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Abstract—Machine learning enters the world of medical appli-
cation and, in this paper, it joins microwave imaging technique
for brain stroke classification. One of the main challenges in
this application is the need of a large amount of data for the
machine learning algorithm training that can be performed via
measurements or simulations. In this work, we propose to make
the algorithm training via simulations based on a linear integral
operator that reduces by three orders of magnitude the data
generation time with respect to standard full-wave simulations.
This method is used here to train the multilayer perceptron
algorithm. The data-set is organized in nine classes, related to
the presence, the type and the position of the stroke within the
brain. We verified that the algorithm metrics (accuracy, recall
and precision) reach values close to 1 for each class.

Index Terms—Machine learning, brain stroke classification,
multilayer perceptron, microwave imaging.

I. INTRODUCTION

In the last years, machine learning is spreading more and
more in different fields, and among them there are several
medical applications. In this paper, machine learning is applied
to brain stroke classification. Brain stroke is linked to an acute
dysfunction of a cardiovascular mechanism and it is localized
in a single brain area. The intervention time is a fundamental
factor for stroke patient, in fact a short intervention time could
avoid death or too extended paralysis.

In this context, microwave imaging technology is proposed
as a complementary diagnosis tool to others already available
(e.g., magnetic resonance imaging and computerized tomog-
raphy) thanks to the possibilities of having a portable, non-
invasive, low-cost and with a small size system [1]. Machine
learning (ML) combined with microwave imaging techniques
[2]–[4] could represent a great alternative to the classic de-
terministic imaging techniques, that could require significant
computational efforts. However, it exploits for its training a
large amount of data and, for this specific application, the
collection of a great number of measurements or numerical
simulations can be a not easy task.

Here, we present an efficient method to generate simula-
tions, to train ML algorithms, through the use of a linear
integral operator with a significant reduction in time. The
trained ML algorithm is the multilayer perceptron (MLP) [5]
used then to classify brain strokes in terms of presence, type
and position within the brain.

Fig. 1. Subdivision of the 3-D human head phantom in 4 regions: front left
(FL), front right (FR), back left (BL) and back right (BR).

II. DATA-SET GENERATION

The considered scenario is a head phantom wearing a
helmet composed by 24 antennas, acting both as receiver and
transmitter. The entire system is described in [6]–[8].

Considering, for each pair of antennas p and q, the angular
frequency ω = 2πf , the power waves ap and aq at the
antennas ports, the dielectric complex permittivity of the
average brain εb (representing the healthy scenario), and the
background fields Eb,p and Eb,q radiated by the two antennas,
we can write a linear integral operator, obtained through the
Born approximation [9], as:

∆Sp,q = − jωεb
2apaq

∫∫∫
V

Eb,p(r) · Eb,q(r)∆χ(r) d3r (1)

where “·” identifies a dot product between the background
fields, and r is the position vector in the domain of interest
(DOI). The background field is the field radiated by each
antenna in the healthy scenario, i.e. without the presence of
the stroke. ∆Sp,q is the differential scattering parameter at the
p and q antennas ports corresponding to:

∆Sp,q = Stot
p,q − Sinc

p,q (2)

where Stot
p,q and Sinc

p,q are the scattering parameters in the
scenario under test and in the healthy one, respectively. Finally,
the dielectric contrast ∆χ is defined as:



∆χ(r)
∆
=
εr(r)− εb(r)

εb(r)
, (3)

where εr is the dielectric complex permittivity of the stroke
area. The linear integral operator in (1) allows to link together
the differential scattering parameters at the antennas ports to
the dielectric contrast within the brain and it is here used to
generate the data-set.

The first step is the generation of ∆χ that is different
from zero only in the stroke and its value depends on the
type of stroke that can be ischemic or hemorrhagic. In this
work, the stroke is represented by a sphere with a radius of
1.5 cm, and different types of samples are created by moving
the sphere randomly within the DOI. For the same stroke
position, different noise levels are also added to generate
more realistic dielectric contrast distributions. Then, applying
the linear operator in (1) to each sample, the corresponding
differential scattering parameters, ∆Sp,q , are obtained for each
antennas pair p and q. Finally, Sinc

p,q is summed to ∆Sp,q to
obtain Stot

p,q that represents the machine learning input data. In
particular, here, only the amplitude of the Stot

p,q parameters are
given in input to MLP to avoid to use phase data, in order to
simplify the receiver architecture and lowering its cost.

The scattering matrix is symmetrical, so we consider as
features only the amplitude of the superior triangular matrix.
The total number of generated samples is 4500, almost equally
distributed among the 9 classes. The classes are based on
presence, typology (ischemic or hemorrhagic) and positions
(four brain areas) of the stroke. Figure 1 shows the head
subdivision in four areas: front left (FL), front right (FR), back
left (BL) and back right (BR).

The code used to generate the whole data-set takes around
1 hour. The time to generate the same data-set via full-wave
simulations using a finite element method (FEM) solver [10]
would be 42 days.

III. NUMERICAL RESULTS

The algorithm used to classify the samples is MLP. The
data-set is divided into training set (80%) and test set (20%).
The first step is the selection of hyper-parameters through the
grid search method: this technique chooses the combination
of hyper-parameters that optimizes a metric, in this case
the highest accuracy. The MLP has 4 hidden layers with
1000, 500, 250 and 100 neurons, the activation function is
the hyperbolic tangent function with a regularization term
α = 0.05 and finally the solver for weight optimization is
the stochastic gradient descent [5]. In Fig. 2, there is the
normalized confusion matrix obtained through MLP, with in
the rows the true labels and in the columns the predicted labels.

We can observe that the values on the principal diagonal
(percentage of well-predicted samples for each class) are very
close to 1; moreover the algorithm is able to completely distin-
guish the 3 macro-classes (healthy, ischemic and hemorrhagic
stroke). The algorithm does not classify correctly the position
of a few samples and it happens because, in these cases, the
center of the sphere is very close to one of the head axes of

Fig. 2. MLP confusion matrix for linearized simulations. Yellow square for
healthy cases (N), green square for ischemic stroke (I) and red square for
hemorrhagic stroke (H). FL, FR, BL and BR distinguish the 4 regions of the
head, see Fig. 1

symmetry and the stroke position is not well defined. We can
evaluate the obtained classification performances through three
metrics: accuracy, recall and precision, described in [11]. In
our case, all these metrics assume values close to 1 for each
class: accuracy > 0.99, recall > 0.96 and precision > 0.96.

Then, the trained algorithm is tested with some full-wave
simulations obtained through a finite element method solver
[10]. We create three full-wave simulations, one for each
macro-class: a healthy case (class N), an ischemic stroke in the
back-right head area (class I BR) and a hemorrhagic stroke in
the back-left head area (class H BL). Then, each simulation
is tripled adding white random noise three times, obtaining a
testing set of 9 samples. In this case the algorithm correctly
classifies all the samples, demonstrating that the MLP, trained
via the linearized integral operator, can be successfully used
to classify full-wave simulated data.

IV. CONCLUSION AND PERSPECTIVES

In this paper, an innovative and fast method to generate
a large data-set for machine algorithm training has been
presented and applied for brain stroke classification, using am-
plitude data only. Under the Born approximation, the domain
of scattering parameters is linked with the dielectric contrast
domain through a linear integral operator allowing very fast
simulations of the overall system. The results obtained in the
classification with the MLP algorithm underlined a very high
accuracy: the algorithm does not correctly classify the samples
only in a few cases, i.e. when the stroke position is ambiguous,
but it never missed the macro-class. Then, the MLP algorithm
was tested with full-wave simulations, showing the capability
to correctly classify all of them, and demonstrating that the
proposed method to generate the training set is suitable for
the classification of full-wave simulated data.

The next step is test the trained ML algorithm with mea-
sured scattering parameters, e.g. obtained with the microwave
imaging system described in [7].
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