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Weighted SPSA-based Consensus Algorithm for Distributed
Cooperative Target Tracking

Victoria Erofeeva, Oleg Granichin, Olga Granichina, Anton Proskurnikov, and Anna Sergeenko

Abstract— In this paper, a new algorithm for distributed
multi-target tracking in a sensor network is proposed. The main
feature of that algorithm, combining the SPSA techniques and
iterative averaging (“consensus algorithm”), is the ability to
solve distributed optimization problems in presence of signals
with fully uncertain distribution; the only assumption is the
signal’s boundedness. As an example, we consider the multi-
target tracking problem, in which the unknown signals include
measurement errors and unpredictable target’s maneuvers;
statistical properties of these signals are unknown. A special
choice of weights in the algorithm enables its application to
targets exhibiting different behaviors. An explicit estimate of
the residual’s covariance matrix is obtained, which may be
considered as a performance index of the algorithm. Theoretical
results are illustrated by numerical simulations.

I. INTRODUCTION

Multi-agent systems are ubiquitous in real-world appli-
cations, and algorithms for cooperative multi-agent control
and coordination attract a great deal of attention. Many such
algorithms are inspired by behaviors of social and biological
agents [1], [2]. Teams of relatively simple agents can solve
complex mathematical problems [3]–[8].

Wireless sensor networks (WSN) constitute an important
class of multi-agent systems whose applications vary from
robotics [9], [10] to personalized medicine [11]. In particular,
WSNs can be used for locating and tracking maneuver-
ing targets. Multisensor-multitarget tracking problems have
been widely studied in many practical applications such
as adaptive mobile networks, cognitive radio systems, tar-
get localization in biological networks, fish schooling, bee
swarming, and bird flight (see, e.g., [12]). As the number
of targets is growing, centralized algorithms for estimation
of their parameters and trajectories become inefficient [13],
and distributed techniques are typically applied. Distributed
algorithms assume that the agents (sensors) can exchange
their estimates; such interactions are, however, local in the
sense that each sensor communicates only to few neighbors.
The latter requirement can e.g. arise due to communication
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constraints: a communication channel or bandwidth has to
be shared between many pairs of agents, and only few of
them can communicate simultaneously.

To estimate unknown parameters of multiple targets, dis-
tributed optimization is often used. Since unknown distur-
bances and noises are usually measured as random signals,
the performance index to be optimized is the expectation of
some cost function; such functionals are often referred to as
mean-risk functionals. The paper of optimal target tracking is
a special case of stochastic optimization with non-stationary
(time-varying) mean-risk functional [14], [15], which is
naturally defined as the mean-square estimation error. To
cope with such problems, maximum likelihood estimator and
stochastic approximation (SA) algorithms are often used.
As an extension of the SA, the simultaneous perturbation
stochastic approximation (SPSA) was proposed by [16]. The
important feature of SPSA is the gradient approximation that
requires only two loss function measurements and does not
depend on the number of variables d (vs. 2d measurements in
the conventional SA). On average, the SPSA uses the same
number of iterations as the usual SA. In [17], the SPSA
algorithm has been applied to an unconstrained problem of
(mean-square) optimal target tracking. It has been shown
that SPSA converges even in the presence of an arbitrary
unknown-but-bounded noise (typically, tracking algorithms
are suitable only for noises with zero mean [18]).

This paper is based on the results of our previous
works [19]–[23]. In [22], a consensus-based distributed
SPSA algorithm for multi-target tracking was proposed. An
important feature of this algorithm is a randomized gossip-
based communication protocol, designed in such a way that
each agent communicates only with a small group of its
neighbors. In [23], stronger communication constraints are
introduced, and parameter optimization is provided. In the
papers mentioned above, we consider the variance of the
tracking error as a performance index of our algorithm, and
assume that dynamics of the targets are identical. In this
paper, we propose a weighted version of the SPSA-based
consensus algorithm, taking the heterogeneity of targets into
account, and analyze its convergence. In practice, one may
need to track a group of targets consisting of fixed-wing
drones and rotor ones, which have different dynamics and
speed. Furthermore, we examine the covariance matrix of the
residuals, extending the approaches proposed in [24], [25].

The rest of this paper is organized as follows. Section II
provides notations used in the paper. Section III is devoted to
problem statement; the new SPSA-based tracking algorithm
is introduced in Section IV. The main result concerning the



estimation of the covariance matrix is given in Section V and
illustrated in Section VI. Section VII concludes the paper.

II. PRELIMINARIES

Let (Ω,F , P ) be the underlying probability space cor-
responding to sample space Ω, set of all events F , and
probability measure P . E denotes mathematical expectation.

Let [·]T be vector or matrix transpose operation, [·]−1

be matrix inversion. ‖A‖ is the Frobenius norm: ‖A‖ =√∑
i

∑
j(a

i,j)2. 1d = [1, . . . , 1]T ∈ Rd is the vector of

all ones. ei = [. . . , 0, 1, 0, . . .]T ∈ Rd is the canonical basis
vector from Rd, where i-th entry is equal to 1. Id ∈ Rd×d
is the identity matrix, Jd = 1d1

>
d ∈ Rd×d is the matrix of

all ones. A ⊗ B is the Kronecker product defined for any
matrices A and B. The following notation A ≤ B means
that matrices are ordered in the sense of quadratic forms.

For a sequence of column vectors x1, . . . , xk, let
col{x1, . . . , xk} denote the column vector obtained by stack-
ing xi on top of one another.

A network consisting of n nodes is described by a directed
graph GA = (N , E), where N = {1, . . . , n} is a set of
vertices and E ⊆ N ×N is a set of edges. Denote by i ∈ N
an identifier of i-th node and (j, i) ∈ E if there is a directed
edge from node j to node i. The latter means that node j
is able to transmit data to node i. For a node i ∈ N , the
set of neighbors is defined as N i = {j ∈ N : (j, i) ∈ E}.
The in-degree of i ∈ N equals |N i|. Hereinafter, | · | is the
cardinality of a set, and superscripts stand for agents’ indices.

Let ai,j > 0 be the weight associated with the edge
(j, i) ∈ E and ai,j = 0 whenever (j, i) /∈ E . Let A = [ai,j ]
be the weighted adjacency matrix, or simply connectivity
matrix, associated with graph GA. The weighted in-degree
of i ∈ N is defined as deg+

i (A) =
∑n
j=1 a

i,j , the max-
imum in-degree among all nodes contained in graph GA
as deg+

max(A). Introducing the diagonal matrix D(A) =
diagn(deg+

1 (A), . . . ,deg+
n (A)), matrix L(A) = D(A) − A

is referred to as the Laplacian of graph GA.
Definition 1. A directed graph GA is said to be strongly

connected if for every pair of nodes j, i ∈ N , there exists a
path of directed edges that goes from j to i.

Denote the eigenvalues of Laplacian L(A) by λ1, . . . , λn
and arrange them in ascending order of real parts: 0 ≤
Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn). It is known, that if
the graph is strongly connected then λ1 = 0 and all other
eigenvalues of L are in the open right half of the complex
plane (see, e.g., [26]). The eigenvalue of matrix A with
maximum absolute magnitude is defined as λmax(A).

III. MULTI-SENSOR MULTI-TARGET PROBLEM

We consider a network of n spatially-distributed sensors
in a field, namely, agents, capable of measuring parameters
(e.g., distance, heading, etc), performing local computations,
and exchange information with neighboring nodes. In this
field, there are m moving targets. Each sensor i ∈ N =
{1, . . . , n} has its own hypothesis regarding the state of the
targets (i.e., their positions) or more simply an estimate of
the states. The goal of the network is to accurately estimate

the unknown parameters of the targets. The sensors must also
act together as a team to achieve this goal.

Let sit = [si,1t , . . . , si,dt ]T ∈ Rd be the state of sensor i
at time instant t, rlt = [rl,1t , . . . , rl,dt ]T ∈ Rd be the state of
target l ∈ M = {1, . . . ,m}, and θt = col{r1

t , . . . , r
m
t } be

the vector consisting of all states to be estimated. Suppose
that each sensor measures a scalar quantity, which is the
distance between its own position and position of a target:

ρ(sit, r
l
t) = ||rlt − sit||2, ∀i ∈ N , l ∈M. (1)

Note that the proposed approach can be used for other types
of measuring parameters (e.g., bearing/azimuth).

In general, the problem is to find an estimate θ̂t of an
unknown parameter θt:

θ̂?t = arg min
θ̂t

||θ̂t − θt||2. (2)

In this paper, we consider a more difficult problem setting.
First, the solution of the optimization problem (2) needs to be
found in a distributed way. Second, we impose the following
communication constraints: at time instant t, each sensor i ∈
N is able to measure the squared distance to not more than
one target. In practice, due to certain constraints, the number
of communication channels that can be used is usually less
than the dimension of space or equal to it. Without loss of
generality, in this paper, we assume that each sensor is able to
collect data only from d neighbors. In this case and if there
is no noise, we can use standard triangular approaches to
determine the target position. However, if positions of all m
targets need to be computed, then we have to simultaneously
collect m(d − 1) measurements, and it is often impossible
in practice. Third, we assume that there is the unknown-but-
bounded noise involved in the measuring process, which is
considered in the next subsection.

A. Measurements

Suppose sensor i estimates the state of target rlt at time
instant t. The sensor is able to collect the distances to the
same target measured by its neighbors j ∈ N̄ i

t ⊂ N i,
|N̄ i

t | = d. Let uit = [j1, . . . , jd, l]
T, j1, . . . , jd ∈ N̄ i

t ,
be a vector defining a set of neighbors used to collect
measurements associated with target l at time instant t.
Denote by

ρ̄jt (u
i
t) = ρ(sit, r

h(ui
t)

t )− ρ(sjt , r
h(ui

t)
t ) ∀j ∈ N̄ i

t , (3)

a residual between a measurement of sensor i and its
neighbors. Here and after, h(uit) : Rd+1 → R gives the
last element of uit.

In this case, using the square difference formula we get d
equations

ρ̄jt (u
i
t) = (sjt − sit)

T(2r
h(ui

t)
t − sjt − sit), j ∈ N̄ i

t .

This allows us to derive

C
ui

t
t r

h(ui
t)

t = D
ui

t
t , r

h(ui
t)

t = [C
ui

t
t ]−1D

ui
t

t , (4)



where

C
ui

t
t = 2

(sj1t − sit)
T

· · ·
(sjdt − sit)

T

 , Dui
t

t =

ρ̄1
t (u

i
t) + ‖sj1t ‖2 − ‖sit‖2

· · ·
ρ̄dt (u

i
t) + ‖sjdt ‖2 − ‖sit‖2

 .
Using the introduced notations, we define the measure-

ments of sensor i ∈ N at time instant t as follows:

yit = F it (u
i
t,x

i
t) + vit = ‖r̂h(ui

t)
t − r

h(ui
t)

t ‖2 + vit, (5)

where vit is the unknown-but-bounded additive noise, xit
is the measurement point depending on currently available
estimate r̂

h(ui
t)

t at time instant t. For example, xit = r̂
h(ui

t)
t .

B. Distributed Optimization

Denote by Ft−1 the σ-algebra of all probabilistic events,
which happened up to time instant t. EFt−1

denotes the con-
ditional expectation with respect to the σ-algebra Ft−1. This
σ-algebra is generated by the values of all random variables
(i.e., position of targets, noise, changes in communication
topology) at time instants τ = {1, 2, . . . , t}.

Let ut = [u1
t , . . . ,u

n
t ]T be the common vector defining

the sets of neighbors used to collect measurements from
each sensor. The multi-sensor multi-target problem can be
formulated as the following minimization problem: to find
estimate θ̂t = col{r̂h(u1

t )
t , . . . , r̂

h(um
t )

t } that minimizes the
following loss function

F̄t(θ̂t,ut) = EFt−1

∑
i∈N

F it (u
i
t, r̂

h(ui
t)

t )→ min
θ̂t

. (6)

Usually, during optimization, each sensor fuses the needed
information from all available neighboring nodes. In our
problem setting, we mentioned the communication con-
straints that prohibit such communication strategy of the sen-
sors. These communication constraints arise due to hardware
and physical limitations since the bandwidths of commu-
nication channels is not unlimited. When a large number
of sensors send and receive messages at the same time,
communication becomes a bottleneck. To deal with this,
we propose to choose communication links between sensors
randomly. More formally, for each sensor i ∈ N , we
randomize the communication topology described by graph
GA at each time instant t to satisfy topology constraints
such as the maximum number of links equals to d. We use
a randomly chosen subgraph GBt ⊂ GA associated with
adjacency matrix Bt = [bi,jt ], where the rows contain no
more than d nonzero entries. Afterwards, the observable
target at time instant t contained in uit is generated from
a uniform distribution independently for each sensor i ∈ N
as in gossip algorithm [4]. We randomize the communication
topology described by graph GA based on the strategy similar
to one presented in [27].

IV. WEIGHTED SPSA-BASED CONSENSUS
ALGORITHM

Let uik and ∆i
k ∈ Rd, k = 1, 2, . . . , i ∈ N , be

independent random variables. We generate ∆i
k called the

simultaneous test perturbation from Bernoulli distribution

with each component independently taking values ± 1√
d

with
probabilities 1

2 . Let eh(ui
k) ∈ Rm be the sparse vector

corresponding to the current target that sensor i observes,
then ∆̂i

k = eh(ui
k) ⊗∆i

k. In this case, ∆̂i
k is the vector of

all zeros except for the rows that corresponds to h(uik).
Let Ui,l be a set containing all possible subsets N̄ i

t for
target l. The neighborhood of sensor i at time instant t is
defined by the i-th row of matrix Bt associated with graph
GBt . This row is defined by subset N̄ i

t generated from the
uniform distribution on the set Ui,l.

Next, we introduce a weighted version of SPSA-based
consensus algorithm. We define diagonal matrix Ψ = [ψij ],
where ψij > 0 if i = j and ψij = 0 otherwise. At
initialization step, for each i ∈ N , we choose initial vector
θ̂i0 ∈ Rmd, positive step-size α, matrix Ψ, gain coefficient γ,
and the scale of perturbation β > 0.

In order to get estimates {θ̂it} of overall state vectors {θit}
based on measurement points {xit}, we propose to use the
weighted algorithm with two measurements of distributed
sub-functions F it (u

i
t,x

i
t):

xi2k = θ̂i2k−2 + β∆̂i
k, xi2k−1 = θ̂i2k−2 − β∆̂i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − αΨ
[
∆̂i
k

yi2k−y
i
2k−1

2β +

γ
∑
j∈N̄ i

2k−1
bi,j2k−1(θ̂i2k−1 − θ̂

j
2k−1)

]
.

(7)

Consider the last equation of the algorithm (7): the first
part is similar to SPSA-like algorithm from [17] and the
second one coincides with Local Voting Protocol (LVP) from
[28], where it was studied for stochastic networks in the
context of load balancing problem. The SPSA part represents
a stochastic gradient descent of sub-functions F it (u

i
t,x

i
t), and

LVP part is determined for each agent i by the weighted
sum of differences between the information about the current
estimate θ̂i2k−1 of agent i and available information about the
estimates of its neighbors.

Further, we use notation θ̄t = col{θ̂1
t , . . . , θ̂

n
t } for the

common vector of estimates of all agents at time instant t.
Also, we introduce the following:

ȳt = col{y1
t , . . . , y

n
t },

∆̄t÷2 = diagnmd(col{∆̂1
t÷2, . . . , ∆̂

n
t÷2}).

Using these notations, the algorithm (7) can be rewritten in
the following form

θ̄2k = θ̄2k−1 − αΨ̄

[
∆̄k

(
ȳ2k − ȳ2k−1

2β
⊗ 1md

)
+

γ(L(B2k−1)⊗ Imd)θ̄2k−1

]
. (8)

The algorithm (7) runs in parallel at each sensor to
estimate θ̂t. This means that we have n parallel sequences
of estimates. In the next section, we show that all these n
sequences converge to the neighborhood of true vector θt.



V. MAIN RESULT

In this section, we provide a convergence analysis of the
proposed algorithm. First, let us formulate assumptions about
the dynamics of the targets, noise, and network topology.

Assumption 1: Let ξlt = rlt − rlt−1, l ∈ M, denotes the
difference between two successive states of target l, and ξ̃t
be the common vector containing such differences for all
targets, i.e., ξ̃t = col({ξ1

t , . . . , ξ
m
t }) ∈ Rmd. We assume that

a) ∀l ∈ M, the successive differences of states are
bounded: ‖ξlt‖ ≤ δl < ∞ or, if sequence {ξ̃t} is random,
E‖ξlt‖2 ≤ (δl)2, E[ξ̃tξ̃

T
t ] ≤ Qδ , E[ξ̃tξ̃

T
t−1] ≤ Qδ .

b) ∀i ∈ N , k = 1, 2, . . ., matrices Cui
k

2k , Cui
k

2k−1 are invertible.
Assumption 2: For k = 1, 2, . . . , the successive differences
ṽik = vi2k − vi2k−1 of measurement noise are bounded:
|ṽik| ≤ cv <∞, or E(ṽik)2 ≤ c2v if sequence {ṽit} is random.
Assumption 3: For all k = 1, 2, . . . , i ∈ N , l ∈M:
a) vectors uik, ∆i

k, are mutually independent;
b) if uik, ∆i

k, ξl2k−1, ξ
l
2k, and si2k−1, si2k are random, they

do not depend on the σ-algebra F2k−2;
c) if ξl2k−1, ξ

l
2k, ṽ

i
k are random, then random vectors uik, ∆i

k,
and elements si2k−1, si2k, ξl2k−1, ξ

l
2k, ṽ

i
k are independent;

d) E‖∆i
k‖2 ≤ σ2

∆, E[∆i
k(∆i

k)T] ≤ σ2
∆Imd.

Assumption 4: a) For all i ∈ N , j ∈ N̄ i
t weights bi,jt

are independent random variables with mean Ebi,jt = bi,jav ,
and E[(L(Bt)−L(Bav))(L(Bt)−L(Bav))

T] ≤ QB , where
Bav = [bi,jav ].
b) Graph GBav is strongly connected.

Our analysis of the proposed algorithm applied to the
problem (6) relies on the following definition.

Definition. A covariance matrix of residual has an asymp-
totically efficient upper bound Σ > 0 if ∃k̄ such that ∀k > k̄

E[(θ̄2k − 1n ⊗ θ2k)(θ̄2k − 1n ⊗ θ2k)T] ≤ Σ + Ek,

where Ek → 0.
The following theorem shows the asymptotically efficient

upper bound of the covariance matrix of residual provided
by the algorithm (7).

Theorem 1: If Assumptions 1–4 hold and α > 0
then the covariance matrix of residual provided by the
algorithm (7) has asymptotically efficient upper bound Σ,
which is the solution of the following equation

Σ = c1([Inmd − αC6]Σ[Inmd − αCT
6 ])− (9)

αc2C2ΣCT
2 + α2γ2Ψ̄Σ(QB ⊗ Imd)Ψ̄T + α2C3 + αC4,

where c1 = 1 − ε1 − ασ2
∆ε2, c2 = α

4σ4
∆

c1
+ 2σ2

∆ε3, C1 =

γΨ̄(L(Bav) ⊗ Imd), C2 = Ψ̄R̄k, C3 = 1
βσ

2
∆[(4β2σ2

∆ +

δ2)(4νT
k−1Rkνk−1 − 12δeνk−1 + 9δ2) − 2cvδ(2eνk−1 −

3δ) + c2v]Inmd, C4 = σ2
∆[(− 1

ε1
+ 1)Ψ̄(diagnmd(e)(9Jn ⊗

Qδ)diagnmd(e)Ψ̄
T + (−2 1

ε2
+ 1)(4Jn ⊗ Qδ)], C5 = (1 −

1
ε3

)4Jn ⊗Qδ, C6 = C1 +
2σ2

∆

c1
C2.

See the proof of Theorem 1 in Appendix.

VI. SIMULATION

In this section, we present a numerical experiment, which
illustrates the performance of the suggested algorithm (7).

Given a distributed network of 3 sensors monitoring an
area of interest. Let N = {1, 2, 3} be the set of sensors.
Each sensor has no more than two active communication
channels at each time instant, i.e., |N̄ i

t | = 2. The communi-
cation channels are used to collect data from the neighbors.
Within the area of interest, there are 6 moving targets.
The sensors have to estimate their states. At time instant t,
sit = [si,1t , si,2t ]T ∈ R2 is the current state of sensor i ∈ N ,
rlt = [rl,1t , rl,2t ]T ∈ R2 is the state of target l ∈ M =
{1, 2, . . . , 6}, θt = col{r1

t , . . . , r
6
t} is the common state of

all targets.
We consider three types of noise: uniformly distributed

random variable falling within the interval [−1; 1], an un-
known constant, and hybrid noise which is uniformly dis-
tributed around constants that change with time, e.g. vik =
±1+0.1∗sin(k), where the sign in front of 1 switches each
50-th iteration. In the simulation presented in the paper, we
provide the estimations that are common for each type of
noise.

The algorithm (7) working on each node has the following
parameters: α = 0.05, β = 0.1, γ = 1.0. The targets
start their motion at the position consisting of randomly
chosen components from the interval [0; 100]. Dynamics
of the targets motion is as follows: rlt = rlt−1 + χlt−1.
Let χlt−1 be a random vector uniformly distributed on the
ball of radius equal to 0.2 for targets with odd numbers
and 0.6 for targets with even numbers. This means that
some targets possess different from other targets behaviour
and complicates the suggested simulation in comparison
with [23]. The sensors don’t move and their coordinates are
random values uniformly distributed in interval [100; 120].

Let us consider for every target l and sensor i at each time
instant t the covariance matrix of residuals Σ̃i,lt ∈ Rd×d,
which is represented as a part of the common covariance
matrix.

In this simulation, the new algorithm is compared with
the previous one from [23]. In order to illustrate how matrix
Ψ influences the convergence of the algorithm, we consider
two different cases:
Ψ∗ = diag6(col{2, 10, 2, 10, 2, 10}),
Ψ∗∗ = diag6(col{0.2, 100, 0.2, 100, 0.2, 100}).

Fig. ?? show how the average last diagonal entry of the
covariance matrix of residuals Σ̃i,lt evolve over time. It is
well seen that the new algorithm with Ψ = Ψ∗ converges
faster than the previous algorithm. However, the convergence
rate depends on Ψ. The choice of optimal parameters will
be done in the future works.

VII. CONCLUSION

In this paper, we studied and estimated the covariance
matrix of residual provided by the weighted version of the
combined algorithm of Simultaneous Perturbation Stochastic
Approximation and the consensus algorithm. We also applied
the algorithm on the multisensor-multitarget problem and
validated it through simulation. It is well seen that this new
algorithm converges faster than the one from our previous
works with targets possessing different behaviours. In future
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Fig. 1. The average value over all sensors and targets of the first entry
of covariance matrix of residuals Σ̃i,l

t , where (1) is the previous algorithm
with Ψ = Im, (2) and (3) are the new algorithms with Ψ equals Ψ∗ and
Ψ∗∗ correspondingly
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Fig. 2. The average value over all sensors and targets of the last entry
of covariance matrix of residuals Σ̃i,l

t , where (1) is the previous algorithm
with Ψ = Im, (2) and (3) are the new algorithms with Ψ equals Ψ∗ and
Ψ∗∗ correspondingly

works, we are planning to optimize the step-size of the
algorithm as it was made in [29].

APPENDIX

The proof of Theorem 1:
Denote dit = θ̂i

2d t−1
2 e
− θt, d̄t = col{d1

t , . . . ,d
n
t }, where

d·e is a ceiling function, νk = d̄2k, Σk = E[νkν
T
k ], s̄k =

α
2β ∆̄k((ȳ2k−ȳ2k−1)⊗1md), v̄t = col{ṽ1

t , . . . , ṽ
n
t }, ūt÷2 =

col{u1
t÷2, . . . ,u

n
t÷2}, Ψ̄ = In ⊗Ψ.

Let F̄k−1 = σ{Fk−1, v̄2k−1, v̄2k, ξ2k−1, ξ2k, ūk, ∆̄k} be
the σ-algebra of probabilistic events generated by Fk−1,
v̄2k−1, v̄2k, ξ2k−1, ξ2k, ūk, ∆̄k, F̃k−1 = σ{Fk−1, v̄2k−1,
v̄2k, ξ2k−1, ξ2k, ūk}, and F̂k−1 = σ{Fk−1, v̄2k−1, v̄2k,
ξ2k−1, ξ2k}: Fk−1 ⊂ F̂k−1 ⊂ F̃k−1 ⊂ F̄k−1 ⊂ Fk.

Using that θ̄2k−1 = θ̄2k−2 and L(B2k−2)1n = 0, we get

νk = θ̄2k − 1n ⊗ θ2k =

ḡk − Ψ̄s̄k − αγΨ̄[(L(B2k−2)− L(Bav))⊗ Imd]νk−1,

where ḡk = [Inmd − αγΨ̄(L(Bav) ⊗ Imd)]νk−1 + 1n ⊗
(θ2k−2 − θ2k). Then,

Dk = νkν
T
k = ḡkḡ

T
k − ḡks̄

T
k Ψ̄T − Ψ̄s̄kḡ

T
k + Ψ̄s̄ks̄

T
k Ψ̄T−

αγ(ḡk − Ψ̄s̄k)[(L(B2k−2)− L(Bav))⊗ Imd]TΨ̄T−
αγΨ̄[(L(B2k−2)− L(Bav))⊗ Imd]νk−1(ḡT

k − s̄T
k Ψ̄T)+

α2γ2Ψ̄[(L(B2k−2)− L(Bav))⊗ Imd]Dk−1[(L(B2k−2)−
L(Bav))⊗ Imd]TΨ̄T.

Now, we take the conditional expectation over σ-algebra
F̄k−1 and apply Assumption 4:

EF̄k−1
[Dk] ≤ ḡkḡ

T
k − ḡks̄

T
k Ψ̄T − Ψ̄s̄kḡ

T
k + Ψ̄s̄ks̄

T
k Ψ̄T+

α2γ2bmaxΨ̄Dk−1Ψ̄T, (10)

where bmax is the maximum element of QB.
After we take the conditional expectation over σ-algebra

F̃k−1 step by step:

EF̃k−1
[Dk] ≤ ḡkḡ

T
k − ḡkEF̃k−1

[s̄T
k ]Ψ̄T − Ψ̄EF̃k−1

[s̄k]ḡT
k +

Ψ̄EF̃k−1
[s̄ks̄

T
k ]Ψ̄T + α2γ2bmaxΨ̄Dk−1Ψ̄T. (11)

Under Assumption 4b, we have λ̄2 = Re(λ2(L(Bav))) >
0 and λ̄max = Re(λmax(L(Bav))) > 0 (see [30]). Hence,
for the first term in (11) and using Assumption 1a we derive

ḡkḡ
T
k ≤ (1− ε3)([Inmd − αγΨ̄(L(Bav)⊗ Imd)]Σk−1·

·[Inmd − αγΨ̄(L(Bav)⊗ Imd)]T) + (1− 1

ε3
)4Jn ⊗Qδ.

Denote rit = eh(ui
t÷2) ⊗ [C

ui
t÷2

t ]−1D
ui

t÷2

t , r̂it =

diagmd(eh(ui
t÷2) ⊗ Id)θ̂

i
t, and Ξit = rit − rit−1, then ∀i ∈

{1, . . . , n}:

yi2k − yi2k−1 = (2β∆̂i
k − Ξi2k)T(2diagmd(eh(ui

k) ⊗ Id)di2k−2

−2Ξi2k−1 − Ξi2k) + vi2k − vi2k−1.

Under Assumption 3d, multiplying by ∆̂i
k and taking the

conditional expectation over σ-algebra F̃k−1, we get

EF̃k−1
[(yi2k − yi2k−1)∆̂i

k] = 2βσ2
∆qi2k−2,

where qi2k−2 = 2diagmd(eh(ui
k)⊗Id)di2k−2−2Ξi2k−1−Ξi2k.

Here and after, σ∆ = 1√
d

. Denote R̄t =

diagnmd(col{eh(u1
t÷2) ⊗ Id, . . . , eh(un

t÷2) ⊗ Id}),
Ξ̄t = col{Ξ1

t , . . . ,Ξ
n
t }, e = col{eh(u1

t ), . . . , eh(un
t )}.

By Assumption 1a, taking the conditional expectation over
σ-algebra F̂k−1 and using ABT + BAT ≤ AAT + BBT



we derive the following for the second and third terms:

−ḡkEF̂k−1
[s̄T
k ]Ψ̄T − Ψ̄EF̂k−1

[s̄k]ḡT
k ≤

ασ2
∆[−2(Inmd − 2αγΨ̄(L(Bav)⊗ Imd))Σk−1R̄kΨ̄T−
2Ψ̄R̄kΣk−1(Inmd − 2αγ(L(Bav)

T ⊗ Imd)Ψ̄T)−
ε1(Inmd − 2αγΨ̄(L(Bav)⊗ Imd))Σk−1(Inmd−

2αγ(L(Bav)
T ⊗ Imd)Ψ̄T) + (− 1

ε1
+ 1)Ψ̄(diagnmd(e)

(9Jn ⊗Qδ)diagnmd(e)Ψ̄
T−

2ε2Ψ̄R̄kΣT
k−1R̄kΨ̄T + (−2

1

ε2
+ 1)(4Jn ⊗Qδ)].

By Assumption 3 and 1a, using that ∆i
k is drawn from

the symmetric distribution, for the fourth term in (11), we
successively take the the conditional expectation over σ-
algebra F̃k−1 and after that over σ-algebra F̂k−1. In the
result, we obtain

EF̃k−1
[s̄ks̄

T
k ] ≤ α2

β
σ2

∆[(4β2σ2
∆ + δ2)(4νT

k−1Rkνk−1−

12δeνk−1 + 9δ2)− 2cvδ(2eνk−1 − 3δ) + c2v]Inmd.

Summing up the bounds and taking the unconditional
expectation, we derive the following

Σk ≤ c1([Inmd − αC6]Σk−1[Inmd − αCT
6 ])−

αc2C2Σk−1C
T
2 + α2γ2bmaxΨ̄Σk−1Ψ̄T+

α2C3 + αC4 + C5.

Note that the constants are defined in the theorem.
Let us make the substitution: Σk = Σ + Ek, where Σ is

the solution of (9).
Consider

Ek ≤ c1([Inmd − αC6]Ek−1[Inmd − αCT
6 ])−

αc2C2Ek−1C
T
2 + α2γ2bmaxΨ̄Ek−1Ψ̄T + C5.

According to Theorem from [24] Ek → 0. This completes
the proof of Theorem 1.
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