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Co-optimization of Microgrid bids in Day-ahead 
Energy and Reserve Markets Considering Stochastic 

Decisions in a Real-time Market 
Salah Bahramara, Member, IEEE, Pouria Sheikhahmadi, Gianfranco Chicco, Fellow, IEEE,  

Andrea Mazza, Member, IEEE, Fei Wang, Senior Member, IEEE, and João P. S. Catalão, Fellow, IEEE 

Abstract— The high penetration of distributed energy 
resources in the distribution networks is facilitated by the 
structure of the microgrids (MGs). The MG operator (MGO) can 
schedule the MG resources to meet the local load and participate 
in wholesale markets. In this paper, a new model is developed for 
the MGO participation in the day-ahead (energy and reserve) and 
the real-time (RT) energy markets under uncertainty. For this 
purpose, the effect of uncertainties in the demand and generation 
from renewable energy sources on the MGO decisions is modeled 
through a two-stage stochastic model. The MGO bids in the DA 
and RT markets are modeled as the first and the second stage 
decisions, respectively. Moreover, the information gap decision 
theory (IGDT) method is used to model the behavior of the MGO 
to address the uncertainties of the RT energy market price and 
the probability of calling the reserve. The results show that as the 
RT price uncertainty radius increases, the energy sold to the RT 
market decreases/increases in the risk-averse/risk-taker strategy. 
Furthermore, to manage the uncertainty related to the probability 
of calling the reserve, the reserve capacity provided by the MGO 
in the risk-averse and the risk-taker strategies decreases and 
increases, respectively. 

Keywords—Microgrid, day-ahead energy and reserve market, 
two-stage stochastic, distributed energy resources 

I. NOMENCLATURE 
Acronyms 
DA Day-ahead 
DER Distributed energy resources 
DG Distributed generation 
EES Electrical energy storage 
MG Microgrid 
RES Renewable energy source 
RT Real-time 
Indices/sets 
e/E Index/cardinality of EES 
f/F Index/cardinality of RESs 
i,j Indices of buses of MGs 
k/K Index/cardinality of DG 
l/L Index/cardinality of loads 
t/T Index/cardinality of time 
ω/W Index/cardinality of scenarios 
Parameters 
𝐶!"#$ The bid of RESs to provide energy [$/MWh] 
𝐶!%& The bid of DGs to provide energy [$/MWh] 
𝐶!
#$! The bid of EES to charge energy [$/MWh] 
𝐶!
#$" The bid of EES to discharge energy [$/MWh] 
𝐶!
%&_"( The bid of DGs to provide reserve [$/MWh] 
𝐶!
#$_"( The bid of EES to provide reserve [$/MWh] 

E#()* The maximum energy capacity of EES [MWh] 
E()* The minimum energy capacity of EES [MWh] 
I+̅,-./0 The maximum current capacity of feeders [p.u.] 
P'1,!
./2_34 The forecast amount of MG active load [MW] 
Q' 1,!
./2_34 The forecast amount of MG reactive load [Mvar] 
𝑃1,!,5
./2_67 The amount of MG’ active load in RT [MW] 
𝑄1,!,5
./2_67 The amount of MG’ reactive load in RT [Mvar] 

P'8,!6)* The forecast output power of RES [MW] 
𝑃8,!6)* The output power of RES in RT [MW] 
P#93/ The maximum capacity of DG [MW] 
P#(:; The maximum power charging of EES [MW] 
P#(<:; The maximum power discharging of EES [MW] 
P#./ The maximum trading active power with grid [MW] 
RU9 The ramp-up limitation of DG [MW/h] 
RD9 The ramp-down limitation of DG [MW/h] 
R+,-./0 The resistance of feeders [p.u.] 
S=>?@ Base power for per unit (p.u.) calculations [MVA] 
V#+./0 The maximum voltage limitation of buses [p.u.] 
V+./0 The minimum voltage limitation of buses [p.u.] 
𝑍+,-./0/𝑅+,-./0/𝑋+,-./0 The impedance/resistance/reactance of 
feeders [p.u.] 
𝜁67_)/𝜁6@ The risk-aversion parameters  
𝜂AB/𝜂CABThe charging/discharging efficiency of EES 
𝜆!
34_) The DA energy market price [$/MWh] 
𝜆!
67_) The RT energy market price [$/MWh] 
𝜆!"( The reserve market price [$/MWh] 
𝜌5 The probability of scenarios 
φ6@ The probability of deploying reserve [%] 
Variables 
𝑖+,-,!,5./0  The current of feeders [p.u.] 
𝑝8,!6)* The power generation of RESs in markets* [MW] 
𝑝9,!3/ The power generation of DGs in markets [MW] 
𝑝9,!
3/_3@D The reserve deployment by DGs in RT [MW] 
𝑝(,!
)*# The power charging of EES in markets [MW] 
𝑝(,!
)*$ The power discharging of EES in markets [MW] 
𝑝9,!
)*_3@D The reserve deployment by EES in RT [MW] 
𝑝!
./_)%&  The purchased power by MG from markets [MW] 
𝑞!
./_)%&  The reactive power received from the grid [Mvar] 
𝑝!
./_)'() The sold power by MG to markets [MW] 
𝑝!
./_3@D The reserve deployment by MG in RT [MW] 
𝑝9,!
3/_6@ The reserve provided by DGs [MW] 
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𝑝(,!
)*_6@ The reserve provided by EES [MW] 
𝑝!
./_6@ The reserve provided by MG [MW] 
𝑝+,-,!,5EFGH  The active power flow in feeders [MW] 
𝑞+,-,!,5EFGH  The reactive power flow in feeders Mvar] 
𝑝+,-,!,52G??  The active power loss of feeders [MW] 
𝑞+,-,!,52G??  The reactive power loss of feeders [Mvar] 
𝑈9,!:;  Binary variable used for power charging in markets 
𝑈9,!<:;   Binary variable used for power discharging in 

markets 
𝑈!
./_IJ Binary variable used for purchased power from markets 

𝑈!
./_GKL Binary variable used for sold power to markets 

𝑣+,!,5./0 The voltage of buses [p.u.] 
𝛼67_)/𝛼6@ The uncertainties radius  
Functions 
𝐶34_) Energy cost of the MGO in the DA market 
𝐶34_3)6_)Energy cost of the DER in the DA 
𝐶3)6_6@  Reserve cost of the DER in the DA 
𝑅34_6@     Revenue of the MGO from the reserve market  
𝐶567_) Energy cost of the MGO in the RT in each scenario 
𝐶567_3)6_)Energy cost of the DER in the RT in each scenario 
𝐶5
3)6_3@DCost of reserve deployment of DER in the RT 
𝑅567_6@ Revenue of the MGO from reserve deployment 
𝑇𝐶34 Total cost in the DA operation 
𝑇𝐶567 Total cost of the MGO in the RT in each scenario 
*Remark: For simplification, the indices DA and RT are ignored in 
some variables. Instead, the term “markets” is mentioned for these 
variables. 

II. INTRODUCTION 
Although distributed energy resources (DERs) bring 

numerous benefits for the power systems, their presence 
challenges the system operators. The complexity of the 
distribution network operation problem increases with DERs. 
Furthermore, the management of DERs in the wholesale energy 
markets is a major challenge for the independent system 
operator (ISO). Microgrids (MGs) are appropriate solutions for 
the management of DERs in the power system [1]. On the one 
hand, DERs are integrated in the MG structure to meet the local 
load, where the MG operator (MGO) is responsible for the 
operation of the local system. On the other hand, the MGO 
aggregates the bids of its local DERs to participate in the 
wholesale energy and reserve markets. Therefore, in the 
presence of the MGs, the complexity of ISO and distribution 
system operator (DSO) problems decreases as they are only 
collaborating with the MGO rather than several DERs. 

The MGO supplies the local demand of the MG through 
participation in the wholesale energy markets and through the 
optimal scheduling of the MG resources. In addition, MGOs 
have the ability to provide reserve capacity for the market 
regarding the flexible energy resources of the MGs, i.e., 
dispatchable distributed generators (DGs) and electrical energy 
storage (EES). For this purpose, several models have been 
developed in the literature to investigate the MGO decisions in 
day-ahead (DA) only energy markets or in both DA energy and 
reserve markets. Participation in the RT energy market creates 
a new opportunity for the MGO to trade energy in this market 

for greater profits. Therefore, modeling MGO strategies to 
participate in both the DA (energy and reserve) and RT energy 
markets is a new challenge that is addressed in this paper. In this 
case, the uncertain trend in the RT energy market price and the 
probability of calling the reserve place the MGO at greater risk 
in its decision-making process in both the DA and RT markets. 
Therefore, an appropriate risk management tool is required to 
assist the MGO decisions in markets that encounter these 
uncertain parameters. Modeling the uncertain behavior of the 
RT market price through the probability distribution function 
(PDF) leads to a high forecast error. Moreover, it is difficult to 
construct a PDF to model the uncertainty of the probability of 
calling the reserve. To model the uncertainties of such 
parameters with unknown PDFs or parameters difficult to 
predict with low forecasting error, the information gap decision 
theory (IGDT) method can be used [2]. The MGO decision 
problem in the markets is then formulated in this paper as a risk-
based model using the IGDT approach to manage the 
uncertainties of RT market price and probability of calling the 
reserve. 

A. Literature review and contributions 
Appropriate decision-making models have been proposed in 

the previous studies to model the MGO decisions in the 
wholesale DA energy market. The operation problem of a MG 
has been formulated as a two-level model considering the 
demand response programs (DRPs) under uncertainty in [3]. 
The uncertainties of the output power of renewable energy 
sources (RESs) and of the demand in a MG have been modeled 
through a two-stage robust optimization approach in [4]. The 
MGO participates in the wholesale energy market in [5] to meet 
the required energy of its system, including plug-in electric 
vehicles. For this purpose, a robust optimization model has been 
developed to model the MGO decisions under the uncertainty 
of the energy market price. The MGO decisions in the DA 
energy market have been modeled in [6] considering the 
uncertainties of demand and the outage probabilities of the 
RESs. The DA scheduling problem of a MG including RESs 
and EESs has been modeled as a scenario-based stochastic 
optimization problem in [7]. The authors of [8] have proposed a 
two-stage robust model for the optimal DA scheduling of a MG 
considering the uncertainty of real-time (RT) energy market 
price. The energy management problem of a hybrid AC/DC MG 
has been modeled using a robust optimization approach in [9] 
considering the DA energy market price. The DA scheduling 
problem of a MG has been modeled in [9], where the machine 
learning method has been used to model the uncertain behavior 
of demand and RESs.  

The bidding strategies of the MGO in the DA energy and 
reserve markets have been modeled considering the 
uncertainties of the RESs in [10]. The DA energy and reserve 
scheduling of the MGs with electric vehicles has been modeled 
with a robust optimization approach in [11]. The MGO bids in 
the DA energy and reserve markets have been determined using 
a risk-based approach in [12]. The information gap decision 
theory (IGDT) approach has been used in [13] to model the 
uncertainties of MGO bid acceptance in the DA reserve market. 
In [10-13], the MGO decisions in the DA energy and reserve 
market have been investigated considering uncertainties. 
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However, the effect of the MGO participation in the RT market 
on its DA decisions was not addressed.  

The participation problem of a MGO in the DA energy and 
reserve market considering the RT energy market has been 
formulated as a two-stage stochastic model in [14]. The decision 
problem of a hydrogen-based MG in the DA energy and reserve 
markets as well as the RT energy market has been addressed in 
[15]. In this study, the uncertainties of the market price and the 
hydrogen demand have been modeled through the stochastic 
approach. A robust optimization approach has been developed 
in [16] to model the optimal scheduling of a MG to satisfy both 
the electrical and thermal loads considering the MGO 
participation in the wholesale markets. In this model, the 
bidding strategies of the MGO in the DA energy and ancillary 
service market are optimized for obtaining the least cost to meet 
the MG power balance in the RT operation. In these studies [14-
16],  the aim of the MGO is to minimize the power imbalance 
(i.e., the deviation of the RT power trading with the main grid 
from the DA scheduled power) to avoid receiving the imbalance 
penalty in the RT operation. Therefore, although it is mentioned 
that the MGO decisions in the DA markets are determined with 
respect to the RT energy market in [14-16], the MGO does not 
participate in the RT energy market and only tries to manage its 
own power imbalance in RT operation. Therefore, the main gap 
of the previous studies is still the modeling of the MGO 
participation in the RT energy market, besides its participation 
in the DA energy and reserve market.  

The main differences between the model proposed in this 
paper and those proposed in [14-16] are the following: 
• In the models proposed in [14-16], the MGOs are settled 

with regard to imbalance prices. In this case, the power 
delivered in the day of operation is metered, then the power 
imbalance and consequently the imbalance prices are 
calculated. The imbalance prices are published in the next 
day of the real operation day. This is while, in the model 
proposed in this paper, the MGO is settled in the RT energy 
market and the MGO bids are sent to the market in a short 
time before the day of operation. Details of the timeline of 
the MGO participation in the DA and RT markets are 
described in sub-section III-C. 

• In this paper, the aim of the MGO is to obtain greater profits 
from employing different strategies to participate in both the 
DA energy and reserve markets and in the RT energy 
market, or either of these with regard to the market prices. 
This is while the aim of the MGO in [14-16] is to manage 
its power imbalance. 
The differences mentioned lead to develop a different 

mathematical model in this paper, compared to the models 
proposed in [14-16]. In these studies, the power imbalance is 
considered in the DA power balance constraint, in relation to 
which only the DA decision variables are considered for the MG 
resources, e.g., DGs and EESs. This is while, in the model 
proposed in this paper, both the DA and the RT energy balance 
constraints are modeled, with respect to which the DA and RT 
decision variables are considered for the DGs and the EESs.  

Therefore, to fill the mentioned gap in the previous studies, 
a mathematical formulation is developed in this paper to model 
the mutual effect of the MGO decisions in the DA and RT 
markets under uncertainties. The uncertainties of the demand 
and RES output power are modeled using appropriate 
probability distribution functions (PDFs). For this purpose, 
some scenarios are generated, on which the MGO problem is 

formulated as a two-stage stochastic model. Since the timeline 
of participation in the DA and RT markets is different, the MGO 
decisions in the DA markets are considered as first-stage 
decisions. Furthermore, the stochastic decisions of the MGO in 
the RT energy market are modeled as second-stage decisions. 
Then, to model the risk-based behavior of the MGO to manage 
the uncertainties of RT energy market price and probability of 
calling the reserve, the IGDT approach is used. Therefore, the 
main contributions of this paper are the following: 
• Modeling the MGO bids in the DA energy and reserve 

markets considering stochastic decisions in the RT markets. 
• Proposing a risk-based model that uses the IGDT approach 

to manage the effect of uncertainties relating to the RT 
energy price and the probability of calling the reserve on the 
MGO bids in the DA (energy and reserve) and RT energy 
markets. 

B. Paper organization 
The rest of the paper is organized as follows. The problem 

description is presented in Section III. This problem is 
mathematically formulated in Section IV. The numerical results 
are described in Section V. The conclusions are given in the last 
section.  

III. PROBLEM DESCRIPTION 
The cyber-physical structure of the bidding strategy problem 

of the MGO in energy and reserve markets is described in Fig. 
1. The DER owners send their bids and technical constraints of 
resources to the MGO. Moreover, the forecast data related to 
RES output power, MG demand, and energy and reserve market 
prices, are sent to the MGO through a service provider. 
Regarding this data, the MGO solves its optimization problem 
(described in the next section) in the energy management 
system (EMS) center. The output results of the optimization 
problem are the optimal bids of the MGO in the energy and 
reserve markets. The MGO sends its bids with technical 
constraints of trading energy and reserve capacity with the main 
grid to the ISO, which is responsible of clearing the wholesale 
energy and reserve markets. The discussion of the clearing 
process of the wholesale markets is beyond the scope of this 
paper. After clearing the wholesale markets, the market results 
are announced to the MG. The control signals are sent from the 
MG central control (MGCC) to the local controllers (LCs) of 
the MG resources. As far as these signals are concerned, the 
DERs trade energy with the distribution network. 

A. Modeling uncertainties of demand and RESs 
The normal, Weibull, and irradiance PDFs are used to model 

the uncertain behavior of demand, wind speed, and solar 
irradiance, respectively. To model these uncertainties in the 
decision problem of the MGO, these PDFs are discretized into 
certain intervals. Details of determining the value of uncertain 
parameters in each interval and their probabilities are described 
in [17]. As for the probability of each interval of uncertain 
parameters, the high number of samples are generated. Then, 
the scenarios are obtained through the scenario tree construction 
method. In this method, the stages of the scenario tree are the 
time steps of the problem, and the generated samples are 
considered as the nodes. This method generates 1000 scenarios, 
which are then reduced to 15 using the fast-forward scenario 
reduction technique. 
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B. Two-stage stochastic formulation 
As for the scenarios obtained in the previous sub-section, the 

decision problem of the MGO is modeled as a two-stage 
stochastic optimization model. In this model, there are two sets 
of decision variables, before and after the occurrence of the 
scenarios. The first-stage decisions are bids of the MGO in the 
DA energy and reserve markets, which are determined before 
the scenarios occur. The MGO bids in the RT market are 
considered as second-stage decisions determined after the 
scenarios occur. The MGO decisions on the optimal scheduling 
of the DERs are considered in both stages.   

C. Timeline 
The MGOs participate in the wholesale markets as price-

taker (self-scheduling) players as regards the low capacity of the 
MGs compared to other energy market players. In this case, the 
bids of the MGOs in the markets are quantity-only, with no 
price. In fact, the MGOs accept the market price to trade energy 
with the market and to provide reserve for the market. 

 
Fig.1. The cyber-physical infrastructure of the problem. 

The deadline of submitting bids for the DA energy and 
reserve markets is usually before noon on the day before the 
actual operation (e.g., 10 a.m. at California ISO (CAISO)). The 
deadline for submitting the bids to the RT energy market starts 
after the publication of the DA market results until shortly 
before the real operation (i.e., 75 min before the real operation 
at CAISO). Therefore, the model proposed in this paper is used 
by the MGO before the deadline for submitting bids in the DA 
markets. For the RT market, the MGO waits to see the forecast 
data, with respect to which it submits the bids to that market. 
These bids can be considered as the same obtained from the 
proposed model in this paper, or the MGO can use the new 
models for participating in the RT market considering the 
results obtained from the DA markets and the values of the 
uncertain parameters. 

IV. MATHEMATICAL MODELING 
The bidding strategy of the MGO in the markets is modeled 

as (1)-(59). The aim of the MGO is to minimize its expected 
total cost (ETC) over the operation time period as modeled in 
(1). The first term of (1) models the total cost of the MGO in the 
DA operation and the second term is used to model the expected 
cost of the MGO in the RT operation.  These terms are described 
in the next two sub-sections. The time step is one hour and is 
not explicitly indicated in the equations. 

Min            (1) 

A. The DA problem for the MGO 
The total cost of the MGO in the DA market is modeled as 

(2) made up of four terms. The first term is the cost of trading 
energy with the DA energy market as described in (3). The 
second term is the revenue of the MGO from providing the 
reserve capacity to the market, modeled in (4). The third and 
fourth terms express the costs of MG resources to provide 
energy and reserve for the system, modeled in (5) and (6), 
respectively. 

       (2) 

         (3) 

            (4) 

   (5) 

   (6) 

The technical constraints of the DA problem are as follows: 
• Equations (7) and (8) show the active and the reactive 
power balance constraints of the system in the DA operation.  

      (7) 

                                            (8) 

• The reserve capacity that can be provided by the MGO to 
the market is supplied from the DG and ES as shown in (9).  

           (9) 

• The power generation of the RESs in the DA is lower than 
or equal to their forecast power as modeled in (10). 

         (10) 
The sum of the power generation of the DGs and the DG 

capacity to provide reserve are lower than or equal to their 
maximum power as described in (11). Moreover, the ramp-up 
and ramp-down limitations of DGs are modeled in (12) and 
(13), respectively.  

    (11) 
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     (12) 

     (13) 

• The power and energy constraints of the EESs to provide 
energy and reserve for the system are modeled in (14)-(20). The 
difference of the discharge and charge power plus the reserve 
provided by the EESs is less than or equal to the maximum 
discharge power of the EESs as modeled in (14). This equation 
shows that when the MGO decides to charge the EESs, its 
capacity to provide the reserve for the system increases. 
Equations (15)-(17) are used to limit the maximum charge and 
discharge power of the EESs and prevent simultaneous charging 
and discharging of the EESs. The time-based behavior of the 
energy stored in the EESs is shown in (18). The limits of the 
energy stored in the EESs are described in (19). Moreover, the 
energy stored in the EESs in the last time step of the operation 
is equal to its initial value. The energy capacity of the EESs to 
provide reserve for the system is lower than or equal to the 
energy stored in the EESs minus its minimum value in (20).   

        (14) 

         (15) 

         (16) 

          (17) 

     (18) 

     (19) 

         (20) 

• The reserve capacity the MG can provide for the market 
when the MGO purchases/sells energy from/to the DA market 
is modeled as (21) and (22), respectively. Equations (23)-(25) 
are used to limit the MGO bids to the DA market to the 
maximum capacity of the MG power trading with the main grid.    

          (21) 

         (22) 

         (23) 

         (24) 

         (25) 

B. The RT problem for the MG 
The total cost of the MGO in the RT market is modeled as 

(26) made up of four terms. The first term is the cost of trading 
energy with the RT energy market as described in (27). The 
second term is the revenue of the MGO from the deployment of 
the reserve in the actual operation, modeled in (28). The cost of 
MG resources to provide energy and reserve for the system is 
considered to be the third and fourth term modeled in (29) and 
(30), respectively. 

       (26) 

        (27) 

          (28) 

    (29) 

    (30) 

• The active and reactive power balance constraints of the 
MG in the reference bus, which connects the MG to the main 
grid, and in other buses are modeled in (31)-(34).  

(31) 

 (32) 

                 (33) 

           (34) 

• The reserve deployment of the MG and its resources in the 
RT operation is determined through multiplying the reserve 
capacity with the probability of calling the reserve, as modeled 
in (35).  

       (35) 

• The sum of the power generation of RESs in the DA and 
RT is limited as (36).  

        (36) 

• The technical constraints of DGs in the RT operation 
considering the reserve deployment are described in (37)-(39).     

        (37) 
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      (38) 

     (39) 

• The power and energy constraints of the ESS in the RT 
operation are modeled as (40)-(46). 

        (40) 

         (41) 

         (42) 

         (43) 

     (44) 

         (45) 

           (46) 

• The relation among the amount of power trading of the 
MGO with the RT market with its offers in the DA market and 
the reserve deployment in the RT is shown in (47) and (48). 
Equations (49)-(51) are used to model the fact that the MG can 
trade energy with the main grid in one direction only.   

   (47) 

   (48) 

         (49) 

        (50) 

         (51) 

• Eqs. (52)-(59) are used to model the power flow 
constraints. The limitations of the feeder currents and bus 
voltages are modeled in (52) and (53), respectively. Also, the 
squares of the feeder currents and bus voltages are constrained 
by (54) and (55). In (56), the magnitude of the voltage at the 
final bus is calculated in terms of the magnitude of voltage at 
the initial bus, the active and reactive power flows, the 
magnitude of the feeder current, and the electrical parameters of 
the lines. The relation among the apparent, the active, and the 
reactive power is defined as (57). The active and reactive power 
losses of each feeder are calculated as (58) and (59), 
respectively. To maintain the linear form of the model, the 
square magnitudes of the voltage, current, active power, and 
reactive power are replaced with linear terms as in [18]. 

         (52) 

         (53) 

        (54) 

                      (55) 

        (56) 

                   (57) 

        (58) 

        (59)  

C. IGDT-based optimization model 

The IGDT approach is used to model the uncertainties of 
the RT energy market price and the probability of calling the 
reserve. For this purpose, Eqs. (60)-(63) are used to model the 
uncertainty related to the RT energy market price in the 
decision problem of the MGO in the markets. When the 
uncertain parameter is set to its forecast values, the base value 
of the ETC of the MGO, named 𝐸𝑇𝐶M, is calculated. Regarding 
the effect of the uncertain parameter on the objective function, 
two strategies can be considered for the MGO, namely, risk-
averse and risk-taker. In the risk-averse strategy, the aim of the 
MGO is to obtain an objective function which is robust against 
the uncertain parameter in the worst case. Since the MGO profit 
from participating in the markets decreases when the RT 
energy market price is lower than the forecast prices in the 
model proposed in this paper, the worst case is defined as the 
case in which the lowest RT energy market price is considered. 
For this purpose, the relation among the considered RT energy 
market price, the forecast one, and the uncertainty radius 
(α67_) ) is defined as (62). Therefore, when the uncertainty 
radius is maximized as (60), the worst case is obtained for the 
risk-averse MGO. In the risk-taker strategy, the best objective 
function is obtained for the MGO. For this purpose, 
maximizing the uncertainty radius results in a RT energy 
market price higher than the forecast one, as modeled in (63).  

Eqs. (64)-(67) are used to model the uncertainty of the 
probability of calling the reserve. Since as the probability of 
calling the reserve decreases, the profit of the MGO decreases, 
the worst case is defined as the case in which the lowest 
probability is obtained. Therefore, the uncertainty radius (α6@) 
is maximized to obtain the robust objective function in this 
case, with respect to which the least probability of calling the 
reserve is obtained, as described in (66). Furthermore, Eq. (67) 
is used to model the risk-taker MGO facing with the 
uncertainty of probability of calling the reserve, since by 
increasing this probability the ETC of the MGO decreases.  

It should be noted that 𝜉67_) and 𝜉6@ are defined as the risk 
aversion parameters related to the RT energy market price and 
the probability of calling the reserve, respectively. The MGO 
can control its own risk-level in the decision-making process 
by changing this parameter from 0 to 1. Moreover, both 
optimization problems described in (60)-(63) and (64)-(67) are 
solved considering Eqs. (7)-(25) and (31)-(59). 
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                                                 (60) 

                     (61) 

                                                (62) 

                                                (63) 

                                                 (64) 

                            (65) 

                                                         (66) 

                                                         (67) 

The resulting mixed integer linear programming (MILP) 
optimization model has been implemented in GAMS 24.1.2 
and has been solved via CPLEX12 solver on a PC with 2.8-
GHz Core i5 with 6GB RAM. The model statistics contains 
1910003 single equations, 846531 single variables, and 21600 
discrete variables. 

V. NUMERICAL RESULTS 
The effectiveness of the proposed model is confirmed by 

applying it on the 15-bus MG test system depicted in Fig. 2 
[19]. The MG load (MGL) and the forecast output power of 
WTs and PVs are shown in Fig. 3 and Fig. 4, respectively. The 
bids of the DERs and their technical constraints are given in 
Table I [20, 21]. The bids of the RESs to the MGO are 2 
$/MWh. The capacity of the distribution transformer is 5 MVA 
and the power factor of the related load consumption is 
assumed to be 0.95. Therefore, the maximum active power 
exchange of the MG with the main grid is 4.75 MW. The 
maximum current of feeders is 5 kA and the minimum and 
maximum limitations to the MG bus voltages are 0.36 kV and 
0.44 kV, respectively. The DA and RT energy market price and 
the reserve market price are shown in Figs. 5 and 6, 
respectively [22]. The reserve capacity deployment is set to 0.1. 
For the calculations in per units, the base power is Sbase = 1 
MVA, and the base voltages are 20 kV and 0.4 kV for the 
distribution system and the MG, respectively. 

 
Fig. 3. The forecast MGL in the operation time period. 
 

 
Fig. 2. The 15-bus MG structure used as the test system. 

 
Fig. 4. The forecast output power of the RESs. 
 

 
Fig. 5. The DA and RT energy markets prices. 

 
Fig. 6. The reserve market price. 
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A.  The results of the two-stage model 
The results including the MG operation cost, the optimal 

scheduling of the DERs, and the MGO bids in the energy and 
reserve markets are shown in Figs. 7-13 and Table II. The 
operating cost of the MGO in the DA operation and in the RT 
energy market for the first scenario is given in Table II. As 
shown in this table, the MGO participates in the DA energy 
market as a consumer, where it purchases energy from the 
market. Also, the MGO prefers to provide the reserve capacity 
for the reserve market using the EESs due to their lower 
operating cost in comparison with the DGs. On the other hand, 
the MGO acts as a producer in the RT energy market, where it 
sells energy to this market. 

The operation cost of the MGO in two cases, i.e., with and 
without participating in the reserve market, in all scenarios is 
compared in Fig. 7. The results show that the operating cost of 
the MGO when it participates in both energy and reserve 
markets (75.74 $) is lower than in the case where it participates 
in the energy market only (133.76 $). The main reason is that 
the MGO has an opportunity to gain the revenue not only from 
providing the reserve capacity in the reserve market (during the 
first-stage decisions), but also from selling the deployment of 
that capacity based on the RT market price in the RT operation.  
TABLE II. THE OPERATING COST/REVENUE OF THE MG IN SCENARIO 1. 

Cost/revenue of the MG in the DA operation ($) 

𝑇𝐶!" 𝐶!"_$ 𝑅!"_%& 𝐶!"_!$% 

1014.29 1063.45 98.78 49.63 

Cost/revenue of the MG in the RT operation ($) 

𝑇𝐶'%( 𝐶'%(_$ 𝑅'%(_%& 
𝐶'%(_!$% 

𝐶'!$%_$ 𝐶'
!$%_%&_!&) 

-905.65 -1338.01 28.09 456.99 3.46 

 
Fig. 7. Total cost of MG operation in each scenario (𝑇𝐶!). 

The first-stage decisions of the MGO on the scheduling the 
MG resources as well as the bidding strategies in both DA 
energy and reserve markets are shown in Figs. 9 and 10. 
According to Fig. 9, the MGL is considerably supplied by the 
EESs as well as the purchased energy from the DA energy 
market. Note that, due to the low bid of the EESs and the RESs, 
the MGO utilizes them to either meet the MGL during the peak-
load hours (e.g., hours 18-23) or decrease the amount of 
purchased energy from the DA energy market, especially in 
high-priced hours (e.g., 16, 17, and 19). It is worth mentioning 
that the MGO deals with a challenging decision related to the 
scheduling of the EESs for providing energy and reserve. 
Therefore, using the proposed co-optimization model, the 
EESs are charged/discharged in an optimal way to provide both 

energy and reserve simultaneously. As concluded from Figs. 9 
and 10, for instance, the MGO remarkably charges the EESs in 
hours 6, 7, 12, and 14 to achieve two main aims. The first aim 
is to engage the energy stored in the EESs to meet the MGL for 
decreasing the energy purchased from the DA energy market 
in high-price hours (e.g., 16 and 17). The second aim is 
associated with the reserve capacity provided for the reserve 
market with high prices (e.g., hours 17 and 21) on the one hand, 
and the reserve capacity being deployed in the RT operation on 
the other hand. 

 
Fig. 9. Power balance in the DA energy market. 
 

 
Fig. 10. The energy stored in the EESs to provide reserve capacity. 

The MGO decisions in the RT operation in Scenario 1 are 
shown in Fig. 11. There are two main objectives for the MGO 
to participate in the RT energy market. At first, the MGO 
includes its power balance constraint in the RT operation in the 
presence of the uncertainties of RESs and demand. The second 
one is to achieve much more revenue by selling energy to the 
RT market as much as possible. According to Fig. 11, it is clear 
that the MGO is able to deploy the DGs as well as RESs to sell 
energy as a producer in the RT market at all hours. It is worth 
noting that the MGO deploys all resources to sell much more 
energy to the RT energy market in hours 12 and 14 with the 
highest market prices (i.e., 45.49$ and 52.54$, respectively). 
Moreover, the EESs have the key role in the control of the 
deviation of the RESs as well as the demand to sell energy to 
the RT market affordably.  
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Fig. 11. The MGO decisions in the RT operation. 

 Fig. 12 specifies the demand-supply balance in the RT 
operation of the MG in Scenario 1. In other words, in this figure 
the MGO decisions to supply the MGL are shown considering 
the power loss of the system. Fig. 13 indicates the energy stored 
in the EESs in relation to two-stage decision-making process 
during the operating time of the MG. In the first-stage 
decisions, the MGO charges/discharges the EESs on the one 
hand to meet the MGL and on the other hand to provide the 
reserve capacity for the market. The second-stage decisions are 
made to reschedule the EESs to participate in the RT market. 

 
Fig. 12. The demand-supply balance in the real operation. 

 
Fig. 13. The energy stored in the EESs in DA and RT operations. 

B. The results for the IGDT approach 
This sub-section investigates the decisions of the MGO to 

manage the uncertainties of the RT market price and the 
probability of calling the reserve using the IGDT approach. To 
this end, the RT market prices are supposed to change from 
70% to 130% of the forecast prices. Note that, for the range 
70% to 100% of the forecast price, the MGO is a risk-averse 
decision-maker (Case I). Conversely, for the range 100% to 
130% of the forecast price, the risk-taker MGO makes the 

opportunistic decisions (Case II). For the MGO with risk-
averse strategy (Case III), the probability of calling the reserve 
is changed from 0.1 to zero when the uncertainty radius 
increases from 0 to 1. Furthermore, for the risk-taker MGO 
(Case IV) as the uncertainty radius increases from 0 to 0.5, the 
probability of calling the reserve increases from 0.1 to 0.15. 

In Case I, as can be seen in Fig. 14(a), the risk-aversion 
parameter (𝜉) increases from 0 to 1. In other words, the risk-
averse MGO assumes that the RT market price might be lower 
from the forecast prices. Therefore, the main findings are that 
the uncertainty radius increases from 0 to 0.3, after which the 
ETC increases from 75.74$ to 279.47$ due to the reduction of 
the MGO revenues from selling energy to the RT market. In 
addition, the MGO prefers to decrease the energy sold to the 
RT market with the aim of selling more energy to the DA 
market (from 0 to 8.49 MWh) and increasing the reserve 
capacity provided to the reserve market from 12.737 MW to 
13.815 MW, as well. In Case II, as shown in Fig. 14(b), the 
risk-taker MGO makes decisions on the case of RT market 
prices higher than the forecast prices. As a result, when the 
uncertainty radius increases from 0 to 0.3, the ETC decreases. 
The main reason is that the energy sold to the RT market 
increases from 47.673 MWh to 51.169 MWh. On the other 
hand, the risky MGO tends to decrease the reserve capacity 
from 12.737 MW to 11.087 MW. 

In Case III, as reported in Fig. 14(c), risk-based decisions 
are made on the lower probability of calling the reserve in 
comparison with the forecast one. In this case, the ETC of the 
MGO experiences an increase of 26.14$ in the worst case when 
the uncertainty radius changes from 0 to 1. This occurs as the 
MGO sells the lower amount of reserve deployed in the RT 
market. Therefore, as the uncertainty radius increases, the risk-
averse MGO decides to provide less reserve capacity for the 
DA energy market, so that the amount of the reserve capacity 
decreases from 12.737 MW to 8.75 MW. The behavior of the 
risk-taker MGO to face with the uncertainty in the probability 
of calling the reserve is described in Fig. 14(d). For this 
purpose, the uncertainty radius increases from 0 to 0.5. In this 
case, as the uncertainty radius increases, the risk-taker MGO 
increases the reserve capacity provided for the market from 
12.737 MW to 13.563 MW. This decision decreases the ETC 
of the MGO from 75.74$ to 67.41$.  

C. Discussion on the results 
The model proposed in this paper addressed two main goals 

for the risk-based MGO decisions in markets considering 
uncertainties. The following conclusions from the results 
demonstrate the effectiveness of the proposed model to achieve 
these goals.  

The first goal was to propose a new model for MGO to 
employ different strategies to schedule the MG resources to 
participate in the DA (energy and reserve) and RT energy 
markets. For this purpose, the MGO decides to use most of the 
capacity of its DGs, PVs, and WTs to sell energy to the RT 
energy market due to the high price in this market. In addition, 
EESs are used in both the DA and the RT energy markets to 
minimize the operating costs of the MG. It should be noted that 
all the reserve provided by the MGO to the market is supplied 
by the EESs. Therefore, the results show that the MGO 
schedules the MG resources optimally to participate in the DA 
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energy and reserve markets and the RT energy market to 
minimize the ETC. 

The second goal was to model the risk-based behavior of 
the MGO to manage uncertainties (i.e., RT market price and 
the probability of calling the reserve) by changing its strategies 
in the markets. The results show that the major concentration 
of the MGO to manage the uncertainty of the RT market price 
is on changing its sold energy to the RT energy market. In 
addition, the MGO prefers to change its reserve capacity 
provided for the DA reserve market when it encounters 
uncertainty about the probability of calling the reserve. In both 
cases, the aim of the IGDT-based model is to protect the MGO 
decisions against uncertainties in the worst case.   

 
(a) Risk-averse MGO in the face of RT price uncertainty 

 
(b) Risk-taker MGO in the face of RT price uncertainty 

 
(c) Risk-averse MGO in the face of the uncertainty in the probability of 

calling the reserve  

 
(c) Risk-taker MGO in the face of the uncertainty in the probability of calling 

the reserve  
 

Fig. 14. The sensitivity of MGO decisions to uncertainty radius. 

VI. CONCLUSION 
In this paper, a two-stage stochastic optimization problem 

has been formulated to co-optimize the MGO bids in the DA 
energy and reserve markets considering the stochastic behavior 
in the RT market. Moreover, the risk-based decisions of the 
MGO to manage the uncertainties of the RT market price and 
the probability of calling the reserve have been modeled using 
the IGDT approach. The main conclusions deriving from the 
application of this model to the MG test system are the 
following:   
• Using the co-optimization of the MGO participation in the 

energy and reserve markets, the ETC of the MG operation 
undergoes a more significant reduction than for the MGO 
participation in energy markets only. The ETC decreases 
from 133.76$ to 75.74$.  

• The proposed two-stage stochastic programming approach 
ensures that the MGO makes convenient two-stage 
decisions on DERs as well as the bids in both DA and RT 
markets, taking into account the uncertainties. In other 
words, the MGO is able to control the deviations of RESs 
and MGL, satisfying the MGL as well as obtaining more 
revenue through its participation as a consumer/producer in 
the DA/RT markets.    

• The risk-based decisions of the MGO showed that with 
considering RT price higher than the forecast one (risk-
averse strategy), the energy sold of the MGO to the RT 
market decreases. To compensate for the revenue reduction 
in the RT market, the energy sold to the DA energy market 
and the reserve capacity provided for the reserve market 
increase. In the risk-taker strategy, the MGO sells more 
energy to the RT energy market and sells less reserve and 
energy to the DA markets.  

• The risk-based behavior of the risk-averse MGO in the face 
of the uncertainty in the probability of calling the reserve 
showed that, as the uncertainty radius increases, the MGO 
decreases the reserve capacity provided for the market. In 
fact, since the MGO revenues from calling the reserve in 
the RT market decrease as the uncertainty radius increases, 
the MGO prefers to provide less reserve capacity for the 
market. This is while the risk-taker MGO increases its 
reserve capacity for the market as the uncertainty radius 
increases. 
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