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Abstract—This paper addresses the uncertainty quantification
of a power network and is based on surrogate models built
via Machine Learning techniques. Specifically, the least-square
support vector machine regression is combined with the principal
component analysis to generate a compressed surrogate model
capable of predicting all the nodal voltages of the network as a
function of variations of electrical parameters of the transmission
lines. The surrogate model is built from a limited number of
system responses provided by the computational model. The
power flow analysis of the benchmark IEEE-118 bus system with
250 parameters is considered as a test case. The performance of
the proposed modeling strategy in terms of accuracy, efficiency
and convergence are assessed and compared with those of an
alternative surrogate model based on a sparse implementation of
the polynomial chaos expansion. The results of a Monte Carlo
simulation are used as reference in the above comparison.

Index Terms—Power systems, smart power grids, uncertainty
quantification, power-flow analysis, surrogate models, least-
squares support vector machine, high-dimensional problems

I. INTRODUCTION

The reliability assessment of a modern electrical power
system must incorporate the effects of unavoidable fluctuations
of uncertain parameters in the generation, transmission and
distribution networks. For the latter two, typical examples
include the number, location and strengths of renewable gen-
erators with possible impact of weather effects [1], [2]. As
an alternative to uncertain renewables, the physical parame-
ters of transmission lines and other equipment in the power
system might change due to aging effects or extreme weather
conditions. These changes result in the modification of the
electrical parameters of the lines, possibly leading to a non-
optimal behavior of the power network or even to its failure.

In this framework, the availability of tools for Uncertainty
Quantification (UQ) is helpful to address the inherent uncertain
nature of the problem at hand. From a statistical perspective,
the classical solution is offered by the Monte Carlo (MC)
approach with a clever selection of simulation samples. The
execution of a large set of deterministic simulations helps to
extract, the statistical responses of the system in terms of
the probability density function (PDF) of the branch power
flowing through the lines or the voltage profile of the net-
work, i.e. the magnitude and phase of the steady-state nodal
voltages along the network. However, MC suffers from slow
convergence rate, which means that usually a large number
of simulations (in the order of several thousands) with the

expensive computational model is usually required, yielding
unaffordable CPU time for realistic networks.

The above problem has driven the research towards the
development of efficient surrogate modeling techniques for
both the worst-case and the statistical assessments of com-
plex dynamical systems [2]– [6]. Among the available tools,
Polynomial Chaos Expansion (PCE) and its advanced im-
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plementation, such as the sparse PCE, can be considered
as the reference solution for UQ [7], [8]. A large research
literature is available along with toolboxes implementing the
most advanced techniques [9]. Recently, Machine Learning
has also led to a proven viable and robust alternative offering
comparable or even better results in many applications [10]–
[12].

In this study, the uncertainty of branch elements in a power
system is analyzed in order to possibly take into account the
changes in the physical connection medium. The electrical
parameters of transmission lines such as the equivalent re-
sistance and inductance are thus considered as the varying
parameters in our system. A Machine Learning method based
on the so-called Least-Squares Support Vector machine (LS-
SVM) regression is used along with principal component
analysis (PCA) to build a compact and efficient surrogate
model of all the nodal voltages of the power network with
hundreds of uncertain parameters. According to [13], the
combination of LS-SVM regression and PCA allows providing
a compressed model of a multi-output system with several
output variables. Therefore, such modeling approach can be
seen as a promising candidate for the considered application.
A systematic discussion of model performance is carried out
with a comparison, in terms of convergence, accuracy and
efficiency, of the proposed modeling scheme with the sparse
PCE expansion. Results are validated via MC simulations with
the computational model, which are assumed as the reference
responses.

II. MACROMODELING VIA MACHINE LEARNING

The discussion starts by considering a set of training data
{(xl,yl)}Ll=1 calculated via a generic multi-output computa-
tional model y = M(x), which provides a non-linear map
between the input parameters x = [x1, . . . , xd]

T ∈ Rd and the
output vector y = [y1, . . . , yM ]T ∈ RM , collecting the nodal
voltages of a power transmission or distribution network.

Our goal is to find a surrogate model M̃ such that:

yl,m ≈ M̃(xl), (1)

for m = 1 . . . ,M and l = 1, . . . , L, where yl,m denotes the
mth output variable for the lth configuration of the training
samples.

This work investigates the combination of PCA with two
different advanced approaches for the model construction,
the sparse PCE and the LS-SVM regression, being the latter
discussed in detailes hereater in this section. PCE is instead
only used as a reference tool for comparison (see [8], [9],
[13]).

A. Least-Square Support Vector Machine (LS-SVM) Regres-
sion

Given a subset Dm = {(xl, yl,m)}Ll=1 of the training set
in which the scalar values yl,m correspond to m-th system
output, we are looking for a surrogate model constructed via

the LS-SVM regression, which in its dual space formulation
reads:

M̃LS-SVM,m(x) =

L∑
l=1

βl,mK(xl,x) + bm (2)

where βl,m ∈ R are scalar coefficients for the mth output,
K(·, ·) : Rd → R is the kernel function and bm ∈ R is the
bias term.

For each output variable, the LS-SVM regression estimates
the optimum set of pramaters βl,m and bm by minimizing
the sum of the squared errors between the model predictions
and the training samples. The above constraint, along with the
one on the model flatness, allows estimating the regression
coefficients via the solution of a least-square problem. In
contrast to PCE [13], the dual space formulation of the LS-
SVM regression in (2) provides a non-parametric model in
which the number of regression unknowns to be estimated for
each output variable is independent of the number of input
parameters (i.e., d) and it equals to the number of training
samples (i.e., L).

B. Principal Component Analysis (PCA)

Unfortunately, the direct application of the above “black-
box” regression techniques to the modeling of systems with
many outputs (e.g., in the order of thousands) is rather
cumbersome, as it would require building a separate model for
each of the output variables of interest. PCA can be seen as a
promising technique able to mitigate the above issue. The key
idea is to consider the possible correlation among the output
variables in order to compress them and reduce the number of
surrogate models to be trained.

The complete dataset of training responses {yl}Ll=1 is recast
in terms of the matrix Y = [y1, . . . ,yL] ∈ RM×L. Then
the matrix Y is used within the PCA algorithm to find out
the smallest set of “principal components”, approximating the
training responses {yl}Li=1 as [14]:

yl ≈ µζ +

n̄∑
n=1

Zl,nun, (3)

for l = 1, . . . , L where:

Zl,n = uT
n(yl − µ), (4)

the vector µ is the column-wise mean, and the principal
components {un}ñn=1 are the left singular vectors calculated
via singular value decomposition (SVD) applied to matrix
Y. The number of components to be considered in the
approximation (3) is identified by setting a threshold on the
relative magnitude of the singular values. In this paper, the
number of principal components ñ is selected in such a way
that the magnitude falls below 10% of the largest singular
value.

The PCA coefficients {Zl,n}L,ñ
l,n=1 defined in (4) can be

interpreted as a collection of L samples of ñ new output
system variables Zn(x), with Zl,n = Zn(xl), describing the
information pertaining to the entire set of system outputs y.
Since typically ñ ≪ M , the PCA truncation leads to a
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Fig. 1. LS-SVM scatter plots (top panel) and sparse PCE scatter plots (bottom panel) with increasing number of training samples.

substantial compression of the number of variables to be
modeled. Each of these reduced variables can be approximated
using any regression technique. Once a model is available for
the compressed variables Zn, new samples for the original
output variables can be recovered via (3).

III. NUMERICAL RESULTS

The test case considered in this study is the IEEE-118
bus system. It represents a portion of the American Electric
Power System, with some modifications [15]. It includes 19
generators, 35 synchronous condensers, 9 transformers, 91
loads and 177 transmission lines. The network has 118 voltage
nodes (i.e., M = 118 output variables). The nominal minimum
and maximum voltage (at nominal parameter values) of the
network is 0.943 per unit (p.u.) and 1.050 p.u., respectively.
The uncertain parameters considered are the equivalent resis-
tance and inductance of the branch transmission lines. A total
of 125 random branches are selected. The uncertain parameters
are modeled as uniform random variables with a variability of
50% around their nominal values specified in [15], leading to
an overall number of d = 2×125 = 250 uncertain parameters.
The above configuration scenario has been implemented within
a MC simulation in which the solver Matpower [16] is used
as load flow computational model.

Our goal is to construct a compact and accurate surrogate
model able to predict the voltage magnitude of the 118 nodes
of the network computed via a power flow analysis as a
function of the considered 250 uncertain parameters. This
means that we are looking for a model with M = 118
output variables and d = 250 uncertain input parameters. The
proposed surrogate model based on the combination of LS-
SVM and PCA is applied. The training samples are generated
by means of a Latin Hypercube sampling (LHS) scheme [17].
An increasing number of training samples (i.e., L = 50, 275
and 500) is considered in the following analysis. First of all,
the PCA is applied to the training responses. From the PCA

results, only ñ = 16 coefficients out of the initial 118 are
considered in order to achieve the required tolerance, leading
to a compression rate of 7×. Then, the LS-SVM regression
with a Radial Basis Functions (RBF) kernel is adopted to train
the 16-coefficient surrogate model by using the LS-SVMlab
toolbox [12]. A corresponding model based on sparse PCE
with maximum order 2 has been trained via the UQlab tool [9].

Figure 1 (top panel) shows the scatter plots of the correla-
tion between the nodal voltage values (i.e. the output vector
y) calculated from a MC simulation with 10000 samples
and the corresponding predictions provided by the proposed
surrogate model based on the LS-SVM regression trained
with increasing number of training samples. Similarly, the
bottom panel of the same figure shows the same scatter plots
generated by a surrogate model built with a second-order
PCE. The above comparison highlights the convergence of the
considered methods with increasing training samples and the
comparable and very good accuracy of both LS-SVM and PCE
surrogates. However, it is important to point out that the order
of the PCE can be hardly increased in high dimensional cases,
as the one considered in this paper, due to the memory issues
in the calculation of higher-order coefficients [2].

To provide a further comparison between LS-SVM and
PCE, Fig. 2 shows the PDFs of the nodal voltage profile
obtained from the MC samples (red bars), with the predictions
of the proposed surrogate model LS-SVM (blue bars) and the
predictions of PCE (green bars), both trained with 500 training
samples. Again, the results confirm the capability of the two
surrogates in providing a good estimation of the statistical
behavior of the network nodal voltages.

Finally, Tab. I provides a summary comparison of methods
by means of some quantitative numbers on model performance
with increasing number of training samples for both LS-
SVM and PCE. The table reports the root mean squares error
(RMSE) computed from the MC and model responses, the
CPU time required by (i) the generation of training samples
(see the information about “cost” inserted nearby indication
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TABLE I
MODEL PERFORMANCE IN TERMS OF BOTH ACCURACY AND EFFICIENCY FOR AN INCREASING NUMBER OF TRAINING SAMPLES L.

d = 250 L = 50 (cost=4.45 s) L = 275 (cost=12.38 s) L = 500 (cost=31.17)
Method RMS Error tmodel tcost RMS Error tmodel tcost RMS Error tmodel tcost

MC − − 490.7 s − − 490.7 s − − 490.7 s
LS-SVM (RBF) 0.00178 7.48 s 0.49 s 0.00124 14.4 s 1.6 s 0.0001087 29.1 s 2.24 s

Sparse PC 0.0019 21.1 s 5.88 s 0.00129 41.4 s 7.3 s 0.0001089 76.6 s 7.9 s

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
Voltage - p.u. 
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Fig. 2. PDFs produced by MC, LS-SVM and Sparse PCE for 500 training
samples

of training samples L, in the header of the three sections
of the table); (ii) the model generation (columns labelled
as tmodel) and computation of responses (columns labelled
as tcost) needed for the plots in Fig. 1. All the simulations
have been performed with MATLAB on a Notebook with a
Dual-Core Intel Core i5 CPU running at 3.1 GHz and 16 GB
of RAM. From the numbers given in Tab. I, it is relevant
to notice that the performance of both models, the LS-SVM
and the sparse PCE, is always very good both in terms of
RMSE and efficiency with respect to the plain MC simulation.
However, when comparing LS-SVM and PCE, the amount of
time required by LS-SVM is much less when using fewer
training samples.

IV. CONCLUSION

Machine Learning is used in this paper to generate a
compact parametric model of a power network in which the
electrical parameters of the transmission lines are varied. A
large variability of ±50% around the nominal values of the
equivalent resistances and inductances is considered. Two
approaches are considered in this study, namely the LS-
SVM regression and the sparse PCE, and their results are
compared with the ones provided by a MC simulation. A
systematic assessment in terms of their accuracy, efficiency
and convergence as a function of the number of training
samples is carried out. LS-SVM has been proven to be an
alternative viable solution for both uncertainty quantification
and parametric assessment of a power network with large size
and large number of parameters.
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