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Summary  
 
The dissertation concerns the investigation and development of design 

methodologies carried out to thrive the additive manufacturing application. The 
purpose of the research is to address several problems and opportunities related to 
the conceptual design phase of components to be produced by means of additive 
technologies. The focus has been on the development of the Top Suite, a 
collection of three innovative topology optimisation algorithms named TopTM, 
TopComp and TopFat.  

The first topology optimisation algorithm TopTM finds the optimal final 
topology concurrently optimising the structural stiffness and the heat exchange in 
a coupled thermo-mechanical system. This algorithm is suitable for the 
optimisation and lightening of several real components such as heat exchangers, 
engines, and turbine blades. The problem is density-based formulated and solved 
using an optimality criterium in limited code lines in the commercially available 
software Ansys Mechanical.   

The second algorithm, named TopComp, is suitable for the optimisation of 
fibre reinforced composites. The final output is the optimal combination of the 
matrix material distribution together with the optimal embedded fibre orientation. 
Fully optimised fibre reinforced composites are appropriate for substituting metal 
components in several applications, leading to outstanding weight reductions. The 
problem is density-based formulated and solved using an optimality criterion 
using Ansys Mechanical.   

The third topology optimisation algorithm is named TopFat. This algorithm 
provides the final optimal topology considering the presence of defects due to the 
additive manufacturing process. Consequently, the final topology is guaranteed to 
be structurally safe considering the process-induced defect presence, both in the 
quasi-static and fatigue regime. The problem is density-based formulated and 
solved using a first-order method.  The TopFat algorithm includes two different 
stress constraints that represent a critical challenge in the topology optimisation 
procedure. Therefore, the TopFat algorithm is firstly implemented in solved in the 
Matlab environment as a quite complex code. As a complement of this research, 
the TopFat procedure is extended to the commercially available software 
HyperWorks. 

The whole Top Suite is thought to be integrated and implemented in 
commercially available software with a double purpose. Firstly, commercially 



 
 

available software like Ansys Mechanical and HyperWorks already have an easy-
to-use user interface, tools for the geometrical and finite elements manipulation, 
and output visualisation which increases enormously the Top Suite applications 
for real and complex components. Secondly, the absence of complex coding and 
dedicated platforms permits the additive manufacturing community to access the 
Top Suite straightforwardly and take advantage of these design methodologies.  

Overall, this dissertation is thought to foster the additive manufacturing 
application in terms of applicability,  effectiveness and reliability.  
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Chapter 1 

Design for Additive Manufacturing 

1.1 Additive Manufacturing: the new era of product 
design   

Additive Manufacturing, or simply AM, is a set of technologies that appeared for 
the first time during the 80’. Nowadays, it is very complex to precisely define all 
the technologies that AM comprehends. Indeed, whatever manufacturing method 
starts from a digital model and creates a component adding by some means 
material can be considered belonging to the AM methodology set. Nowadays, the 
possibilities are so vast that cover almost every type of material, process, and size. 
AM applies on nanoscale up to macro-scale, on soft materials up to metals and 
ceramics, on polymers and composites [1].  

In Figure 1, a high-level map of most of the current AM techniques is 
reported. As it can noticed,  the number of processes is quite elevated and still 
many subcategories are not reported.  

 

Figure 1- Hierarchical map of AM processes [2] 

The very beginning of AM was related to rapid prototyping, mainly on 
polymeric structures. The processes were limited, expensive, and slow. The huge 
developments carried out in the last decades by the industrial and scientific 
community let AM to explode, becoming a state-of-art technology for many 
sectors, such as aerospace, healthcare, racing, and automotive [3–5].  



Indeed, the most innovative aspect of AM is that for the first time in the 
industrial era, components can be produced by adding and not subtracting material 
from a raw block. Since no tool has the need of sculpting the part, the shape the 
component can assume is hypothetically unlimitedly complex. Intricated and 
convoluted features such as cells or lattice structures and metamaterials are 
nowadays producible thanks to AM. Components are no more limited to be fully 
dense solid and geometrically simple parts. These aspects make AM extremely 
suitable to lighten structures, reduce mass employment, save energy and fuel, 
increase static and dynamic stiffness, produce multi-component and multi-
material parts, and improve many other crucial component responses [6].  

Up to the arrival of AM technologies, the producible geometrical features 
were quite limited due to manufacturing limitations. The related design variables 
were often evaluated thanks to specific analytical models such as tank wall 
thickness, beam section width, shaft diameter, or screw length.  More complex 
parts, such as gears, required specific design procedures often dictated by 
experimental data and experience [7].  

AM technologies completely modify this design flow. Indeed, AM unlocks 
the geometrical and shape freedom that components may assume, opening many 
questions and possibilities. Figure 2 provides a visual example of the 
extraordinary possibilities provided by AM technologies. This entire nozzle is 
built as a unique component with extremely complex metamaterials features in the 
internal core. Such geometries would be unproducible with any type of 
subtracting manufacturing methodologies.  

 

 

Figure 2 – AM prototype for rocket nozzle featuring internal cooling channels [3] 

Overall, one of the greatest opportunities offered by AM processes is the 
possibility to consider the material distribution, i.e., the component shape as a 
design variable. Since there are few manufacturing limitations, the designer can 
tune and modify the component shape to improve its performance. In other words, 
the material distribution can be exploited as a design variable to make the final 



 
component behave in the desired way. However, this freedom comes together 
with the main drawback of a remarkable increase in complexity. The definition of 
the material distribution as a design variable leads to the extremely difficult 
problem of finding which of the infinite possible combination of material 
distributions provides the prescribed result. For example, Figure 3 shows various 
possible geometry solutions for the same jet engine bracket.  

 
Figure 3 - Different designs for the same jet engine bracket by GE challenge [8] 

As it can be noticed, the proposed solutions are very different from each 
other, whereas they are all optimised to gain stiffness and reduce mass 
employment.  Even in this simple case, where structural stiffness is the only 
performance index considered, the material distribution problem is extensively 
vast and wide.  

The closest example of wide design freedom is Nature. Indeed, Nature 
employs millions of years to optimise structures operating with casual genetic 
changes until convergence at the equilibrium organism-environment. Figure 4 
offers a very intuitive visual example of Nature structural optimisation. With the 
aim of obtaining extra light and stiff butterfly wings, Nature sculpts these wings 
with a gyroid core meta structure [9].  

 

 

Figure 4 - Metamaterial optimised structure from Nature [9] 

 



If designers wanted to mimic this procedure, it would be inefficient, to say the 
least, to use a try-and-error method for every single component. For more, human 
intuition can be misleading, unprecise, and unreliable. Therefore, the key question 
AM introduced unlocking the geometry manufacturability is how to exploit this 
freedom.   

The solutions to this question are not trivial and the scientific community is 
still and hardly working on this topic. Nevertheless, one design methodology is 
particularly fitting. This design methodology belongs to the set of structural 
optimisation techniques and it is called Topology Optimisation [10].  

In general, structural optimisation is composed by three main procedures. In 
ascending order of complexity, they are known as size, shape and topology 
optimisation [11]. Size optimisation focuses on multiple parameters describing a 
fixed system and finding their optimal combination. For example, the optimal 
radiuses of a truss structure or the wall thicknesses of a pipe system. Figure 5 
shows the classical example of the radius (size) optimisation of the reported 
bidimensional truss structure. 

 

Figure 5 - Size optimisation of truss structure 

Shape optimisation consists of the modification of an existing geometry by 
moving its surface. In other words, shape optimisation moves punctually the 
surface of the part, but it does not change the number of holes or the overall 
structure. Figure 6 shows a holed simply supported beam in the initial 
configuration on the left, while on the right the optimised domain. As it can be 
seen, the shape of the hole is changed, optimising a certain final performance. 
However, the number of holes remains unchanged.  

 

 

Figure 6 - Shape optimisation of holed simply supported beam 

Lastly, Topology Optimisation is not related to any fixed initial geometry. 
Basically, starting from a design domain, Topology Optimisation finds the most 
performant material distribution according to some constraints. Figure 7 shows an 
example of the result of a topology optimisation process over a simply supported 
beam where the black zones indicate the material distribution.  



 

 

Figure 7 - Topology optimisation of simply supported beam 

Overall, AM opened the doors for a new era of product design where specific 
and dedicated tools must be developed. Among these tools, Topology 
Optimisation can fill the gap between design and production capabilities, 
exploiting the freedom unlocked by AM. However, Topology Optimisation 
requires accurate development to be applicable and reliable.  

The purpose of this dissertation is to introduce, explain and describe three 
different Topology Optimisation algorithms developed to thrive the AM 
application.  

The first algorithm TopTM can optimise the material distribution of a system 
under thermo-mechanical loads to achieve maximum structural stiffness and heat 
exchange under a volume/mass constraint.  

The second algorithm TopComp  can optimise concurrently the fibre and the 
material distribution of composites.  

The third and last algorithm HyperWorks can include the AM process induce 
defect influence on the fatigue response of the part within the Topology 
Optimisation procedure to obtain reliable designs.  

These algorithms are closely related to specific AM techniques which make 
producible the final obtained topologies. Specifically, TopTM and HyperWorks 
are related to Powder Bed Laser Fusion (PBLF) technologies on metals, whereas 
TopComp is related to Fused Deposition Modelling (FDM) technology on 
composites.  

With the aim of clarifying the applicability of the developed algorithms 
through AM, firstly a description of PBLF and FDM is carried out.  

Then, a detailed and deepened description of Topology Optimisation is 
carried out, starting from the origin of this methodology up to the reasons why the 
developed algorithms present an innovative step in the current state-of-art.  

1.1.1 Additive Manufacturing technologies 

The presented algorithms, core topic of this dissertation, have been developed 
to obtain final topologies producible by AM techniques. Therefore, to improve the 
understating of the added value by the Top Suite, the addressed AM techniques 
are briefly and intuitively introduced. The below descriptions have the only aim of 
presenting globally the AM technologies. Specifical and technical data about AM 
process is not reported in this dissertation except where necessary.  

Below, the main interested AM processes are reported and detailed. Two of 
them belongs to the set of Powder Bed Laser Fusion (PBLF) technologies to 
manufacture metals [12]. They are Selective Laser Sintering/Melting (SLS/SLM) 
and Electron Beam Melting (EBM) respectively. As for composite materials the 



key AM process is the Fused Deposition Modelling (FDM) with double extrusion 
[13].  

Selective Laser Sintering/Melting (SLS/SLM) 

Selective Laser Sintering/Melting (SLS/SLM) is an AM process where the 
component is obtained by fusing selectively its sections layer by layer with a laser 
starting from a bed of raw metal powder. The distinction between the two 
nomenclatures is not always clear, many times they are interchangeable since they 
describe the same process. However, from a more rigorous point of view, 
nomenclature Sintering is referred exclusively to ceramic and polymeric 
thermoset materials, whereas Melting is referred to metal and polymeric 
thermoplastic materials.   

The schematic representation of this process is reported in Figure 8. A highly 
energetic laser is deflected and focused by a series of lenses and mirrors to impact 
a layer of raw powders. This powder layer is uniformly spread by a roll which is 
feed by a tank, usually set aside the building zone. The laser impacting the powder 
selective fuses the powder together and, following a predetermined path, creates 
the bulk section. 

 

 

Figure 8 - Selective Laser Melting (SLM) process [14] 

After the section melting and consequent solidification, the building area is 
moved downward for a distance equal to the powder layer thickness. At this point, 
the roll spread another powder layer above the previous one, and the process is 
repeated. In the end, the final component is created layer by layer and surrendered 
by unmelt raw powder.  

To avoid oxidation during the solidification phase, the internal chamber is put 
under a controlled inert atmosphere, usually N2.  Often, the powder bed is heat up 
to 200°C to reduce the thermal gradient in the process.  

Of course, this is just a very brief explanation of the process. In reality, the 
SLM is extremely complex, and hundreds of parameters come into account to 



 
define the final component properties. For example, classical process parameters 
are the scan speed, the laser power, the hatching distance, the scanning strategy, 
the laser spot, the layer thickness, the mean powder size, and many others.  

The freedom in obtainable geometrical shapes is great and incomparable with 
the traditional subtractive method. However, some drawbacks and limitations are 
present. Some major limitations of SLM are an overhanging failure, limited 
building dimensions, induced anisotropy, powder removal, lack of repeatability, 
the remarkable presence of process-induced defects [15–17].  

Electron Beam Melting (EBM) 

Compared to SLM, Electron Beam Melting (EBM) is a very similar process, 
anyway, some notable differences are present. The schematic process is 
represented in Figure 9. First, the laser as a heat source to fuse the powder is 
substituted by a beam of electrons. This beam is deflected using electromagnetic 
lenses to correctly impact the powder bed. The other difference is the absence of 
atmosphere in the building chamber. Otherwise, electrons would impact the air 
molecules without reaching the powders. Lastly, the building chamber is heated 
up to 800°C, almost four times higher temperature than the SLM process. Indeed, 
EBM is often known as a hot process whereas SLM is a cold process due to this 
temperature difference. EBM has the same potentialities and drawbacks as the 
SLM process. The main differences are in the final roughness, higher in the EBM 
process due to higher spot of the electron beam compared to the laser, and thermal 
exposure due to different chamber temperatures [17–19].   
 

 

Figure 9 - Electron Beam Melting (EBM) process [20] 



 

 

Fused Deposition Modelling (FDM) 

This technology is suitable for thermoplastic polymeric material only and it is 
one of the most diffused. Classically, in the Fused Deposition Modelling (FDM) a 
roll forces the raw filament into a hot nozzle. When the filament passes through 
the nozzle, the material melts and can be deposited on the building platform 
following the path run by the extrusion head. Once out of the hot nozzle and in 
touch with the building platform, the raw fused material solidifies keeping the 
imposed shape. The subsequent layer is created moving the platform downward or 
the extrusion upward. During the extrusion, the thermoplastic polymer can be 
charged with a continuous fibre filament, usually stiffer but more brittle. The 
schematic process is reported in Figure 10.  

Obviously, this process has much more constraints compared with SLM and 
EBM. Indeed, the producible geometries are much more limited. Furthermore, the 
fibre can be distributed only parallel to the building plate, generating strongly 
anisotropic properties.  

However, this composite methodology production is the first step towards a 
novel generation of composite components. Nowadays, the production of 
composite materials is for a large part manual, complex and expensive [6,13,21].  

 

Figure 10 - Fused Deposition Modelling (FDM) for composite materials [6] 

 
 
 
 
 
 
 
 



 
 
 

1.2 Topology Optimisation 

The introduction of AM allows the production of a vast range of shapes and 
geometries, previously inaccessible. This manufacturing freedom comes together 
with the issue of being able to exploit this freedom. Therefore, an entire part of 
classical design methodologies evolved to suit the possibilities introduced by AM. 
Among these design methodologies, one emerged as most promising to fully take 
advantage of AM, i.e., Topology Optimisation. 

Topology Optimisation is essentially a minimisation problem where the 
objective is a certain performance of the analysed system and the variable is the 
material distribution of the system itself. The minimisation problem can be set 
with one or more constraints such as a final maximum volume. In other words, 
Topology Optimisation answers the crucial question of where placing the material 
to obtain maximum performance. This idea is often associated with many other 
names, such as bionic design, morphogenesis, generative design, or nature 
inspired design.  However, these nomenclatures belong to the Topology 
Optimisation approach and solve the same problem [11].  

Topology Optimisation can be applied to several physical problems, in other 
words, the performance of the system to be optimised can be electrical, thermal, 
mechanical magnetic, optical or a combination of them.  In any case, Topology 
Optimisation is mainly composed of three phases, reported below [22–24]. 

1 System definition: in this phase, the initial design domain, the boundary 
conditions, and the material properties are defined. This phase is related to 
the specific problem and component addressed. The output, usually 
obtained with a simulation by means of Finite Element Analysis (FEA), is 
the system data and behaviour.  

2 Topology Optimisation setup: in this phase, the Topology Optimisation is 
effectively defined, indeed the objective, the variables, additional 
functions, and so on are evaluated from the system data. Furthermore, the 
derivatives and the gradient of the objective and the functions are 
calculated with respect to the design variables, i.e., the material 
distribution, or other relevant quantities.  

3 Minimisation problem solution: in this phase, the optimisation is solved. 
As mentioned before, Topology Optimisation consists of a minimisation 
problem, therefore, once the Topology Optimisation problem is set up the 
minimisation can be carried out by several means. The simplest way is 
using optimality criteria (OC), otherwise much more complex tools can be 
employed. Classically, the Method of Moving Asymptotes (MMA) [25] is 
used for this type of problem. Anyway, many other solvers can be used, 
based on gradients evaluation or even on machine learning, neural network 
methods [26].   



Overall, Topology Optimisation can be applied and solved in many ways, 
depending on the system and the specific application. In Figure 11 a schematic 
algorithm for a general Topology Optimisation procedure is reported. In addition, 
the three main phases are reported and individuated.  

 

Figure 11 - Schematic algorithm for a general Topology Optimisation procedure 

 
In the following paragraph, a brief description of the evolution and some 

historic hints related to Topology Optimisation are described. This is useful to 
understand the role of the presented algorithms in the Topology Optimisation 
panorama. In addition, the main Topology Optimisation approaches and solvers 
are presented. All the presented Top algorithms belong to the gradient-based / 
density-based approach which characteristics will be deeply detailed in this 
dissertation. On the contrary, the main other approaches are here reported for 
completeness and briefly described to understand the key differences compared to 
the Top Suite.   

1.2.1 Topology Optimisation evolution and main approaches 

Topology Optimisation as a concept has been introduced for the very first time as 
an analytical procedure by Michell in 1904 in the mechanic field [27]. The 
research focused on finding the most performant, or stiffest and lightest structure 
to support a load in a bidimensional system. The most classical example reported 
in the original paper is shown in Figure 12. In Figure 12, B is the locking point, A 
is located horizontally with respect to B, the load F is applied perpendicularly to 
line AB. The dashed lines represent some first principal stress paths, whereas the 
bold lines represent the optimal structure to support load F, tracing the dashed 
ones.Figure 13 



 

 

Figure 12 - Michell cantilever structure optimisation 

Michell introduced the concept of optimal structure in 1904 but almost 80 
years elapsed before another methodology appeared. The main reason is related to 
the computational cost and calculation power availability. Indeed, Michell’s 
equations were solvable manually only for very simple cases. However, structures 
are almost always characterised by a number of variables not manageable by hand 
calculation. Therefore, the Topology Optimisation methods as known nowadays 
appeared for the first time in the 80’, when computational power was higher 
enough [28]. In Figure 13, an intuitive timeline about the main Topology 
Optimisation approaches is reported. Firstly, in the 80’ appeared the 
Homogenisation, followed by the density-based and lastly by higher-order 
function methods. Along with these three main categories, others appeared during 
the years [22,23,29]. However, most of them can be included as a side branch of 
the three categories just highlighted or found minor applications. Only recently, 
the use of sophisticated Artificial Intelligence (AI) algorithms landed the 
Topology Optimisation field with promising but controversial results [30–32]. Not 
included in Figure 13, but as well important is the ‘lateral’ evolution of the 
Topology Optimisation application. Namely, the use of Topology Optimisation in 
different physic fields, such as thermal conduction, fluid heat and mass transfer, 
optics, magnetism, electrostatic and so on [33–35]. 



 

Figure 13 - Topology Optimisation main methods timeline.  
Note: AI – Artificial Intelligence 

As already hinted, the Homogenisation method was the first algorithm to 
appear. In this method, the design domain is assumed as constituted by a periodic 
microstructure composed of holed unit cells. The dimensions and orientation of 
these holes define the domain microstructure and the overall domain behaviour. 
Consequently, depending on the hole size, the single unit cell has a prescribed 
stiffness and density. The Homogenisation method defines the relation between 
the hole size and the mechanical behaviour of the unit cell as a composite 
material  [36].  In Figure 14 an example of the design domain interpretation is 
reported. On the left, a continuously changing microstructure defining the design 
domain, on the right the detail of the single holed unit cell.  

 

Figure 14 - Continuous microstructure and single rectangularly holed unit cell 

 



 
Following this procedure, the final output of the Homogenisation method 

consists of the size of the hole, namely a and b in Figure 14, and its orientation in 
the plane. The final material distribution can be defined by bulk unit cells (a and b 
equal to 0), void material (a and b equal to 1) or intermediate values (a, b, and 
orientation variable). Nowadays, the Homogenisation method lost its primate as 
approach for the Topology Optimisation problems. However, it is coming back in 
the spotlight for specific Topology Optimisation problems. When the final 
component is supposed to be composed by metamaterial cells, the 
Homogenisation method is useful to describe the single cell behaviour and reduce 
the number of global variables [37–40].  

Furthermore, the Homogenisation method has been the precursor of a new 
series of approaches, generally called density-based approaches [41], where the 
density of a point in the design domain is somehow interpolated to its stiffness. 
The first methodology appeared in this sense is the so-called Solid Isotropic 
Material with Penalization (SIMP) and it is still one of the most employed 
methodologies [42]. Other methods based on similar assumption were been 
developed, such as Evolutionary Structural Optimisation (ESO), Bidirectional 
Evolutionary Structural Optimisation (ESO) [43], Rational Approximation of 
Material Properties (RAMP) [44,45]. In Figure 15 it is possible to visually 
understand the meaning of interpolation between stiffness E and density ρ in a 
design domain point, generally described by coordinates x. A detailed description 
of the density-based approaches is provided below since they are the core of the 
presented algorithms and the method employed in most of the available 
commercial software.  

 

Figure 15 - Example of interpolation scheme between density ρ and stiffness E. 

After 10 years of research based on this type of material interpolation 
schemes, a novel methodology appeared, named Level Set and similar others [46]. 
The novelty of this method is the absence of the direct interpolation between 
density and stiffness. On the contrary, the entire topology, i.e., material 
distribution, is defined by a higher order function. Even if problematic to be 
described, the concept can be clearly understood thanks to Figure 16. In this 



Figure, a 3D function named  can assume three different values, depending on a 
constant parameter . Most important, when , the function  defines a boundary  on a 
bidimensional plane, i.e., the domain. This condition is used to describe the 
topology  in the domain  and define the material distribution. Therefore, using this 
higher order function , it is possible to describe and change the topology on the 
2D domain . Similarly, using a 4D function it is possible to describe a 3D 
topology. Overall, the Level Set method is based on a more complex mathematical 
structure and  its implementation is difficult as well. However, the Level Set 
method has found interesting applications mainly in problems where the physic 
depends directly on the boundary [47–49]. For example, most of the problem 
including a fluid with mechanical or thermal proprieties are strictly related to the 
boundary . In the density-based methods there is no analytical function describing 
the boundary . The boundary is the result of the transition between elements with 
null and full density. Whereas, for element with intermediate densities it can be 
extremely difficult to be defined. On the contrary, in the Level Set method the 
boundary  has an analytical definition by implementation. Therefore, it can be 
straightforwardly used to model the component behaviour.  
 

 

Figure 16 - Level Set design domain interpretation by higher order function 

The three main debrided methods are related to the approach the topology 
optimisation is carried out.  It concerns the second phase explained in the previous 
paragraph. Indeed, these methods are used to setup the Topology Optimisation 
problems. However, the minimisation problem used to find the optimal material 
distribution has not been yet addressed, i.e., the thirds phase previously defined.  

There are two main categories of inner minimisation problem solvers. The 
Gradient Based (GB) solvers and the Non-Gradient Based (NGB) solvers. The 
first evaluates the derivates of the objective function and the constraints with 
respect to the  design variables (material distribution), whereas the second 
bypasses this calculation. As stated in [32], the NGB presents many issues, 
especially the huge computational cost for larger system. Indeed,  the most 
common method to bypass the gradient evaluation is using a huge amount of data 
and train some machine learning algorithm. These methods are known in the 
literature as Genetic Algorithms, Differential Evolution, Simulated Annealing and 



 
so on. Overall, it seems that the GB algorithms, even if characterised by tricky 
derivates evaluation, are the most suitable for  the Topology Optimisation 
solution. Indeed, the majority of the Topology Optimisation approaches are solved 
by means of GB solvers, such as MMA.  

However, some specific Topology Optimisation problems may require NGB 
methods to be solved, especially when discontinuities are present and the 
derivates may not be evaluable. Furthermore, non-connected design spaces and 
Topology Optimisation problems with many local minima may take advantages 
from NGB solvers.  Indeed, in the last years AI-based Topology Optimisation are 
appearing and they promising for solving specific and complex problems [50–54].  

This brief description about Topology Optimisation evaluation, approaches 
and solvers is indented to be an introduction to the following part. Obviously, this 
is just scratching the surface of the vast possibilities and developments made in 
the Topology Optimisation field. However, it is useful to locate in the Topology 
Optimisation panorama the Top algorithms presented in this dissertation. All the 
Top algorithms belong to the density-based approach. The reason is that this is the 
most direct approach for the Topology Optimisation problem and the most 
employed. Since the purpose of this dissertation is to provide to the AM 
environment useful dedicated design tools, it has been decided to develop the Top 
algorithms in most accessible manner.  

Furthermore, the Topology Optimisation problems are solved using GB 
methods. The reason in this case is double. First, computational cost is a critical 
issue in the AM industry, so its reduction is critical and beneficial for the AM 
development. Second, the addressed problems are characterised by continuous 
variables, or at least not discontinues, and do not require specific NGB solvers. 
Anyway, it is worth to be noticed that all the problems addressed by the Top Suit 
can be solved using other approaches and solvers.  

Overall, the Top Suit belongs to the density-based / gradient-based Topology 
Optimisation. Therefore, below a detailed description of this approach is  carried 
out together with related issues and adjustments.  

 

1.2.2 Density-Based / Gradient-based Topology Optimisation   

In this paragraph, the density-based Topology Optimisation approach is 
introduced. The Topology Optimisation problem is solved in the generic structural 
field to analyse critical aspects of method. Further details are reported in the 
related section for each Top algorithm. 

The first step is the definition of  a Design Domain 𝐷, a portion of the space 
(both 2D and 3D) where the material can be distributed. The boundary of the 
domain 𝐷 is named 𝛤. On the boundary 𝛤 some conditions are imposed, such as 
applied loads F or fixed displacement. Since, Finite Elements (FE) are used to 
discretise and model the domain 𝐷, the Topology Optimisation problem is 
formulated accordingly [11]. Therefore, the full domain 𝐷 can be considered 
discretised in 𝑁𝑒𝑙𝑒𝑚 finite elements. For each element 𝑒, a design variable 𝜌𝑒 can 



be defined. The design variable 𝜌𝑒 is defined as the element density variable. As a 
notation remark, bold symbols refer to vector or matrix quantity. For example, 𝝆 
stands for the vector containing all the element densities, as reported in Eq.1.  

𝝆 = [𝜌1 … 𝜌𝑒 … 𝜌𝑁𝑒𝑙𝑒𝑚] =  𝜌𝑒  𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 (1) 

The meaning of the density variable 𝜌𝑒  is essentially the presence or not of 
the element itself. In other words, the density variable 𝜌𝑒 is thought to be 
constrained in an interval. In case the density is the minimum, usually zero, the 
element is considered as void material. In case the density is maximum, the 
element is considered as full material. Overall, the vector 𝝆 contains all the value 
of the design variables 𝜌𝑒 and therefore the material distribution in the domain 𝐷. 
In Figure 17 quantities are visually represented. In Figure 17 it is possible to 
visualise the quantities just described.  In addition to the design variables 𝝆, 
another set of variables is present, named state variables. In other words, these are 
the variable stating the behaviour of the domain.  

 

 

Figure 17 - Design Domain and related quantities 

Referring to structural topology optimisation and in particular to minimum 
compliance optimisation, the state variable is the overall displacement 𝑼. 
Supposing to have a number of node equal to 𝑁𝑛𝑜𝑑𝑒, the vector 𝑼 is defined as on 
Eq.2. 

𝑼 = [𝑈1 … 𝑈𝑛 … 𝑈𝑁𝑛𝑜𝑑𝑒] =  𝑈𝑛  𝑤𝑖𝑡ℎ 𝑛 = 1,… ,𝑁𝑛𝑜𝑑𝑒 (2) 

The variables 𝑼 and 𝝆 are linked by the state equation governing the analysed 
system. In particular, for given and fixed values of the design variables, the state 
equation provides the values for the state variables. Thanks to these variables it is 
possible to describe the density-based Topology Optimisation in the structural 
field as in Eq.3.  



 
min
𝝆,𝑼

𝜙(𝝆,𝑼) 

𝑠. 𝑡. {

𝑔𝑖(𝝆, 𝑼) ≤ 𝑔𝑖̅     𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑀
𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 𝜌𝑀𝐴𝑋      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚

𝑲(𝝆)𝑼 = 𝑭
 

(3) 

Where 𝜙 is the objective function, 𝑔𝑖 is a constraint function and 𝑔𝑖̅ the 
related threshold, M is the number of total constraints, 𝜌𝑚𝑖𝑛 is the minimum value 
for the design variable, usually 0, 𝜌𝑀𝐴𝑋 is the maximum value for the design 
variable, usually 1, 𝑲 is the global stiffness matrix via FE analysis, 𝑭 is the global 
load vector via FE analysis. The problem as written in Eq.3 is known as 
Simultaneous Analysis and Design (SAND) formulation because the state 
equation 𝑲(𝝆)𝑼 = 𝑭 is included as constraining equation in the Topology 
Optimisation problem. Anyway, usually the solution of the state equation is 
carried out aside the Topology Optimisation problem and verified by the FE 
solver. Indeed, another formulation is more likely to be employed named Nested 
Analysis and Design (NAND) formulation, as expressed in Eq.4.  

min
𝝆,𝑼

𝜙(𝝆,𝑼) 

𝑠. 𝑡. {
𝑔𝑖(𝝆,𝑼) ≤ 𝑔𝑖̅     𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑀

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 𝜌𝑀𝐴𝑋      𝑤𝑖𝑡ℎ 𝑒 = 1, … , 𝑁𝑒𝑙𝑒𝑚
 

+      𝑲(𝝆)𝑼 = 𝑭 (4) 

In this formulation, the Topology Optimisation is solved iteratively 
interspersed by FE analysis where the state equation is verified. This solution is 
the mostly employed since reduces remarkably the complexity of the optimisation 
problem.  

The problem as formulated is named continuous or relaxed. Indeed, the 
design variables are free to change continuously between the minimum and the 
maximum value. However, in order to have a clear topology on the end of the 
optimisation, the final distribution of 𝝆 should be discrete made of 0 and 1. For 
example, a very simple topology is reported in Figure 18, and show the final 
topology individuated by the discrete distribution of void and full elements.   

 

Figure 18 - Example of simple discrete topology by density-based methods 



All considered, the problem should be written in a discrete form since the 
intermediate densities are not admissible in the final result. The discrete 
formulation is written in Eq.5 below.  

min
𝝆,𝑼

𝜙(𝝆,𝑼) 

𝑠. 𝑡. {
𝑔𝑖(𝝆,𝑼) ≤ 𝑔𝑖̅     𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑀

𝜌𝑒 = {
𝜌𝑚𝑖𝑛
𝜌𝑀𝐴𝑋

      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚
 

+      𝑲(𝝆)𝑼 = 𝑭 (5) 

However, the possible combination of discrete values of design variable in 
this form follows a factorial function. Indeed, for a very limited number of 
elements, such as 5000, the number of possible combinations raises up to 1029 
[32]. In addition, NGB approaches are usually based on this type of formulation 
and this is the reason why they are so computationally expensive. 

All considered, the NAND formulation in Eq.4 is the most suitable for the 
Topology Optimisation solving. However, the continuous formulation does not 
ensure a clear ‘black and white topology’. If the problem would be solved as it is, 
the final result may be characterised by intermediate densities since there is no 
prescriptions on that. This concept can be visually understood looking at Figure 
19. Indeed, ‘grey’ scale density distribution characterises the final topology.  

 
 

 

Figure 19 - Example of simple continuous topology by density-based methods 

 
In order to solve this problem, as already mentioned before, the solution 

consists of interpolating with a penalty factor the density and the stiffness. In 
other words, for low values of the density variable, the related stiffness is 
penalised, and the element tends to have less and less importance, up the lower 
density value during the Topology Optimisation. On the contrary if the element 
has higher values of density, the related stiffness is rewarded, and the element 
tend to have more importance during the Topology Optimisation up to is 
maximum value. In this sense, two main categories of interpolation are used. One 
is named Solid Isotropic Material with Penalization (SIMP) and the interpolation 



 
between density and stiffness is exponential. The other one is named Rational 
Approximation of Material Properties (RAMP) [45] and the interpolation is 
rational. In Eq.6 the two interpolation equations are reported. 

 

𝑆𝐼𝑀𝑃 → 𝐸(𝜌𝑒) = 𝜌𝑒
𝑝𝐸0 

 

𝑅𝐴𝑀𝑃 → 𝐸(𝜌𝑒) =
𝜌𝑒

1 + 𝑞(1 − 𝜌𝑒)
𝐸0 

(6) 

 
Where, 𝐸 is the interpolated stiffness, 𝑝 is the exponential factor usually, 𝐸0 is 

the material original stiffness, 𝑞 is the rational coupling factor. Both interpolation 
schemes are quite used in the literature. However, the SIMP methodology found 
more application and it is spread in commercially available software as well. For 
this reason, the description below is focused on the SIMP approach. Anyway, the 
same consideration can be done with the RAMP interpolation scheme as well. The 
two interpolation are visually represented in Figure 20, as it can noticed they quite 
similar.  

 

Figure 20 - SIMP and RAMP interpolation scheme for density and stiffness.  

Note: point line indicate linear interpolation. 𝐸0 is set to 1,  𝝆𝒎𝒊𝒏 equal to 0, 𝝆𝑴𝑨𝑿 equal to 1. 
 

As a consequence of this interpolation the original problem in Eq.4 changes as 
reported in Eq.7. 

 
min
𝝆,𝑼

𝜙(𝝆,𝑼) 

𝑠. 𝑡. {
𝑔𝑖(𝝆, 𝑼) ≤ 𝑔𝑖̅     𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑀

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 𝜌𝑀𝐴𝑋      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚
 

 
 

+      {
𝑲(𝝆)𝑼 = 𝑭

𝐸(𝜌𝑒) = 𝜌𝑒
𝑝𝐸0      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚

 

(7) 

  



It is worth noting that this type of interpolation works for isotropic elastic 
material. Indeed, for composite, anisotropic or non-elastic materials this 
interpolation scheme would be different as will be detailed thereafter. Under this 
limitation, the stiffness matrix can be expressed as reported in Eq.8.  

 

𝑲(𝝆) =∑𝑲𝑒
𝑒

(𝜌𝑒) =∑𝜌𝑒
𝑝𝑲𝑒

0

𝑒

 (8) 

 
Where 𝑲𝑒 is the element stiffness matrix and 𝑲𝑒0 is the element stiffness 

matrix considering the base material property, i.e., 𝐸0.  
The penalty factor 𝑝 can assume different values, indeed there is no restriction 

on it expect for being at least unitary. The penalty factor 𝑝 can be chosen 
experimentally. In other words, it can be suited for the specific Topology 
Optimisation problem addressed.  
 For example, the problem in Eq.6 for minimum compliance (𝜙(𝝆,𝑼) =
𝑭𝑇𝑼(𝝆)), volume constrain of 50%, penalty factor 𝑝 equal to 1, 800 squared 
unitary quad elements, shape ratio 2:1, density values belonging to the 0-1 
interval, unitary force, 𝐸0 unitary. The solving algorithm can be easily coded such 
as in [55] using optimality criteria.  

 

Figure 21 - Final topology without penalisation 

As it can be seen in Figure 21, most of the element present intermediate 
densities. Indeed, the linear interpolation provide a grey-scale solution which 
poorly fit real applications. The intermediate densities can be interpreted as 
different microstructures. In other words, each element can be considered as 
composed by a particular distribution of void and bulk material in order to have 
the prescribed density by the Topology Optimisation [42]. An entire branch of the 
Topology Optimisation has been developed with the aim of concurrently 
optimising the macro and micro material distribution and it is usually named 
multi-scale Topology Optimisation [56]. For other applications, where the final 
topology must be characterised by bulk material only, the penalty factor must be 
greater than 1 and usually it is set to 3. It is worth noting that this value is not 
prescribed, however applications demonstrated that 𝑝 equal to 3 provides the most 
performant results. For higher values, the penalisation is so strong that forces the 
solution to fall into local minima. Overall, the use of the penalisation factor permit 
to obtain discrete solutions at the cost of introduction its variability.  



 
The presence of local minima is the first of a series of problems related to the 

use of the SIMP approach, and more generally the density-based approaches. 
Other main issues are the checkerboard effect, the mesh dependency, and the 
grey-scale solution [57]. In the following paragraph, a detailed explanation of 
these problems are reported together with the related solutions.  

The system in Eq.4 can be solved using a linear interpolation for a certain 
category of problems, such as the minimum compliance under volume constraint 
[58]. This solution is useful because is much easier to be implemented, it reduces 
the computational efforts and the number of variables to be defined. However, for 
more complex problems, especially hardly constrained ones, this solution is no 
more efficient and the SIMP or RAMP method have to be employed.  

Independently from the interpolation scheme used, the problem in Eq.4 
requires to be solved. As already hinted before, there are two main categories of 
solvers to be employed. The first method is the gradient-based (GB) method and 
it exploit the gradient evaluation to look for the minimum. The second method is 
the non-gradient-based (NGB) method where the minimum is searched without 
the gradient evaluation. About the NGB solvers, in [32] their application is hardly 
tackled, especially for the greater amount of computational power required 
compared to GB methods. Some exceptions are present to this general statement, 
but they are not fitting the Top Suite applications. 

Hence, all the problems presented in this dissertation are solved using GB 
method. In particular, for TopTM and TopComp the gradient evaluation is carried 
out in the problem setup phase following the method proposed in [58]. Therefore, 
there is no need to evaluate it again in all the optimisation problem. It is worth 
noting that this reduces remarkably reduces the computational cost. As for 
HyperWorks, the problem is hardly constrained and therefore the SIMP 
interpolation scheme is used. In this case, the gradient must be evaluated 
(sensitivity analysis) during the optimisation iteratively and then employed to 
solve the minimisation problem.  

The gradient evaluation is usually done with the adjoint sensitivity analysis 
rather than using the finite difference-based sensitivity analysis. This second 
numerical method is extremely precise, but it is much more expensive. The 
adjoint sensitivity analysis will be detailed in the HyperWorks related paragraph.   

 

1.2.3 Numerical Instabilities in Topology Optimisation  

As already hinted in the previous paragraph, density-based approaches are 
characterised by a series of problems which affect the Topology Optimisation 
solution [57].  

Below a detailed discussion of these problems is reported. It is useful to 
understand the criticalities of the density-based Topology Optimisation and how 
the Top Suite respond to these issues.  



Checkerboards  

The checkerboard effect is the presence of a checkerboard fashion in final 
topology. Mainly, adjacent elements results to be connected only by concerns, 
poorly modelling the real component behaviour. The checkerboard effect is 
caused by a numerical instability due to the interaction between the Topology 
Optimisation solver and the FE analysis [59]. Indeed, two main aspects come into 
account when a Topology Optimisation for structural stiffens maximisation is 
considered. Trivially, the overall stiffens of the structure must be maximised and 
therefore every density distribution which supports this objective is rewarded. 
Furthermore, the Topology Optimisation should be as cheap as possible in terms 
of computational power. Consequently, low order elements are preferred to limit 
the number of degrees of freedom (DoF) to evaluate. The results of these two 
aspects lead to final topologies characterised by black and white alternate 
elements in a checkerboard pattern. For example, solving the same problem 
reported in Figure 21 but with a penalty factor of 3, the final topology is poorly 
defined as reported  in Figure 22.  

 

 

Figure 22 - Checkerboard effect on final topology 

As a matter of fact, linear quad elements have been used to solve the FE 
analysis [55]. These elements are preferred due to their low number of DoF 
compared to higher order elements.  However, from a numerical point of view, the 
checkerboard pattern is characterised by a higher stiffness and the poor 
connection, namely corner to corner, is not realistically modelled.  

In order to solve this problem, many approaches have been developed. 
Mainly, the use of higher order elements or a filtering technique. The employment 
of higher order elements is easier and increase the overall accuracy. However, the 
computational cost of the Topology Optimisation is at least doubled. Indeed, the 
number of DoF is increased of about twice and for large system this may be 
extremely expensive.  

For this reason, the filtering technique is preferred and one of the most 
employed methodology. Furthermore, the filtering technique solves another 
problem, i.e., the mesh dependency as detailed thereafter.  



 
The filtering technique consists of using a filtered design variable instead of 

the real one. In other words, during the optimisation setup the design variable 𝝆 is 
substituted by a filtered 𝝆̃ [60]. The relationship between these two variables is 
reported in Eq.9.  

{
 
 

 
 𝜌̃

𝑒
=
∑ 𝐻𝑒𝑖𝜌𝑖 𝑖∈𝛺𝑒

∑ 𝐻𝑒𝑖𝑖∈𝛺𝑒

      𝑤𝑖𝑡ℎ 𝑒, 𝑖 = 1,… ,𝑁𝑒𝑙𝑒𝑚

𝐻𝑒𝑖 = 𝑅 − ‖𝒙𝑖 − 𝒙𝑒‖

𝛺𝑒 = {𝑖 | ‖𝒙𝑖 − 𝒙𝑒‖  ≤  𝑅}

 (9) 

 
Where, 𝛺𝑒 is the neighbourhood of the element 𝑒, 𝐻𝑒𝑖 is a weighting function,  

𝒙𝑖 is the location vector between of element 𝑖, 𝒙𝑒 is the location vector between of 
element 𝑒, 𝑅 is the filtering radius. Basically, the design variable is smoothed over 
the closest elements according to the filtering radius. This procedure is visually 
represented in Figure 23.  

 
 

 

Figure 23 – Filtering techniques and element neighbourhood 

Overall, the filtered density is used in the whole procedure to evaluate the 
component domain properties and performance response. Eq.6 for the SIMP 
approach is therefore modified according to the filtering as reported in Eq.10.  

𝐸(𝜌𝑒) = 𝜌̃
𝑒
𝑝𝐸0      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 (10) 

However, it must be noticed that during the minimisation problem phase, the 
design variables remain the unfiltered ones. Consequently, the use of the chain 
rule to evaluate the sensitivity is required. More detail are provided d in the 
related section in the HyperWorks discussion.  

Looking at the problem solved in Figure 22, it is sufficient to implement the 
detailed filter and imposing a filtering radius of 1.5 time the element size to solve 
the checkerboard effect. The result is reported in Figure 24.  

 



 

Figure 24 - Checkerboard solution by filtering approach 

The solution reported in Figure 24 is clear and well defined. The checkboard 
pattern is absent, and the topology is correctly modelled. The increase in 
computation time is inferior compared to the higher order element solution 
counterpart [11].  

Even if the filtering technique involves great advantages, some drawbacks are 
present. First of all, the filtering radius 𝑅 is another parameter to be defined 
empirically. Indeed, there is no analytical procedure which can assess a precise 
value for this variable. Similarly to the penalty factor 𝑝, the filtering radius must 
be chosen accordingly to other factors case by case. Sometimes, the radius may be 
set the minimum manufacturable thickness during the production phase but is not 
an exhaustive and comprehensive solution. Overall, this raises the need for human 
interaction which may suffer from design bias. Furthermore, the more the filtering 
radius is high the more the number of intermediate densities is present in the final 
topology. In particular, the boundary of the individuated final topology may be 
characterised by blurred and fuzzy which can create issues in the component 
realization. Again, this may require the human interaction and interpretation 
which should be limited as much as possible. This last drawback can be limited by 
using the so-called projection method, as detailed below in the related section.    

Mesh dependency 

When the Topology Optimisation is carried out on certain design domain, the 
optimal topology should be unique. Indeed, the optimisation should provide the 
globally optimum material distribution. Therefore, the material distribution should 
not depend on the domain discretisation. In other words, the problem should be 
independent from the number of elements 𝑁𝑒𝑙𝑒𝑚. However, this is not true for 
most of the cases. For example, it is possible consider a cantilever beam and solve 
the problem in Eq.6 for minimum compliance (𝜙(𝝆,𝑼) = 𝑭𝑇𝑼(𝝆)) under a 
volume constrain of 50%, penalty factor 𝑝 equal to 3, squared unitary quad 
elements, shape ratio 3:1, density values belonging to the 0-1 interval, unitary 
force, 𝐸0 unitary [55]. The result is shown in Figure 25 and the Topology 
Optimisation is carried out considering 675, 1200 and 2700 elements respectively. 
As it can be noticed, the more the number of elements is increased, i.e. mesh 
refinement, the more the final topology changes. In particular, smaller features 



 
tend to appear and a more complicated truss-like structure is present. This mesh-
dependency [57] is not a numerical misinterpretation. on the contrary, it is the 
logical path followed by the Topology Optimisation solver. As a matter of fact, 
the structure obtained with 2700 elements is stiffer, justifying this final topology. 
As an additional proof, this tendency is the same found in natural structures such 
as bones or wood fibres. Usually, these intricated structures with small features 
are present more than bulky compact ones.  

Nevertheless, this mesh dependency is not acceptable for most of Topology 
Optimisation industrial applications. First, because too little features may not be 
producible by manufacturing systems. Second, because it must be the possibility 
to refine the mesh and increase the mesh accuracy without obtaining different 
final solutions. 

In order to solve this problem, many approaches have been developed during 
the years. Some of them are based on surface limitation to prevent having too 
many holes, i.e. many thin structures, such as the perimeter control or the 
gradient control. However, these solutions are often weak, and it is very difficult 
to predict a maximum free surface of the final topology.  

 

Figure 25 - Mesh dependency and feature refinement 

 
Indeed, the most suitable techniques to avoid mesh dependency is the already 

introduced filtering method. Using the same filter defined in Eq.9, the final 
topology is automatically free by the mesh-dependency effect. Using a filtering 
equal to 2 times the element size, the same topology optimisations carried out in 
Figure 25 result to be completely different. The results are reported in Figure 26. 



As it can be seen, the three different solutions share the same structures, 
independently by the mesh refinement. Overall, the discretisation increase the 
solution accuracy, but it does not affect the Topology Optimisation result.  

As already hinted previously, the filtering radius should be defined somehow. 
However, an analytical procedure does not exist, and this value can be chosen 
only case by case. A possibility is to link the filter radius to the minimum 
manufacturable thickness in the production process. However, this data is not 
always available, and it may be inferior to minimum element size, leading to 
inactive filtering.  Furthermore, as it can be seen in Figure 25 and Figure 26, the 
filtered solution present fuzzy and not clear boundaries. These grey zones must be 
interpreted by designers and lead to possible misunderstandings. 

These filter-induced undefined grey zones can be eliminated using a 
projection method that will be discussed hereafter.  

 

Figure 26 - Mesh independency by filtering technique 

Undefined grey zones 

With the aim of solving the mesh dependency and the checkerboard effect, a 
filtering technique is used. Even if this solution is well working and solves these 
problems, some drawbacks are present. First, the lack of a precise methodology to 
choose the filtering radius. Second, the presence in the final topology of fuzzy 
boundaries and grey zones. The first problem may be partially solved looking at 
manufacturing constraints. The second must be solved forcing these intermediate 
densities to fall into the interval extremes, i.e., 0 or 1.  



 
In order to do that, a procedure named projection technique is employed. In 

particular, the filtered density 𝜌̃𝑒 is substituted with a projected  𝜌̃𝑒̅̅ ̅ defined as 
reported in Eq.11.  

𝜌̃𝑒̅̅ ̅ =
tanh(𝛽𝜌0) − tanh(𝛽(𝜌̃𝑒 − 𝜌0))

tanh(𝛽𝜌0) + tanh(𝛽(1 − 𝜌0))
 (11) 

 Where 𝛽 is a projection parameter which controls the effect of the projection 
and 𝜌0 is the threshold parameter. The projection erases the ‘grey’ zones, 

fostering the “black or white” solution [61]. This projection function forces the 
filtered densities to be full or void material and has great effect on the 
aforementioned grey zones. The factor 𝛽 controls how harder the densities are 
projected. Therefore, for lower values the projection is light and less effective. For 
greater values the projection is hard and strongly affect the density value. The 
threshold parameter 𝜌0 is usually set at 0.5, or more generally at the average of 
𝜌𝑚𝑖𝑛 and 𝜌𝑀𝐴𝑋. In Figure 27 is visible the effect of the projection especially on 
the thin branches of the topology. This design is on the most classical employed in 
the Topology Optimisation. The left side has a fixed temperature 𝑇 while the 
whole plate is uniformly heated by the heat flow 𝑄. Aim of the Topology 
Optimisation is to maximise the heat exchange under a volume constraint. More 
details are reported in [62–64]. As it can be seen, the left topology is fuzzy and 
difficult to be interpreted. On the contrary, the right topology is perfectly clear 
and it does not require any human interpretation [62].  

 

Figure 27 - Effect of density projection on classical heat transfer case 

Overall, the projected density, exactly the filtered one, is used in the whole 
procedure to evaluate the component domain properties and performance 
response. Eq.6 for the SIMP approach is therefore modified according to the 
filtering as reported in Eq.12.  

𝐸(𝜌𝑒) = 𝜌̃𝑒̅̅ ̅
𝑝
𝐸0      𝑤𝑖𝑡ℎ 𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 (12) 



Another possible solution to intermediate densities may be raising the penalty 
factor 𝑝 up to 5 or more. However, this solution hardly affects the optimisation 
stability, making the process unstable and divergent.  
 

Local Minima 

In order to solve the Topology Optimisation and solve the aforementioned 
problems, many numerical factors have been introduced, mainly the penalty factor 
𝑝, the filtering radius 𝑅 and the projection parameter 𝛽. Hence, the process is 
strongly dependent from their numerical values. Overall, the initial problem 
becomes more and more non-convex, and many local minima may appear. In 
other words, changing the values of these parameters different sub optimal 
solutions are likely to appear. The more common solution to avoid local minima is 
to slowly increase the values of this parameters during the optimisation. For 
example, it is possible consider a cantilever beam and solve the problem in Eq.6 
for minimum compliance (𝜙(𝝆,𝑼) = 𝑭𝑇𝑼(𝝆)) under a volume constrain of 50%, 
penalty factor 𝑝 equal to 3, 800 squared unitary quad elements, shape ratio 2:1, 
density values belonging to the 0-1 interval, unitary force, 𝐸0 unitary [55]. The 
result is shown in the upper part of Figure 28. Even if this solution may seem 
optimal, the initial value of 𝑝 equal to 3 may have forced the topology to fall into 
a local minimum.  

 

 

Figure 28 - Topology optimisation with continuation method 

For this reason, the topology in the lower part of Figure 28 is obtained 
increasing slowly the value of 𝑝 iteration by iteration according to Eq.13. 



 

𝑝 = min{1 + floor((𝑖𝑡𝑒𝑟 − 1)/3) ∙ 0.1, 3} (13) 

 Where 𝑖𝑡𝑒𝑟 is the current iteration. As it can be noticed, the solution is quite 
different and 4% stiffer.  

Overall, the continuation method can be applied on the penalty factor 𝑝, the 
filtering radius 𝑅 and the projection parameter 𝛽. This relaxes the problem and 
prevents possible local minima during the optimisation. However, Eq.13 has no 
analytical definition, basically it has been found to be suitable for this type of 
problem [65]. All the numbers included in the Equation are arbitrary and their 
choice is based on human intuition.  

 

1.2.4 The Top Suite  

The Top Suite is included within the frame of density-based / gradient-based 
Topology Optimisation. The Top Suite is composed by three different Topology 
Optimisation algorithms. The first one is named TopTM and solve the coupled 
problem of thermo-mechanical Topology Optimisation. Aim of TopTM  is to 
maximise the heat exchange and the structural stiffness of the part concurrently. 
As discussed later this coupled Topology Optimisation is extremely useful for 
industrial applications and a dedicated solver was missing in the literature before 
TopTM. The algorithm is formulated in the density-based approach without 
material penalisation. This avoid the use of the material interpolation factor, 
preserving the convexity of the problem. As a consequence, the Topology 
Optimisation problem is solved with the optimality criterium which leads to the 
global optimum of the structure. In this manner, the problems related to local 
minima and grey zones are removed. The checkerboard effect and the mesh-
dependency are solved using higher order element rather than filtering. The reason 
behind this choice lays on the fact that TopTM is aimed at industrial applications. 
In other words, the code is thought to be simple and of straightforward 
implementation using commercially available software.  As it is coded, the 
algorithm remains in few lines of code whereas the use of filtering or more 
complex features would require greater coding expertise. The same consideration 
can be carried out on the second algorithm, TopComp. This algorithm is able to 
optimise fibre reinforced composite materials. It is based on two different 
optimality criteria, one for the material distribution and one the fibre orientation 
which combined create the global optimal solution. Before TopComp the available 
codes for carrying out this type of coupled of optimisations were complex and sub 
optimal. 

The last algorithm HyperWorks can include the AM process induce defect 
influence on the fatigue response of the part within the Topology Optimisation 
procedure to obtain reliable designs. Differently, HyperWorks requires a different 
approach. Mainly due to the fact that the problem is formulated with two stress 



constraints. These constraints are extremely difficult to be treated within the 
Topology Optimisation. Furthermore, there is no evidence that an optimality 
criterium can be extrapolated analytically. Therefore, HyperWorks is solved using 
the SIMP approach and the method of moving asymptotes. The various related 
problems are solved using filtering, projection and continuation method as 
explained in the previous paragraph. Overall, the algorithm is coded in Matlab 
with more than three thousand code lines. Since this implementation limits 
remarkably the industrial applicability, a methodology to implement the 
HyperWorks algorithm as a procedure in the commercially available software 
HyperWorks is outlined.  

In Table 1 a resuming table with the most important aspects of each Top 
algorithm is reported.  
 
 

 TopTM TopComp HyperWorks 

Approach 
Density-based 

Without penalisation 
Density-based 

Without penalisation 
Density-based 

With penalisation 

Solver Gradient-based Gradient-based Gradient-based 

Method  Optimality Criteria Optimality Criteria 
Method of Moving 

Asymptotes 

Checkerboard 
Higher Order 

Elements 
Higher Order 

Elements Linear Filter 

Mesh-dependency Minimum element size Minimum element size Linear Filter 

Grey Zones Optimality Criteria Optimality Criteria Nonlinear projection 

Local Minima 
Global Optimum 

Convergence 
Global Optimum 

Convergence Continuation 

Table 1 - Top Suite characteristics 

Overall, the Top Suite is thought to be a useful tool for industries to foster the 
AM applications. All the codes are easy to be implanted or transferred to 
commercially available software. Below, an illustrative scheme regarding the Top 
Suite problem-solution fit is presented. All the algorithms solve a specific 
problem or opportunity offered by AM technologies in the related application 
field. The objective is to maximise the component performances. 

The first category of problems is related to the thermo-mechanical systems. In 
particular, the main issue is the optimisation of systems that undergo coupled 
loads, both mechanical and thermal. In chapter 2, the TopTM algorithm is 
presented, in chapter 2.2 it is analytically obtained and in chapter 2.3 it is 
validated together with optimisation results. TopTM is suitable for the 
optimisation of components such as heat exchangers, engines, turbine blades and 
so on where the thermal and mechanical loads cannot be untied.   



 
The second category of problems is related to fibre reinforced composite 

materials. In particular, the main issue is the optimisation of materials, especially 
polymers,  reinforced by means of rigid fibres. AM processes indeed are able to 
tube the fibre deposition within the polymer matrix to obtain improved properties. 
The way these fibres fill in and the overall topology of the component is obtained 
thanks to the TopComp algorithm. In chapter 3, the TopComp algorithm is 
presented, in chapter 3.2 it is analytically obtained and in chapter 3.3 it is 
validated together with optimisation results. TopComp is aimed at obtaining top 
optimised fibre reinforced composites with mechanical properties comparable to 
metal, especially aluminium. Accordingly, this novel set of components would be 
able to replace metal parts and achieve huge mass reduction.  

The third category of problems is related to the evaluation of the defect 
population within the topology optimisation process. Indeed, AM process suffers 
from a non-negligible defect population characterised by pores, cluster of pores 
and lack of fusion just to cite a few of them. These defects affect and lower 
remarkably the fatigue response of the part. Furthermore, classical fatigue models 
are not able to consider and model this defect population in the part life span 
evaluation. For this reason, TopFat uses the Murakami model to include the 
defects population within the topology optimisation process. In chapter 4, the 
TopFat algorithm is presented, in chapter 4.2 it is analytically obtained, in chapter 
4.3 it is validated together with optimisation results and in chapter 4.4 it is 
extended to commercially available software. TopFat it is aimed at obtaining 
reliable final designs in both the quasi-static and fatigue regime.  

Below, a detailed description of every Top code is reported to precisely 
highlighted the novelty and the characteristics.  

 
 
 
 



 

 

 

 

 

 

 

 



 
 

 

 

Chapter 2 
 

TopTM: thermo-mechanical 
topology optimisation  

2.1 Thermo-mechanical topology optimisation 
background 

Topology Optimisation algorithms are usually employed to design 
components subjected to mechanical and structural loads. However, Topology 
Optimisation in the thermal field has been investigated in the literature as well and 
cover a vastity of industrial applications. Indeed, algorithms permitting to 
maximize conduction heat transfer have been proposed during the last years. Most 
of them are analysed and reviewed in [66]. Furthermore, experimental 
investigations of this type of Topology Optimisation have been carried out as well 
[67]. It is worth to note that the optimisation strategies are the same employed for 
the enhancement of the mechanical stiffness. As already described before, the 
SIMP strategy for the heat conduction Topology Optimisation [68] and the BESO 
method have been employed [69]. 

Nevertheless, some components in real applications can be subjected to 
combined structural and thermal loads, like as turbine blades, engines, or heat 
exchangers. Consequently, the development of optimisation algorithms allowing 
to design structures subjected to coupled thermal and structural loads is of utmost 
interest among researchers and industry.   

These algorithms can be divided in two main categories. The first one consists 
of a classical stiffness maximisation considering the effect of the induced thermal 
stress and strains. In other words, the structural Topology Optimisation must 
consider the presence of a temperature field which modifies the strain distribution. 
The most important and last achievements in this direction are described hereafter. 
[70] presented a temperature-constrained Topology Optimisation method for 
thermo-mechanical coupled problems. [71] proposed a multiple material 
Topology Optimisation under the conditions of steady-state temperature and 
mechanical loading. [72] presented a method for Topology Optimisation of 



structures with combined mechanical and thermoelastic (temperature) loads 
subjected to stress constraints. [73] proposed a mean compliance and elastic strain 
energy minimization for thermoelastic problems. Lastly, [74] presented a guide-
weight method to solve the Topology Optimisation  problems of thermoelastic 
structures. 

The second category of algorithms for thermo-mechanical optimisation 
problems consists of methods aimed to find the final topology which 
maximise/minimize the heat exchange and maximise structural stiffness. 
Therefore, the objective function is no more purely mechanical but must also 
consider thermal objective, such as guarantee a defined heat exchange. Most 
importantly, [75] defined a Topology Optimisation method that considers both 
thermal and mechanical objectives. [76] proposed a Topology Optimisation 
algorithm with constraints on structural strength and thermal conductivity. [39] 
present a method for the Topology Optimisation of the microstructure of a 
composite material with the aim of finding the material with the most effective 
values of the bulk modulus of elasticity and thermal conductivity. [77] developed 
a hybrid cellular automaton model combined with finite element method for 
structural Topology Optimisation with mechanical and heat constraints.  

According to the literature, thermo-mechanical Topology Optimisation has 
been widely investigated and there are many publications in this area. However, 
further improvements in this field can be achieved. First, the majority of the 
algorithms is based on SIMP or RAMP (Rational Approximation Material 
Properties) approaches which require the penalisation factor. This factor is often 
linked with convergence problems such as local minima as already described in 
the previous paragraphs. Considering evolutionary methods, such as BESO, a lack 
of an analytical generality and convergence criteria has been observed [29]. 
Furthermore, if the objective function and the constraints are fairly complex, the 
formulated optimisation problem often needs advanced programming methods 
such as MMA (Method of Moving Asymptotes) [25] and sensitivity analysis to be 
solved.  

The presented TopTM algorithm  consists of an innovative methodology for 
the maximization of the thermal exchange and the mechanical stiffness of a 
structure under thermo-mechanical loads. Differently from other classical density-
based approach, penalisation factors are not required and there is no need of 
numerical corrections. In addition, a simple formulation for the optimality criteria 
is analytically derived and physically verified. The proposed objective function 
parametrisation allows to analytically solve the optimisation problem, i.e. 
numerical programming methods and sensitivities analysis are not required. The 
stresses induced by the thermal loads are considered in the optimisation and the 
thermal exchange and the structural stiffness are concurrently optimized, thus 
permitting to assess a more effective material distribution. 

In the following paragraph, the analytical formulation of the problem is 
reported and solved and the criteria for the global optimum are defined. 
Thereafter, TopTM  is validated with several benchmark and applicative 
examples. Finally, a real component employed for aerospace applications is 



 
thermo-mechanically optimised, proving the applicability and effectiveness of 
TopTM. 

 

2.2 TopTM solution 

In the following paragraphs the analytical formulation of the proposed 
methodology is firstly reported. In particular, the optimality criterium for a system 
subjected to thermo-mechanical loads is defined. Then, the flowchart of the 
TopTM is reported and described. It is worth note to highlight that bold letters 
stand for vector or matrix quantities. 

2.2.1 Optimality criterium derivation  

The current topology optimization formulation provides a method allowing to 
assess the best material exploitation for a component subjected to structural and 
thermal loads. In particular, the heat exchange and the mechanical stiffness are 
maximized at the same time. In order to achieve this goal, the expression of the 
potential energy of the system has to be obtained and then the structural 
optimisation problem consists in its minimization under selected constraints. In 
other words, through the minimization of the potential energy, the component 
deformation is minimized while the stiffness is maximized.  

The starting point of the proposed optimization method is the equilibrium 
equation for a system subjected to thermo-mechanical loads, shown schematically 
in Figure 29. Let consider as domain of existence a portion of a system 𝛺 limited 
in the space (𝛺 ⊆  ℝ3) containing the material 𝑀, with regular frontier 𝛤. The 
spatial coordinates are called 𝑥, 𝑦, 𝑧 or, in vector notation, 𝒙. The displacement 
field of 𝑀 is 𝒖 = 𝒖(𝒙) and the temperature field is 𝜃 = 𝜃(𝒙). The material 𝑀 is 
assumed to be isotropic with a linear elastic behaviour (i.e., it follows the Hooke’s 

law [78]) and it is characterized by Young’s modulus 𝐸, Poisson’s ratio 𝜈, thermal 
expansion coefficient 𝛼, thermal conductivity 𝑘 and density 𝜌. In addition, all the 
applied boundary conditions satisfy the border completeness [79], according to 
Eq.13. In other words, each portion of the frontier 𝛤 is defined by a boundary 
condition, both thermal and structural: 

𝛤𝑁
𝜃 ∪ 𝛤𝐷

𝜃 = 𝛤     𝑎𝑛𝑑     𝛤𝑁
𝜃 ∩ 𝛤𝐷

𝜃 = ∅ 
𝛤𝑁
𝒖 ∪ 𝛤𝐷

𝒖 = 𝛤     𝑎𝑛𝑑     𝛤𝑁
𝒖 ∩ 𝛤𝐷

𝒖 = ∅ 
(13) 

where 𝛤𝑁𝜃 is the Neumann boundary condition of the thermal field, 𝛤𝐷𝜃 is the 
Dirichlet boundary condition of the thermal field, Figure 29 , 𝛤𝑁𝑢 is the Neumann 
boundary condition of the structural field and  𝛤𝐷𝑢 is the Dirichlet boundary 
condition of the structural field (Figure 29). The symbol ∅ stands for empty set. 



 

Figure 29 – Thermostructural system 

  
The overall equilibrium of an infinitesimal portion 𝑑𝛺 of the system 𝛺 is 

described by Eq.14, as reported in [79].  

[
𝛁𝝈 𝛽𝛁

𝟎𝑇 𝑘𝛁𝟐
] (
𝒖

𝜃
) + (

𝑭

𝐻
) = 𝟎 (14) 

in which 𝛁 is the operator of derivation with respect to the three space 
dimensions, 𝛁𝟐 is the Laplacian operator, 𝛽 is the thermo-mechanical coupling 
term (i.e., equal to the product of the Young’s modulus 𝐸 and the thermal 
expansion coefficient 𝛼,  𝛽 = 𝐸𝛼), 𝑘 is the thermal conduction coefficient, 𝝈 is 
the stress tensor, 𝑭 is the vector of internal forces, 𝐻 is the internal generated heat 
and 𝟎 is the null vector. Applying the variational methodology as done in [80], by 
integrating Eq.14 in the domain 𝛺, it is possible to obtain the weak expression of 
the potential energy of the system. In particular, the solution of a thermo-
mechanical topology optimization problem can be achieved by implementing the 
weak expression of the potential energy by excluding differential terms. The 
resulting potential energy equation is a scalar quantity and corresponds to the 
thermo-mechanical potential energy, 𝛱(𝒖, 𝜃) of the system shown in Eq.15: 

𝛱(𝒖, 𝜃) = −
1

2
(∫𝒆𝑇(𝒖)𝑨𝒆(𝒖)

𝛺

𝑑𝒙 + 𝜉 ∫𝑘∇2𝜃
𝛺

𝑑𝒙 + ∫𝛽 ∇𝑇𝜃 𝒖
𝛺

 𝑑𝒙) (15) 

where the term 𝒆 is the vector of the structural deformations or strains, 𝑨 is 
the constitutive matrix. The term 𝜉 represents the linker between thermal and 
mechanical energy (measure unit [time/temperature]). It allows to consider in the 
same potential equation both the contributes without violating physical continuity. 
𝜉 must be chosen in order to balance the structural and the thermal contributes, 
assigning therefore the same importance to each contribution. It has to be 
evaluated according to the design constraints before the optimization process as 
will be detailed after.  

Eq.15 is the objective function that must be minimised in order to find the 
optimal topology. A system that a has smaller coupled potential energy is 
subjected to smaller variations of its state, i.e. temperature and displacement. In 
order to define the optimisation problem, it is necessary to define an artificial 
variable, called 𝜂. This variable represents the material effectiveness in each point 
of the domain 𝛺. In other words, 𝜂 stands for the presence and consistency of the 
material in the domain, point by point. This variable is design variable of the 
system and it is the base for the density-based method here proposed. The variable 



 
𝜂 must be limited both by an upper boundary 𝜂𝑚𝑎𝑥 and by a lower boundary 𝜂𝑚𝑖𝑛 
as reported in Eq.16 [58].  

𝜂 = 𝜂(𝒙)  
0 < 𝜂𝑚𝑖𝑛 < 𝜂 < 𝜂𝑚𝑎𝑥 < ∞ 

(16) 

For 𝜂 = 𝜂𝑚𝑎𝑥 the material is considered full, so the material properties are 
the same of the base material 𝑀, for 𝜂 = 𝜂𝑚𝑖𝑛 the material considered void, and 
its properties are close to be null. The topology optimisation problem, reported in 
Eq.17, consists in finding the distribution of 𝜂(𝒙) that minimises the coupled 
potential energy 𝛱(𝒖, 𝜃) for a volume 𝑉̅. 𝑉̅ is a portion of the initial volume and 
the second equation in Eq.17 represents the volume optimisation constraint. 

{
 
 

 
 𝑚𝑎𝑥

𝜂
𝛱(𝜂, 𝒖, 𝜃) = 𝑚𝑖𝑛

𝜂

1

2
(∫𝒆𝑇(𝒖)𝑨𝒆(𝒖)

𝛺

𝜂 𝑑𝒙 + 𝜉 ∫𝑘𝛻2𝜃
𝛺

 𝜂 𝑑𝒙 + ∫𝛽 𝛻𝑇𝜃 𝒖
𝛺

𝜂 𝑑𝒙)    𝑠. 𝑡.

∫ 𝜂
𝛺

𝑑𝛺 ≤ 𝑉̅

0 < 𝜂𝑚𝑖𝑛 < 𝜂 < 𝜂𝑚𝑎𝑥 < ∞

 (17) 

The optimization problem in Eq.17 can be solved by iteratively applying 
Kuhn-Tucker optimality criteria (Lagrange multiplier method, [58]). In particular, 
the Lagrangian function 𝐿(𝜂, 𝜆, 𝑡), has to be defined and all its derivatives must be 
equal to zero (Eq.18) in order to identify a stationary point of the function: 

𝐿(𝜂, 𝝀, 𝑡) =
1

2
(∫𝒆𝑇(𝒖)𝑨𝒆(𝒖)

𝛺

𝜂 𝑑𝒙 + 𝜉∫𝑘∇2𝜃
𝛺

𝜂 𝑑𝒙 + ∫𝛽 ∇𝑇𝜃 𝒖
𝛺

𝜂 𝑑𝒙) − 𝜆 (∫𝜂
𝛺

𝑑𝛺 − 𝑉̅ + 𝑡2) (18) 

If the problem is discretized by using 𝑁𝑒𝑙𝑒𝑚 elements, e.g. using the Finite 
Element Method (FEM), Eq.18 is defined on each 𝑒 portion of the domain called 
𝛺𝑒 and the effectiveness variable 𝜂 must be discretised too as reported in Eq.19. 

{
𝜂(𝒙) =  𝜂𝑒     ∀𝒙 ∈ 𝛺𝑒     𝑒 = 1,… , 𝑁𝑒𝑙𝑒𝑚

0 < 𝜂𝑚𝑖𝑛 <  𝜂𝑒  < 𝜂𝑚𝑎𝑥 < ∞
 (19) 

Following the same passages shown in Eqs.15-19, the value of the Lagrange 
multiplier for each element can be evaluated as reported in Eq.20: 

𝜆𝑒 =

1
2
(𝒆𝒆

𝑇(𝒖)𝑨𝒆𝒆(𝒖) + 𝜉∇𝑒
𝑇𝜃𝑘(𝒙)∇𝑒𝜃 + 𝛽 ∇𝑒

𝑇𝜃 𝒖𝒆)𝛺𝑒

𝛺𝑒
= 𝜖𝑒 = 𝜆 = 𝜖     𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 (20) 

The Lagrange multiplier for each element corresponds therefore to the 

thermo-mechanical energy density for that element. According to [58], the 
Lagrange multiplier must be the same for the entire structure, thus every 𝜆𝑒 needs 
to be equal to the value found by considering a continuous solution (i.e., 𝜆 = 𝜆𝑒, 
with 𝜆 defined according to Eq.20). Therefore, the thermo-mechanical energy 
density in each element has to be uniformly distributed within the structure in the 



optimized topology (optimality criterium). The assessment of the material 
distribution ensuring a uniform thermo-mechanical energy density is therefore the 
objective of the optimization algorithm. For more, the optimisation problem as 
formulated is convex since no material interpolation is employed [57]. Therefore, 
TopTM guarantees that a global minimum for the thermo-mechanical topology 
optimisation problem is achieved. 

2.2.2 Iterative solution implementation 

The flowchart in Figure 30 shows the iterative optimisation process developed 
to obtain the optimized topology, i.e. a uniformly distributed thermo-mechanical 
energy density.  

 
Figure 30 - Flow chart of thermo-mechanical topology optimisation. 

The preliminary phase is the definition of the Finite Element Model and the 
initial conditions, which corresponds to phase number 1 in Figure 30. Then phase 
number 2 consists of a FE simulation on the initial model. This simulation allows 
to evaluate the distribution of the thermal gradient and mechanical strain. These 
quantities are used to calculate the thermo-mechanical energy density 𝜖𝑒 for each 
element as shown in Eq.20 and it represents step number 3 in Figure 30. The 4th 
phase corresponds to the update of the local properties of material, i.e. Young’s 

modulus, density  and thermal conductivity. This procedure is the main core of the 
optimisation process and it allows to obtain the final material distribution. It is 
possible to achieve a final topology that ensures the uniform distribution of the 
thermo-mechanical energy density by modifying the local properties of the 
material according to a precise updating law. This updating law can be achieved 
considering the effectiveness of the material together with Eq.20 [58]. Eq.21 
expresses the relationship between the local effectiveness and the thermo-
mechanical energy density. It is worth to note that the updating process is 
iterative, this is because the effectiveness variable is limited, and the modification 
of this variable causes the variation of the thermal gradient and mechanical strain 



 
distribution [58,80]. Therefore, in Eq.20 index 𝑗 refers to a single iteration while 
 𝑝 is its total number. 

𝜂𝑒
𝑗+1

=
𝜖𝑒
𝑗

𝜖𝑗
𝜂𝑒
𝑗
          𝑒 = 1, … , 𝑁𝑒𝑙𝑒𝑚     𝑗 = 1, … , 𝑝 (21) 

In the previous equation, considering element 𝑒 and iterations 𝑗 and 𝑗 + 1,  
𝜂𝑒
𝑗+1 is the updated effectiveness, 𝜂𝑒

𝑗 is the current one, while 𝜖𝑒
𝑗 represents the 

thermo-mechanical energy density for the element and  𝜖𝑗 stands for the average 
thermo-mechanical energy density in the global structure.  

In order to link the artificial material effectiveness variable to the real 
parameters of the material, 𝜂𝑒 is considered multiplying the Young’s modulus 𝐸𝑒, 
the density 𝜌𝑒 and the thermal conductivity 𝑘𝑒 as shown in Eq.22. The material 
properties and the material effectiveness 𝜂 with the subscript 𝑒 refer to a single 
element considered for the discretization of the domain and vary during each 
iteration, whereas the material properties of the base material, indicated with the 
subscript 0 in Eq.22, remain constant (i.e., 𝐸0, 𝑘0 and 𝜌0 stand respectively for the 
Young’s modulus, the density, and the thermal conductivity of the material at the 

beginning of the process): 

 
During the iterative procedure, the elements of the material that participate 

scarcely to the load sharing are characterized by a low energy density, hence their 
effectiveness is reduced, i.e. the density, the Young’s modulus and the 

conductivity of the element are lowered and vice versa. In order to define when 
the final topology has been achieved, a convergence criterion of the iterative 
process is needed. This represents phase 5 in Fig. (2). The convergence occurs 
when the change in the variables is less than the imposed convergence parameter, 
usually less than 1 percent. At this condition corresponds a discrete distribution of 
material, i.e. full or void material without intermediate values. This criterion is the 
same used by O. Sigmund in [57]. It is possible to verify the volume constraint 
imposing a certain value to the Lagrange multiplier in Eq.20 using a bi-sectioning 
algorithm. 

Another convergence criterion is proposed in [58,80]. In particular, the 
volume constraint can be considered in term of reference energy. In this case, an 
objective thermo-mechanical  energy density in the structure 𝜖𝑟𝑒𝑓 is defined 
before the optimization process. For example, 𝜖𝑟𝑒𝑓 can be defined by considering 
the maximum allowable stress within the structure and the maximum allowable 

{
  
 

  
 𝐸𝑒

𝑗+1
=
𝜖𝑒
𝑗

𝜖𝑗
𝐸𝑒
𝑗

𝜌𝑒
𝑗+1

=
𝜖𝑒
𝑗

𝜖𝑗
𝜌𝑒
𝑗

𝑘𝑒
𝑗+1

=
𝜖𝑒
𝑗

𝜖𝑗
𝑘𝑒
𝑗

          𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚     𝑗 = 1,… , 𝑝 (22) 



thermal gradient. The convergence is reached if the percentage difference between 
𝜖𝑟𝑒𝑓 and the average thermo-mechanical energy density 𝜖 evaluated in the 
structure is lower than 0.1% for three consecutive iterations. This criterion 
considers concurrently the changing of the variables and the energy constraint. 

Depending, on the application and on the final objective of the optimization 
process, these two criteria can be alternatively considered. 

2.2.3 Benchmarking  validation 

In the following paragraph, two comparative benchmarks for thermal and 
structural topology optimisation are provided. The main purpose  is to validate the 
TopTM on classical literature benchmarks. Considering the thermal or mechanical 
energy density null, the algorithm works as purely structural or thermal topology 
optimization respectively. Therefore it is possible to verify the algorithm 
effectiveness on well-known existing examples.  

In Figure 31 the thermal model of the heat condition topology optimisation 
problem is presented. It is a square domain with a portion of the left side at a fixed 
temperature. In the whole domain a heat generation rate is imposed. This example 
has been taken from [11] at page 271 where all the details on the numerical 
implementation, boundary conditions and the employed material are reported.  

 

Figure 31 - Thermal boundary conditions and geometry settings 

 
The result of the thermal Topology Optimisation is reported in Figure 32. On 

the right side the result obtained with the TopTM (red-blue topology) is shown 
whereas on the left the benchmark solution by is reported (black-withe topology). 
As it can be noticed, the two results are almost identical. It is worth to note that 
with TopTM  no intermediate densities have been found in the final structure. The 
final topology obtained with TopTM is defined by the red zones in the Figure. 



 

 

Figure 32 - Heat conduction topology optimisation benchmark 

 

In Figure 33 the structural model of minimum compliance topology 
optimisation is presented. It is a rectangular domain with the left side fully 
constrained and a nodal downwards vertical force on the right lower vertex. This 
example has been taker from [55] page 123 Fig. (2).  

 

 

Figure 33 - Structural boundary conditions and geometry settings 

The result of the structural Topology Optimisation is reported in Figure 34. 
On the right side the result obtained with the TopTM (red-blue topology)  is 
shown whereas on the left the benchmark solution by is reported (black-withe 
topology). Similarly to the pure thermal benchmark, the two results are almost 
identical, and no intermediate densities have been found in the final structure. The 
final topology obtained with TopTM is defined by the red zones in the Figure. 

 

Figure 34 – Structural topology optimisation benchmark 



2.3 TopTM results 

In this paragraph, the TopTM algorithm is validated. Firstly, TopTM is 
verified considering two bidimensional literature test cases. Then,  a three-
dimensional component employed for aerospace applications is optimised. 
Overall, TopTM is tested on literature benchmarks, teste cases and industrial 
cases, demonstrating its applicability.  

For the TopTM implementation, the commercial software Ansys has been 
used. A routine has been written in the Ansys APDL software for iteratively 
assessing the stress and the thermal gradients for each element and thereafter 
updating the material properties until the convergence criterion is met, according 
to flowchart in Figure 30.  

The 1st phase is implemented coding the geometry settings and boundary 
conditions of the initial domain in APDL code. The 2nd phase, consisting of the 
finite element analyses, is processed by the solution command. Automatically, all 
the results information is achieved, i.e. stresses, strains, displacements, energies 
and so on. At this point, it is possible to evaluate the thermo-mechanical energy 
density for each element through Eq.15, namely the 3rd phase. Given this coupled 
energy density for each element, it is possible to update the material parameters of 
each element following Eq.22. In particular, since the energy reference criterion is 
employed, the term 𝜖𝑗 is substituted with 𝜖𝑟𝑒𝑓. Therefore, the elements which 
have an energy density lager than the reference will be rewarded. On the other 
hand, if the energy density is smaller than the reference value, the element is 
penalized. Therefore, only the elements which are most meaningful for the load 
bearing purpose are selected in the final topology. After that, the updated material 
parameters are cut according to the minimum and maximum value imposed in 
Eq.21. 

This updating procedure refers to the 4th phase.  At this point, the 
convergence criterion can be checked as stated in the 5th phase. Since in the 
following cases a reference thermo-mechanical energy density is imposed, the 
convergence can be considered reached when the average thermo-mechanical 
energy density matches the reference one for three consecutive iterations. At this 
condition corresponds a discrete distribution of material, i.e. full or void material 
without intermediate values of the material properties. This means also that each 
element shares in average the same 𝜖𝑟𝑒𝑓 and the updating law in Eq.22 is no more 
effective. All the described processes can be easily coded in less than 150 code 
lines in APDL.  

2.3.1 Test cases  

A beam with length 𝐿 = 200 mm,  height ℎ = 100 m, with mechanical and 
thermal loads applied concurrently was considered for the validation of TopTM. In 
every bidimensional case considered, the plane stress assumption has been 
employed. In the first case, shown in Figure 35a, the beam is simply supported 
with a vertical force 𝐹 = 1000 𝑁 applied in the middle of the lower edge. In 



 
addition, a portion of each edge with length 𝑑 = 10 mm, symmetric with respect 
to the beam axes presents a fixed constant temperature. On the horizontal edge 
portions (shown in red in Figure 35a) the imposed temperature, 𝑇1, is equal to 
100°𝐶, whereas it is equal to 0°𝐶 on the vertical edge portions (𝑇2, shown in blue 
in Figure 35a). In the second case, shown in Figure 35b, the beam is fixed at the 
left edge (cantilever beam condition), with a vertical force 𝐹 applied at the right 
end. Thermal loads are represented by the constant temperature 𝑇1 along the entire 
left edge and an outgoing heat flow 𝑄 = 1𝑊 (according to Figure 35b) applied on 
a central portion 𝑑 of the right vertical edge. A common steel was considered for 
the constitutive model of the material and its properties are reported in Table 2. 
Plane square quad 8 nodes elements, with the side length of 1 mm, were employed 
for the analysis. A detailed description of element PLANE 223 definition is 
provided by the ANSYS guide manual. 

 

 

Figure 35 - Validation of the TopTM on a 2D domain 

Table 2 - Properties of the steel for the benchmark validation 

The convergence criterion was thereafter defined. In particular, a reference 
thermo-mechanical energy density 𝜖𝑟𝑒𝑓 (convergence criterion) evaluated as a 
balanced sum between the reference strain energy density 𝜖𝑟𝑒𝑓𝜎  and the reference 
thermal energy density 𝜖𝑟𝑒𝑓𝜃  was considered. 

This separated reference energy densities 𝜖𝑟𝑒𝑓𝜎  and 𝜖𝑟𝑒𝑓𝜃  can be calculated 
according to [58]. In particular, 𝜖𝑟𝑒𝑓𝜎  can be computed as function of a reference 
stress 𝜎𝑟𝑒𝑓 (for example the maximum allowable stress within the component with 
the formula 𝜖𝑟𝑒𝑓𝜎 = 𝜎𝑟𝑒𝑓

2 2𝐸⁄ ), whereas 𝜖𝑟𝑒𝑓𝜃  can be calculated as a function of a 
reference thermal gradient ∇𝜃𝑟𝑒𝑓 (i.e., in order to limit the maximum temperature 
within the component with the formula 𝜖𝑟𝑒𝑓𝜎 = 𝑘𝛻𝜃𝑟𝑒𝑓

2 2⁄ ). In particular, for the 
simply supported beam, 𝜎𝑟𝑒𝑓 was chosen equal to 60 𝑀𝑃𝑎 and ∇𝜃𝑟𝑒𝑓 =

Material E [GPa]   [kg/m3] k [W/mK]  [1/K] 

Steel 210 0.3 7800 50 12e-6 

𝜖𝑟𝑒𝑓 = 𝜖𝑟𝑒𝑓
𝜎 + 𝜉𝜖𝑟𝑒𝑓

𝜃  (23) 



0.825 𝐾 𝑚𝑚⁄ , whereas for the cantilever beam 𝜎𝑟𝑒𝑓 = 120 𝑀𝑃𝑎 and ∇𝜃𝑟𝑒𝑓 =
1.1 𝐾 𝑚𝑚⁄ . These values have been chosen as samples for reference thermal 
gradient and mechanical stress. As a matter of fact, any value could be employed 
to run the optimisations. The only limit is to use values that can be reasonable for 
the employed materials, e.g. reference stress inferior to the material yield strength. 
Clearly, different values of these references would bring to different final 
topologies which would represent the optimal material distributions for that 
specific case. The linker term 𝜉 can be evaluated with the formula  𝜉 =
𝜎𝑟𝑒𝑓
2 𝐸𝑘∇𝜃𝑟𝑒𝑓

2⁄  which guarantees the same weight to both thermal and structural 
reference contribution. As already stated, this term allows combining the 
mechanical and the thermal energy. A random value of this linker term may 
artificially increase the thermal contribute or vice versa. This term must be chosen 
to balance the two energy contributions. Hence, the reason why this term must be 
evaluated with this formula can be easily understood by analysing the possible 
scenarios during the optimisation. For an element characterized by only a 
structural task, i.e.  𝜖𝜃 is null, the thermo-mechanical energy density of this 
element would be identical to the strain energy density. Vice versa, if the element 
had only a thermal task, i.e. 𝜖𝜎 is null, the thermo-mechanical energy density of 
this element would be equivalent to the thermal energy density. Hence, in both the 
extreme situations the numerical value of the coupled energy must be the same. If 
not, an element with the only thermal task would be considered differently with 
respect to another with only mechanical one. Therefore, in the end, the topology 
would be affected by a disparity in task contribute and the final material 
distribution would foster much more one of them. Choosing the linker term as 𝜉 =
𝜎𝑟𝑒𝑓
2 𝐸𝑘𝛻𝜃𝑟𝑒𝑓

2⁄  this condition is avoided. This consideration is valid for all the 
intermediate conditions too. Both the thermal and mechanical tasks are kept 
equally into consideration. For different values of 𝜉, it would be as if the thermal 
or structural references would be set to different values from the prescribed ones. 
The reference thermo-mechanical energy densities 𝜖𝑟𝑒𝑓 for the two cases were 
finally respectively 𝜖𝑟𝑒𝑓1 = 1.17 ∙ 10−2 MPa (for the simply supported beam) and 
𝜖𝑟𝑒𝑓
2 = 6.86 ∙ 10−2 MPa for the cantilever beam.  

The results of the optimization process are shown in Figure 36a for the simply 
supported beam with fixed temperatures and in Figure 36b for the cantilever beam 
with fixed temperature and outgoing heat flux. The thermo-mechanical energy 
density convergence plots for load case 1 and load case 2 are reported in Figure 
36c and Figure 36d respectively. As it can be seen, the curves both converge fairly 
fast to the prescribed reference value. In both cases the convergence is reached 
with less than 40 iterations. 

 



 

 

Figure 36 - Final optimised topologies obtained with TopTM 

Figure 37 shows the distribution of the thermo-mechanical energy density for 
the simply supported beam Figure 37a and for the cantilever beam Figure 37b. As 
it can be seen, this quantity has a range of variability almost uniform around the 
central reference value, according to Eq.19. This means that in the final topology 
all the elements bear equally the thermo-mechanical loads, with the material fully 
exploited and no inactive elements. It is worth to note that some grey zones are 
present in the Figure 37. However, these figures have been shown mainly to 
highlight the uniform distribution of the energies, stress, and gradients around the 
reference values. Indeed, since the loads are applied only on single nodes, nearby 
this points the stresses and the energies are extremely high. This is due to the fact 
that the process is numerical, and these extremely large values have not a real 
physical meaning. If the range from the maximum to the minimum value was 
considered, almost the whole structure would be characterized by the same colour. 
This would have avoided grey zones, but it would have not permitted to recognize 
the slighter variations of the plotted quantity within the domain, which is the real 
objectives of the figures. 

 

 

Figure 37 - Thermostructural energy density distribution 



Fig. Figure 38a and Figure 38b  show respectively the global displacement 
and temperature field for the topology obtained in Figure 35a. As it can be seen, 
they are both limited and within a reasonable range. Moreover, Fig. Figure 38c 
and Figure 38d show the distribution of Von Mises ideal stress and thermal 
gradient for the same case, respectively. It is worth to note, that the prescribed 
references for the stress and thermal gradient were not the maximum allowable 
ones. Instead, they represent the values at which the average stress and thermal 
gradient must converge in order to achieve a uniform energy density distribution 
as done in [58]. From a practical point of view, since the zones with the stress 
exceeding the reference stress are limited, they can be eliminated when the 
component is “reconstructed” to generate the .cad or the .stl file with the 

appropriate fillets or with a subsequent shape optimization. Moreover, a larger 
safety factor can be also considered for reducing the areas with stress larger than 
the reference stresses. 

 

 

Figure 38 - Meaningful quantities in the final topologies LC1 

 
The same considerations are valid for the cantilever beam. Fig. Figure 39a  

and Figure 39b show the global displacement and temperature field respectively 
and they are limited as for the previous case. In Fig. Figure 39c  and Figure 39d 
the Von Mises ideal stress and the thermal gradient are shown. As before, it is 
possible to observe that both the quantities are almost uniform around the 
reference values within the final domain, thus proving that the material is fully 
exploited. 

 



 

 

Figure 39 - Meaningful quantities in the final topologies LC2 

For the sake of comparison and to highlight the importance of concurrently 
considering the structural and the thermal loads during the optimization process, 
structural topology optimisations and thermal topology optimization were run 
separately on the presented load cases. It is important to note that the load cases 
remain the same reported in Figure 35. Hence, the boundary conditions are both 
structural and thermal. However, in the following cases the objective function 
neglects the structural objective or the thermal one. As it will be demonstrated, by 
considering only the structural or the thermal objective in components subjected 
to both types of loads, the resulting topology is characterized by a slightly larger 
effectiveness for the selected objective (thermal or structural depending on the 
objective of the optimization) but by a limited effectiveness for the neglected 
functionality. Therefore, this may lead to null heat conduction or overloaded 
structure. . Figure 40a shows the final topology obtained for the load case 1 by 
considering only the structural reference (𝜎𝑟𝑒𝑓 = 60 MPa). Figure 40b and Figure 
40c show the Von Mises stress and the thermal gradient, respectively. By 
considering Figure 40b, the stress distribution is uniform, with the same 
maximum value found through the coupled thermo-mechanical topology 
optimization, ensuring a very good exploitation of the material in terms of 
structural loads. Nevertheless, the thermal gradient, Figure 40c, results to be 
almost null over the domain, basically there is no thermal conduction. This 
happens because the algorithm focuses on the structural task and neglects the 
thermal one. Therefore, as in this case, only the portion of material important for 
the structural task are selected. Since they do not coincide with portion of material 
which guarantee the heat conduction, the thermal gradient results to be almost null 
over the domain. That’s why considering a real application, the component would 

not be able to guarantee a sufficient heat flow.  



 

Figure 40 - Meaningful quantities after structural topology optimisation of LC1 

Figure 41a shows the thermal topology optimisation carried out on the load 
case 1, with ∇𝜃𝑟𝑒𝑓 = 0.825 K mm⁄ , whereas Figure 41b shows the Von Mises 
stress distribution and Figure 41c the thermal gradient sum. In this case the 
thermal gradient is uniform over the domain providing a very good thermal 
conduction. On the other hand, according to Figure 41c the Von Mises stress 
distribution significantly increases by considering only the thermal task, being 
almost four time greater than in the thermo-mechanical topology optimisation, 
Figure 38c). This could bring to possible static failure in the component or faster 
crack initiation and propagation.  

 
 

 

Figure 41 - Meaningful quantities after thermal topology optimisation of LC1 

Similarly, Figure 42a shows the final topology obtained for the load case 2 by 
considering only the structural reference (𝜎𝑟𝑒𝑓 = 120 MPa), with Figure 42b and 
Figure 42c showing the Von Mises stress and the thermal gradient distributions, 
respectively. The same considerations made for the previous example on load case 
1 are applicable. As a matter of fact, Von Mises stresses are well distributed and 
almost uniform within the domain. On the contrary, the thermal gradient 



 
distribution presents remarkable differences in intensity depending on the material 
zones. Therefore, the heat flows inside the material in a very inefficient way. It is 
worth to note that the final topology is not identical to the minimum compliance 
topology optimisation problem for cantilever beam, well known in the literature. 
This is due to the temperature field inside the domain that modifies the strain 
distribution. 

 

Figure 42 - Meaningful quantities in the final topologies LC2 

 
 
Figure 43a shows the thermal topology optimisation carried out on the load 

case 2, with ∇𝜃𝑟𝑒𝑓 = 1.1 K mm⁄ , whereas Figure 43b shows the Von Mises stress 
distribution and Figure 43c the thermal gradient sum. In this case the thermal 
gradient distribution is uniform over the domain providing a very good thermal 
conduction. In particular, Figure 43c shows a very good distribution of the 
gradient inside the domain. On the contrary, the structural task is not considered, 
and this can be detrimental for the structural integrity.   

 

Figure 43 - Meaningful quantities after thermal topology optimisation of LC2 

The validation of TopTM in this Section clearly shows the importance of 
considering concurrently structural and thermal loads, if present, in the topology 



optimization process. The thermo-mechanical topology optimisation provides the 
best topology for a component which undergoes coupled constraints and loads, 
permitting to obtain a uniform distribution of the thermo-mechanical energy 
density (Figure 37). Indeed, the coupled optimisation provides the best 
compromise between the structural and the thermal properties distribution and 
considers both the contributions, ensuring an optimal material distribution and the 
least material waste in order to concurrently achieve the best heat conduction and 
structural performance. 

2.3.2 Industrial application 

In this paragraph, TopTM is applied to a thermo-mechanical real application. 
In particular, the topology of a radiator for a loop heat pipe (LHP) is optimized. 
The applied loads and constraints are taken from the literature and data not 
available have been assumed, with the aim of proving that TopTM can be 
employed for real components allowing to maximise the performance of 
components subjected to thermo-mechanical loads.  

The radiator of a Titanium Loop Heat Pipes (LHP) for Space Nuclear Power 
System similar to that analysed in [81] is considered. As shown in Figure 44, the 
radiator has a parallelepiped shape with a square base with 𝐿 = 305 mm and 
height  ℎ = 26.2 mm. Two pipes enter symmetrically in the radiator and exit after 
three folds each from the same side. The fluid path (dash-dot black line) is also 
shown in Figure 44. 

 
 

 

Figure 44 - Radiator model and design domain with dimensions 

 
Considering a cross section A as shown in Figure 45, it is possible to notice 

that for each section eight holes are present. They are symmetric with respect to 
both the axes of the rectangular section. The radius of the pipe is constant all over 



 
the radiator and is equal to 𝑅 = 9.55 𝑚𝑚. Each fold has a radius of 𝑟 = 15 𝑚𝑚, 
causing a distance between the pipes inside the domain of 𝑑 = 30 𝑚𝑚. Given this 
geometry it is easy to notice that the cross section is constant along the radiator.  

 

 

Figure 45 - Cross section A of the radiator with dimensions. 

 
The first phase of the optimization process involves the definition of the 

design and the non-design domain. The heat pipes are in almost all the 
applications inserted in a sandwich panel, with the core composed by a 
honeycomb structure [81]. For the redesign of the radiator with TopTM, the 
honeycomb structure is filled with a single isotropic material (design domain). On 
the contrary, the dimensions of the cross-section, of the radiator and heat pipes are 
left unaltered. A Titanium alloy Ti6Al4V, whose structural and thermal properties 
are reported in Table 3, was considered for the redesign and for the production of 
the component through an AM process [82]. Indeed, the complex shape obtained 
as a result of the optimization process, which can be hardly produced through 
traditional process, can be more easily produced through an AM manufacturing 
process. 

Table 3 - Ti6Al4V properties 

It is worth to note that the component has a constant cross section, i.e. 
extrusion symmetry, and the cross section itself presents a double symmetry with 
respect to its axes. Therefore, for the optimization of the radiator only a quarter of 
the entire cross section, shown in Figure 46a, was considered and symmetric 
boundary conditions were applied. More in detail and by considering the 
structural loads, the radiator is supposed to carry the entire weight of Space 
Nuclear Power System which it is cooling [83]. Usually, the devices which are to 
be cooled are connected by pots and inserts inside the panels. However, in order 
to avoid many assumptions and computational complications, the load is 
uniformly distributed over the surface. In particular, the forces applied on the 
radiator are defined considering the entire weight of the Space Nuclear Power 
System multiplied by the average accelerations during the launch phase of the 
spacecraft (worst possible and conservative condition). The weight of a model of 

Material E [GPa]   [Kg/m3] k [W/mK]  [1/K] 
Ti6Al4V 113.8 0.342 4430 6.7 9e-6 



the Power System for this type of radiator is about 𝑀 = 56 𝑘𝑔, as reported in 
[84]. Commonly the maximum acceleration during launch phase of spacecraft are 
20 times the gravity acceleration, 𝑔, on Earth. Overall, the forces applied to the 
quarter of the cross section, Figure 46b, is the product of the Power System 
weight and the total acceleration in both directions split by four per unit of length, 
as reported by Eq.24: 

In addition, internal pressure caused by the fluid inside the pipes is 
considered. The maximum internal pressure is 𝑝𝑖𝑛𝑡 = 2.63 𝑀𝑃𝑎, as reported in 
[85]. For what concern the constraints, the radiator is supposed to be locked all 
along its lateral sides, as shown in Figure 46b.  

From the thermal point of view Figure 46c, [85] provides the constant internal 
temperature of the fluid inside the pipes 𝜃 = 413𝐾 and a total absorbed heat 
𝑄𝑡𝑜𝑡 = 590𝑊. As for the structural field, the inlet heat applied on the portion of 
cross section is split by four and considered per unit of length as in Eq.25. 

 

 

Figure 46 – Loads and constraints applied to redesigned panel 

Given the aforementioned boundary conditions, three different optimisations 
problems have been set up and the final topologies are shown in Figure 47. Figure 
47a shows the result of a structural topology optimisation with a stress reference 
𝜎𝑟𝑒𝑓 = 130 𝑀𝑃𝑎. Figure 47b shows the result of the thermal topology 
optimisation with a thermal gradient reference ∇𝜃𝑟𝑒𝑓 = 2.5 𝐾 𝑚𝑚⁄ . Finally, 
Figure 47c shows the final material distribution after the thermo-mechanical 

𝐹𝑥 = 𝐹𝑦 =
20𝑀𝑔

4𝐿
= 9

𝑁

𝑚𝑚
 (24) 

𝑄 =
𝑄𝑡𝑜𝑡
4𝐿

= 0.48
𝑊

𝑚𝑚
 (25) 



 
topology optimisation with a stress reference of 𝜎𝑟𝑒𝑓 = 130 𝑀𝑃𝑎, a thermal 
gradient reference of ∇𝜃𝑟𝑒𝑓 = 2.5𝐾 𝑚𝑚⁄  and a linker term evaluated as 𝜉 =
𝜎𝑟𝑒𝑓
2 𝐸𝑘∇𝜃𝑟𝑒𝑓

2⁄ . These quantities provide a value of the reference thermo-
mechanical energy density 𝜖𝑟𝑒𝑓 = 0.149 𝑀𝑃𝑎 according to Eq.23. 14145 plane 
quad elements, 8 nodes each one, are employed for the analysis. 

 

Figure 47 - TopTM application on real component 

In order to compare the three optimisation results reported in Figure 47 and to 
understand the effectiveness of the coupled method, further analyses have been 
carried out. Figure 48 - Figure 51 show the displacement field, the Von Mises 
stress distribution, the temperature field, and the thermal gradient vector sum 
distribution respectively within the three different final topologies. Each topology 
is reported together with a letter index and in particular: subscript a) refers to the 
pure thermal optimisation, subscript b) refers to the pure structural optimisation 
and subscript c) refers to the coupled optimisation. The same considerations made 
on the simple cases analysed in the previous paragraph are still valid. Observing 
the displacement vector sum in Figure 48, it is clear that the pure thermal 
topology optimisation is not able to predict the structural load causing an 
enormous displacement, i.e. the component would be broken. Looking at the other 
final topologies Figure 48b and Figure 48c, the displacement vector sum is always 
less or much less than 0.1 mm which can be considered an acceptable value for 
the analysed geometries, proving the verification of the structural constrains. The 
validity of this consideration is enhanced if the Von Mises stress distribution is 
observed in Figure 49. This quantity in the thermal optimisation presents great 
underloaded portions and other with stress peaks, i.e. it is highly irregular and 
ununiform. On the contrary, in the pure structural optimisation Figure 49b and in 
the coupled one Figure 49c this quantity is almost uniform within the final 
domain, especially in the pure structural optimisation as expected.  

 



 

Figure 48 - Displacement vector sum distribution [mm] 

 

 

Figure 49 - Von Mises ideal stress distribution [MPa] 

Similarly, looking at the temperature field Figure 50 and the thermal gradient 
vector sum distribution Figure 51, it is clear that the structural optimisation alone 
is not able to provide a good result. In particular, in the pure thermal optimisation, 
Figure 50a, the temperature fluctuations inside the domain are low. In the other 
optimisations, Figure 50b and Figure 50c the temperature undergoes more 
dispersions. For more, looking at the thermal gradient vector sum distribution of 
the thermal optimisation  Figure 51a it is incredibly uniform within this final 
domain, while is highly scattered in the structural in  Figure 51b. However, in the 
couple optimisation  Figure 51c it is well distributed, a good compromise between 
the two extreme optimisations.  

 

 

Figure 50 - Temperature field [°C] 

 



 

 
Figure 51 - Thermal gradient vector sum distribution [°C /mm] 

 
As a matter of fact, it is evident that the coupled optimisation is able to 

provide the best compromise between the two different limit conditions. In other 
words, it is able to provide a final topology in which no constraint is neglected, 
and heat exchange and structural stiffness are concurrently optimised. The same 
consideration cannot be made on the single optimisation cases, in fact the 
structural optimisation provides very poor result in terms of heat exchange, with 
disperse thermal gradient. Similarly, the single thermal optimisation leads to 
unfeasible topology under the structural loads.  

Figure 52 displays the distribution of the thermo-mechanical energy density 
that is almost uniform around the reference value of 𝜖𝑟𝑒𝑓. Overall, the coupled 
potential energy has been spread equally in the optimised structure, in accord with 
the analytical formulation, while stress and thermal gradient find in this topology 
the best compromise.  

 

Figure 52 - Thermostructural energy density distribution [MPa] 

 
In order to highlight the potentialities of TopTM, Table 4 compares important 

quantities evaluated for the three final structures. The first row displays the 
maximum temperature 𝜃𝑚𝑎𝑥  within the domain whereas the second the maximum 
displacement vector sum 𝑢𝑚𝑎𝑥. The third and the fourth rows show the final mass 
𝑀𝑜𝑝𝑡 per quarter of section and as a percentage with respect to the initial quarter 
cross section mass, 𝑀𝑜𝑝𝑡%. The structural stiffness, 𝑆𝑢, the v stiffness per unit of 
mass, 𝑠𝑢, the thermal stiffness, 𝑆𝜃, and the thermal stiffness per unit of mass, 𝑠𝜃, 
defined in Eq.26, are also reported in the last four rows of Table 4, respectively.  

 

 

𝑆𝑢 =
√𝐹𝑥2 + 𝐹𝑦2

𝑢𝑚𝑎𝑥
;      𝑠𝑢 =

𝑆𝑢

𝑀𝑓𝑖𝑛
 

𝑆𝜃 =
𝑄

𝜃𝑚𝑎𝑥
;      𝑠𝜃 =

𝑆𝜃

𝑀𝑓𝑖𝑛
 

(26) 



 Thermal Structural Thermostructural 

𝜃𝑚𝑎𝑥  [°𝐶] 209 175 205 

𝑢𝑚𝑎𝑥 [𝑚𝑚] 37,339 0,040 0,105 

𝑀𝑜𝑝𝑡 [𝑔/𝑚𝑚] 1,02 3,47 1,92 

𝑀𝑜𝑝𝑡% [%] 16% 55% 30% 

𝑆𝜃[𝑊𝑚𝑚−1°𝐶−1] 0,0023 0,0028 0,0024 

𝑠𝜃[𝑊𝑚𝑚−1°𝐶−1 𝑘𝑔−1] 2,269 0,796 1,229 

𝑆𝑢[𝑁𝑚𝑚−2] 0,34 318,20 121,22 

𝑠𝑢[𝑁𝑚𝑚−2𝑘𝑔−1] 337 91700 63135 
Table 4 - Comparison between optimisation results 

According to Table 4, the temperature and the displacement after the 
structural optimization are the smallest, but the mass is significantly larger (more 
than 3 times 𝑀𝑜𝑝𝑡 obtained through thermal optimization and more than twice 
𝑀𝑜𝑝𝑡 after the coupled thermo-structural optimization). Considering the thermal 
optimisation, it is clear that this solution is not feasible, since the displacement is 
out of scale, i.e. the component would break immediately under the structural 
loads. On the contrary, the displacement and the temperature in the coupled 
solution are reasonable and a good compromise between the separated 
optimisations. In addition, 𝑀𝑜𝑝𝑡 results to be remarkably smaller than 𝑀𝑜𝑝𝑡 
obtained through a structural optimization. Moreover, the stiffnesses per unit of 
mass are concurrently enhanced after the coupled optimisation and tend to the 
values obtained by considering only the structural and the thermal optimisations 
(i.e., the highest achievable performances). It is worth to note that the thermal 
peak in the pure thermal topology optimisation is localised in a very little portion 
of material, as shown in Figure 50a, about just one or two elements. In order to 
have a rigorous comparison between all the optimisation, this value has been 
reported unaltered from the analysis. However, it would be sufficient to add a 
very little quantity of material in that point to remarkably reduce the temperature 
peak that is mainly due to a numerical instability. As already pointed out, the 
presented final topologies depend on the reference stress 𝜎𝑟𝑒𝑓 and on reference 
thermal gradient 𝛻𝜃𝑟𝑒𝑓 prescribed at the beginning of the optimisation. In the 
present paper, qualitatively high values of these references have been employed to 
clearly show the effect of the optimisation and highlight the most critical zones in 
the component. Surely, in a real design phase, these references can be lowered, 
and the final mass would be much more increased. To conclude, this validation on 
a real component proves furthermore that TopTM is able to provide the optimized 
comprise between the structural and the thermal constraints, providing a final 
topology characterized by high structural and thermal performances and reduced 
mass.  



 
In Figure 53 the final radiator is displayed. In particular, the figure shows an 

internal section of the radiator in order to highlight the redesigned topology and 
proving that topology obtained with TopTM can be easily converted in a CAD 
file. Nevertheless, the proposed final topology doesn’t consider manufacturability 

constraints. As it can be noticed, the great mass removal especially close to the 
cooling channels may be problematic in the manufacturing phase. It is worth to 
note that, as for other commercial software for topology optimization, the 
manufacturing constraints have not been considered, since the aim of topology 
optimization is to provide the ideal mass distribution under selected loads and 
constraints. Considerations on the specific manufacturing limits and constraints 
have to be faced during the rebuilding of the model. Indeed, topology optimisation 
provides a guideline about the best material distribution within a certain domain 
and under some constraints and boundary conditions. 

 
 

 

Figure 53 - redesign by TopTM of real LHP radiator 

2.4 TopTM final remarks 

Before TopTM, components subjected to mechanical and thermal loads were 
generally optimized with separate mechanical and thermal optimizations. 
Moreover, in many cases thermal loads were not considered and only structural 
topology optimization was carried out. TopTM is able to optimise under 
simultaneous thermo-mechanical constraints and objectives any components. 
Some main final remarks can be summarized as follows: 

1) The theoretical condition for the optimum consists in the uniform thermo-
mechanical energy density distribution, with the convergence reached within few 
iterations. In all analysed cases full or void material distribution without 
intermediate properties has been achieved after about 40 iterations. 

2) TopTM permits to obtain the maximum material exploitation, reaching the 
optimized heat exchange and stiffness concurrently. Indeed, for a component 
subject to coupled loads, TopTM is able to provide the best compromise, 
optimising concurrently the above-mentioned quantities and respecting the 
coupled constraints. 

3) TopTM has been successfully validated on an LHC radiator for aerospace 
application, proving its applicability in real and complex cases. As it can be 



observed from the reported data, within the final structure, the heat exchange and 
the structural stiffness are maximised. From the topology optimisation result, it 
had been possible to redesign entirely the component quite easily. Hence, it had 
been possible to obtain a CAD model, first step in the manufacturing chain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



 
 

Chapter 3 

TopComp: fibre and topology 
optimisation  

3.1 Composite material topology optimisation  

Over the last decades, the use of fibre-reinforced composite (FRC) structures 
has significantly increased in many industrial sectors (e.g., automotive, 
aerospace). Fibre-reinforced composites are made of axial particulates embedded 
in fitting polymer matrices. The primary objective of fibre-reinforced composites 
is to obtain materials with high specific strength and high specific elastic 
modulus, which means high strength and stiffness with respect to weight [13]. 
Therefore, they are widely employed for the production of structural lightweight 
components in several sectors such as automotive, aerospace, and offshore 
extraction. FRC laminates are currently manufactured with different production 
processes, like roll wrapping, spray-up or compression moulding. The Classical 
Lamination Theory (CLT) parameters, such as layer thickness, layer fibre 
orientation, number of layers, significantly affect the mechanical properties of the 
FRC [86]. Therefore, depending on the specific application, the optimisation of 
these parameters is fundamental to maximize the performance of the FRC 
composite [87,88]. 

As already described previously, novel AM processes permit to create highly 
customised fibre reinforced composited (FRC). There is an increasing interest in 
the use of AM processes for the production of FRC components since they have 
the possibility to substitute metals parts with great saving in terms of mass and 
weight. Hence, specific design methodologies for AM FRC are needed to obtain 
fully optimised parts.  

In the literature, multi-objective topology optimisation methodologies are 
currently employed to design FRC components to be produced through AM 
processes. The research focused on the development of algorithms which can 
consider both the topology and the fibre orientation in the optimisation process.  

One of the first research in this field has been proposed by [89] who 
optimized the orientational and density distribution for a short cantilever problem. 
As well, [90] extended SIMP technique to simultaneous fibre-angle and topology 
design of composite laminae in a cellular automata (CA) framework. Other 
approaches more related to the production processes have been suggested such as 
methodologies capable to define the optimum geometry and the best lamination 



parameters for composites produced through classic manufacturing processes [91–

93]. 
Recently, algorithms for the optimisation of laminates to be produced through 

AM processes have also been proposed in the literature. Considering FRC 
printing, Safonov [94] proposed a new method capable of simultaneously 
optimise the density distribution (i.e., the topology) and the local fibre orientation 
using an evolutionary method. The design algorithm should provide the topology 
and the local fibre orientation in each lamina together with the stacking sequence. 
Indeed, TopComp focuses on these AM layered structures and provides the 
required design information. Considering fibre orientation, two families of 
algorithms, Discrete Material Orientation (DMO) or a Continuous Fibre Angle 
Orientation (CFAO), have been analysed in the literature. In particular, in the 
DMO methodology, a discrete set of different angles, which are a-priori assumed 
or calculated during the optimisation process [95,96], are imposed in the 
optimisation process. On the other hand, in the CFAO technique, each point of the 
material can have its specific fibre orientation and, therefore, the fibre orientation 
can continuously vary within the domain [97,98]. TopComp belongs to this last 
family of fibre optimisation approaches. 

The optimisation sequence is another fundamental parameter. Namely, both 
the fibre orientation and the topology optimisation share the aim of maximising 
the stiffness of the system and fully exploit the material. However, the same 
objective can be obtained by considering topology optimisation and fibre 
orientation simultaneously or sequentially. For example, [96] has proposed a 
sequential method, which involves, at first, the definition of the component 
topology and, thereafter, the assessment of the fibre density and orientation. 
Despite of that, [97] and [95] have suggested to simultaneously optimise the 
topology and the fibre orientation. In particular, during each cycle of the 
optimisation process, both the topology and the fibre orientation are concurrently 
considered. Clearly, the use of different optimisation strategies affects the results 
and brings to different shapes and fibre distributions. For example, the sequential 
approach is faster and computational cheaper with respect to the simultaneus one. 
However, for materials with a strong anisotropy it can provide final structures 
with undesired stress peaks absent using the simultaneus optimisation. On the 
other hand, simultaneous methods work properly also for composite materials 
characterized by a strong anisotropy.  

However, the available simultaneous methods exhibit some shortcomings, as 
the difficulty of reaching the global minimum [96] and the need for corrections 
and filtering techniques if the SIMP method is used to solve the optimisation 
problem [57]. At present, a simultaneous approach which permits to reach the 
global minimum, and it is not affected by critical numerical instabilities is not 
present in the literature. 

TopComp is able to optimize simultaneously the fibre orientation and the 
topology. In the following chapter, the analytical method proposed in [58,64] for 
isotropic materials is adapted to anisotropic materials and the procedure for the 
simultaneous coupled optimisation is defined. This method is able to guarantee 



 
the global optimum and provide the final topology without a priori volume 
constraints. Lastly, TopComp is verified on several literature benchmarks and 
compared to a sequential method. In addition, the optimal geometry and fibre 
orientation of a 3D part is obtained and analysed. 

3.2 TopComp solution 

In this paragraph, the analytical formulation of TopComp is defined. Firstly, the 
analytical formulation of the topology optimisation problem for an anisotropic 
material is reported.  The problem solution leads to the optimality criterium that is 
the uniform distribution of strain energy density, i.e. the best material distribution 
is the one with all the material subjected to the same deformation. Secondly, the 
FRP constitutive matrix is obtained and analysed. The optimality criterion, which 
permits to define the fibre orientation that maximises the stiffness, is outlined in 
the following. Finally, the methodology that permits to couple topology 
optimisation and optimized fibre orientation in a multi-objective programming 
problem is presented. 

3.2.1 Optimality criterium for material distribution   

Let 𝛺 be a domain of existence limited in the space, 𝛺 ⊆  ℝ3 and containing 
the material 𝑀, with regular frontier 𝛤 as shown in Figure 54. The spatial 
coordinates are 𝑥, 𝑦, 𝑧 (in vector notation 𝒙 = {𝑥, 𝑦, 𝑧}), whereas the displacement 
field of 𝑀 is 𝒖 = 𝒖(𝒙). In the following, bold letters stand for vector quantities. 

 

Figure 54 - Design Domain for a generic material  

The material 𝑀 is considered linear anisotropic. The equation that establishes 
the load equilibrium of an infinitesimal portion 𝑑𝛺 in a generic body is reported in 
Eq.27: 𝜎𝑖𝑗 is the stress tensor (𝜎𝑖𝑗 ∈ ℝ3𝑥3), 𝑥𝑗 are the independent spatial variables 
(𝑥𝑗 ∈ ℝ3), 𝑓𝑖 are the applied forces per unit volume (𝑓𝑖 ∈ ℝ3). Neumann boundary 
conditions are applied to the part of the frontier called  𝛤𝑁 (second equation in 
Eq.27) and Dirichlet boundary conditions are applied to the part of the frontier 
called  𝛤𝐷 (third equation in Eq.27). Together, they must verify the condition of 
completeness of the boundary conditions defined in [79]. In Eq.27, 𝑛𝑖 is the unit 
vector normal to the frontier 𝛤𝑁 (𝑛𝑖 ∈ ℝ3), 𝜏𝑖 is the imposed stress on frontier 𝛤𝑁 
(𝜏𝑖 ∈ ℝ3) and 𝑢𝑖 is the imposed displacement on frontier 𝛤𝐷 (𝑢𝑖 ∈ ℝ3).  

 



 
The term 𝜎𝑖𝑗 can be expressed in term of strains 𝒆 = 𝑒𝑖𝑗 by means of the 

constitutive matrix 𝑨 = 𝑎𝑖𝑗. Since the coefficients of this matrix must satisfy the 
symmetry and positivity conditions [79], it is possible to obtain the expression of 
the potential energy of the system Eq.28, 𝛱(𝒖), according to [58]. 

 

In order to define the structural optimisation problem, it is necessary to define 
an artificial variable, called 𝜂. This variable represents the material effectiveness, 
i.e. the participation rate of the material in the component behaviour, in each point 
of the domain 𝛺. In other words, 𝜂 stands for the presence and consistency of the 
material in the domain, point by point. The variable 𝜂 must be limited both by an 
upper boundary 𝜂𝑚𝑎𝑥 and by a lower boundary 𝜂𝑚𝑖𝑛 [58].The expression of this 
variable is  reported in Eq.16. 

The topology optimisation problem, reported in Eq.29, consists in finding the 
distribution of 𝜂(𝒙) that maximises the stiffness for a volume 𝑉̅. 𝑉̅ is a portion of 
the initial volume and the second equation in Eq.29 represents the volume 
optimisation constraint. 

 
The optimisation problem shown in Eq.29 can be solved by using the 

Lagrange multipliers method. In particular, the Lagrangian function, 𝐿(𝜂, 𝜆, 𝑡), 
has to be defined and all its derivates must be equal to zero (Eq.30). 

 

Where 𝜆 is the Lagrange multiplier and the term 𝑡 is an additional variable 
employed to simplify the solution of the system. 𝜆 results to be equal to the strain 
energy density 𝜖 and its expression is reported in Eq.31. 
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𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= −𝑓𝑖      𝑖𝑛 𝛺     𝑖, 𝑗 = 1,… ,3
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𝛺
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If the problem is discretized, e.g. using the Finite Element Method (FEM), the 
equations are defined on 𝑁𝑒𝑙𝑒𝑚 portions of the domain called 𝛺𝑒 and also the 
effectiveness variable 𝜂 must be discretised: 

Following the same passages shown in Eqs.27-31 the value of the Lagrange 
multiplier for each element can be evaluated as follows: 

The multiplier 𝜆 must be the same both in the global continuum structure and 
in each single portion of the discretised one. Hence, the strain energy density in 
each portion 𝛺𝑒 must be the same. Accordingly, the strain energy density in the 
optimal structure must be uniformly distributed. This represents the optimality 
criteria for any type of material which has a constitutive matrix like 𝑎𝑖𝑗. 

 

3.2.2 Optimality criterium for fibre orientation   

Below the TopComp optimality criterium for fibre orientation is defined. 
From an analytical point of view, an FRC lamina behaves like an orthotropic 
material if the reference system for computing the compliance matrix is aligned 
with the fibre direction (e.g., the reference system with coordinate axes 1, 2 and 3 
in Figure 55). In particular, in Figure 2 the axes 1 − 2 define the plane of the 
lamina (i.e., the axis 1 is parallel to fibre direction and the axis 2 is perpendicular 
to fibre direction) and the axis 3 is normal to this plane. In this coordinate system, 
the lamina compliance matrix, the inverse of 𝑎𝑖𝑗, is called 𝑪 = 𝑐𝑖𝑗. 

𝜆 =

1
2∫

𝒆𝑇(𝒖)𝑨𝒆(𝒖)
𝛺

𝑑𝛺
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{
𝜂(𝒙) =  𝜂𝑒     ∀𝒙 ∈ 𝛺𝑒     𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚

0 < 𝜂𝑚𝑖𝑛 <  𝜂𝑒  < 𝜂𝑚𝑎𝑥 < ∞
 (32) 
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1
2𝒆𝑒

𝑇(𝒖)𝑨𝒆𝑒(𝒖)𝛺𝑒

𝛺𝑒
= 𝜖𝑒 = 𝜖     𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 (33) 



 

Figure 55 - FRC problem coordinate system 

If another coordinate system is taken into consideration, as the 𝑥 − 𝑦 − 𝑧 
coordinate system in Figure 55, with the same out of plane axis (i.e., axis 3 and 
axis 𝑧 coincide) but with the in-plane axes 𝑥 − 𝑦 rotated by an angle 𝜃 with 
respect to axes 1 − 2, the compliance matrix is subjected to a rotation 
transformation.  

The transformed compliance matrix 𝑪, in the rotated 𝑥 − 𝑦 − 𝑧 coordinate 
system has twelve different coefficients 𝑐𝑖𝑗 that depend on the nine material 
parameters 𝐸1, 𝐸2, 𝐸3, 𝜈12, 𝜈13  𝜈23, 𝐺12, 𝐺13, 𝐺23 and on the angle of rotation 𝜃.  

The transformed compliance matrix 𝑪 allows to evaluate the properties of the 
lamina in a generic rotated coordinated system. Moreover, it provides the 
compliance matrix of the lamina which has orientation 𝜃 with respect to a fixed 
reference system aligned with the fibre orientation. 

In the proposed method, the orientation angle 𝜃 for the fibres is chosen 
according to the principal stress criterion. In particular, the fibres are aligned with 
the maximum principal stress in the plane. According to [90,99], if the fibres are 
aligned with the maximum principal stress in the plane, the stiffness is 
maximized. Therefore, the aim of the proposed multi-objective optimisation is to 
uniformly distribute the strain energy density and to align the fibres along the 
principal direction. In order to achieve this objective, the first step is to generate 
the design domain with loads and constraints. Since the fibre directions are not 
known at the beginning, in this first step an artificial isotropic material is 
considered. Nevertheless, the employment of the artificial isotropy does not 
distort the results, as proved in [97]. As for the optimisation process, the second 
step involves the discretization of the component volume. Accordingly, each 
element can be considered as a lamina itself and all the previous considerations 
(i.e., constitutive matrix and orientation parameter 𝜃) are still valid, thus 
permitting to orient the fibre direction of each element. Once the principal 
directions for each element are locally evaluated, the FRC is generated. 

 
 



 
3.2.3 Coupled topology optimisation   

The algorithm developed to simultaneously couple the material distribution 
and the fibre orientation process is schematically shown in Figure 56. 

 

Figure 56 - TopComp flowchart 

According to Figure 56, the first phase for the coupled optimisation process 
involves the assessment of the stress distribution in order to define the stress 
principal directions for each element (i.e., 𝜃𝑝𝑟𝑖𝑛𝑐,𝑒 for the 𝑒𝑡ℎ element). The 
process has been developed by considering an isotropic material, with elastic 
modulus 𝐸0 and Poisson ratio 𝜈0 (i.e., 𝐸0 = 𝐸1 = 𝐸2 = 𝐸3, 𝜈0 = 𝜈12 = 𝜈13 = 𝜈23, 
𝐺0 = 𝐺12 = 𝐺13 = 𝐺23). An FRP is thereafter generated by aligning the fibre for 
each element along the principal stress direction. This represents the preliminary 
phase of the optimisation process. The second phase involves an iterative process 
aiming at assessing the optimized topology and fibre orientation. During the 
iterative phase, at first an FEA is carried out in order to assess the principal 
direction 𝜃𝑝𝑟𝑖𝑛𝑐,𝑒, and the strain energy density 𝜖𝑒 for each element. Then all the 
fibres are locally aligned along the principal directions 𝜃𝑝𝑟𝑖𝑛𝑐,𝑒 for each element. 
At the same time, the strain energy density is used to update the material 
distribution by means of the artificial variable expressed in Eq.33. In order to link 
this artificial variable to the real material parameters the compliance matrix is 
employed as shown in Eq.34. 

𝜂𝑒 =
[𝑪]

0

[𝑪]
𝑒

     𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 

0 < 10−4 ÷ 10−5 ≤ 𝜂𝑒  ≤ 1 < ∞     𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚 

(34) 



In the previous Equation, [𝑪]
𝑒
 denotes the value of the compliance matrix on 

element 𝑒. In addition, [𝑪]
0
 represents the compliance matrix of the base material 

before the optimisation. The maximum value is represented by the full stiff 
material, i.e. 𝜂𝑚𝑎𝑥 is unitary and [𝑪]

𝑒
 is equal to [𝑪]

0
. On the contrary, the 

minimum value should be zero since it denotes an empty material. However, the 
zero value should be avoided in numerical approximation since it could bring to 
instabilities. A good approximation for 𝜂𝑚𝑖𝑛 is around 10−4 to 10−5 [58]. In this 
case, [𝑪]

𝑒
 is much greater than [𝑪]

0
, in other words the element 𝑒 is fully 

compliant. The material consistency is updated, considering an undefined number 
𝑝 of iterations, as reported in Eq.35, which represents the updating law of the 
optimisation process. This law can be achieved by following the same passages in 
[58] coupling Eqs.31, 32 and 34. 

The convergence to the optimized solution can be checked in several ways. 
One criterion can be the verification of a minimum difference between the volume 
at the 𝑗𝑡ℎ step and the objective volume 𝑉̅. According to [58], a percentage 
difference of 0.1% between these values for three consecutive iterations can be 
considered a good approximation. In particular, if this condition is verified, the 
convergence is reached.  

A second criterion concerns the analysis of the strain energy. In this case, 
before the optimisation process, an optimal strain energy density in the structure 𝜖 
[58] is defined. The convergence is reached if the percentage difference between 𝜖 
and the average strain energy density evaluated in the structure is inferior to 0.1% 
for three consecutive iterations. The choice of 𝜖 can be based on displacement, 
stiffness, or stress constraints. 

The analytical formulation for the assessment of the optimized topology and 
the fibre orientation can be also implemented with a sequential approach Figure 
57. In the first phase, the material is considered isotropic, and the optimized 
topology is defined. In the second phase, the principal directions are evaluated in 
each element and the FRC is generated by orienting the fibre along these 
directions. In the sequential method this last operation is required just once, at the 
end of the topology optimisation process. On the contrary, in the simultaneous 
approach Figure 56 the orientation of the fibres is required in each cycle. 
Therefore, it is clear that the simultaneous method is computationally more 
expensive than the sequential one. However, this last method could bring to sub-
optimized structures. 

[𝑪]
𝑒

𝑗+1
=
𝜖𝑗

𝜖𝑒
𝑗
[𝑪]

𝑒

𝑗
          𝑒 = 1,… ,𝑁𝑒𝑙𝑒𝑚     𝑗 = 1,… , 𝑝 (35) 



 

 

Figure 57 - TopComp sequential approach 

3.3 TopComp results 

In this paragraph, the TopComp algorithm is verified on several benchmark and 
test cases. Firstly, the proposed algorithm is verified with two benchmarks taken 
from the literature [95,97]. The simultaneous and the sequential approaches are 
thereafter compared in order to highlight the main differences between the two 
processes. Finally, TopComp is applied to a three-dimensional component. 
The proposed algorithms are implemented in the commercial software ANSYS 
Mechanical. In particular, an Ansys APDL code has been written to execute the 
optimisation processes, following the flow charts showed in Figure 56 and in 
Figure 57. It can be fully run as an ANSYS routine proving its versatility and ease 
of use. As for TopTM, the code copies step by step what reported in the flowcharts 
taking all the required information, such as strain energy density, stiffness, and 
volume directly from ANSYS postprocessing data. 

3.3.1 Benchmarking validation 

For a first verification, two benchmarks proposed in the literature are 
considered. In Figure 58a the optimized topology for the short cantilever beam 
obtained by [95] is reported. This image displays the final material distribution 
and the continuous orientation of the fibres, represented by black lines inside the 
matrix. Figure 58b displays the structural model, in  [95] a detailed description of 
dimensions, loads and materials is present. Figure 58c shows the final material 
distribution obtained by employing the proposed simultaneous optimisation. In 
order to compare the topology in  [95] and the one obtained through TopComp, 



the edges of Figure 58a (solid black continuous line) are superimposed on Figure 
58c. It can be noticed that the number and position of the holes is the same. In 
addition, the thickness of the connecting rods is almost the same, with limited 
differences. The only slight difference is the position of the right cross like portion 
of the structure. Nevertheless, it is reasonable since a different optimisation 
method and FE solver are employed. 
Figure 58d shows the fibre orientation within the matrix obtained with TopComp. 
Namely, the fibres are aligned with the directions of the rods, as found in  [95] 
and shown in Figure 58a. 

 

Figure 58 - First TopComp 2D benchmark 

In Figure 59a, the topology obtained by [97] is shown. The design domain is a 
simple cantilever beam loaded by a vertical force on the bottom-right corner as 
shown in Figure 59b. As for the previous benchmark, the reader is referred to [97] 
for a detailed description of boundary conditions and material parameters. The 
optimized topology obtained through the proposed algorithm is shown in Figure 
59c together with the topology obtained by [97] (solid black continuous line). It 
can be easily seen that the topologies are almost equal except for the thicknesses 
of the bottom and right rods that are lightly different. However, the same 
considerations for the previous case are still valid. Moreover, the same value of 
strain energy (2.471 Nmm) is obtained in the present paper and in [97]. For this 
case as well, the fibres are aligned with the directions of the rods (Figure 59d). 



 

 

Figure 59 - Second TopComp 2D benchmark 

 

3.3.2 Sequential and simultaneus approach 

In this paragraph, a comparison between the simultaneous and the sequential 
approaches is carried out. The TopComp sequential approach is faster and 
computationally cheaper. However, as it will be demonstrated hereafter, for 
composite materials with a strong anisotropy, the optimized topology can be 
significantly different. To highlight this critical aspect, let us consider the 
commercial composite material graphite-epoxy (AS/3501) with the material 
properties reported in Table 5 [80]. The same structural model shown in Figure 
58b are considered: the left side is fully clamped, 𝐿 = 200 𝑚𝑚 , ℎ = 100 𝑚𝑚 
and 𝐹 = 1 𝑘𝑁. Both in sequential and simultaneous optimisation a reference 
strain energy density of 0.0362 MPa is imposed. In order to obtain comparable 
results, the Young’s modulus and the Poisson ratio are set equal to 𝐸1 and 𝜈12, 
respectively, in the first topology optimisation phase. Five thousand 8-nodes plane 
elements with unit thickness are used in the models. In both cases, the 
convergence has been reached in less than 50 iterations and no middle-density 
elements are found at the end of the process.  

 
 𝐸1[𝑀𝑃𝑎] 𝐸2[𝑀𝑃𝑎] 𝐸3[𝑀𝑃𝑎] 𝜈12 𝜈13 𝜈23 𝐺12[𝑀𝑃𝑎] 𝐺13[𝑀𝑃𝑎] 𝐺23[𝑀𝑃𝑎] 

AS/3501 137935 8966 8966 0.3 0.3 0.3 7104 7104 6208 

Table 5 - FRC material data 

Figure 60 compares the topology and the fibre orientation obtained with the 
TopComp simultaneous and the sequential approach. In particular, Figure 60a and 
Figure 60b show the topology and the fibre orientation obtained for the 
investigated cantilever beam with a simultaneous approach, respectively. In 



Figure 60c and Figure 60d the topology and the fibre orientation obtained with the 
sequential approach are shown, respectively.  

 

 
Figure 60 - TopComp simultaneous vs sequential approach 

 
By comparing Figure 60a and Figure 60c, the final shapes obtained with 

simultaneous and sequential approaches are significantly different. The final 
topology of the sequential approach is obtained by considering an isotropic 
material. It is obtained employing the algorithm described in [58] without 
modifications. In addition, all the fibres are aligned along the rod directions since 
these are the principal directions in the final structure (Figure 60d). For what 
concerns the final topology obtained by simultaneous approach, the angles of 
inclination of the rods are smoother than in the sequential case. Again, the fibre 
orientation coincides with the inclinations of the rods (Figure 60b). The 
differences between the two topologies are mainly due to the large anisotropy of 
the investigated FRC which is not considered in the topology generation of the 
sequential process. It is worth to note that sharp changes of direction within the 
component may lead to fibre orientations that are perpendicular each other. This 
induces large deformations in the structure and local peak stresses, due to the 
anisotropy. On the contrary, if the fibre orientation and the strain energy density 
are optimised simultaneously, sharp changes of the fibre direction are avoided, 
since during each iteration the strain energy density is uniformly distributed. At 
the end of the process, the rods are linked with angles that are different from 90°. 
Figure 61 shows the elastic strain energy density distribution within the optimized 
component obtained through a simultaneous approach (Figure 61a) and through a 
sequential approach (Figure 61b). Figure 61c shows a magnification of the strain 
energy peak in the optimized topology obtained through a sequential approach. 

According to Figure 61a, no strain energy peaks are present. On the contrary 
as shown in Figure 61b and Figure 61c, a large strain energy peak at the centre 
cross-like portion of the structure is present, in the region where the rods are 
perpendicularly to each other. The value of the elastic strain energy density in that 



 
point is 1.13 MPa, whereas it is averagely equal to 0.05 MPa in the rest of the 
structure. Hence, it can represent a point of static failure or the possible starting 
point for a fatigue crack. It should be noted that this local strain energy increment 
inside the material is far from the zones where the boundary conditions are 
applied, so it cannot be considered as a numerical instability. 

 

 

Figure 61 - Elastic strain energy density [MPa] 

 
For what concerns the global stiffness and the volume reduction of the 

structure, the results are reported in Table 6. In particular, the structure obtained 
through the simultaneous approach has a larger specific stiffness (i.e., the ratio 
between the global stiffness and the total volume) and, most important, it avoids 
the presence of peak stresses. 

 

 Simultaneous 
optimisation 

Sequential 
optimisation 

Final Volume [mm3] 8415 8090 

Maximum displacement [mm] 0.614 0.662 

Global stiffness [Nmm-1] 1629 1511 

Stiffness per unit volume [Nmm-4] 0.194 0.187 
Table 6 - TopComp  data result with different approaches 

 
This analysis confirms the effectiveness of the simultaneous approach and it 

also highlights that, with the sequential approach, strain energy density 
concentrations may dangerously occur, especially for materials characterized by a 
strong anisotropy. 

 



3.3.3 3D component optimisation 

For the verification of the simultaneous approach with a 3D component, the 
parallelepiped design domain with a squared base reported in Figure 62 is 
analysed. The parallelepiped is characterized by height ℎ equal to 10mm and 
length 𝐿 equal to 50mm. In the four squared areas with striped background in 
Figure 62 with side length 𝑡 equal to 2mm, the nodal displacement is set equal to 
0. Two nodal forces 𝐹 with intensity of 500N along the z direction are applied on 
the two squared areas with white background on the right end of the plate (at the 
middle of the length 𝐿, on the upper and lower faces). The material properties are 
the same reported in Table 5 and the fibres are assumed to be perpendicular to the 
z-axis. The design domain is sliced in laminae with thickness equal to 𝑠 along the 
z-axis. The aim of this optimisation is to provide the three-dimensional topology 
as the combination of single laminae together with bidimensional optimal fibre 
distribution of each lamina.  

 

Figure 62 - Three-dimensional design domain with constraints 

The TopComp simultaneous approach is used to optimise the component. In 
order to discretize the domain, a mesh, made of twenty-five thousand 20-nodes 
brick elements, is used. The commercial solver Ansys Mechanical is employed for 
the FEA. The final topology is shown in Figure 63: the convergence has been 
reached in 39 iterations with no middle-density elements.  

 



 

 

Figure 63 - TopComp on a three-dimensional component 

The mechanical properties along the z-axis are assumed to be isotropic since 
the fibres lie exclusively on x-y plane. Therefore, in z-direction, the mechanical 
properties are constant in the whole component with stiffness module equal to 𝐸3 
and Poisson ratio equal to 𝜈13. The final topology and the fibre orientation of each 
layer are reported in Figure 64, together with the stacking sequence along the z-
axis (Figure 64 (1) is the first layer, whereas Figure 64 (10) is the last layer). 
Clearly, the global topology in Figure 63 can be seen as the combination of these 
ordinated layers. Since the total height ℎ and thickness are imposed by the load 
conditions, the number of resulting layers is 10. 

 

Figure 64 - TopComp layered result with fibre direction 

It should be noted that TopComp does not consider the principal stress along 
the z direction. The orientations found on each layer represent the projection of 
the 3D principal directions in the x-y plane. So, if the state of stress is strongly 
oriented along the z-axis (i.e., the stress along the z direction is significantly larger 
than the stress in the plane), the difference between the fibre orientation in each 
layer increases. However, it worth to note that, the presented algorithm is thought 
for those manufacturing processes able to produce only stacks of bidimensional 



laminae. Therefore, the fibre can be oriented only in the x-y plane and this is the 
reason why the most critical loads should lie in this plane.  

 

3.4 TopComp final remarks 

Overall, TopComp is capable to simultaneously optimise the fibre local 
orientation and to define the optimized topology of FRC. 

TopComp has been verified with benchmarks found in the literature. It is 
shown that checker-boarding effects and middle-density elements do not occur 
and that no filtering tools are needed to obtain the global maximum. The reason is 
related to the optimality criteria chosen, similarly to TopTM.  

TopComp has been also compared with its sequential algorithm counterpart, 
which is cheaper from a computational point of view. The numerical comparison 
shows that, with a sequential algorithm, peak stresses are possible, especially for 
composite materials characterized by a strong anisotropy. On the other hand, with 
the simultaneous proposed approach, the stress is uniformly distributed within the 
component and peak stresses are avoided. 

Furthermore, TopComp has been successfully applied to a 3D component. In 
particular, the 3D topology has been obtained as the combination of laminae 
together with the bidimensional fibre distribution of each lamina. This 
information is perfectly suitable for fibre-reinforced composites (FRC) 
manufacturing through Additive Manufacturing (AM) processes.  

To conclude, TopComp exploit the possibility to produce composite 
components with limited manufacturing constraints through AM processes. It 
permits an effective lightweight design, with significant advantages in terms of 
weight and mechanical performance in many industrial sectors, like aerospace, 
automotive, motorsport, aviation, and robotics.  

 

 

 
 
 
 
 
 
 
 
 

 
 

 
  



 
 

Chapter 4 

TopFat: defect driven topology 
optimisation  

4.1 Defect population and topology optimisation  

 
As already discussed in the first part of this dissertation, topology 

optimisation provides an ideal tool for the design of optimized components 
[10,22,80,100,101] to be produced with additive manufacturing processes. 
Generally, topology optimisation permits to find the ideal material distribution to 
optimize one or more properties (e.g., stiffness) under various constraints [11].  
Commonly, the objective of topology optimisation is to maximise the stiffness of 
the structure under a volume constraint. However, in this case the maximum 
allowable stress in the structure is not considered and the optimized topology can 
hardly be used since it probably does not meet the safety requirements. For this 
reason, limits on the allowable stress, depending on the application, must be 
included in the topology optimisation problem formulation. Generally, when a 
component is designed with a topology optimisation algorithm, the stress is 
limited by considering the quasi-static material strength (i.e. von Mises stress 
[102] or buckling stress [103]). More recently, algorithms also capable to consider 
the fatigue strength have been proposed [13-24]. For example, in [104] a fatigue 
driven topology optimisation algorithm where the fatigue constraint is substituted 
by multiple stress constraints according to traditional high-cycle fatigue design 
methodology [115] is proposed. Similarly, in [107] the equivalent static stress 
approach has been employed for the high-cycle fatigue stress assessment 
considering the Sines method and a modified Goodman criterion. In [44] the 
dynamic fatigue failure constraints according to Crossland’s criterion are 

included. In [108] a topology optimisation algorithm for finite-life high-cycle 
fatigue damage using a density approach and analytical gradients is proposed. In 
[105] random fatigue loads are analysed with different methodologies, such as 
narrow-band solution, the Wirsching and Light method, the Ortiz and Chen 
method, and the Dirlik method and taken into account in structural topology 
optimisation.  

It is therefore clear, according to the literature results, that the research of 
topology optimisation algorithms capable of considering the fatigue constraints is 
of utmost interest. 



However, the fatigue limit inserted as a constraint in topology optimisation 
algorithms is generally extrapolated by classical fatigue theory (e.g., the 
asymptote at the end of the S-N curve for steel materials), which is surely 
effective for a large of real applications but can miss the crucial influence of 
defects inside the material. Indeed, it is well-known that in many practical 
applications and in-service conditions, the fatigue response of components is 
controlled by defects (e.g., inclusions, porosity) which form during the 
manufacturing process. In this case, the fatigue strength is smaller than the fatigue 
strength of a component free of defects, according to [116]. Therefore, the 
topology optimisation algorithm as a design tool must include this defect-driven 
constrain for the fatigue response in order to avoid premature failures in the 
optimised components. For example, it is well-known that the fatigue response of 
additive manufacturing  parts is critical and the main reason is the presence of 
large defects that originates during the production process [117–121]. The 
influence of defects therefore cannot be neglected to ensure a safe and appropriate 
design. It must be considered when the component is designed through topology 
optimisation algorithms, thus permitting to define the topology which ensures the 
best material exploitation while guaranteeing the structural safety.  

The influence of defects on the (lowered) fatigue response was not included in 
the topology optimisation yet. Interestingly, in [122] the influence of porosity on 
structural safety is included in the topology optimisation algorithm. However, the 
parameters related to the porosity size and shape of the holes are not fitted with 
experimental data and a direct link with the fatigue response of the optimised part 
is missing. Moreover, the defect size is a priori or randomly assumed and the 
dependence between the defect size and the material volume is not considered. 
Furthermore, an arbitrary choice of the defect size could not be effective, since the 
defect size and its influence on the fatigue response depend on many factors (e.g., 
the material microstructure) and must be properly assessed for each material.  In 
the following paragraph, the TopFat algorithm for considering the influence of 
defects on the fatigue response is presented. The fatigue limit of the component is 
assessed by considering the Murakami formulation [116]. In order to take into 
account, the presence of defects with different morphologies and chemical 
composition, an equivalent defect size is considered, according to [116]. In order 
to model the dependence between the defect size and the material volume, the 
distribution of defects size is assumed to follow the Largest Extreme Values 
Distribution (LEVD). Indeed, according to [116], the largest defect within the 
material controls the fatigue response. Therefore, the size of the largest defect, 
rather than the defect density, controls the fatigue response. For example, the 
fatigue response of a component with a large number of small defects (higher 
defect density) is larger than that the fatigue response of a part with a small 
number of defects, but with larger size. This experimental evidence [116,123] 
justifies the use of the LEVD for the estimation of the defect size [123]. All the 
information about the Murakami theory and its application in the TopFat 
algorithm is detailed in the following paragraph. The analytical formulation of 
TopFat is firstly defined, by considering concurrently quasi-static and fatigue 



 
stress constraints, when the component is subjected to load cycles with minimum 
stress equal to 0 (i.e., stress ratio equal to 0). TopFat is finally validated with 
literature benchmarks, proving its effectiveness and the importance of considering 
the presence of defects to guarantee the overall structural integrity of the part. 

 

4.2 Fatigue response in presence of defects 

The influence of small defects on the fatigue response of components has 
been widely investigated in the literature and the well-known Murakami 
formulation [116] is generally considered to assess the fatigue strength, 𝜎̄𝑓, in 
presence of defects: 

where 𝐶1 is a constant parameter depending on the defect location, 𝐻𝑉 is the 
Vickers hardness of the material accounting for the influence of the 
microstructure, √𝑎 is the square root of the area of the defect measured in a plane 
perpendicular to the maximum applied stress and 𝑅 is the stress ratio From a 
physical point of view, Eq.36 states that the fatigue strength of the material in 
presence of defects depends on the material hardness, correlated to the 
microstructure, on the defect size and on the stress ratio. In particular, an 
increment of the Vickers hardness has a positive effect on the fatigue strength. On 
the other hand, the larger the defect size, the smaller the fatigue strength. Since 
different defects (i.e., with different chemical composition and morphology) could 
form during the manufacturing processes, especially for AM processes, an 
equivalent defect size can be considered for √𝑎, according to [116]. Moreover, for 
√𝑎, positive stress ratios 𝑅 lower the fatigue response. According to [116], Eq.36 
is obtained by equating the Stress Intensity Factor (SIF) associated with the defect 
to the SIF threshold of the material and permits to assess the stress amplitude 
below which a crack does not propagate from a defect with size equal to √𝑎. 
Accordingly, in order to prevent fatigue failures originating from defects, the most 
critical defect in the component volume should be reliably known. The critical 
defect corresponds the largest defect present in the material: according to Eq.36, 
the larger the defect size, the smaller the fatigue limit. Therefore, the largest 
defect is the “critical defect”. It is clear that the size of the critical defect is not 

known when a component is designed, since the defect population depends on a 
large bulk of different factors and mainly on the manufacturing processes. For 
example, for parts produced through AM processes [117–121], the process 
parameters strongly affect the defect population.   

In order to clarify this aspect, Figure 65 shows the steps that are generally 
followed for the design of components with topology optimisation algorithms 
(e.g., AM parts). After setting the design domain and the optimisation parameters, 
the topology optimisation algorithm provides the topology that minimizes the 

𝜎̄𝑓 =
𝐶1 ⋅ (𝐻𝑉 + 120)

(√𝑎)
1
6

∙ (
1 − 𝑅

2
)
0.226+𝐻𝑉∙10−4

 (36) 



compliance under the volume constraint. The component is finally manufactured 
and, depending on the manufacturing process, it may contain manufacturing 
defects, highlighted in Figure 65 with yellow circles, which significantly affect 
the fatigue response. Material defects can be detected with non-destructive 
techniques: however, the assessment of the defect population once the component 
has been manufactured prevents any possible modification.  

 

Figure 65 - Component flow from the initial design domain to the realisation 

 
Therefore, for a proper fatigue design, the possible presence of defects must 

be taken into consideration when the component is designed. In particular, the 
defect size distribution in the material and, accordingly, the critical defect size 
(i.e., the size of the largest defect within the material volume) must be reliably 
assessed. According to the literature, the defect size is a random variable and is 
assumed to follow the Largest Extreme Value Distribution (LEVD). The related 
Cumulative Distribution Function (CDF), 𝑃√𝑎, of the LEVD is given as follows: 

where 𝜇√𝑎 and 𝜎√𝑎 are the location and the scale parameters of the 
distribution, respectively. From a physical point of view, Eq.37 permits to 
compute the probability 𝑃√𝑎 of having a defect with size smaller than √𝑎. The 
parameters 𝜇√𝑎 and 𝜎√𝑎, that depends on the material, the production process and 
on possible post treatment, can be estimated experimentally by assessing the 
largest defect within samples with a defined volume 𝑉0 (reference volume in the 
following). Different methodologies are employed in the literature for the 
parameter estimation, like defect sampling on polished metallurgical samples or 
by considering the defect originating the fatigue failure in fatigue tests. According 
to the properties of the LEVD, Eq.37 can be also rewritten to predict the size of 
the largest defect in a volume 𝑉𝑛 𝑛 times 𝑉0. Indeed, the defect size is dependent 
on the material volume, i.e., the larger the volume, the larger the probability of 
defects with larger size. Therefore, the parameters 𝜇√𝑎 and 𝜎√𝑎 estimated for a 
material volume equal to 𝑉0, can be used to predict the size of the largest defect 
within a larger volume  𝑉𝑛, by exploiting the properties of the LEVD distribution. 

𝑃√𝑎(√𝑎) = 𝑒−𝑒
−(
√𝑎−𝜇

√𝑎
𝜎
√𝑎

)

 
(37) 



 
The largest defect size, √𝑎𝑛, in a material volume 𝑛 times 𝑉0 can be obtained 
through Eq.38 by shifting the original distribution in Eq.37; for more details on 
the LEVD and on its properties for the assessment of the defects in the material, 
the reader can refer to [116]. 

Eq.38 permits to assess the probability of a defect wit size √𝑎𝑛 in a volume 𝑉𝑛 
or to assess the 𝑃 percentile of the defect size in the volume 𝑉𝑛. 

Therefore, estimated the constant coefficients 𝜇√𝑎 and 𝜎√𝑎 and for a 
probability 𝑃, the fatigue strength in the component volume 𝑉𝑛 can be reliably 
predicted by combining Eq.36 and Eq.38: 

 
Eq.38 can therefore be used for assessing the fatigue strength in a volume 

where defects are present and could originate the fatigue cracks. The fatigue 
strength in Eq.39 can be used as stress limit when components are to be designed. 
In the proposed methodology, Eq.39 is implemented in a topology optimisation 
algorithm in order to consider the influence of defects on the fatigue response. 

 

4.3 TopFat solution 

In this paragraph the analytical formulation of the topology optimisation 
algorithm is provided. Firstly, the optimisation function and the constraints are 
defined, then the numerical implementation is described. Finally, the solution 
algorithm is outlined.  

 

4.3.1 Optimisation analytical definition 

For the TopFat implantation the SIMP approach is employed as already 
described previously.  

Eq.40 shows the proposed topology optimisation formulation, which involves 
the minimization of the component compliance with defined volume and stress 
constraints (i.e., von Mises and first principal alternate stress):  

 
 
 
 
 

√𝑎𝑛 = 𝜇√𝑎 + 𝜎√𝑎 ∙ (− 𝑙𝑛(− 𝑙𝑛(𝑃)) + 𝑙𝑛(𝑛)) (38) 

𝜎̄𝑓 =
𝐶1 ∙ (𝐻𝑉 + 120)

(𝜇√𝑎 + 𝜎√𝑎 ∙ (− 𝑙𝑛(− 𝑙𝑛(𝑃)) + 𝑙𝑛 (
𝑉𝑛
𝑉0
)))

1
6

∙ (
1 − 𝑅

2
)
0.226+𝐻𝑉∙10−4

 
(39) 



 
where 𝝆 = 𝜌𝑒 (𝑒 = 1,2, … ,𝑁𝑒𝑙𝑒𝑚) are the design variables, i.e. the densities. 

𝑁𝑒𝑙𝑒𝑚 is the total number of elements, 𝐶 is the global compliance, 𝑭 is the vector 
of the global forces, 𝑼 is the vector of the global displacements, 𝑲 is the global 
stiffness matrix, 𝑉 is the volume of the component, 𝑉̅ is the upper volume limit, 
𝜎𝑒

vM is the von Mises stress for the eth element, 𝜎̄𝑠 is the von Mises upper bound, 
𝜎𝑒
1 is the first principal alternate stress for the eth element, 𝜎̄𝑓 is the upper limit of 

the first principal alternate stress defined in Eq.39, 𝜎̂𝑒1 is the first principal stress 
for the eth element and 𝜌 is the minimum density of the element. The complete 

expressions of 𝜎𝑒vM, 𝜎𝑒1 and 𝜎̂𝑒1 are reported below and properly described. The 
parameter 𝜌 is usually set in topology optimisation problems in the range 
[0.0001,0.001], in order to avoid singularities in the global stiffness matrix [42]. 

The solution that minimizes the compliance under the volume constraint and 
no other stress or fatigue constraint, provides the optimized material distribution, 
but stress peaks are likely and are not controlled. This would be detrimental for 
the structural integrity of the optimized topology and would prevent the use of the 
topology optimisation algorithm for components. For this reason, the stress 
constraints are included in the formulation. In particular, the formulation defined 
in Eq.40 permits to assess the optimized topology for a component subjected to a 
cyclic force in the range [0, 𝐹𝑚𝑎𝑥], 𝐹𝑚𝑎𝑥 being the maximum applied force in the 
load cycle, corresponding to a stress ratio 𝑅 equal to 0. In order to prevent failures 
from defects that are randomly distributed within the material volume, the first 
principal alternate stress in each element is limited by the first principal alternate 
stress upper limit, 𝜎̄𝑓, corresponding to the fatigue strength defined in Eq.38. 
Indeed, the first principal alternate stress is responsible for the crack propagation 
from defects. However, the first principal alternate stress is always a positive 
term, but it must be limited only in the elements with a positive first principal 
stress (i.e., 𝑖𝑓 𝜎̂𝑒1(𝝆) > 0 in Eq.40), since only positive first principal stresses 
permit the crack propagation up to failure. For the sake of clarity, only positive 
𝜎̂𝑒
1 permits the crack propagation, if a defect is present. On the other hand, if the 

element is subjected to a compression stress, the crack will not propagate, 
according to [115,116].  As the volume constraint will be active, the fatigue limit 
is computed by considering 𝑉𝑛 = 𝑉̅. Accordingly, it is conservatively assumed 
that a defect with the same size of a defect that can be statistically found in a 
volume corresponding to 𝑉̅ is present in each element In other words, the fatigue 

find  𝝆 = {𝜌1, 𝜌2, … , 𝜌𝑁𝑒  } 

min 𝐶 =𝑭𝑇𝑼(𝝆) = 𝑼(𝝆)
𝑇𝑲(𝝆)𝑼(𝝆) 

s. t.  

{
  
 

  
 

 𝑲(𝝆)𝑼(𝝆) = 𝑭

𝑉(𝝆) ≤ 𝑉̅

𝜎𝑒
vM(𝝆) ≤ 𝜎̄𝑠       𝑒 = 1,2,⋯ , 𝑁𝑒𝑙𝑒𝑚

𝜎𝑒
1(𝝆) ≤ 𝜎̄𝑓   𝑖𝑓 𝜎̂𝑒

1(𝝆) > 0    𝑒 = 1,2,⋯ ,𝑁𝑒𝑙𝑒𝑚

𝜌 ≤ 𝜌𝑒 ≤ 1      𝑒 = 1,2,⋯ , 𝑁𝑒𝑙𝑒𝑚    

 
(40) 



 
stress constraint is applied to each element, as if the largest defect is found in each 
element. This assumption is rather conservative, but it permits a rapid 
convergence of the method. On the other hand, it is worth to note that the fatigue 
crack does not propagate in regions of material subjected to a compression state 
during the load cycle. However, if a stress limit is not considered for elements in 
compression, the optimized component could fail due to possible peak stresses in 
these elements (e.g., the stress in the element could be larger than the quasi-static 
strength of the material). For this reason, a second stress constraint is introduced 
to ensure that the von Mises stress for each element is below an admissible stress 
(e.g., the yield strength divided by an appropriate safety factor). This second stress 
constraint is verified for each element: it is worth to note that, for elements 
subjected to a positive first principal stress and therefore at risk of crack 
propagation in presence of defects, the most restrictive stress constraint prevails in 
the optimisation process. This simplifies the numerical implementation of the 
proposed methodology. 

 

4.3.2 Hybrid stress element model 

TopFat has been numerically implemented for bidimensional cases. In the 
literature, for bidimensional cases, density-based topology optimisation is 
commonly carried out using bilinear quadrilateral four-node elements. The main 
reason lies in the low computational cost of this element model. However, when 
an explicit stress evaluation is required, these elements may produce inaccurate 
results due to the shear locking effect, especially in bending dominated regions 
[61]. To overcome this issue and improve the accuracy of the results, a four-node 
hybrid stress element model is employed in this study. In this model, both the 
displacement and stress fields are approximated by means of interpolation 
functions. The basic idea behind this method is to make the element less sensitive 
to geometrical distortions and improve therefore the stress accuracy evaluation. 
This result can be achieved by adding additional nodes too, but this would 
increase remarkably the computational cost. It has been proved that this method 
can produce more accurate results, at the same mesh discretization, with respect to 
classical bilinear quadrilateral four-node elements [124].   

All considered, the element stress vector 𝝈𝑒 in the hybrid stress element (Voigt 
notation) and the SIMP framework is given by: 

where 𝜎𝑒𝑥, 𝜎𝑒𝑦 and 𝜏𝑒𝑥𝑦 are the element stress components, 𝛾 is a scalar 
parameter which value depends on the type of stress interpolation employed 
(detailed in the following paragraph), 𝜱(𝜉, 𝜂) is the geometrical interpolation 
matrix depending on the element natural coordinates 𝜉 and 𝜂, 𝜷𝑒 is the stress 
parameter vector. The first term modifies the stress according to the local density 
dictated by the topology optimisation approach. The second term defines where 

𝝈𝑒(𝝆, 𝜉, 𝜂)  = [𝜎𝑒𝑥 𝜎𝑒𝑦 𝜏𝑒𝑥𝑦]𝑇 = 𝜌𝑒
𝛾
𝜱(𝜉, 𝜂)𝜷𝑒 (41) 



the stress is evaluated within the element according to the natural coordinates 𝜉 
and 𝜂. The third term 𝜷𝑒 relates the displacement fields with the stress 
considering the material elasticity, the strain-displacement matrix, and the 
structure thickness, similarly to the classical finite element model. The analytical 
derivation of Eq.41 the term 𝜷𝑒 starts from Eq.42 where the displacement element 
vector expression is reported.  

Where 𝑢𝑒𝑥 and 𝑢𝑒𝑦 are the element displacement components, and 𝑵(𝜉, 𝜂) are 
the geometrical interpolation matrices depending on the element natural 
coordinates 𝜉 and 𝜂 for the stress and displacement respectively, and 𝒅𝑒 is the 
element nodal displacement. As for the displacement field, the same interpolation 
scheme of bilinear quadrilateral four-node elements is used. As for the stress field, 
following [124] it is possible to express the stress parameter vector 𝜷𝑒 as: 

 
where the two matrices read: 

 

 
The terms reported in Eq.44 and Eq.45 are: 𝑱 the Jacobian matrix and |𝑱| its 

determinant, 𝑩 the strain-displacement matrix, 𝑺0 the compliance matrix, i.e. the 
inverse of the elasticity matrix, and 𝑡0 the structure thickness. Overall, the element 
stiffness matrix 𝒌𝑒  and the element vector stress 𝝈𝑒 respectively read: 

 

Thanks to Hellinger-Reissner variational principle [61,124]  it is possible to find 
out the dependency with the density design variable 𝜌. The above-described 
matrixes in the SIMP framework read: 

 

 

𝒖𝑒(𝜉, 𝜂) = [𝑢𝑒𝑥 𝑢𝑒𝑦]𝑇 = 𝑵(𝜉, 𝜂)𝒅𝑒 (42) 

𝜷𝑒 = 𝑯−1𝑮𝒅𝑒 (43) 

𝑮 = ∫ ∫ 𝜱𝑇𝑩 𝑡0|𝑱|𝑑𝜉 𝑑𝜂
1

−1

1

−1

 (44) 

𝑯 = ∫ ∫ 𝜱𝑇𝑺0𝜱 𝑡0|𝑱| 𝑑𝜉𝑑𝜂
1

−1

1

−1

 (45) 

𝒌𝑒 = 𝑮
𝑇𝑯−1𝑮 (47) 

𝝈𝒆 = 𝜱𝑯−𝟏𝑮𝒅𝒆 (48) 

𝜷𝑒 = 𝜌𝑒
𝛾
𝑯−1𝑮𝒅𝑒 (49) 

𝒌𝑒 = 𝜌𝑒
𝛾
𝑮𝑇𝑯−1𝑮 (50) 



 

 
In all the further analysis, it has been chosen to evaluate the stress element 

vector 𝝈𝑒 in the element centre, i.e. 𝜱(0,0), according to [61]. In order to simplify 
the notation, the stress element vector evaluated in the element centre  
𝝈𝑒(𝝆, 0,0) is renamed as 𝝈𝑐𝑒(𝝆) in the following.   

 

4.3.3 Stress constraints implantation 

When the stress constraint is considered in the topology optimisation problem 
formulation, some issues must be managed in order to obtain a clear convergence 
and a correct final topology. Firstly, the stress constraint is for its own nature a 
local constraint and during the optimisation it is likely to be discontinue within the 
domain, leading to singular optimum. This problem is so-called stress singularity 
and it belongs to the set of singularity problems in structural optimisation, well-
known and widely described in the literature from many decades [125].  

In this study, the stress singularity is avoided through the qp-relaxation 
strategy [126], which uses two different penalization factors for the stiffness and 
the stress. This strategy consists of penalizing the element stiffness in Eq.6 with 
the parameter 𝑝 while the stress in Eq.41 is penalized with another exponent, 𝑞. 
Therefore, the discontinuity in the constraints is smoothed by relaxing the 
penalization applied to the stress measure. Namely, the predefined parameter 𝛾 in 
Eq.41 is equal to 𝑞, whose value has been set equal to 0.5 as done in [61]. Some 
other relaxation approaches are also available in the literature: e.g., the ε-
relaxation method [127] or the stress penalization method [128]. However, it has 
been decided to employ the qp-relaxation strategy since it has been found to be 
one of the most effective and straightforward technique to solve the  stress 
singularity [61]. 

Given the element stress vector properly penalised and evaluated in the 
element centre 𝝈𝑐𝑒(𝝆), it is possible to calculate the von Mises and first principal 
alternate stress. In particular, the von Mises stress for the eth element can be 
evaluated as follows: 

 
where: 

 
The first principal alternate stress, under the plane stress hypothesis for 

bidimensional structure, is, in matrix notation: 

𝝈𝑒 = 𝜌𝑒
𝛾
𝜱𝑯−1𝑮𝒅𝑒 (51) 

𝜎𝑒
vM(𝝆) = (𝝈𝑐𝑒

𝑇 𝑽𝝈𝑐𝑒)
1
2 (42) 

𝑽 = [
1 −1 2⁄ 0

−1 2⁄ 1 0
0 0 3

] (43) 



where the two matrices are respectively: 

 
In the analysed optimisation problem, where the stress ratio 𝑅 is set equal to 

zero, the value of 𝜎̂𝑒1 is simply twice the alternate stress 𝜎𝑒1. A second problem 
related to stress constrained topology optimisation comes into account when 
looking at the number of equations involved. Indeed, if the domain is discretised 
by a large number, 𝑛, of elements, the stress constraint must be checked for each 
element, leading possibly to 2𝑛 constraints, 𝑛 for each stress constraint. In this 
case, aggregation functions are used to reduce the number of constraints to a 
single value and improve the computational efficiency of the topology 
optimisation. The most employed are the P-norm aggregation function [129] and 
the Kreisselmeier-Steinhauser (KS) aggregation function [102,130–132]. In the 
presented study the K-S function is employed for both the constraints on von 
Mises stress and the first principal alternate stress. The aggregation functions are 
evaluated following Eq.46 and Eq.47 within the domain 𝛺  and the subdomain 
𝛺1 respectively. This last sub domain is defined as the portion of the domain 
where the elements undergo traction stress, i.e. the first principal stress is positive 
as already stated in Eq.40. It can be defined analytically as 𝛺1  = {𝑒 ∈
𝛺 | 𝜎̂𝑒

1(𝝆) ≥ 0}.  
 

 

 
where 𝜇𝜎 is the stress aggregation parameter and it controls the approximation 

of max(𝜎𝑒vM) and max(𝜎𝑒1) which are the parameters to be effectively 
constrained. For lower values of  𝜇𝜎, the approximation is poor and the final 
mismatch between the real maximum and that evaluated through the aggregation 
function raises. For higher values, the accuracy increases but the induced non-
linearity in the problem also rises. It must be balanced properly to achieve the best 
compromise. A more detailed discussion about this term and the K-S aggregation 
function is provided in [133]. 

Whereas the aggregation functions solve the high number of constrain 
problems, they induce approximations and higher non-linearities in the topology 

𝜎𝑐𝑒
1 = 𝝈𝑐𝑒

𝑇 𝑽1 +
1

2
(𝝈𝑐𝑒

𝑇 𝑽2𝝈𝑐𝑒)
1
2 (44) 

𝑽1 = [
1

2

1

2
0]
𝑻

,   𝑽2 = [
1 −1 0
−1 1 0
0 0 4

] (45) 

𝜎vM, KS =
1

𝜇𝜎
𝑙𝑛 [∑𝑒𝑥𝑝(

𝜇𝜎𝜎𝑒
𝑣𝑀

𝜎̄𝑠
)

𝑒∈𝛺

] (46) 

𝜎1, KS =
1

𝜇𝜎
𝑙𝑛 [∑ 𝑒𝑥𝑝 (

𝜇𝜎𝜎𝑒
1

𝜎𝑓̄
)

𝑒∈𝛺1

] (47) 



 
optimisation problems. These K-S related issues can be overcome by means of  
the STM (stability transformation method)-based stress correction scheme [134]. 
In all non-trivial cases, the approximations induced by the K-S aggregation 
function overestimates the actual maximum of element stress. Therefore, two 
stress constraint functions, 𝑓vM and 𝑓1, are computed by scaling down the term 
𝜎vM, KS and 𝜎1, KS, according to the STM-based stress correction scheme which 
reads: 

 

The complete expressions of the correction factors in the STM-based stress 
correction scheme 𝑐𝑠

𝐼,vM and 𝑐𝑠
𝐼,1  are reported as below: 

 

 
where 𝐼 is the iteration index of the topology optimization procedure, 𝛼𝑠

𝐼,vM =
𝑚𝑎𝑥(𝜎𝑒

vM)
𝐼

𝜎vM, KS
, 𝛼𝑠

𝐼,1 =
𝑚𝑎𝑥(𝜎𝑒

1)
𝐼

𝜎1, KS
 and 𝑠0 𝜖 [0,1] is a relaxation parameter for avoiding 

possible oscillations. From the whole set of possible methodologies to solve the 
stress constraint related issues, the qp-relaxation strategy, the K-S aggregation 
function, and the STM-based correction scheme have been selected. This choice is 
justified by previous studies [61,103] which proved the effectiveness of the 
presented solution.  

Finally, the Method of Moving Asymptotes (MMA) [25] has been adopted to 
numerically solve the optimisation problem. This method is a first order-
programming solver, and it requires the evaluation of the first derivatives.  

Here, the sensitivity analysis of the first principal alternate stress is detailed 
For the sensitivity of the compliance, the volume constraint and the von Mises 
constraint the reader is referred to [61] since they have been already established.   

The derivatives of the first principal alternate stress of the eth element 𝜎𝑒1, 
defined in Eq.44, with respect to the stress components 𝜎𝑒𝑥, 𝜎𝑒𝑦, 𝜏𝑒𝑥𝑦 , defined in 
Eq.41, are given by: 

 
 
 

𝑓𝑣𝑀 = 𝑐𝑠
𝐼,𝑣𝑀 ⋅ 𝜎vM, KS ≤ 𝜎̄𝑠 (48) 

𝑓vM = 𝑐𝑠
𝐼,vM ⋅ 𝜎vM, KS ≤ 𝜎̄𝑠 (49) 

𝑐𝑠
𝐼,𝑣𝑀 = {

𝛼𝑠
𝐼,𝑣𝑀 𝐼 = 1

(1 − 𝑠0)𝛼𝑠
𝐼,𝑣𝑀 + 𝑠0𝑐𝑠

𝐼−1,𝑣𝑀 𝐼 > 1
 (50) 

𝑐𝑠
𝐼,1 = {

𝛼𝑠
𝐼,1 𝐼 = 1

(1 − 𝑠0)𝛼𝑠
𝐼,1 + 𝑠0𝑐𝑠

𝐼−1,1 𝐼 > 1
 (51) 



 
 

 

 

In matrix form the derivatives can be expressed as:  

The sensitivity of the K-S stress function in Eq.47 with respect to 𝜌𝑖 can be 
derived using the chain rule as: 

In the above expression, the partial derivative of the K-S stress function with 
respect to the element first principal alternate stress is detailed as below: 

The sensitivity of the element stress vector with respect to 𝜌𝑖 is:  

where 𝛿𝑖𝑒 is the Kronecker delta. The adjoint method [102,134] is used to 
calculate the last term on the right-hand-side of Eq.56, which contains the 
sensitivity of the displacement vector. Following the same procedure as in [104] 
and after some rearrangements of the mathematical terms, it is possible to derive 
the expression for the sensitivity:  

where 𝝌𝑘KS is an adjoint vector that can be obtained by solving the following: 

𝜕𝜎𝑒
1

𝜕𝜎𝑒𝑥
=
1

2
+
1

2

𝜎𝑒𝑥 − 𝜎𝑒𝑦

√(𝜎𝑒𝑥 − 𝜎𝑒𝑦)2 + 4𝜏𝑒𝑥𝑦2
 

𝜕𝜎𝑒
1

𝜕𝜎𝑒𝑦
=
1

2
−
1

2

𝜎𝑒𝑥 − 𝜎𝑒𝑦

√(𝜎𝑒𝑥 − 𝜎𝑒𝑦)2 + 4𝜏𝑒𝑥𝑦2
 

𝜕𝜎𝑒
1

𝜕𝜏𝑒𝑥𝑦
=

2𝜏𝑒𝑥𝑦

√(𝜎𝑒𝑥 − 𝜎𝑒𝑦)2 + 4𝜏𝑒𝑥𝑦2
 

(52) 

𝜕𝜎𝑒
1

𝜕𝝈𝑒
= 𝑽1

𝑇 +
1

2

𝑽2𝝈𝑒

(𝝈𝑒𝑇𝑽2𝝈𝑒)
1
2

 (53) 

𝜕𝜎1,KS

𝜕𝜌𝑖
= ∑

𝜕𝜎1,KS

𝜕𝜎𝑒1
(
𝜕𝜎𝑒

1

𝜕𝝈𝑐𝑒
)

𝑇
𝜕𝝈𝑐𝑒
𝜕𝜌𝑖

𝑒∈𝛺1

 (54) 

𝜕𝜎1,KS

𝜕𝜎𝑒1
=
1

𝜎𝑓̄
⋅

𝑒𝑥𝑝 (𝜇𝜎
𝜎𝑒
1

𝜎𝑓̄
)

∑ 𝑒𝑥𝑝 (𝜇𝜎
𝜎𝑒1

𝜎𝑓̄
)𝑒∈𝛺1

 (55) 

𝜕𝝈𝑐𝑒
𝜕𝜌𝑖

=
𝑞

𝜌𝑒
𝛿𝑖𝑒𝝈𝑐𝑒 + 𝜌𝑒

𝑞𝜱𝑐𝑯
−1𝑮

𝜕𝒅𝑒
𝜕𝜌𝑖

 (56) 

𝜕𝜎1,KS

𝜕𝜌𝑖
= ∑

𝑞𝛿𝑖𝑒
𝜌𝑒

𝜕𝜎1,KS

𝜕𝜎𝑒1
(
𝜕𝜎𝑒

1

𝜕𝝈𝑐𝑒
)

𝑇

𝝈𝑐𝑒
𝑒∈𝛺1

− (𝝌1,KS)𝑇
𝜕𝑲

𝜕𝜌𝑖
𝑼 (57) 



 

The derivates of all the quantities can be achieved by the chain rule if the 
projected and filtered density is considered as reported in [61].  

4.3.4 Solution algorithm 

To check the convergence of the MMA, the following two criteria have been 
used: 

where 𝐼 is the iteration index, and 𝜀𝐶  and 𝜀𝜌 are predefined tolerances [61]. 
The flowchart of the proposed solution algorithm TopFat is reported in Figure 

66, the numbers indicate the various steps of the method.  It can be split into two 
main different phases. The first phase (1) consists of the evaluation of the defect 
population and related stress limit according to Murakami theory. Then the second 
phase (2), where the proper topology optimisation is carried out considering the 
defect distribution. The defect population analysis in TopFat starts with the 
optimisation model definition (1.1), i.e. the design domain, the application of the 
boundary conditions and the material model. In this step, the solution parameters 
are defined too. Step 1.2 consists of the defect population estimation according to 
LEVD, the evaluation of the size √𝑎  of the most critical one.  In step 1.3 the 
information about the defect population is converted in the admissible first 
principal alternate stress following the Murakami theory. After that, the topology 
optimisation phase starts, and it begins with the filtering and the projection of the 
density variables (2.1). Step 2.2 consists of the finite element analysis and 
therefore the evaluation of the compliance, the volume, and the stress functions 
within the domain. The sensitivity of these quantities with respect to the density 
variables follows (2.3). The updating of the new distribution of the density 
variables by means of the MMA method is carried out in step 2.4. Finally, in step 
2.5 the convergence is checked, and step 2.1-2.4 are repeated in case it is not 
verified.  

 

𝑲𝝌𝑘
KS = ∑ 𝜌𝑒

𝑞 𝜕𝜎𝑘
KS

𝜕𝜎𝑒1
(𝜱𝑐𝑯

−1𝑮)𝑇
𝜕𝜎𝑒

1

𝜕𝝈𝑐𝑒
𝑒∈𝛺1

 (58) 

‖𝝆(𝑰) − 𝝆(𝑰−𝟏)‖
∞
≤ 𝜺𝝆  

‖𝑪(𝑰) − 𝑪(𝑰−𝟏)‖

𝑪(𝑰)
≤ 𝜺𝑪  

(59) 



 

Figure 66 - Flowchart of the TopFat solution algorithm 

 
 

4.4 TopFat results 

In this paragraph, TopFat is validated on literature benchmarks. Below, the 
optimized topology of an L-shape structure, a cantilever and a corbel structure are 
assessed, respectively. For all the examples, steel is considered as constituent 
material, with Young’s modulus 𝐸 = 2.1 × 105 MPa and Poisson’s ratio 𝜈 = 0.3, 
respectively. Initial designs with a uniform material distribution have been 
considered and all the initial values of the densities are set equal to 0.3. In Table 7 
the values of the optimisation parameters are detailed.  
 

SIMP parameter Value and/or continuation scheme 

Material interpolation 𝑝 𝑝 = min{1 + floor((𝐼 − 1)/3) ∙ 0.1, 3} 

Stress aggregation measure 𝜇𝜎  𝜇𝜎 = 10 

Relaxation parameter 𝑠0 𝑠0 = 0.618 

Linear filter radius 𝑅̂ 
𝑅̂/𝑙𝑒 = max{𝑅0 − floor((𝐼 − 1) 10⁄ ) ∙ 0.1, 𝑅𝑚𝑖𝑛 } 

𝑅0 = 4; 𝑅𝑚𝑖𝑛 = 1.2 

Nonlinear projection 𝛽 𝛽 = {
0.1       𝑖𝑓 𝐼 < 400

min{0.1 + floor((𝐼/10 − 40)), 20}       𝑖𝑓 𝐼 ≥ 400
 

Convergence tolerance 
parameters 𝜀𝐶 , 𝜀𝜌 

𝜀𝐶 = 0.01; 𝜀𝜌 =0.01 

Table 7 - Values of TopFat optimisation parameters 

 
Table 8 lists the parameters related to the defect distribution and fatigue 

strength [116]. 𝐶1 has been set conservatively to 1.41 (worst condition in [116]). 



 
A Vickers hardness of 290 HV, consistent with the employed material, has been 
considered. The stress ratio 𝑅 is set equal to 0. The volume 𝑉𝑛 for each case is 
conservatively set equal to 𝑉̅, the volume of the final topology, supposing that all 
the elements could contain the most critical defect. The reference volume for the 
LEVD is equal to 8.8 × 10−3 mm3, which is reasonably the inspection volume 
for defect sampling on the metallographic polished sample with an inspection area 
of about 0.5 mm2 [116]. The probability 𝑃 has been set to 0.5 (i.e., the median 
quantile of the defect size in the final volume was considered). It is worth to note 
that a more conservative quantile can be chosen. However, since other 
conservative assumptions were made for the validation benchmarks (i.e., fatigue 
limit for surface defects and the presence of the critical defect in each element), 
the choice of the median quantile was considered appropriate.  In addition, 
reasonable values from the literature have been considered or have been assumed, 
in order to show the effectiveness of the proposed methodology and the need of 
considering the material sensitivity to defect in the topology optimisation process. 

 
Fatigue parameter Value  

Defect location parameters 𝐶1 𝐶1 = 1.41 

Vickers hardness 𝐻𝑉 𝐻𝑉 = 290 

LEVD location parameter 𝜇√𝑎  [𝜇𝑚] 𝜇√𝑎 =  16.96 

LEVD scale location parameter 𝜎√𝑎[𝜇𝑚] 𝜎√𝑎 = 2.389 

Probability 𝑃 𝑃 = 0.5 

Stress ratio 𝑅 𝑅 = 0 

Reference volume 𝑉0[𝑚𝑚3] 𝑉0 = 8.8 ∙ 10−3 

Initial volume 𝑉𝑠 [𝑚𝑚3] 
𝑉𝑠
𝐿−𝑠ℎ𝑎𝑝𝑒

= 6400 
𝑉𝑠
𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 = 20000 
𝑉𝑠
𝑐𝑜𝑟𝑏𝑒𝑙 = 17700 

Upper limit volume, 𝑉̅ 𝑉̅ = 0.3 ∙ 𝑉𝑠 
Table 8 - Values of defect and fatigue parameters 

 

4.4.1 L-shape structure design  

In the first example, the optimized material distribution within a classical L-
shape structure, shown in Figure 67, is assessed. This domain geometry has been 
fairly employed in the literature and it is largely used for testing the effectiveness 
of stress-constrained topology optimisation algorithms [132][102]. The material 
volume is constrained to 30% of the design domain volume (i.e., 𝑉̅ = 0.3 ∙

 𝑉̅L−shape). The design domain is discretized into 6400 square four-node elements 
with the edge length 1 mm. To avoid the artificial stress concentration, the 
concentrated load 𝐹 =  800 𝑁 is distributed equally over the closest five nodes 
around the vertical-right corner. The fatigue strength of the material computed 



according to Eq.39 by considering a volume corresponding to 0.3 ∙  𝑉̅L−shape, 
leads to a limit of the first principal alternate stress of  𝜎̄𝑓 = 255 MPa . For the 
von Mises stress constraint, an admissible stress 𝜎̄𝑠 = 580 MPa is considered 
(e.g., yield strength divided by an opportune safety coefficient).  

 

 

Figure 67 - L-shape design domain and geometrical dimensions. 

The optimized topologies of the L-shape domain are obtained by considering 
four different constraint conditions Figure 68. Figure 68a shows the optimized 
topology with only the volume constraint, Figure 68b shows the optimized 
topology with the volume and the von Mises constraint, Figure 68c shows the 
optimized topology with the volume and the fatigue constraint on the first 
principal alternate stress and Figure 68d shows the optimized topology with all the 
constraints. In the figure, 𝐶 is the compliance, 𝜎max

vM  is the maximum von Mises 
stress, 𝜎𝑚𝑎𝑥1 = max

𝑒
(𝜎𝑒

1) is the maximum first principal alternate stress within the 

final domain. 
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𝐶 = 0.825 𝑁𝑚𝑚  

𝜎max
vM = 876.95 MPa 

𝜎𝑚𝑎𝑥
1 = 481 MPa 

 
𝐶 = 0.998 𝑁𝑚𝑚  

𝜎max
vM = 579.49 MPa 

𝜎𝑚𝑎𝑥
1 = 303 MPa 

(c) 

 

(d) 

 

 
𝐶 = 1.060 𝑁𝑚𝑚  

𝜎max
vM = 1569.37 MPa 

𝜎𝑚𝑎𝑥
1 = 252 MPa 

 
𝐶 = 1.080 𝑁𝑚𝑚  

𝜎max
vM = 579.87 MPa 

𝜎𝑚𝑎𝑥
1 = 252.5 MPa 

Figure 68 - Optimisation results for the L-shape structure 

 
As shown in Figure 68 the solution to the classical compliance minimization 

problem under volume constraint (Figure 68a) provides the minimum compliance 
compared to the other topologies. This represents the topology with the highest 
stiffness (𝐶 is the smallest), but both the von Mises stress and the first principal 
alternate stress are significantly larger than the material limits, compromising the 
structural integrity. Indeed, the re-entrant corner is still present in the design 
obtained, even if it is the most critical part of the entire domain since it is 
characterised by high and detrimental stress peaks.  If the von Mises stress 
constraint is added (Figure 68b), the final topology changes and the corner is 
smoothed, with the von Mises stress below the limit but the first principal 
alternate stress above the fatigue strength. The compliance, on the contrary, 
increases by about 20%. The topology in Figure 68c, obtained by considering the 
constraints on the first principal alternate stress (fatigue constraint) and on the 
volume, is quite similar to the one showed in Figure 68b. However, the members 
close to the corner are thicker, and thinner far from it, ensuring a first principal 
alternate stress below the prescribed fatigue strength, but with the von Mises 
stress significantly larger than the limit. In these three cases (Figure 68a-c), 
therefore, the structural integrity of the component is not guaranteed. Finally, 
Figure 68d shows the topology of the fully constrained problem, i.e. under all the 



constraints on volume, von Mises and first principal alternate stress. It is useful to 
see these final topologies as an assembly of trusses. Indeed, the comparison of the 
thickness, location, and orientation of these trusses in the final topologies can 
foster the understanding of their differences and peculiarities. The topology 
shown in Figure 68d is qualitatively similar to those shown in Figure 68b and Figure 
68c, but the trusses dimensions are significantly different. In this case, both the 
maximum von Mises stress and the first principal alternate stress are below the 
limits, ensuring the structural integrity of the component. The compliance 
increment, about 29%, is compensated by a significant reduction in the stress level 
to completely satisfy the structural requirements, which is the most important 
aspect when a component is designed. Figure 69 shows stress distributions in the 
topology obtained by considering all the constraints (Figure 68d): Figure 69a 
shows the first principal alternate stress, whereas Figure 69b shows the von Mises 
stress. 
 

(a) 

 

(b) 

 
Figure 69 - Stress distribution of the optimized L-shape 

As shown in Figure 69a, the first principal alternate stress in the lower trusses 
is close to 0 (blue colour), while it is close to the fatigue strength along the trusses 
close to the corner. For this reason, the lower trusses are thinner compared to the 
trusses close to the corner. The peak of the von Mises stress (Figure 69b), on the 
contrary, is in the lower truss of the optimized domain. Figure 69 confirms that 
both the stress constraints in the presented topology are respected.   

Figure 70a and Figure 70b show the trend of the most meaningful quantities 
during the optimisation process. In particular, Figure 70a shows the compliance 
and the stress with respect to the number of iterations (the compliance, the K-S 
fatigue function and the first principal alternate stress are shown); whereas Figure 
70b shows the material volume ratio and the stress with respect to the number of 
iterations (the K-S stress function and the maximum von Mises stress). As it can 
be noticed, the K-S aggregation function overestimates the real maximum in the 
structure. This is the reason why the STM-correction scheme is needed, as 
explained in previously. Overall, the combination of the aggregation function and 
the correction scheme reduces the number of constraints but guarantees that the 
real maximum value is set to the imposed limit. 
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Figure 70 - Iteration histories for optimisation of the L-shape 

As shown in Figure 70a, the K-S fatigue function, the first principal alternate 
stress and the compliance share almost the same trend. A maximum appears 
around iteration number 100 and then these quantities rapidly decrease to their 
prescribed convergence values with few slight oscillations. The same 
considerations can be done for the von Mises stress and its K-S aggregation 
function (Figure 70b). As for the volume ratio, it is almost constant during the 
process, mainly because the initial values of the design variables are set to the 
selected volume fraction, speeding up the convergence process of the volume 
constraint. Figure 70 confirms therefore that the proposed algorithm rapidly 
converges to the prescribed values. 

 

4.4.2 Cantilever  structure design  

A modified cantilever structure, shown in Figure 71, is also considered for the 
validation of the proposed topology optimisation model and solution algorithm. 
As for the other examples, the prescribed material volume fraction is 0.30. The 
design domain is divided into 20,000 square four-node elements with of unit edge 
length. A concentrated load of 𝐹 = 1.0 kN is distributed over thirteen 
neighbouring nodes along the right edge to avoid stress concentration. The fatigue 
strength 𝜎̄𝑓 , computed according to Eq.39, is equal to 253 MPa. As for the von 
Mises stress constraint, in this case it is set to 𝜎̄𝑠 = 620 MPa. 



 

 

Figure 71 - Cantilever design domain and geometrical dimensions 

As for the first example, four topology optimisations with different constraints 
are carried out and the designs obtained are presented in Errore. L'origine 
riferimento non è stata trovata.a shows the optimized topology with only the 
volume constraint, Errore. L'origine riferimento non è stata trovata.b shows 
the optimized topology with the volume and the von Mises stress constraints, 
Errore. L'origine riferimento non è stata trovata.c shows the optimized 
topology with the volume constraint and the fatigue constraint on the first 
principal alternate stress and Errore. L'origine riferimento non è stata 
trovata.d shows the optimized topology with all the constraints. 

(a) 

 

(b) 

 

 
𝐶 = 4.75 𝑁mm 

𝜎max
vM =  842.21 MPa 

𝜎𝑚𝑎𝑥
1 =  446 MPa 

 
𝐶 = 5.16 𝑁mm 

𝜎max
vM =  619.93 MPa 

𝜎𝑚𝑎𝑥
1 =  328 MPa 

(c) 

 

(d) 

 

 
𝐶 = 5.24 𝑁mm 

𝜎max
vM =  1054.05 MPa 

𝜎𝑚𝑎𝑥
1 =  252 MPa 

 
𝐶 = 5.38 𝑁mm 

𝜎max
vM =  620.00 MPa 

𝜎𝑚𝑎𝑥
1 =  252 MPa 

Figure 72 - Optimisation results for the cantilever beam 

According to Errore. L'origine riferimento non è stata trovata., similar 
observations as for the L-shape structure can be made. The topology obtained by 
considering only the volume constraint is characterized by the maximum stiffness, 
but both the stresses (first principal alternate and von Mises) are larger than the 



 
admissible stresses. On the other hand, by considering only a limit on the von 
Mises stress (Errore. L'origine riferimento non è stata trovata.b) and a limit on 
the first principal alternate stress (Errore. L'origine riferimento non è stata 
trovata.c), one of the two stress constraints is violated. The fourth topology 
where both stress constraints are active (Errore. L'origine riferimento non è 
stata trovata.d) permits to respect both the material limits, with a compliance 
increment of about 13%, smaller than the increment in the L-shape structure.  

Figure 73 shows the stress distribution in the topology obtained by 
considering all the constraints (Errore. L'origine riferimento non è stata 
trovata.d): Figure 73a shows the first principal alternate stress, whereas Figure 
73b shows the von Mises stress. 

 

(a) 

 

(b) 

 
Figure 73 - Stress distribution of the optimized cantilever beam 

By analysing Figure 73a and Figure 73b, the asymmetry induced by the 
fatigue constraint could be explained. Indeed, according to Errore. L'origine r
iferimento non è stata trovata.a and Errore. L'origine riferimento non è stata 
trovata.b, the final topology is vertically symmetric if constraints on the first 
principal alternate stress are not applied. On the contrary, the topologies in 
Errore. L'origine riferimento non è stata trovata.c and Errore. L'origine 
riferimento non è stata trovata.d, obtained by applying constraints on the first 
principal alternate stress, are not symmetric. Indeed, the von Mises stress is higher 
in the compressed trusses, whereas the first principal alternate stress prevails in 
the trusses subjected to traction, forcing them to be thicker and inducing a non-
symmetric topology. 

Figure 74a and Figure 74b show the trend of the most meaningful quantities 
during the optimisation process. In particular, Figure 74a shows the compliance 
and the stress with respect to the number of iterations (the compliance, the K-S 
fatigue function and the first principal alternate stress are shown); whereas Figure 
74b shows the material volume ratio and the stress with respect to the number of 
iterations (the K-S stress function and the maximum von Mises stress). 

The trends highlighted in Figure 74a and Figure 74b show that feasible 
designs are achieved in about 600 iterations and the convergence process is 
effective, with very little fluctuations. This means, as for the L-shape, that the 
proposed algorithm provides a smooth and clear method to find the optimal 
topology.  
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Figure 74 - Iteration histories for optimisation of the cantilever beam 

 

4.4.3 Corbel structure design  

In the third example, a corbel structure [131] is considered (Figure 75). The 
prescribed material volume fraction is 0.30. The design domain is meshed by 
17700 square four-node elements of unit edge length. A concentrated load of 𝐹 =
3.5 kN is distributed over eleven neighbouring nodes along the top edge to avoid 
stress concentration. A fatigue strength 𝜎̄𝑓 of 253 MPa and a von Mises stress 
constraint 𝜎̄𝑠 of 660 MPa are considered. 



 

 

Figure 75 - Corbel design domain and geometrical dimensions 

As for the other benchmarks, four cases are considered. Figure 76a shows the 
optimized topology with only the volume constraint, Figure 76b shows the 
optimized topology with the volume and the von Mises constraint, Figure 76c 
shows the optimized topology with the volume and the fatigue constraint on the 
first principal alternate stress and Figure 76d shows the optimized topology with 
all the constraints.  
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𝐶 = 16.96 𝑁mm 

𝜎max
vM = 1309.00 MPa 

𝜎𝑚𝑎𝑥
1 = 718 MPa 

 
𝐶 = 19.79 𝑁𝑚𝑚 

𝜎max
vM = 659.75 MPa 

𝜎𝑚𝑎𝑥
1 = 333 MPa 

 
𝐶 = 20.98 𝑁𝑚𝑚 

𝜎max
vM = 1753.96 MPa 

𝜎𝑚𝑎𝑥
1 = 252.5 MPa 

 
𝐶 = 21.33 𝑁𝑚𝑚 

𝜎max
vM = 659.01 MPa 

𝜎𝑚𝑎𝑥
1 = 252.5 MPa 

Figure 76 - Optimisation results for the corbel structure 

This example further confirms the effectiveness of the proposed methodology. 
An increment of the compliance is compensated by the possibility to ensure the 
structural integrity of the optimized component. In the topology obtained by 
considering both constraints, the first principal alternate stress and the von Mises 
stress are below the corresponding admissible values. 
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Figure 77 shows the stress distribution in the topology obtained by 
considering all the constraints (Figure 76d): Figure 77a shows the first principal 
alternate stress, whereas Figure 77b shows the von Mises stress. 
 

(a) 

 

(b) 

 
Figure 77 - Stress distribution of the optimized corbel 

As for the other two cases, where the von Mises stress is higher, the first 
principal alternate stress is smaller and vice versa, highlighting the importance of 
considering both stress constraints.  

Figure 78a and Figure 78b show the trend of the most meaningful quantities 
during the optimisation process. In particular, Figure 78a shows the compliance 
and the stress with respect to the number of iterations (the compliance, the K-S 
fatigue function and the first principal alternate stress are shown); whereas Figure 
78b shows the material volume ratio and the stress with respect to the number of 
iterations (the K-S stress function and the maximum von Mises stress). 
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Figure 78 - Iteration histories for optimisation of the corbel structure 

As for the other two examples, the algorithm rapidly converges (less than 200 
iterations) with limited fluctuations, further proving the efficiency of the proposed 
topology optimisation algorithm with fatigue constraints. 

 

4.5 TopFat extension to commercial software 

Even if TopFat is a first step in evaluating the final topology including the 
defect population, it is not immediately extendible to the industrial applications 
which may require this type of safe design.  

Firstly, the TopFat procedure is implemented in the HyperWorks commercial 
software. The previous optimized topologies are compared with those obtained 
implemented by using HyperWorks. The differences between the two topologies 
are highlighted and discussed, with the aim of showing that the TopFat 
methodology can be reliably used for the design against fatigue failures from 
defects even with topology optimisation algorithms implemented in commercial 
software. Secondly, TopFat is extended in HyperWorks to support different 
loading conditions and stress ratios different from zero. Lastly, the TopFat 
criterion within the Hypermesh framework is used to safely re-design a real 
component for the aerospace industry to be produced by AM processes and 
therefore affected by a defect population.  

It is worth to note that HyperWorks provides the possibility to limit only the 
maximum first principal stress 𝜎̄𝑓,𝑚𝑎𝑥 and not the alternate one 𝜎̄𝑓. Therefore the 
Eq.60 [65] is used in place of Eq.36 presented in HyperWorks [115].  



4.5.1 Benchmarking validation 

In the following paragraph, all the test cases reported and analysed with the 
TopFat original algorithm are reproduced with HyperWorks topology optimisation 
tool for benchmarking validation. In the original TopFat algorithm, the hybrid 
stress element model [124] is used to improve the accuracy of the stress measure 
evaluation without adding extra nodes. However, this element model is not 
implemented in the HyperWorks environment, so second-order elements are used 
to have accurate stress measures. While the accuracy of both element models is 
almost identical, the use of second-order elements rises the computational cost as 
a side effect. The filtering radius is set equal to 1.2 mm as imposed in the TopFat 
original algorithm. However, in the TopFat original algorithm both a continuation 
method and a non-linear projection are employed to avoid local minima and 
obtain cleaner final topologies [57,61]. These routines are not included in the 
HyperWorks environment and surely this discrepancy affects the results as it will 
be shown thereafter. To overcome these differences, all the optimisations in 
HyperWorks are carried out with a convergence parameter set equal to 10-5, while 
10-2 in TopFat original algorithm, and without a limit on the maximum number of 
iterations. Indeed, for the analysed benchmarks in HyperWorks, if the 
convergence parameter was set equal to 10-2, it would not be enough to reach a 
clear and definite final topology. Another difference consists of the type of 
programming solver: in TopFat original algorithm the Method of Moving 
Asymptotes (MMA) is used [25] which is considered one of the most efficient for 
solving topology optimisation problems. Instead, in HyperWorks, the Method of 
Feasible Direction (MFD), i.e. the software default one, is employed.  

The limit on the von Mises equivalent stress is set according to the supposed 
Yield stress. As for the fatigue constraint, by substituting the required values in 
Eq.36 and 60, it results that the limit is around 510 MPa for all three benchmarks. 
Accordingly, in the TopFat original test cases the alternate first principle stress 
limit is set to 255 MPa which corresponds to a limit of 510 MPa with a stress ratio 
equal to zero by Eq.60. It is worth noting that, to visualize better the final 
topologies in HyperWorks topology optimisation, the command ‘Iso’ is used. 

Basically, this command discards from the final visualisation all the elements with 
a density inferior to a certain threshold, in the following cases 0.505. In Figure 
79a and in Figure 79b the final topology obtained in TopFat and the one obtained 
with HyperWorks are reported, respectively (Notation - 𝐶: compliance; 𝜎𝑚𝑎𝑥𝑣𝑀 : 
maximum von Mises equivalent stress; 𝜎𝑚𝑎𝑥1 : maximum first principal stress). 
The original TopFat solution requires around 1000 iterations whereas the 
HyperWorks 4090. As it can be noticed the topologies are quite different 
especially in the lower-left portion of the domain. Moreover, the HyperWorks 

𝜎̄𝑓,𝑚𝑎𝑥 =
2𝜎̄𝑓

1 − 𝑅
 (60) 



 
solution is 7% stiffer and the maximum stresses are conservatively smaller than 
the corresponding limit stresses. However, the re-entrant corner is partially 
included in the final topology whereas it is excluded in the original TopFat 
solution. Anyway, in both the topologies a feasible solution is found, guarantying 
the structural safety according to the employed discretization model. 

 

a) 

 

b) 

 
𝐶 = 1080 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 580 MPa 

𝜎𝑚𝑎𝑥
1 = 510 MPa 

𝐶 =  1003 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 479 MPa 

𝜎𝑚𝑎𝑥
1 = 470 MPa 

Figure 79 - TopFat L-shape benchmark 

As for the cantilever domain, almost the same considerations highlighted for 
the L-shape domain can be carried out. Figure 80a shows the solution obtained in 
the original TopFat while Figure 80b shows the one obtained via HyperWorks 
topology optimisation. The HyperWorks solution converges in 554 iterations 
while the original TopFat final topology is reached in roughly 750 iterations. In 
this case, the final topologies are remarkably different, but both belong to the 
feasible design regions of the optimisation. The HyperWorks solution is 10% 
stiffer and the stresses are well below the imposed limits.  However, the 
HyperWorks solution partially includes the upper and lower edge in the final 
topology. These are the most stressed zones for the cantilever structure and for 
this reason they are excluded in the original TopFat result. Lastly, the Corbel 
structure optimisations reported in Figure 81a and Figure 81b are obtained with 
the original TopFat algorithm and the HyperWorks topology optimisation, 
respectively. In this case, the HyperWorks topology optimisation algorithm has 
not been able to reach a feasible design. The stresses result to be higher than the 
imposed limits and the final topology is badly and poorly connected even if the 
convergence has been reached after 2119 iterations (450 in TopFat).  

 

a) 
 

b) 
 

𝐶 = 5380 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 620 MPa 

𝜎𝑚𝑎𝑥
1 = 510 MPa 

𝐶 =  4805 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 429 MPa 

𝜎𝑚𝑎𝑥
1 = 449 MPa 

Figure 80 - TopFat Cantilever benchmark 



This phenomenon can be addressed to the extreme characteristics of this 
geometry. Indeed, this case is analysed in the literature to show the weaknesses of 
the topology optimisation algorithms. As a matter of fact, the TopFat original 
algorithm is tested under these severe conditions with the precise purpose of 
showing the reliability and efficiency of the method. On the contrary, the 
HyperWorks topology optimisation solver is easily extendible to many other 
different topology optimisation problems, but it is less specific than the original 
TopFat algorithm. Overall, it can be concluded that the TopFat original algorithm 
is extremely efficient even with hard geometry conditions but its extendibility to 
other topology optimisation problems is complicated and the software is not 
available for most companies and industries. On the contrary, HyperWorks 
topology optimisation can include the TopFat procedure, i.e. including the defect 
population analysis within the topology optimisation framework, but it may not 
reach a feasible solution in specific complex problems (or the set of topology 
optimisation settings can be hardly defined). However, this partial limitation in 
HyperWorks can be quite easily overcome with an appropriate problem set-up, 
generally followed when components are to be designed with topology 
optimisation algorithms. For example,  the re-entrant corners can be round by the 
designer before the optimisation, reducing stress concentrations. Additionally, the 
re-design phase after the optimisation, would permit to reduce possible peak 
stresses and to obtain a feasible topology.  

 

a) 

 

b) 

 
𝐶 = 2133 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 659 MPa 

𝜎𝑚𝑎𝑥
1 = 510 MPa 

𝐶 =  2363 𝑁𝑚𝑚  

𝜎𝑚𝑎𝑥
𝑣𝑀 = 769 MPa 

𝜎𝑚𝑎𝑥
1 = 550 MPa 

 
Figure 81 - TopFat Corbel benchmark 

4.5.2 Variable stress ratio 

HyperWorks allows to set the topology optimisation with a constraint over the 
maximum first principal stress, 𝜎̄𝑓,𝑚𝑎𝑥, that is evaluated according to Eq.60. 
Objective of this paragraph is to extend the original TopFat to variable stress ratio 
in order to evaluate wide ranging applications. 

The corbel geometry as reported in Figure 82 is employed to perform different 
defect-driven topology optimisation [65]. The material is supposed to be 
AlSi10Mg, indeed it is one of the most employed in additive manufacturing metal 



 
production [135]. In Table 9, all the data related to the material properties and 
defect distribution, needed for the topology optimisation problem setup, are 
reported.  

 

Parameter Value  

AM AlSi10Mg Young modulus 𝐸 [ 𝐺𝑃𝑎] [136] 𝐸 = 75  

AM AlSi10Mg Poisson ratio 𝜈 [136] 𝜈 = 0.3 

AM AlSi10Mg Yield limit 𝑅𝑝02[ 𝑀𝑃𝑎] [136] 𝑅𝑝02 = 260 

AM AlSi10Mg Vickers hardness [𝐻𝑉] [136] 𝐻𝑉 = 120 

Superficial defect location parameters 𝐶1[116] 𝐶1 = 1.41 

LEVD location parameter 𝜇√𝑎  [𝜇𝑚] [136] 𝜇√𝑎 =  139.94 

LEVD scale location parameter 𝜎√𝑎[𝜇𝑚] [136] 𝜎√𝑎 = 35.05 

Reference volume 𝑉0[𝑚𝑚3] [136] 𝑉0 = 0.01 

Initial volume 𝑉𝑠 [𝑚𝑚3] 𝑉𝑠
𝑐𝑜𝑟𝑏𝑒𝑙 = 17700 

Upper limit volume, 𝑉̅ 𝑉̅ = 0.3 ∙ 𝑉𝑠 
Table 9 - Material, defect population and fatigue modelling parameters 

The applied force 𝐹𝑚𝑎𝑥 , as shown in Figure 82, is downward with an 
amplitude of 600 N. It is applied on the twenty closest nodes to the indicated point 
in Figure 82 so that artificial stress concentrations are avoided. This force is 
considered as the maximum applied force within the fatigue cyclic history load. 
According to the TopFat procedure, in the condition of R equal to zero, i.e. the 
applied force varies from zero to its maximum, this is the only force that is needed 
to be considered. The limit over the maximum first principal stress can be 
straightforwardly accessed by Eq.60 as twice the limit on the alternate one. If a 
condition with R greater than 0 is considered, i.e. the applied minimum force 
𝐹𝑚𝑖𝑛  is not null but anyway downward, the limit on the maximum first principal 
stress changes accordingly to Eq.60 but no other modifications are needed in the 
topology optimisation set up. Indeed, the minimum force 𝐹𝑚𝑖𝑛, in this case, can be 
considered as scaled-down from 𝐹𝑚𝑎𝑥. This means that the stress field would 
change in magnitude and not in sign. Indeed, the material portions under traction 
condition would remain identical. In other words, the only effect in the crack 
propagation is that average applied stress is higher, and this effect is already 
evaluated in the limit by Eq.60. It is enough to ensure that the limit on the 
maximum first principal stress is respected in the worst case, i.e. 𝐹𝑚𝑎𝑥, to 
conclude that no defects will let propagate the crack.  Reversely, if a negative R is 
considered, then the applied minimum force 𝐹𝑚𝑖𝑛 is in the opposite sense of the 
maximum one 𝐹𝑚𝑎𝑥, changing completely the stress field. In this condition, two 
different load cases must be considered: the first one with the 𝐹𝑚𝑎𝑥 downward 
force and the second with the 𝐹𝑚𝑖𝑛 upward force. Indeed, the change in sense of 
the applied force put in traction other zones of the material, previously in 
compression with the downward force. The two load cases are needed to ensure 



that in all the parts of the material under traction during the historic cyclic load the 
first principal stress is not larger than the Murakami fatigue limit. In both load 
cases, Eq.60 provides the limit of the maximum first principal stress. Therefore, 
when the stress ratio R is negative, it is crucial to impose the limit in the two 
different stress distributions to ensure that no crack will propagate from the 
defects.  

 

Figure 82 - Corbel design domain for variable stress ratio 

More generally, given an estimated defect population such as that supposed 
for AM AlSi10Mg reported in Table 9, it is possible to map the limit in the 
alternate first principal stress limit with respect to the variable stress ratio R 
according to Eq.36, as shown in Figure 83a.  

 

Figure 83 - Defects and related fatigue limits 

Similarly, through Eq.60 it is possible to plot the maximum first principal 
stress limit with respect to R as reported in Figure 83b. This plot can be used to 
set the Murakami fatigue limit in the topology optimisation HyperWorks 
environment. It is wort noting that the fatigue limit estimated with Eq.36 must be 



 
limited to the fatigue limit without defects, according to [116]. A constant stress 
constraint over the quasi-static structural limit must be also set [115]. On the 
contrary, it is worth remembering that, if the considered stress ratio is smaller than 
0, two different load cases must be imposed in the topology optimisation setup, 
one for the different senses of the applied force. Finally, Figure 83c and Figure 
83d show an example of the LEVD cumulative distribution function and of the 
Gumbel plot for the defect size within the final optimised part, respectively. As 
for the finite element analysis, square second-order elements have been employed 
with a side length of 2 mm, i.e. 8850 elements. The filtering radius for the 
optimisation is set to 4 mm, i.e. 2 times the element size. It has been verified that 
a smaller value of the filtering radius may lead to very tiny side structures in the 
final topology. On the other hand, a filtering radius greater than 3 times the 
element size may increase remarkably the amount of element with intermediate 
densities at the end of the optimisation, affecting the final topology reliability. 
Overall, for this type of optimisation, the filtering radius should belong to the 
range between 1.5 and 3 times the element size. As for the convergence 
parameters, with a maximum number of cycles equal to 500 and a convergence 
checker of 10-4, the final topology results to be almost clear and well defined. 
Four different stress ratio conditions are selected to carry out the topology 
optimisation in HyperWorks. First, the stress ratio R is set equal to -1, i.e. fully 
reversed tension-compression. This condition is characterised by the lowest value 
of the limit on the maximum allowable stress of 116 MPa according to Eq.60 and 
as visible in Figure 83a. As already mentioned, two different load cases are set, 
the first one with 𝐹𝑚𝑎𝑥 downward and the second with 𝐹𝑚𝑖𝑛 equal to - 𝐹𝑚𝑎𝑥 
(upward). Concurrently a limit on the total volume fraction of 30% and the 
maximum admissible von Mises stress equal to 260 MPa are imposed. Figure 84a 
shows the result of the optimisation where all the constraints have been satisfied. 
Therefore, the structure can be considered safe even if the predicted greatest 
defect, according to the LEVD distribution, would accidentally lay in the highest 
tensile-stressed portion of the material in any of the different load cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



a) R=-1 b) R=-0.5 c) R=0 d) R=0.1 

    
𝜎𝑚𝑎𝑥
1,𝐿𝐶1 = 116 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
1,𝐿𝐶2 = 116 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
𝑣𝑀 = 111 𝑀𝑃𝑎 
𝐶 = 225 𝑁𝑚𝑚 

𝜎𝑚𝑎𝑥
1,𝐿𝐶1 = 144 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
1,𝐿𝐶2 = 144 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
𝑣𝑀 = 136 𝑀𝑃𝑎 
𝐶 = 194 𝑁𝑚𝑚 

𝜎𝑚𝑎𝑥
1 = 160 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
𝑣𝑀 = 146 𝑀𝑃𝑎 
𝐶 = 193 𝑁𝑚𝑚 

𝜎𝑚𝑎𝑥
1 = 160 𝑀𝑃𝑎 
𝜎𝑚𝑎𝑥
𝑣𝑀 = 146 𝑀𝑃𝑎 
𝐶 = 193 𝑁𝑚𝑚 

Figure 84 – Final topologies under different stress ratios 

Similarly, considering a stress ratio R of -0.5, the Murakami limit is evaluated 
as 144 MPa. In this case, the minimum force is equal to half - 𝐹𝑚𝑎𝑥. Again, the 
final topology results to be structurally safe and all the constraints are satisfied, as 
shown in Figure 84b. Considering R equal to 0 and 0.1, the Murakami limits are 
196 MPa and 213 MPa respectively. In both conditions, a single load case with 
𝐹𝑚𝑎𝑥 downwards is applied. The final topologies, in Figure 84b Figure 84c, are 
almost identical since the stress limits are quite high and the convergence with the 
minimum compliance with a volume fraction of 30% is achieved. It is worth 
noting that all the topologies shown in Figure 84 are obtained with the command 
‘Iso’ within the HyperWorks output environment with a value set to 0.35. It 
discards all the elements whose intermediate density is below this imposed value 
to obtain a clearer final topology. As an explicative example, the first principal 
stress 𝜎1 in the final topology obtained with R equal to -1 is reported in Figure 85. 
The tensile zones are completely different in the two load cases, stating the need 
for the two different loading conditions. For more, the maximum first principal 
stress is below the prescribed limit, ensuring the fatigue structural safety in 
presence of defects. 
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Figure 85 - Frist principal stress distribution in the final topology 

4.5.3 Industrial application 

In this paragraph, a real application case from the aerospace industry is 
optimised with TopFat implanted in HyperWorks. Figure 86 reports the Leonardo 
Spa company's original component together with the related boundary conditions. 
It consists of a bracket whose purpose is to connect the hatboxes to the structural 
beams inside the aircraft fuselage. The original geometry is achieved employing 
traditional methodologies, i.e. milled from a semifinished product, in aluminium 
T7050. The bracket is linked to the fuselage with 12 rivets through the tiny holes 
reported in Figure 86, named accordingly fixed holes. The hatboxes are connected 
to the bracket using two pins that fit in the two bushings, named 9gLug and Clevis 
in Figure 86. During the flight manoeuvres, the aircraft undergoes several 
accelerations and, therefore, the weight of the hatboxes burden the components, 
applying consistent loads. To evaluate the most critical loads and the related 
bracket quasi-static safety, the highest accelerations that the aircraft can bear are 
considered. For more, the hatboxes are considered fulfilled with passenger goods, 
to simulate the worst condition. This analysis is carried out internally to Leonardo 
Spa company considering the full aircraft model and it is here omitted for brevity 
reasons. Under these severe conditions, it is possible to evaluate the pin loads 
transferred to the bracket with respect to the reference system called u-v-w 
reported in Figure 86. In the present paper, the bracket only is modelled, and the 
rivets connections are simulated locking all the degrees of freedom of the internal 
hole surfaces whereas the pins are substituted by rigid elements (RBE2 in 
Hypermesh) to transfer the single point loads presented in Figure 86 to the 
internal surfaces of the bushings. The main purpose of the bracket re-design is to 
reduce the component weight since it is a crucial prerequisite for aerospace parts, 
affecting fuel consumption remarkably. Leonardo Spa fixed a desirable target 
mass reduction of about 2% with respect to the original bracket in Figure 86 while 
guaranteeing the structural safety of the structure. Furthermore, Leonardo Spa 
addressed as desirable technology for the new bracket production the Electron 
Beam Melting (EBM) additive process by Arcam company, with Ti6Al4V 
powder. The re-design is therefore carried out using the TopFat procedure within 



the HyperWorks environment considering these Leonardo Spa prescriptions and 
guidelines. 

 

 

Figure 86 - Original component geometry and boundary conditions 

 
With the aim of designing the component in the fatigue regime, the nominal 

load conditions are required. Therefore, according to [137] the nominal load 
conditions can be calculated dividing the maximum ones by a factor equal to 1.5. 
Table 10 reports the maximum and the nominal conditions which the brackets 
undergo during its life.  
 

Load 
Worst 

condition 
Nominal 
condition 

𝐹𝑤
𝐶𝑙𝑒𝑣𝑖𝑠  [𝑁] 10432 6955 
𝐹𝑢
𝐶𝑙𝑒𝑣𝑖𝑠  [𝑁] 12 8 
𝐹𝑣
𝐶𝑙𝑒𝑣𝑖𝑠  [𝑁] 1121 747 

𝐹𝑤
9𝑔𝐿𝑈𝐺

 [𝑁] -6861 -4574 
𝐹𝑢
9𝑔𝐿𝑈𝐺

 [𝑁] 21830 14553 
𝐹𝑣
9𝑔𝐿𝑈𝐺

 [𝑁] 1372 915 
Table 10 - Applied loads in worst and nominal conditions 

As already mentioned, the re-design material is supposed to be Ti6Al4V 
processed by EBM technology. The material data about EBM Ti6Al4V are 
reported in Table 2 and it is directly obtained by the material data sheet provided 
by Arcam company [138]. Additionally, in Table 11, the data related to the defect 
distribution, needed for the topology optimisation problem setup, are reported. 
The data are extrapolated from the defect population found in [139] of Arcam 
EBM Ti6Al4V samples, with suggested process parameters, machined and 
without post-process heat treatment. This experiment setup can be assumed to be 
fairly close to that for possible production of the analysed component. If very 
different process parameters or post-production treatments, such as the hot 



 
isostatic pressure (HIP), were employed, a novel defect analysis would be 
necessary to estimate the LEVD parameters as indicated by [116]. 

The optimisation in Hypermesh is carried out using the nominal set of loads 
reported in Table 10 since the bracket must be verified structurally in the fatigue 
regime. This condition is verified during the optimisation imposing a constraint 
over the maximum first principal stress 𝜎̄𝑓,𝑚𝑎𝑥, according to Eq.60. This value is 
equal to 450 MPa for the defect population data reported in Table 10. For more, 
another constraint is imposed over the maximum allowable final mass, as 
prescribed by Leonardo Spa. Since the original bracket weight is 160 g, the 
maximum allowable mass results to be 156 g. This constraint is equivalent and 
substitutes the volume fraction constraint imposed in the TopFat procedure [65]. 
Last, a limit over the von Mises equivalent stress equal to the Yield stress is 
imposed to verify the quasi-static safety. The objective of the optimisation is 
compliance minimisation, i.e. global stiffness maximisation.  
 

Parameter [138] Value  
EBM  Ti6Al4V Young modulus 𝐸 [ 𝐺𝑃𝑎]  𝐸 = 119  
EBM Ti6Al4V Poisson ratio 𝜈  𝜈 = 0.3 
EBM Ti6Al4V density 𝜌 [𝑔 𝑚𝑚3⁄ ]  𝜌 = 4.42 ∙ 10−3 
EBM Ti6Al4V Yield limit 𝑅𝑝02[ 𝑀𝑃𝑎]  𝑅𝑝02 = 866 
EBM Ti6Al4V Vickers hardness 𝐻𝑉  𝐻𝑉 = 350 
Superficial defect location parameters 𝐶1  𝐶1 = 1.41 
LEVD location parameter 𝜇√𝑎  [𝜇𝑚]  𝜇√𝑎 =  60.78 
LEVD scale location parameter 𝜎√𝑎[𝜇𝑚]  𝜎√𝑎 = 10.15 
Reference volume 𝑉0[𝑚𝑚3]   𝑉0 = 0.01 
Maximum admissible mass 𝑀 [𝑔]  𝑀 = 156 
Final structure volume, 𝑉𝑛 = 𝑀 𝜌⁄  [𝑚𝑚3] 𝑉𝑛 = 35294 

Table 11 - Values of modelling parameters 

 
Figure 87 shows the division in non-design domain (NDD) in red and design 

domain (DD) in grey of the bracket for the topology optimisation process. As it 
can noticed, both the bushings, Clevis and 9gLug, are set as NDD to ensure the 
connectivity with the pins. Similarly, an offset circular zone is set around the 
holes to guarantee the rivets hold. The DD is set equal to the remaining part of the 
bracket where the lightening features from the traditional manufacturing are 
removed. In particular, the full thickness of the rib is included and handles around 
the fixed holes are removed. No other additions of material can be done to the 
design domain due to the necessity of guaranteeing the assembly of the final part 
with other components.   



 

Figure 87 - Design domain and No design domain definition 

 
The geometry in Figure 87 is used for the optimisation and it discretised in 

449444 first-order R-tetra elements. The connection between the NDD and the 
DD is ensured using contact elements. The convergence parameter is set equal to 
0.005 while no maximum number of iterations is imposed. The filtering radius is 
set equal to 2 mm, i.e. two times the imposed maximum element size. The  
topology optimisation process reaches a feasible solution, where all the 
constraints are satisfied, in 163 iterations. The final topology is shown under a 
different point of views in Figure 88 with a filter on the intermated density equal 
to 0.5 (command ‘Iso’ in Hypermesh). Some considerations must be done on this 

solution: first of all, the tiny bar connecting the two grater masses may be 
removed in the CAD re-design of the model, however, it is crucial to guarantee 
the link between the bushings and keep the bracket mono-component. Secondly, 
one rivet connection is detached from the rest of the body since the number of 
constraints is highly redundant and this one it is not considered vital by the 
optimizer. Anyway, it can be easily linked afterwards in the CAD re-design not to 
lose the rivet connection. In Figure 89, the von Mises equivalent stress and the 
maximum first principal stress distribution are reported as obtained after the 
optimisation. As it can be noticed, both respect the imposed limits, and the 
optimised bracket is structurally safe.  



 

 

Figure 88 - Topologically optimised component 

Since the model is fully linear elastic, simply rescaling the maximum von 
Mises stress for 1.5, that used to find the nominal condition, it results to be 630 
MPa, less than the Yield stress equal to 866 MPa. It means that the part is safe in 
quasi-static conditions as well.  
 

 

Figure 89 - Optimised component result data 

4.6 TopFat final remarks 

TopFat is able to provide safely optimised components and prevent from 
possible fatigue collapse in working conditions due to the presence of large 
defects which are generally neglected when components are designed. Indeed, 
material and manufacturing defects are the cause of fatigue failures in many 
components, especially in those produced through AM processes and generally 
designed with topology optimisation algorithms. In order to model the influence 
of defects on the fatigue response, a stress constraint on the first principal 
alternate stress is introduced in the topology optimisation algorithm. In particular, 
the first principal alternate stress, responsible for the crack nucleation and 
propagation from defects, is limited to a stress amplitude corresponding to the 
fatigue strength computed according to the well-known Murakami formulation. 



The dependency between the defect size and the material volume is also 
considered with the Largest Extreme Value Distribution (LEVD). A second stress 
constraint is introduced in order to limit the stress in elements subjected to 
compression stress and, therefore, not critical for the fatigue response. 

The main results can be summarized as follows: 
1. TopFat provides a final topology with maximised stiffness under volume, 

quasi-static and fatigue constraints. 
2. The fatigue constraint is defect driven, which is a fundamental aspect 

especially when designing components to be produced through Additive 
Manufacturing processes, characterized by a fatigue behaviour worse than 
that of components produced through traditional processes due to the 
presence of large manufacturing defects. 

3. The main issues related to the density-based topology optimisation process 
and stress-constraints are considered and combined, guaranteeing smooth 
convergence.   

4. The validation with three benchmarks confirms that the proposed 
algorithm permits to obtain a final topology with the first principal 
alternate stress below the fatigue strength in presence of defects and a von 
Mises stress below an admissible stress (e.g., yield stress divided by a 
safety coefficient) with a rapid convergence. 

5. The TopFat procedure can be easily extended in the commercially 
available software HyperWorks allowing the evaluation of variable stress 
ratios and 3D complex cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

Conclusions 

The present dissertation provides a complete description of the Top Suite, a set 
of three different algorithms solving topology optimisation problems to thrive the 
additive manufacturing applications.  

The first, TopTM allows optimising thermo-mechanical systems with the aim 
of maximising concurrently the structural stiffness and the heat exchange. TopTM 
can be implemented in the commercially available software Ansys in a few code 
lines. It is fast convergent and based on an optimality criterium. The analytical 
derivation and the solving procedure avoid local minima and intermediate 
densities in the final results. It can be used to optimise parts such as engines, 
turbine blades, heat exchangers and more, guaranteeing high performance and 
weight reduction.  

The second, TopComp, optimises parts to be produced as fibre reinforced 
composite. TopComp concurrently provides the final part as a sequence of layers. 
Each layer is fully optimised, both for the material distribution and the local fibre 
orientation. TopComp is based on two different optimality criteria and, similarly 
to TopTM, it is fast convergent, avoids local minima and intermediate densities in 
the final results. Furthermore, it can be implemented in the commercially 
available software Ansys in a few code lines. This algorithm allows the 
production of fibre reinforced parts with mechanical performance comparable 
with metal ones, being suitable for their substitutions with incredible weight 
reduction.  

The third, TopFat, is a complex algorithm able to include the presence of 
process-induced defects in the optimisation procedure. Employing the Murakami 
model, the presence of defects in the final part can be estimated as a limit over the 
first principal stress. Ensuring this limit, the final part can be considered reliable 
from the fatigue point of view. This algorithm can be extended in the 
commercially available software HyperWorks and be used to topologically 
optimise complex and three-dimensional components.   

Overall, the Top Suite is an easy-to-use product, easily accessible by the 
academic and industrial community. It helps designers to exploit novel 
possibilities offered by additive manufacturing processes or avoid its weaknesses. 
 
 
 
 
  



Recommendations for future 
research 

The Top Suite has been developed to foster the AM applications. Future 
research may take different roads to improve the work highlighted in this 
dissertation.  

Future research may be more focused on industrial applications. Therefore, it 
may be extremely useful to implement the Top Suite in a unique platform to 
simplify its widespread use.  

TopTM and TopComp are coded without stress or temperature constraints, 
which can be a meaningful implantation. Indeed, for most of industrial 
applications this aspect is crucial, and it may compromise the final topology 
applicability. Related to this topic there is the possibility to include the buckling 
constraint in the optimisation process. As a matter of fact, final topologies are 
often characterised by slender bars and structures which can easily suffer from 
elastic instability.  

TopFat considers the defect population in its worst scenario. Indeed, the final 
topology is obtained as if in every part of the material may be present the biggest 
defect. This assumption is precautional but do not really mirror the real material 
condition. The design domain should be divided in intervals related to the current 
first principal stress evaluation, according to Murakami model. The main issue is 
that this discretisation creates discontinuities in the design domain which are 
difficult to be treated in the sensitivity analysis. However, this progress would 
increase the performance of the final obtained part.  

The Top Suite is written in a deterministic approach, i.e. material properties, 
loads, constraints and all the other quantities in the problem formulation are 
considered fixed and immutable. This approach leads to extremely optimised final 
components, but  it may create troubles after their realisation and implementation. 
Indeed, real properties may be slightly different from the pure numbers used in the 
optimisation process. For example, the direction of the load may be some cents of 
grades different from the hypothetic one due to real-world uncertainties. This 
would lower the theoretical performance of the optimised parts. To solve this 
problem a stochastic approach may be used in the problem formulation in order to 
make the Top Suite even more robust, reliable, and useful for industrial 
applications.  
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