position of the two quantities
involved in this discussion. A polar diagram of the angular displacement is reported to
visualise the rod’s motion. Note that the radial value is normalised to one, and does not
refer to any physical quantity. Figures 16 and 17 show some snapshots of the mechanical
and thermal cycles, respectively.
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2.3.3. Actuation with and without Clutch

The specimen considered for the actuation simulation is the same as described in
the previous paragraphs. The driven apparatus simulating the return spring and the
aerodynamic hinge moment is modelized using a CBUSH element, which is a generalised
spring-damper scalar element, associated in this case with the PBUSH and the PBUSHT bulk
data entries, to define a load-displacement dependency. Note that the linear load, assumed
for simplicity, may be replaced by a generalised loading law acting on the TABLED1 entry.
Table 3 summarizes the loading sequence, while Figure 18 shows the torque-angle diagram
for the actuator with a clutch. Moreover, Figure 19 highlights the overall behaviour of the
SMA under the aforementioned conditions.

Figure 15. A highlight of relevant sections of the FEM model.

Table 3. Actuator with clutch–Steps sequence.

STEP 0 Set T = 24 ◦C

STEP 1 Displacement-driven loading to 172◦;
T = 24 ◦C Blue segment in Figure 18

STEP 2 Unloading to 21 Nm; T = 24 ◦C Red segment in Figure 18

STEP 3 Heating 24 ◦C→ 46 ◦C @ Variable load Purple segment in Figure 18

STEP 4 Unloading to 21 Nm; T = 46 ◦C Green segment in Figure 18

STEP 5 Cooling 46 ◦C→ 0 ◦C @ Constant load Cyan segment in Figure 18
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Figure 16. SMA rod behaviour under torque loading cycle @24 ◦C-FEM model with 5 elements along the radius.
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Figure 17. SMA rod behaviour under thermal cycling @40 Nm-FEM model with 5 elements along the radius.



Actuators 2022, 11, 81 18 of 25

Figure 18. Torque-Angle diagrams—Actuator with clutch.

Concerning the actuator without the clutch, at the end of the forward actuation,
the rod is free to return backward (increasing its deformation toward the martensite
phase), but cannot move further in the M→ A transformation direction due to the spline
coupling. Note that forward rotations are retained by the locking mechanism acting on the
driven shaft at this point. This particular loading condition requires a one-way rotational
constraint, which was implemented using an additional CBUSH element described by a
strong non-linear law, which is properly engaged using a second MPC. Therefore, as the
end of the forward actuation is reached, the one-way constraint was introduced beside a
21-Nm torque. As expected, lowering the temperature under a partial constraint inhibits
the austenite-related shape recovery of the rod; however, martensite is still generated.
This decreases the effective stiffness of the component and thus reduces the perceived
stress. As the rod’s resisting torque drops to 21 Nm, the specimen is free to recover its
martensitic shape. Interestingly, the generated martensite is the same at the end of the SMA
transformations under the same temperature change but different boundary conditions,
representing the actuator with and without the clutch. Another fundamental aspect to
consider is that Auricchio formulation does not admit twinned martensite. This means
that no arguments can be made regarding the formation of twinned martensite under
high-temperature and high-stress conditions based on this kind of analysis. The load step
sequence is summarised in Table 4, while Figures 20 and 21 show the overall behaviour of
the SMA under the aforementioned conditions.

Table 4. Actuator without clutch-Steps sequence.

STEP 0 Set T = 24 ◦C

STEP 1 Displacement-driven loading to 172◦;
T = 24 ◦C Blue segment in Figure 20

STEP 2 Unloading to 21 Nm ; T = 24 ◦C Red segment in Figure 20

STEP 3 Heating 24 ◦C→ 46 ◦C @ Variable load Purple segment in Figure 20

STEP 4 Constant 21 Nm torque; T = 46 ◦C ; One-
way constraint

STEP 5 Cooling 46 ◦C → 0 ◦C @ Constant load
with one-way constraint Cyan segment in Figure 20
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Figure 19. Martensite, displacement, torque and temperature evolution during actuation—Actuator with clutch. FEM model with 3 elements along the radius.
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Figure 20. Torque-Angle diagrams—Actuator without clutch.

2.4. Load Estimations

This section aims to estimate the torque involved in the actuation of some secondary
control surfaces for three classes of aircraft. The adopted method can be used for a large
variety of cases, constituting a helpful tool to obtain approximate values of the needed
torque, which is a crucial design specification when developing an actuator. The aircrafts
chosen in this work are the medium-size UAV RQ7 Shadow, the Cessna 172 Skyhawk
and the ATR 42–600. Indeed, to examine the possibility and implications of scaling-up
SMA torsional actuator technology, the aircraft mentioned above belong to three distinct
categories. The specific model choice, instead, is based on data availability in the literature
and on the web. Indeed most of the required data, presented hereafter, were collected
from manufacturer websites, brochures, factsheets and documentation, along with minor
details found on other websites. The case study considered here aims to predict the
aerodynamic hinge moment applied to the flap during take-off and landing. Moreover, for
only the ATR 42, an Adaptive Trailing Edge, as presented in [5], is considered. Take-off and
landing speeds were determined based on manufacturer data and certification specification.
Referring to the UAV and the four-seats aircraft, EASA CS-23 [19] was adopted, while
CS-25 [20] prescriptions were followed in the case of the ATR 42. At this step, considering
sea-level standard air condition, it is possible to calculate Reynolds and Mach numbers.

The last unknown to be determined is the hinge moment coefficient, which was found
using Xfoil, and its embedded functions “flap” and “hinc”. The hinge moment coefficient
provided by Xfoil is defined as follows:

HingeMoment
Span

= CHingeMoment
1
2

ρV2c2 (1)

where the hinge moment is calculated as a result of the aerodynamic forces with respect to
the user-defined hinge location. The analysis was run via a MATLAB script to obtain data
at different flight conditions, accounting for several flap angle deflections with respect to
the angle of attack. All the data required to determine the hinge moment are summarised
in Table 5.

Moreover, as discussed previously, an adaptive trailing edge device for the ATR 42
was assessed. As in [5] a moving surface of 2% of the local chord was assumed. Moreover,
a typical cruise condition was considered for regional aircraft. As a compromise between
medium- and short-haul flights, an altitude of around 13,000 feet (or 4 km) was selected for
this investigation. Given the hinge moment coefficients, the torque, and the data required
for their determination under the most demanding conditions, are summarised in Table 6.
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Figure 21. Martensite, displacement, torque and temperature evolution during actuation—Actuator without clutch. FEM model with 3 elements along the radius.
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Table 5. Data summary-Flap. (1) Reasonable approximation of the actual airfoil. (2) Hypotheti-
cal value.

RQ7
Shadow Cessna 172 ATR 42 600

Gross
weight 170 kg [21] 1111 kg [22] 18,600 kg [23]

Wingspan 3.87 m [21] 11 m [22] 24.57 m [23]

Airfoil NACA
4415 [21] NACA

2412 [22] NACA
23015

(1)

Root chord 0.42 m [24] 1.63 m [25] 2.624 m [23]
Flap chord 0.114 m [24] 0.491 m [25] 0.75 m [23]
Flap span 1.012 m [24] 2.043 m [25] 3.498 m [23]

xhinge% 73% [24] 70% [25] 71% [23]
δmax 40 ° [21] 30 ° [25] 30 ° [23]

Stall speed
(Vs1) 17.5 m/s (2) 24.2 m/s [25] 50.99 m/s

Cruise
speed 36 m/s [21] 62.8 m/s [22] 154.4 m/s [23]

Max speed 55.5 m/s [21] 80 m/s [22]
V2 21 m/s 29 m/s 57 m/s [23]
V3 22.75 m/s 31.46 m/s 62.72 m/s

VLND 34.12 m/s 47.19 m/s 94.08 m/s
ReLND 9.95× 105 5.34× 106 1.71× 107

MLND 0.099 0.138 0.274
VTO 22.75 m/s 31.46 m/s 62.72 m/s
ReTO 9.19× 105 4.93× 106 1.57× 107

MTO 0.092 0.127 0.252

Chinge,max 0.34 0.38 0.37
Mhinge,max 3.19 Nm 255.28 Nm 3946.69 Nm
Mhinge,max/

span 3.15 N 124.95 N 1128.27 N

In sum, the maximum hinge moment obtained for the RQ7 shadow is about 3.2 Nm,
compatible with the torque output of commercially available UAV actuators. The hinge
moment calculated for the Cessna 172 is 225 Nm, close to the values achieved by the refined
optimisation performed by Florjancic in [26] for the same aircraft (ranging from 332 Nm to
267 Nm). The maximum ATR 42 hinge moment was found to be about 3950 Nm. Although
no reference was found to reasonably validate this data, as a means of comparison, a rotary
actuator adopted for the motion of the Boeing 777 outboard flap develops a max torque
of 12.1 kNm [27]. Finally, a hinge moment of 9.4 Nm was found in the ATE case, which is
probably the less accurate result. However, knowing the SMA torque actuator size used
in [5] and its related average torque performance, a value of the same magnitude is also
expected in this case.

Table 6. Data summary—ATE.

ATR 42 600

Airfoil NACA 23015
Root chord 2.624 m
Flap chord 0.75 m
Flap span 3.498 m

xhinge% 98%
δmax 20 °

Cruise speed 154.4 m/s
Recruise 2.00× 107

Mcruise 0.467
Chinge,max 0.1
Mhinge,max 9.4 Nm

Mhinge,max/span 2.7 N
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3. Concluding Remarks

To obtain a sense of the torque involved in moving control surfaces, aerodynamic load
predictions are performed using Xfoil for three classes of aircraft (medium-size UAV, Four-
Seat Aircraft and Regional Transport Aircraft), considering a plain flap and an Adaptive
Trailing Edge device. The analysis was handled using a Matlab script. The obtained data
were compared to those presented in the literature to validate the adopted method.

A general approach based on characteristic curves is provided to conceptually design
SMA torsional actuators.

An FEM model is created in MSC Patran and solved by Nastran, which implements
Auricchio’s formulation. This means provides a holistic vision of the macroscopic phenom-
ena involved during phase transformations, accomplishing either a general method for the
preliminary design and a helpful educational tool for those approaching the SMA actuators’
design for the first time. Indeed, SMA rods’ behaviour under mechanical and thermal
loading is thoroughly examined, monitoring stress, temperature, torque and martensite
evolution simultaneously.

Operative loading conditions were investigated considering different actuator designs
and simulating a full transformation cycle between martensite and austenite. In particular,
the specific case of cooling the prestressed SMA, keeping the twist angle constant, was
investigated. Two alternative interpretations were found: the first one is based on the
assumption of the formation of twinned martensite at high temperatures, while the second
one implies the formation of detwinned martensite. In the first case, a decay of the actuation
performance is expected, due to the progressive build-up of retained martensite; in the
second case, the actuation performance is preserved with cycles, with the transformation
martensite remaining constant. This led to a hypothesis regarding the existence of a new
region in SMA phase diagrams in which twinned martensite can be found under high-
temperature and high-stress conditions. Long-term experimental tests can be performed
concerning the cooling effect on constrained austenite specimen from a high-stress and
high-temperature state, to dispel any doubt regarding the formation of twinned martensite
in these conditions.

The main limit of the proposed FEM model lies in the fact that Auricchio’s formulation
does not admit twinned martensite. Moreover, no conclusions can be derived from the
training effects, since performing a second loading cycle does not present any difference
with respect to the first one. Additionally, for the material considered in this dissertation,
FEM data overestimate the transformation strain. Experimental data remain mandatory
for the final draft and are an indispensable source to understand the governing principles
of SMAs.

Finally, it is worth mentioning that the presented model is easily reconfigurable
and can be integrated into an optimization loop. Moreover, thermal aspects should be
deepened to include the time domain and account for inertial effects, even using non-linear
transient solutions.
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