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Summary

Bubble column reactors play a pivotal role in chemical engineering processes and
plants, thanks to the well-known performance in mixing, heat and mass transfer and
the simple operating mechanisms. However, despite this wide diffusion and well-
established usage, the computational model of bubble columns is still challenging.
The main reason is the complexity of the two- or, if solid particles are dispersed in
the liquid medium, three-phase flows at industrial operating conditions, which are
characterized by a deep reciprocal dependence of the phases behavior. In this per-
spective, several aspects, such as the accounting for phase inversion, the individual
role of interfacial forces or the choice of the turbulence framework, are still nowa-
days among the most debated issues that require to be unambiguously addressed.
Additionally, when the gaseous phase is injected at high velocity in the systems, the
obtained bubbles dispersion is polydisperse with a wide distribution in the bubble
size, affecting the main design parameters such as the gas hold up or the mass trans-
fer coefficient. Moreover, the impact of solid particles in slurry bubble columns on
these parameters is still ambiguous, and the corresponding computational model is
even more difficult.
The latest research efforts have been focusing on tackling these issues but, however,
every approach still strongly depends on the particular system which is considered,
thus failing to extend the proposed solutions to a wider range of set-ups and condi-
tions. This doctoral dissertation shares the efforts of the latest scientific production
aiming to address the aforementioned issues but, on the other hand, aspires to in-
dividuate and develop one model with the widest applicability range. With this
purpose, four different experimental set-ups were simulated, in order to strengthen
the validity of the proposed model.
Firstly, it was urged the need for a fine modeling of phase interaction and phase
inversion. This is fundamental to perform stable and fast simulations grounded
on a physical phenomenon rather than on numerical artifices. To this purpose,
the phase blending approach is described, including the tuning performed to iden-
tify the optimal parameters. It was then shown that, in the framework of a RANS
description of the turbulence, which is, traditionally, the most popular for the mod-
eling of bubble columns, this implementation leads to stabler and faster simulations
without losses in results accuracy.
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In parallel, the RANS turbulence description was also adopted to model a gas-
liquid-solid bubble column with a square section. Slurry columns are particularly
relevant in petrochemical processes since the solid particles in the liquid medium
work as catalysts. The aim of this part of the work was the assessment of the role of
the solid particles in hydrodynamics, phase interaction and bubbles coalescence and
breakage. In this case, the inclusion of secondary interfacial forces was necessary to
maintain the stability and accuracy of the simulations, probably due to the square
geometry of the column. Under this basis, the model successfully predicted the
behavior of the flow following the addition of solid particles, which resulted in a
lower gas hold-up and a larger mean bubble size due to the promoted coalescence
induced by the solid particles, in line with experimental observations.
Secondarily, the phase blending model was implemented together with a LES tur-
bulence description. This was a novelty compared to the latest scientific research,
that, in the context of the modeling of bubble columns, mainly applied LES to
simplified geometries and operating conditions. In this work, different systems at
high gas velocity were simulated and, in particular, the condition of asymmetrical
gas injection was investigated in detail. An analysis of the various models for the
calculation of the subgrid turbulent eddy viscosity was then performed, suggesting
that the classical Smagorinsky model, coupled with the inclusion of the bubble in-
duced turbulence effects, could be the most reliable model for describing bubbly
flows at these conditions. Afterwards, the impact of the lift force was assessed.
Results showed that its inclusion in the set of interfacial forces does not contribute
to an improvement of the results, and, in the asymmetrical injection conditions, it
even produces significant miscalculation in the prediction of the flow.
A population balance modeling is then implemented in the LES turbulence frame-
work to estimate the bubble size distribution: to the best of our knowledge, coupled
LES-PBM models have not been applied so far to the simulation of bubble columns.
Results confirm once more the considerable potential of the LES approach for the
modeling of bubble columns: the estimated bubble size distribution matches thor-
oughly the experimental measurements. Coupled LES-PBM simulations were per-
formed to compute the oxygen mass transfer coefficient in a square bubble column
where pure and contaminated water was used as liquid phases: in particular, the
latter consists in water - Sodium Dodecyl Sulfate solutions with different concen-
trations of the contaminants. Once more, the model successfully predicted both the
flow patterns and the mass transfer coefficient in all the tested conditions, confirm-
ing the experimental measurements and, specifically, it was reported an increase
in the mass transfer coefficient with the addition of the contaminant to the liquid
phase. Additionally, the adoption of the LES turbulence framework allowed to
solve the issues originated from the square geometry and reported in the RANS
simulations of the slurry column without any additional modeling assumptions.

iv





Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Hydrodynamics of bubble columns . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamental modeling 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Modeling framework . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Eulerian-Lagrangian method . . . . . . . . . . . . . . . . . . 10
2.2.2 Eulerian-Eulerian method . . . . . . . . . . . . . . . . . . . 11
2.2.3 Interfacial forces . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Blending modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Symmetric blending . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 OpenFOAM blending . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 RANS models . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 LES models . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Bubble Induced Turbulence . . . . . . . . . . . . . . . . . . 35

2.5 Population balance modeling . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Breakage kernels . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 Daughter size distribution . . . . . . . . . . . . . . . . . . . 42
2.5.3 Coalescence kernels . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.4 Quadrature Method of Moments . . . . . . . . . . . . . . . . 47

3 Mass transfer and slurry columns 49
3.1 Mass transfer modeling . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Estimation of kl . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Estimation of al . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



3.2 Effect of the dispersed solid . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 CFD modeling . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 PBM modeling . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Experimental set-ups 57
4.1 Gemello set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 McClure set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Ojima set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Kouzbour set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Phase blending: analysis and applications 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Computational set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Use of swarm correction, h0 and blending parameters . . . . 68
5.3.2 Blending approach vs h0 approach . . . . . . . . . . . . . . . 69
5.3.3 Blending factors impact . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Impact of the lift force . . . . . . . . . . . . . . . . . . . . . 77
5.3.5 Performance enhancement . . . . . . . . . . . . . . . . . . . 81

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Slurry columns modeling 83
6.1 Computational set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Interfacial forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 CFD-PBM simulations . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 LES and LES-PBM modeling 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Computational set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Further considerations on computational meshes . . . . . . . 97
7.2.2 PBM modeling . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.1 RANS and LES turbulence . . . . . . . . . . . . . . . . . . . 100
7.3.2 LES turbulence models comparison . . . . . . . . . . . . . . 102
7.3.3 Impact of the lift force . . . . . . . . . . . . . . . . . . . . . 106
7.3.4 Extension to transitional and homogeneous regime . . . . . . 111
7.3.5 Computational performances . . . . . . . . . . . . . . . . . . 111
7.3.6 CFD-PBM simulations . . . . . . . . . . . . . . . . . . . . . 114

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



8 LES-PBM simulations for mass transfer estimation 119
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Computational set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.1 klal estimation . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Final remarks 129

Bibliography 135

viii



List of Tables

4.1 Details of Gemello set-up. . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Details of McClure set-up. . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Details of Ojima set-up. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Details of Kouzbour set-up. . . . . . . . . . . . . . . . . . . . . . . 64

ix



List of Figures

1.1 Hydrodynamical regimes map. . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hydrodynamical regimes in bubble columns. . . . . . . . . . . . . . 3
2.1 Representation of the drag force. . . . . . . . . . . . . . . . . . . . 13
2.2 Bubble shapes regime diagram. . . . . . . . . . . . . . . . . . . . . 14
2.3 Swarm factors as functions of the local gas fraction. . . . . . . . . . 16
2.4 Representation of the lift force. . . . . . . . . . . . . . . . . . . . . 18
2.5 Action of the turbulent dispersion force on a localized group of bub-

bles moving in a liquid. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Representation of the wall lubrication force. . . . . . . . . . . . . . 21
2.7 Representation of the virtual mass force. . . . . . . . . . . . . . . . 22
2.8 Schematic representation of the symmetric blending model. . . . . . 23
2.9 Linear blending function. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Hyperbolic blending function. . . . . . . . . . . . . . . . . . . . . . 26
2.11 Kolmogorov turbulence spectrum. . . . . . . . . . . . . . . . . . . . 27
2.12 1-dimension top hat filter. . . . . . . . . . . . . . . . . . . . . . . . 32
2.13 Choice of ∆ in LES simulation. . . . . . . . . . . . . . . . . . . . . 36
3.1 Flow regimes map in slurry bubble columns. . . . . . . . . . . . . . 52
3.2 Slurry viscosity correlations. . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Solid-effect multiplier for the coalescence efficiency. . . . . . . . . . 55
4.1 Experimental configuration of Gemello column. . . . . . . . . . . . 58
4.2 Experimental configuration of McClure column. . . . . . . . . . . . 60
4.3 Experimental configuration of Ojima column. . . . . . . . . . . . . 61
4.4 Experimental configuration of Kouzbour column. . . . . . . . . . . 63
5.1 Computational mesh used for RANS simulation of Gemello column. 67
5.2 Comparison of time-averaged gas fraction profiles with and without

blending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Comparison of time-averaged liquid z-velocity profiles with and with-

out blending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Comparison of time-averaged gas fraction profiles with and without

blending in OpenFOAM. . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Comparison of time-averaged liquid z-velocity profiles with and with-

out blending in OpenFOAM. . . . . . . . . . . . . . . . . . . . . . . 74

x



5.6 Impact of αF D,g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Impact of αP D,g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.8 Impact of the lift force on the gas fraction profiles. . . . . . . . . . . 78
5.9 Impact of the lift force on the water z-velocity profiles. . . . . . . . 79
5.10 Time-averaged vorticity magnitude radial profiles. . . . . . . . . . . 80
5.11 Computational time of simulation at different superficial gas velocities. 81
6.1 Time-averaged volume gas fraction at z/L = 3 and U = 0.02 m s−1

with 0% of solid loading . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Contour plot of the time averaged gas volume fraction with and

without the lift force. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Contour plot of the time averaged gas volume fraction with different

lift coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Contour plot of the time averaged gas volume fraction with and

without wall lubrication force. . . . . . . . . . . . . . . . . . . . . . 88
6.5 Time averaged volume gas fraction at z/L = 3 with 10% and 20%

of solid loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Velocity disturbance at the inlet section. . . . . . . . . . . . . . . . 90
6.7 Contour plot of the instantaneous Sauter diameter. . . . . . . . . . 91
6.8 Time averaged volume gas fraction at z/L = 3 obtained with CFD-

PBM simulation for slurry systems. . . . . . . . . . . . . . . . . . 92
7.1 Configuration of McClure and Gemello columns. . . . . . . . . . . . 97
7.2 Moving average and fluctuating parts of ul . . . . . . . . . . . . . 99
7.3 Percentage of resolved liquid turbulent kinetic energy. . . . . . . . . 99
7.4 Time-averaged radial profiles of gas fraction and liquid axial velocity

in the symmetrical systems. . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Time-averaged radial profiles of turbulent quantities in the symmet-

rical systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6 Effect of turbulence models in Gemello column. . . . . . . . . . . . 104
7.7 Effect of turbulence models in McClure symmetrical column. . . . . 105
7.8 Effect of turbulence models in McClure asymmetrical column. . . . 107
7.9 Contour plots of volume gas fraction in McClure systems. . . . . . . 108
7.10 Vector plots of liquid axial velocity in McClure systems. . . . . . . . 108
7.11 Effect of the lift force in the McClure systems. . . . . . . . . . . . . 110
7.12 Extension of the Smagorinsky-Zhang model to other hydrodynamical

regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.13 Global gas hold-up in Gemello and McClure systems. . . . . . . . . 113
7.14 Computational performances of the RANS and LES models. . . . . 113
7.15 Effects of turbulence model on the Sauter diameter in the homoge-

neous regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.16 Effects of turbulence model on the Sauter diameter in the heteroge-

neous regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



7.17 Effects of coalescence kernel on the Sauter diameter in the homoge-
neous regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.18 Effects of coalescence kernel on the Sauter diameter in the heteroge-
neous regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.19 Impact of the PBM inlet conditions on the evolution of the bubble
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1 Computational mesh used for LES simulation of Kouzbour column. 122
8.2 Global gas hold-up for air-water and air-SDS solutions. . . . . . . . 123
8.3 Contour plots of Sauter mean diameter. . . . . . . . . . . . . . . . . 124
8.4 Impact of contamination. . . . . . . . . . . . . . . . . . . . . . . . . 125
8.5 Impact of population balance modeling. . . . . . . . . . . . . . . . . 125
8.6 Mass transfer coefficient for water. . . . . . . . . . . . . . . . . . . 126
8.7 Mass transfer coefficient for SDS solution. . . . . . . . . . . . . . . 127
8.8 Parity plot of klal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



Chapter 1

Introduction

It would not be an overstatement to claim that, nowadays, most part of the chemical
and process industry rests on multiphase flows.
Bubble column reactors are widely used in the industrial chemical engineering land-
scape, ranging in a broad variety of applications where they may be considered as
the main core of the whole process such as waste treatment [1, 2], biological pro-
cesses [3], production of fuels (i.e. Fischer-Tropsch) [4], synthesis of methanol [5],
alkylation, hydroformylation and other organic processes .
The reason of this well-established diffusion is the optimal performance of bubble
columns in the mass, heat and momentum exchange without the presence of moving
mechanical parts: it is promoted by the bubbles themselves in their rise through
the liquid.

1.1 Hydrodynamics of bubble columns
The gas is usually injected from the bottom of the column through a sparger that
facilitates the formation of the bubbles inside the liquid phase and, eventually,
leaves the equipment from the top. The liquid phase could either flow co- or
countercurrently with respect to the gas phase or be batched in the system. The
sparger design is fundamental for the performance of the whole reactor: its features,
like orifice size and shape, are crucial for the formation of bubbles, and they have
considerable impact on the fluid dynamics of the systems, especially in the lower
part, close to the gas injection [6].
As the bubbles flow up, the volume of the gas-liquid system increases with respect
to the volume initially occupied by the pure liquid due to the presence of the gas
itself. This change of volume is called global gas hold-up:

Φ = 1 − H0

Hf

, (1.1)
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Introduction

Figure 1.1: Hydrodynamical regimes map, extracted from [3].

where H0 is the initial liquid height and Hf the height reached by the gas liquid
dispersion after the initial transient behavior.
The global gas hold-up has historically been the key feature for the industrial design
of the bubble column, being simple to measure experimentally and proportional to
the interfacial area of the dispersion. However, the actual conditions may differ
locally, since the presence of gas may be higher or lower in certain areas of the
column. Therefore, the usage of the global gas-hold up has become insufficient to
describe the behavior and performance of a bubble column. This is true especially
when the gas is injected at high velocity: on this regard, a first distinction of the
hydrodynamical regimes occurring in the system can be made according to the gas
superficial velocity [7], which is the velocity of the gas phase as if it occupies the
whole cross section. Two main regimes can be identified (Fig. 1.1) and they are
sketched in Fig. 1.2:

• homogeneous regime. It is characterized by bubbles monodispersity and low
mixing; the liquid recirculation patterns are negligible;

• heterogeneous regime. It occurs when the gas velocity is high and, therefore,
the bubbles size is strongly dependent on the position. The gradients of
volume fraction and velocity in a radial section are sharp, with a peak at
the center of the column. In this case the liquid recirculation is remarkable
since it goes upward at the center of the column and downward at the wall,
providing the best condition for mixing and heat transfer.

These two regimes are divided by an often called transitional regime, with mixed
features. Moreover, the relation between the gas hold-up and the gas velocity is

2



1.1 – Hydrodynamics of bubble columns

Figure 1.2: Hydrodynamical regimes in bubble columns, extracted from [7].

approximately linear, with different slope in the homo- and heterogeneous regimes;
the transitional regime is then identified as the velocity (or the velocities range)
where the slope of this linear relations changes.
However this distinction is not strict: if the column diameter is small and the gas
velocity is high, the formation of large bubbles occupying the whole cross section
is observed (Fig. 1.2), which hinder the rise of small bubbles; this regime goes by
the name of slug flow regime. Some authors have identified other regimes which
are subjected to particular features: Besagni et al. [8], for instance, distinguished
the pseudo-homogeneous regime: it occurs at low gas superficial velocity but, unlike
the pure homogeneity, it is characterized by a wide bubble size distribution due to
characteristics of the sparger.
Moreover, in most of the industrial applications and, in particular, in organic pro-
cesses, the chemical reactions involved in the bubble columns need to be catalyzed.
In this case, the liquid phase contains a dispersion of solid catalytic particles and
the whole systems is referred to as slurry bubble column [3, 4, 9]. The impact of
the solid particles on the overall fluid dynamics is considerable and it has not been
fully understood yet, since it depends on their physicochemical properties and size
distribution. Nevertheless, it is commonly recognized that the solid particles pro-
mote bubble coalescence, eventually leading to a lower gas hold-up and interfacial
area.
On this basis, the modeling of bubble columns and slurry bubble columns has been
always challenging given the complexity of the fluid dynamics and the interaction
between the two or three phases. The purpose of this doctoral thesis is to improve
and facilitate the computational description and simulation of bubble columns on
several fronts and to achieve a model with the widest range of applicability. In par-
ticular, a special focus is given on the simulations of systems operating at realistic
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industrial conditions, which may often differ from the laboratory scale conditions.

1.2 State of the art
In the latest years the scientific community has been focusing on several aspects of
the modeling of bubble columns: in the following, a brief survey of the most relevant
works is provided. In particular, this section principally describes the most recent
trends on Eulerian-Eulerian modeling (Section 2.2), being the framework within
this study is developed.
As thoroughly discussed in Section 2.2.3, one of the greatest concerns in the com-
putational modeling of bubble columns is the relative importance of each interfacial
force in the interphase momentum exchange term (Eq. (2.4)) [10, 11]. The drag
force is universally recognized as the predominant term among the interfacial forces
and it is always accounted for. The majority of the models used for the description
of cylindrical bubble columns only considers the drag force as interfacial momen-
tum exchange mechanism, thus excluding lift, virtual mass, wall lubrication and
turbulence dispersion forces [12–15]. In particular, this is the case for systems with
uniform gas injection, where the transverse forces are less significant compared to
the drag force. If the gas velocity is high enough to overcome the homogeneous
regime, the drag coefficient may be corrected by the so-called swarm factor [16],
with the aim of taking into account the relative proximity of the gas bubbles, whose
boundary layers interact each other.
Nevertheless, there is a significant number of studies that combine the drag force
with one or more additional interfacial forces simultaneously. The inclusion of the
lift force is perhaps the most debated point in this field: some studies suggest that
it should be evaluated, especially in those systems where the gas is not injected
uniformly [17–19]; significant results were obtained with uniform gas feed as well,
even if at extremely low gas velocity [20]. However, even when included, largely
shared consensus on the value of lift coefficient is yet to be achieved. Most of the
studies including the lift force adopts a fixed coefficient [19, 21–24] even though it
was largely shown that the lift coefficient varies locally in the bubble column [25],
being a function of the bubble size. In this light, several correlations were developed
to estimate the dependency of the lift coefficient on the bubbles dimensions and
shapes, and they are often coupled to a population balance approach to properly
capture the bubble size distribution and, therefore, correctly estimate the lift force
[26,27].
Fewer studies included the turbulent dispersion force [27–30]; however, the value
of the turbulent dispersion coefficient varies widely from 0.1 to 0.6, and a rigorous
method for its choice that goes beyond the fitting to experimental data has not been
proposed yet. The same consideration may be applied to the virtual mass force,
whose coefficient is often arbitrarily set to 0.5 [10]. Furthermore, it was reported
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1.2 – State of the art

that its incorporation does not lead to a noteworthy improvement of the quality of
the results and slows down the convergence of the simulation [11, 31, 32]. Finally,
the wall lubrication force is rarely considered given the negligible impact on the
flow pattern, especially in large bubble columns [33,34].
Therefore, it can be stated that a general agreement on the validity of the interfacial
forces has not been reached yet, and the recent literature lacks of an universal
approach with a broad applicability.
Turbulence modeling is another crucial aspect in the computational description and
it is scrupulously examined in Section 2.4. Traditionally, the Reynolds Averaged
Navier Stokes (RANS) approach is the most popular for the simulation of bubble
columns and, in general, two-equations models have been preferred thanks to the
positive compromise between results quality and computational demand [13–16,
24, 29, 35–41]; among these, the RNG k-ϵ model showed the best performances
[15, 16]. On the other hand, a continuously growing interest has aroused on the
Large Eddy Simulation (LES) approach for the modeling of bubble columns [18,23,
28,30,42], thanks to the enhanced prediction ability of the flow patterns. However,
this method has been mainly applied to simplified systems, highlighting the lack in
the scientific production of the application of LES to configurations of industrial
interest.
One more aspect at the center of the scientific interest is the contribution to the
turbulence of the liquid phase generated by the motion of the bubbles, namely
the Bubble Induced Turbulence (BIT) (Section 2.4.3). Once more, the effective
inclusion of the BIT effects in the computational model depends on the choice of
the authors [43, 44] and a precise and clear criterion to evaluate its suitability to
the simulated system is still missing.
Moreover, it should be noted that the simulation of bubbly flows at high concentra-
tion of gas is complex regardless of the turbulence modeling, since the gas-in-liquid
dispersion is on the edge of phase inversion. To the best of our knowledge, in the
literature this issue has not been tackled as it would have deserved, also given its
huge impact on the quality of the results and the stability of the simulation [45].
One of the major drawbacks of the Eulerian-Eulerian modeling consists in the
determination of the bubble size, which must be fixed to a constant value. Although
the hypothesis of a constant bubble diameter might be suitable at low gas velocity,
when the system is monodisperse, it does not correspond to the reality at high
gas velocity, when the hydrodynamics falls into the heterogeneous regime and the
bubble size changes largely as function of the position following bubbles coalescence
and breakage. A popular solution to this issue is the coupling of the CFD simulation
to a Population Balance Model (PBM) to track and estimate the evolution of the
bubble size distribution [46], as discussed in Section 2.5. Hence, coupled CFD-
PBM simulations have become progressively a common strategy to simulate bubble
columns. However, in the prevalent strategy PBM equations are usually coupled
to RANS models of the turbulence for dilute bubbly flows [13, 14, 47–52], when,
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indeed, their contribute is not of great relevance given the monodispersity of the
flow; only very recently CFD-PBM models have been applied in the heterogeneous
regime [41].
On the other hand, there are very few studies that combine LES turbulence descrip-
tion to PBM equations in turbulent dispersed flows, and they are mainly related
to the simulations of the behavior of droplets in turbulent jet flows [53, 54]. To
the best of our knowledge, a combined LES-PBM approach for the simulation of
bubble columns has not been proposed yet, neither at low nor high gas velocity.
As aforementioned, the liquid phase is often characterized by the presence of solid
particles that, in the chemical processes, serve as catalysts for the reactions occur-
ring in the systems. The modeling of such cases becomes even more problematic,
since the addition of a third phase further complicates the phase interactions [9]:
a more detailed overview of the modeling of slurry bubble columns is provided
in Section 3.2. Moreover, it has still not been completely clarified the impact of
the solid particles on gas hold-up and bubble coalescence, since the behavior may
change according to the particles hydrophilicity [4]. The majority of the studies
showed a decrease of the gas hold-up which is likely caused by the enhancement
of the coalescence promoted by solid microparticles [55–57]. Contrarily, it was re-
ported that larger solid particles boost the bubbles collision and breakage, leading
to smaller bubbles and larger gas hold-up [58]. Therefore, it should be pointed out
that the results obtained in the recent studies are not universally valid and they
may be different according to the particles’ surface characteristics, size and volume
fraction [9].
If PBM equations are applied to the modeling of slurry bubble columns, the role
of the solid particles in bubbles interactions must be accounted for to correctly
estimate the bubbles size distribution. The scientific literature lacks of an universal
approach to address this point and the technique to include the effect of solid
particles in PBM equations varies according to the specific modeling strategy of
the solid phase: the presence of solid particles may be taken into account by a new
combination of coalescence and breakage kernels [59], modifying the drag force [60]
or introducing solid-dependent corrections in the PBM kernels [56].
To conclude, this work should be put along the lines of the latest scientific research
and aims to develop a broad and comprehensive approach for the modeling of
bubble columns, overcoming the aforementioned issues.

1.3 Structure of the work
After this introductory chapter, a detailed description of the basis of the two-fluid
modeling framework is provided in in Chapter 2, with a special focus on the imple-
mentation of the interfacial forces, the blending models, the turbulence description
and the population balance model. The interfacial forces are crucial in modeling
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bubble columns and, despite the huge research efforts on their investigation, a wide
agreement of their individual relevance has not been reached yet. Following, phase
blending models are analyzed, which are frequently overlooked in the modeling
of bubble columns but they are pivotal in this study. The analysis of turbulence
models focuses on Reynolds-Averaged Navier-Stokes and Large Eddy Simulation
models, despite the latter has been applied only in systems which are quite dif-
ferent from the industrial conditions. Finally, the population balance approach
is presented as a powerful tool for the estimation of the bubble size distribution,
which pure two-fluid models cannot perform.
Chapter 3 briefly describes additional insights on the modeling of bubbles columns,
i.e. the slurry bubble columns, extremely common in the industrial organic chem-
istry, and the modeling of the mass transfer, whose knowledge is essential to esti-
mate the performance of the reactor, especially when it was specifically designed
to perform physical or chemical absorption, stripping or a catalyzed reaction.
Chapter 4 reviews the experimental and computational set-ups used for the model
validation.
Chapter 5 describes the advantages of the blending approach in simulating two-
phase flows at high gas velocity using the classical RANS turbulence models. The
implementation of this approach allows to halve the computational time, reduce
the experimental-based parameters without affecting the quality of the results.
Chapter 6 details the simulation of a slurry bubble column through the pseudo-
homogeneous slurry phase models, thus proving its validity to describe systems
where the solid particles are finely dispersed in the liquid phase. The population
balance modeling is then coupled to the simulations, in order to estimate the bubble
size distribution.
Chapter 7 applies the LES turbulence models, together with the blending approach,
to two different experimental set-ups operating at high gas velocity. In particular,
it describes the capability of the LES approach, that has been used so far only at
low gas velocity, to well describe the heterogeneous regime as well. Moreover, a
population balance model is applied to the LES simulation of a bubble column,
with excellent results in term of mean diameter prediction.
Chapter 8 further confirms the good performance of LES-PBM coupling by the
simulation of partially contaminated systems and the prediction the mass transfer
coefficient.
Finally, Chapter 9 draws the main conclusions of this study collecting the specific
outcomes of the previous chapters and incorporating them in the light of the prin-
cipal aim of this doctoral dissertation: the overcoming of the well-known issues
resulting from ad hoc modeling and the development of a widely applicable model.
In this perspective, few suggestions for the future scientific research are pointed out
as well.
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Chapter 2

Fundamental modeling

In this chapter the fundamental bases of theoretical modeling of dispersed bub-
bly flows are analyzed, with particular emphasis on the models that will be later
adopted in this work.
In particular, after a brief introduction, Section 2.2 goes through the main frame-
work of the models of dispersed systems, which basically differ in the description
of the dispersed fluid particles; a special focus is given to the two-fluid Eulerian
framework, where the gas phase is treated as a continuous medium, as for the liquid
phase. A short analysis of the forces exchanged by the bubbles and the liquid is
then provided.
In Section 2.3 the blending models are discussed, which are functional to the local
individuation of the continuous and dispersed phase and to account for the phase
inversion phenomenon.
Section 2.4 analyzes the main choices for modeling turbulence in bubble columns,
focusing on Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation
(LES) models.
Finally in section 2.5 the fundamentals of the population balance modeling (PBM)
are described, which is an helpful tool to overcome the strongest limitation of the
Eulerian models, the setting of a constant bubble diameter. The PBM allows to
estimate the bubble size distribution accounting for bubbles breakage and coales-
cence phenomena, whose rate expressions are briefly discussed, together with the
solving algorithm.

2.1 Introduction
In the framework of chemical engineering, process modeling has always been a
crucial point. The first and basic approach in modeling an industrial chemical
piece of equipment may be twofold:

• assuming that in the system the mixing operation is performed perfectly and,
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consequentially, all the process variables such as concentration or temperature
are constant throughout the reactor. This is the fundamental hypothesis
of Continuously Stirred Tank Reactors (or CSTR) and it is often used as
first approach to the modeling of sizable systems where the mixing is well-
performed through impellers;

• if the system extends mainly through one coordinate, such as pipes, it can be
assumed that the process variables vary only through this coordinate through
a plug flow condition. These systems are referred to as Plug Flow Reactors
(PFR).

However, these simplifications are frequently too optimistic for modeling actual
industrial operations. Therefore they may be improved considering, for instance,
bypass portion in CSTR and radial or axial dispersion phenomena in PFR. While
being an improvement, those adjustments are still not satisfactory when approach-
ing the modeling of complex systems such as multiphase flows and, among those,
bubble columns. In such cases, the system is too complex to be described with
the aforementioned techniques and, in order to obtain a reliable model of the sys-
tem, it is necessary to solve the fundamental conservation equations throughout
the domain to assess the fluid dynamics [61].

2.2 Modeling framework
The modeling of disperse multiphase systems has traditionally followed two main
paths, according to the treatment of the dispersed phase: Eulerian-Lagragian and
Eulerian-Eulerian.

2.2.1 Eulerian-Lagrangian method
In this approach, the continuous medium is modeled as a single continuous phase,
hence solving the mass, momentum and (if relevant) energy transport equations,
while the dispersed fluid particles are treated in a Lagrangian framework: a Newton
equation of motion is solved for each particle and its motion is then tracked. Clearly,
this approach requires the knowledge of the forces acting on the fluid particles
which, as explained in the following sections, it is still subject of debate. Given
the huge computational demand involved in tracking large numbers of bubbles
and the difficulties arising from bubbles crowding, typical at high gas velocity , this
approach is more common in smaller systems working with low gas hold-up [62–65].
To circumvent the problem, the tracked entities are sometimes considered as parcels
of particles. This approach, however, runs into difficulties when the system is
polydisperse. Therefore, this method cannot be applied for the purpose of this
study.
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2.2.2 Eulerian-Eulerian method
The Eulerian-Eulerian framework is the most used and common model to describe
bubble columns, from low [66] to medium-high [16,67] gas hold-up. As a general ap-
proach, the continuous and dispersed phases are both modeled as interpenetrating
continuous media.
As a matter of fact, three different approaches in the framework of the Eulerian-
Eulerian model have been developed for describing bubble columns: the mixture
model, the Volume of Fluid (VOF) model and the multi-fluid model. In the mixture
model the gas and liquid phases are described as a single pseudo-phase, called the
mixture phase, with intermediate properties of the two phases and thus solving only
one transport equation for the momentum [68–70]. VOF is an interface tracking
method and it is mainly used when the knowledge of the specific behavior at the
bubbles interface is desired [55,71–73].
On the other hand, the multi-fluid, or, if only two phases are present, two-fluid
model is undeniably the most used approach for the modeling of bubble columns
[61]: under the assumption that the pressure is shared by the phases, the continuity
and Navier-Stokes equations are solved for each phase, considering the amount of
occupied space quantified by the volume fraction αi. Considering N phases:

αi = Vi∑︁N
j Vj

, (2.1)

therefore
N∑︂
i

αi = 1. (2.2)

For the i-th phase we have the following mass and momentum balances:

∂

∂t
(αiρi) + ∇ (αiρiui) =

N∑︂
j /=i

(ṁij − ṁji) (2.3)

∂

∂t
(ρiαiui)+∇·(ρiαiuiui) = −αi∇p+ρiαig+∇·(αiσi)+

N∑︂
j /=i

ṁijuij +
N∑︂

j /=i

F ij, (2.4)

where ṁij and F ij are respectively the net mass and momentum flux per unit
volume from phase j to phase i, while uij = ui if ṁij > 0 and, hence, the mass
transfers from phase i to j; on the contrary, uij = uj if ṁij < 0. The term σi is
the stress tensor for the phase i:

σi = µi

(︃
∇ui + (∇ui)T −

(︃2
3∇ · ui

)︃
I
)︃

. (2.5)

A common assumption in the fluid dynamics modeling of bubbly flows is to neglect
the interphase mass transfer mechanisms therefore ṁij = 0. Moreover, if only
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the gas and the liquid phases are present, N = 2 and the phase indicator i and
j can be substituted by g and l, denoting respectively the gas and liquid phase.
Furthermore, as aforementioned, slurry bubble columns are extremely common in
chemical engineering industrial applications and, in this case, the presence of the
solid particles must be accounted for as well. For this purpose, refer to Section 3.2
for a detailed description of the modeling of slurry bubble columns.
The term F ij (for the sake of simplicity, in the following it will be denoted simply as
F , being the phases only two) represents the summation of all the interphase forces
per unit volume acting between the gas and the liquid phases which are described
in the following section.

2.2.3 Interfacial forces
One of the most debated issues in the modeling of bubble columns following the
two-fluid framework is the identification of the interfacial forces exerted to the gas
bubbles by the surrounding liquid and viceversa. Despite there exists an universal
agreement about the identification of these forces, the same can not be stated for
their actual relevance under real industrial conditions [10,74].

Drag force

The drag force originates from the relative motion of the bubble with respect to the
surrounding liquid (Fig. 2.1). On the average, it has opposite direction compared to
the buoyancy force and therefore, opposing to the latter, it has a significant impact
on the hold-up of the gas. The drag force arises from two different contributions:
one due to the shape of the fluid particle (form drag) related to its cross sectional
area and the other to the friction generated at the bubble-liquid interface (viscous
drag), related to the bubble relative velocity [75]. Assuming that the bubbles have
spherical shape and hence the projected cross sectional area is equal to the circular
area with diameter db, the drag force per unit volume F D can be expressed as:

F D = 3
4CD

αgρl

db

(ul − ug)|ul − ug|. (2.6)

where db is the bubble diameter and CD is the drag coefficient. The latter depends
on both the liquid and gaseous properties and, in particular, on the bubble Reynolds
number:

Reb = dbρl|ul − ug|
µl

. (2.7)

As as example, in Stokesian flow (Reb << 1) the relation between the drag coeffi-
cient for an isolated solid particle, C∞

D and Reb was proven to be linear:

C∞
D = 24

Reb

. (2.8)
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Figure 2.1: Representation of the drag force F D for a bubble with velocity ub in
an rising liquid flow.

However, in bubble columns the gas velocity is usually much larger than the Stoke-
sian limit and Eq. (2.8) cannot be applied. Consequentially, several empirical
and semi-empirical correlations have been developed for the calculation of C∞

D for
bubbly dispersed flows.
The first one was proposed by Schiller and Naumann [76] for rigid spherical particles
in liquid media and has been also applied for gas bubbles as well:

C∞
D =

⎧⎨⎩
24

Reb
(1 + 0.15Re0.687

b ) Reb ≤ 103

0.44 Reb > 103 (2.9)

Grace [77], Clift [78] and Ishii and Zuber [79] first proposed correlations for C∞
D

valid for deformable bubbles in liquid media; in particular the drag coefficient
proposed by Ishii and Zuber is still of common use nowadays: it is assumed that,
for small Reynolds numbers, the bubbles have spherical shape, hence the relative
drag coefficient, C∞

D,sph is calculated as in Eq. (2.9), but using a mixture Reynolds
number, Rem, calculated as in Eq. (2.7) replacing the liquid viscosity µk with the
mixture viscosity µm:

µm = µl (1 − αg)−2.5µ∗
(2.10)

where
µ∗ = µg + 0.4µl

µl + µg

. (2.11)
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Figure 2.2: Bubble shapes regime diagram (extracted from [78]).

At higher Reynolds number the bubbles change their shape due to the intense vis-
cous stress at their surface, entering into the ellipsoidal or cap regime (Fig. 2.2).
In such case, in the calculation of the drag coefficient a new parameter becomes
relevant, which is the bubble Eötvös number, Eob, expressing the ratio between
gravitational and interface tension forces and thus quantifying the bubble deforma-
tion:

Eob = (ρl − ρg)gd2
b

γ
, (2.12)

where γ is the surface tension.
The drag coefficient for an isolated ellipsoidal bubble is then calculated as:

C∞
D,ell = 2

3Eα

√︂
Eob (2.13)

being

Eα =
(︄

1 + 17.67f 6/7

18.67f

)︄2

(2.14)
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and
f = µl

µm

√︂
1 − αg. (2.15)

In the cap regime, the drag coefficient is considered independent from both Reynolds
and Eötvös:

C∞
D,cap = 8

3
√︂

1 − αg. (2.16)

Finally, the drag coefficient for deformable isolated bubbles according to Ishii and
Zuber [79] may be written as:

C∞
D =

⎧⎨⎩C∞
D,sph ifC∞

D,sph ≥ C∞
D,ell

min[C∞
D,cap, C∞

D,ell] ifC∞
D,sph < C∞

D,ell
(2.17)

To conclude, Tomiyama recently proposed three different correlations for C∞
D [80]

for deformable bubbles in air-water systems, according to the degree of contamina-
tion of the liquid phase.
If ultra-pure water is used as continuous phase:

C∞
D = max

[︃
min

[︃ 16
Reb

(︂
1 + 0.15Re0.687

b

)︂
,

48
Reb

]︃ 8
3

Eob

Eob + 4

]︃
(2.18)

when the water is partially contaminated:

C∞
D = max

[︃
min

[︃ 24
Reb

(︂
1 + 0.15Re0.687

b

)︂
,

72
Reb

]︃ 8
3

Eob

Eob + 4

]︃
(2.19)

and, finally, when the water is fully contaminated:

C∞
D = max

[︃ 24
Reb

(︂
1 + 0.15Re0.687

b

)︂ 8
3

Eob

Eob + 4

]︃
(2.20)

At low Reb it was shown that the drag coefficient correlations described above are
broadly equivalent [81] in the homogeneous regime, given the spherical shape of the
bubbles; however, when the gas velocity increases and the bubbles start changing
their shape, Eq. (2.9) significantly underestimates C∞

D , confirming that the bubbles
deformation plays a predominant role in the calculation of the drag force.

Swarm factor

The correlations discussed in the previous paragraph were all developed for iso-
lated bubbles. In bubble columns, this assumption corresponds to reality only at
extremely low gas velocity, when the few bubbles are spherical and far enough each
other to be approximated as isolated. In the overwhelming majority of cases, bub-
bles are close to each other and arrange themselves in structure called swarms [82].
As a consequence, the drag force experienced by one bubble in a cluster is different
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Figure 2.3: Swarm factors as function of the local gas fraction according to cor-
relations available in the literature: Bridge et al. [83], Wallis et al. [84], Ishii and
Zuber [82], McClure et al. [29], Simonnet et al. [85], Gemello et al. [16].

and the drag coefficient must be adjusted in order to take into account the so-called
swarm effect:

h = CD

C∞
D

(2.21)

In the past decades, several correlations were developed for assessing the swarm
effect and the relative coefficient h as a function of the local gas fraction αg and
the most relevant are plotted in Fig. 2.3.
The first expressions proposed shared the same general formulation

h = (1 − αg)−2n (2.22)

with n varying from 1.39 [83], 1 [84] or 0.25 [79].
Rhogair et al. [86] developed a correlation valid for gas hold up to 0.5, medium to
high Reynolds number and 1 ≤ Eob ≤ 5:

h =
(︃

1 + 18αg

Eob

)︃
(1 − αg) . (2.23)

The characteristic of Eq. (2.22) and (2.23) is that h has a monotonic increasing
behavior and thus enhances the drag force, hinders the bubble rise and contributes
to the increase of the gas hold up even at high gas velocity. As a consequence, at
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high gas velocity the predicted crowding of bubbles is excessive and may generate
nonphysical results and convergence issues. For this purpose, Simonnet et al. [85]
first proposed a statistical-empirical correlation for h, valid for αg up to 0.3 and
with two different trends: h increases until αg reaches the critical value of 0.15 and
then it slowly decays to 0:

h = (1 − αg)
(︄

(1 − αg)25 +
(︃

4.8 αg

1 − αg

)︃− 2
25
)︄

. (2.24)

McClure et al. [87] proposed another empirical correlation valid for the same range
of gas hold up:

h = min
[︂
(1 − αg)50 + b, 1

]︂
(2.25)

where b is a fitting parameter depending on the sparger properties.
The swarm factor proposed by Simonnet in Eq. (2.24) was then modified by Mc-
Clure et al. [88] neglecting the hindering effect and thus limiting h to 1:

h = min [hSim,1] (2.26)

where hSim denotes the swarm factor ad calculated in Eq. (2.24). This modification
was further adjusted [29] reducing hSim to 0.8hSim when hSim is lower than 1.
Gemello et al. [16] claimed that the swarm factor proposed by Simonnet caused
convergence issues and nonphysical bubble clustering at high gas velocity, therefore
they have limited it with a minimum value h0, ranging from 0.08 to 0.25 according
to the gas velocity and operating conditions:

h = max [hSim, h0] . (2.27)

Lift force

The lift force arises from a local shear rate in the flow field of the liquid phase that
induces a lateral motion of the bubbles (Fig. 2.4), which could be either toward
the walls or the center of the column:

F L = CLαgρl (ug − ul) × ∇ × ul. (2.28)

CL is the lift coefficient and it can be either set to a constant value or calculated
through a correlation. In the first case, the most popular assumption is to set it
equal to 0.5 [17,21,22,89]. Tabib et al. [10] tested more values of CL and concluded
that it should be set according to the bubble size. In this light, Tomiyama developed
a correlation for CL as a function of the bubble size [90] for viscous systems:

CL =

⎧⎪⎪⎨⎪⎪⎩
min [0.288 tanh (0.121Reb]) , f(Eo′

b)] Eo′
b < 4

f(Eo′
b) 4 ≤ Eo′

b ≤ 10.7
−0.288 Eo′

b > 10.7
(2.29)
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Figure 2.4: Representation of the lift force acting on a bubble with velocity ub in
a liquid with velocity ul.

with

f(Eo′
b) = 0.0010422Eo′3

b − 0.0159Eo′2
b − 0.0204Eo′

b + 0.474, (2.30)

Eo′
b = g(ρl − ρg)d2

H

γ
(2.31)

and dH being the maximum horizontal dimension of the bubbles. It could be
set equal to db, assuming a spherical shape of bubbles, or estimated through the
correlation of Wellek et al. [91]:

dH = db

(︂
1 + 0.163Eo0.757

)︂1/3
. (2.32)

Correlations that had been originally developed for solid particles were then used
for gas bubbles or liquid drops as well, such as the one proposed by Moraga [92]:

CL =

⎧⎪⎪⎨⎪⎪⎩
0.0767 φ ≤ 6 · 103

−(0.12 − 0.2 exp
[︂
− φ

3.6 · 10−5
]︂

exp
[︂

φ
3 · 10−7

]︂
6 · 103 < φ < 5 · 107

−0.6353 φ ≥ 5 · 107

(2.33)

with φ = RebReω. In particular, Reω is the vorticity Reynolds number defined as:

Reω = ρld
2
b |∇ × ul|

µl

(2.34)
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Another correlation proposed by Legendre and Magnaudet [93] for solid particles
was also used for bubbles, but its validity is limited to a maximum Reb = 500:

CL =

⌜⃓⃓⎷(︄ 6
π2

2.255
√

SrReb (1 + 0.2Reb/Sr)3/2

)︄2

+
(︃1

2
Reb + 16
Reb + 29

)︃2
, (2.35)

with Sr being the ratio of the Reynolds vorticity number and the bubble Reynolds
number:

Sr = Reω

Reb

= db |∇ × ul|
|ug − ul|

. (2.36)

Eq. (2.29) provides positive lift coefficient for small bubbles, thus migrating toward
the wall, and negative for big bubbles, which move toward the center of the column:
the Reynolds number at which the sign inversion of CL occurs is know as critical
Reynolds number. Despite Eq. (2.29) was specifically developed for glycerol-water
systems, it has been widely used in the literature for the estimation of CL [18,
20, 23, 27, 28, 62, 94]. However, notwithstanding the recent efforts to extend the
validity of Eq. (2.29) to low-viscosity systems or to identify the correct Reynolds
critical number [95, 96], a complete and deep knowledge of mechanism of the lift
is still missing. For this reason, coupled with a non-predominant effect compared
to the drag force [74], the lift force is often neglected in simulating circular bubble
columns, especially if the gas supply is uniform [16, 88, 97] and its activation does
not actively contribute to improve the quality of the results.

Turbulent dispersion force

The turbulent dispersion force arises from the presence of turbulent liquid eddies
and their interaction with bubbles (Fig. 2.5). The most popular expression for
the description of the turbulent dispersion force in bubble columns was proposed
by Lopez de Bertodano [98] assuming an analogy with the molecular motion of
diffusion:

F T D = −CT Dρlkl∇αg (2.37)
where kl is the liquid turbulent kinetic energy and CT D the turbulent dissipation
coefficient. As for CL, several values were tested for CT D during the last decades;
the majority of those fall in the range between 0 and 0.6 [10, 27, 30, 99], however,
the impact of the variation of this coefficient in the above range was proved to be
negligible [11], especially in the homogeneous regime.
Burns et al. [100] derived an alternative expression of the turbulent dispersion force
performing a Favre average on the drag term:

F T D = 3
4CDRebρl

νlνl,t

σT Dd2
b

αg

(︄
1
αg

+ 1
αl

)︄
(2.38)

with σT D usually set to 0.9.
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Figure 2.5: Action of the turbulent dispersion force on a localized group of bubbles
moving in a liquid.

Wall lubrication force

The presence of the walls produces an extra force on the bubble that pushes it away
(2.6) toward the center of the column, representing a sort of limit of the possible
lateral motion of the bubbles. This effect is described by the wall lubrication force,
F V M , which is sometimes seen as a fictitious limitation to an excessive lateral
motion of the bubbles, since its formulation does not originate from a rigorous
force balance on the bubble:

F W L = CW Lρlαg|(ul − ug)t|2iw (2.39)

where the subscript t denotes the tangential component and iw is the versor per-
pendicular to the wall and pointing to the center of the column.
CW L is the wall lubrication coefficient and it is mainly calculated as proposed by
Tomiyama [80],who adjusted the relation proposed by Antal et al. [101]. Similar
correlations were then developed by Frank et al. [102] and Hosokawa et al. [103].
According to Tomiyama:

CW L = Cw
db

2

(︄
1
y2

w

− 1
(D − yw)2

)︄
(2.40)

where yw is the distance from the closest wall and Cw is evaluated as

Cw =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.47 Eob < 1
exp [−0.933Eob + 0.179] 1 ≤ Eob < 5
0.00599Eob − 0.0187 5 ≤ Eob < 33
0.179 Eob ≥ 33

. (2.41)

Given its nature, the wall lubrication force is relevant only in small pipes or in
the region immediately close to the walls, and therefore it is often neglected when
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Figure 2.6: Representation of the wall lubrication force for a bubble with rising
velocity ub in the proximity of a wall.

simulating circular bubble columns. It was noted that it may help reducing com-
putational issues at the corner in rectangular bubble columns [104].

Virtual mass force

To conclude, the virtual mass force, also referred to as added mass force, originates
from the inertia of the liquid surrounding accelerating bubbles (Fig. 2.7):

F V M = CV Mρlαg

(︄
∂ul

∂t
+ ul · ∇ul + ∂ug

∂t
+ ug · ∇ug

)︄
(2.42)

with CV M being the virtual mass coefficient, usually set to 0.5 [17,21,89,105].
Nevertheless, the majority of the studies reported that the activation of the virtual
mass force has extremely little effect on the global fluid dynamics, especially when
considering time-averaged properties [10, 74], therefore it is usually neglected to
reduce the computational demand.

2.3 Blending modeling
In Section 2.2 ‘continuous’ and ‘dispersed’ phase were extensively mentioned, pre-
suming that, at least in the bubbly flows investigated in this work, the former is
invariably the liquid and the latter is the gas. However in bubble columns this is not
always the case: in the top space, i.e. the space above the free surface of the liquid,
the situation is the opposite, since there is a fine dispersion of liquid droplets in the
air, which becomes here the continuous phase. Therefore, phase inversion occurs
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Figure 2.7: Representation of the virtual mass force on a bubble with rising velocity
ub.

and an accurate modeling of the system should account for this phenomenon. This
is achieved with blending models, which usually modify the interphase forces term
in Eq. (2.4) to take somehow into consideration the phase inversion.

2.3.1 Symmetric blending
The symmetric blending is the simplest and most immediate approach and it is
common among commercial CFD solvers [106], which often present a huge draw-
back: the dispersed and continuous phase must be specified a priori and can not
change in the domain. In such case, phase inversion is not contemplated. Never-
theless, as aforementioned, in bubble columns it actually occurs above the liquid
surface and, therefore, an adjustment is necessary to maintain numerical stability.
The symmetric blending model overcomes this issues by multiplying the entire
multiphase force term by the volume fraction of the continuous phase, which, in
bubble columns, is the liquid phase:

F̃ = αlF . (2.43)

where the tilde denotes the blended term.
In most cases the volumetric force F is proportional to αg and, consequentially,
the blended force term is proportional to αlαg. Fig. 2.8 depicts the behavior of
the unblended and blended force term with the gas fraction αg (equal to 1 − αl,
being only two phases present). The blended term, which has a symmetrical shape
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Figure 2.8: Schematic representation of the symmetric blending model as a function
of the volume gas fraction: unblended (solid line) and blended (dashed line) forces
term.

giving its name, corresponds to the original force term only at low gas velocity and
it is then reduced due to the multiplication of the liquid volume fraction αl. At
medium-high values of gas fraction the reduction due to the blending is significant
and, as the gas fraction approaches to zero and the liquid phase becomes dispersed,
F̃ reaches zero as well.
The advantage of this approach is the numerical stability achieved at high gas
fraction, where the phase inversion is approached and gas becomes the continu-
ous phase: in this scenario, the use of the unblended term would inevitably lead
the simulation to divergence, because, in this range of αg, there are not anymore
dispersed bubbles on which calculate drag, lift and other forces.
On the other hand, the reduction imposed by this blending mechanism seems too
simplistic and arbitrary: according to Fig. 2.8 the phase inversion occurs at αg =
0.5 due to the intrinsic symmetry of the model, while experimental measurements
suggest a value between 0.7 and 0.8 [107].

2.3.2 OpenFOAM blending
The open source CFD software OpenFOAM includes a finer description of the blending
mechanism, which is tunable by the user through the specification of some input
parameters. Moreover, unlike the symmetric model, dispersed and continuous phase
must not be set in advance and they can vary locally in the domain according to
the defined blending parameters. Phase inversion is thus actually accounted for and
each phase can be either dispersed or continuous in different zones of the domain.
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Under this basis, it is possible to specify different laws for the force coefficient
according to the dispersion type: i.e. it could be selected the Tomiyama drag
coefficient (Eq. (2.19)) for the air-in-water dispersion and the Schiller-Naumann
coefficient (Eq. (2.9)) for the water-in-air dispersion, as well as for the lift force or
the remaining interfacial forces.
The blending mechanism implemented in OpenFOAM can be summarized as fol-
lows:

F̃ = (1 − f1)F a/w + f2F
w/a (2.44)

where f1 and f2 denote the blending coefficients respectively calculated for the gas
and liquid phase and F a/w and F w/a are the interfacial force terms relative to the
air-in-water and water-in air dispersions: the former is related the dispersion of air
bubbles in the aqueous medium and the latter to the dispersion of water droplets
in air.
f1 and f2 are function of the local volume fraction and they range from 0 to 1. The
type of function used denotes the blending mechanism and it can either be linear
or hyperbolic.

Linear blending

In the linear approach, f1 and f2 are piece-wise linear functions calculated from
two parameters for each phase:

• the maximum value of the volume fraction of the phase for which it can be
considered as fully dispersed, αi,F D. Default value is 0.3;

• the maximum value of the volume fraction of the phase for which it can be
considered as partially dispersed, αi,P D. Default value is 0.5.

f1, the blending coefficient for the gas phase, is then calculated as:

f1(αg) = min
[︄
max

[︄
αg − αg,F D

αg,P D − αg,F D

, 0
]︄

, 1
]︄

(2.45)

likewise, f2 reads as:

f2(αl) = min
[︄
max

[︄
αl,P D − αl

αl,P D − αl,F D

, 0
]︄

, 1
]︄

(2.46)

The behavior of f1 is sketched in Fig. 2.9 as function of αg. The water blending
coefficient f2 acts equally.
Three main ranges are clearly distinguishable:

• 0 ≤ αg < αg,F D, corresponding to a full air-in-water dispersion, where the
corresponding forces term, F a/w is not reduced;
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Figure 2.9: Blending coefficient f1 as function of αg in the linear model: the full
dispersion, partial dispersion and the phase inversion ranges are clearly distinguish-
able.

• αg,F D ≤ αg < αg,P D: corresponding to transition regime as phase inversion
is approached. F a/w is progressively reduced, and, as αg reaches αg,P D, it
decreases to zero;

• αg ≥ αg,P D: air becomes the continuous phase and, therefore, the force term
F a/w is nullified since the system is modeled as water-in-air dispersion.

Hyperbolic blending

Analogous considerations apply for the hyperbolic model as well, where f1 and
f2 are calculated using an exponential function, allowing a smoother transition
between the three ranges. Unlikely the linear modeling, the input parameters to
be provided are:

• for each phase, the maximum value of the volume fraction for the phase to
be considered as dispersed αi,MD. Default value is 0.5;

• the extension of the transition range, αtr. Default value is 0.3.

Hence, in the hyperbolic model, f1 and f2 are calculated as:

f1(αg) =
1 + tanh

[︂
4

αtr
(αg − αg,MD)

]︂
2 , (2.47)

f2(αl) =
1 + tanh

[︂
4

αtr
(αl,MD − αl)

]︂
2 , (2.48)
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Figure 2.10: Blending coefficient f1 as function of αg in the hyperbolic model:
the full dispersion, partial dispersion and the phase inversion ranges are clearly
distinguishable.

Once more, reporting f1 in function of the gas fraction (Fig. 2.10), the three
different dispersion ranges are definitely detectable.

2.4 Turbulence modeling
Turbulence is fundamental for the correct operation of bubble columns since it
enhances mass and momentum transfer, provides mixing and plays a crucial role in
bubble coalescence and break-up.
However, the general phenomenon of turbulence is not entirely known yet and a
thorough understanding of the first principles generating turbulence is still missing.
For this reason, Richard Feynman, laureate of the Nobel Prize in Physics in 1965,
was said to refer to turbulence as ‘the most important unsolved problem of classical
physics’.
Briefly, turbulence may be defined as a phenomenon occurring at sufficiently high
Reynolds numbers, when the local velocity starts fluctuating intensely promoting
the birth of turbulent eddies of different size [108]. According to the pioneering
Kolmogorov theory [109] which assumes turbulence isotropy and homogeneity, the
size of the turbulent eddies ranges from the largest scale of the main flow to a
minimum size, called Kolmogorov length:

η =
(︄

ν3

ϵ

)︄1/4

. (2.49)
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Figure 2.11: Kolmogorov turbulence spectrum.

Moreover, Kolmogorov hypothesized the so-called turbulence energy cascade, as-
suming that the turbulent kinetic energy is extracted from the mean flow by the
larger eddies, progressively transferred to smaller eddies and eventually dissipated
through viscous stresses at the Kolmogorov length scale. Those three ranges (pro-
duction, inertial and dissipative) are clearly distinguishable in the Kolmogorov tur-
bulence spectrum, depicted in Fig. 2.11. In the spectrum, E(κ)dκ denotes the
energy associated to the eddies with wave number between κ and κ + dκ (the wave
number κ is inversely proportional to the eddy length). Therefore, the kinetic
energy associated to a range of eddies of given size may be calculated as:

k =
∫︂

E(κ)dκ. (2.50)

Because of the intense and local velocity fluctuations, the solution of the Navier-
Stokes equations becomes extremely difficult and the problem is further worsened
by the non-linearity of the advective term. Therefore, turbulence must be modeled
in some way. Nowadays, there are three different approaches to model turbulence:

• Reynolds Averaged Navier-Stokes (RANS) models. Turbulence is modeled at
every scale of motion through the estimation of a turbulent eddy viscosity,
µt, assuming an analogy with Newton equation for molecular viscosity on
the grounds of the Boussinesq approximation [75]. A detailed description is
provided in Section 2.4.1;

• Large Eddy Simulation (LES) models. Unlikely RANS models, the larger
scales of motion are fully resolved, while only the scales smaller than a certain
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cut-off length are modeled with the calculation of a sub-grid-scale (SGS)
turbulent viscosity, µSGS. A detailed description is provided in Section 2.4.2;

• Direct Numerical Simulations (DNS). The flows is entirely computed and any
modeling of the turbulence is absent. Clearly, this kind of simulations re-
quires a computational effort tremendously larger than the previous two and
it cannot be adopted for large-scale simulations. However, DNS simulation
of simpler systems has been successfully used for the investigation of partic-
ular phenomena, such as bubbles deformation [110, 111] or bubble induced
turbulence [112].

The peculiarity of dispersed systems is the simultaneous presence of two (or more)
phases, for each one of which the turbulence must be modeled. In the peculiar case
of dispersed gas-liquid flows, there are three different options [113]:

• Per-phase turbulence approach. Both liquid and gas phases are modeled as
turbulent and, therefore, a turbulent viscosity should be calculated for each
of them, regardless of the used models. It is rarely used in the simulation of
bubble columns since the gas turbulence may often be neglected, thus saving
computational resources;

• Mixture turbulence approach. Used in dispersed flows only when the phases
have comparable density, it models only mixture turbulence based on the
mixture properties and variables;

• Dispersed turbulence approach. Only the liquid phase is assumed to be tur-
bulent while the turbulence of the gas phase is neglected. Given the density
difference between the liquid and the gas phase, this approach is the most
used for bubbly flows and is the one adopted in this thesis.

2.4.1 RANS models
The key feature of the RANS models is the application of the Reynolds decompo-
sition to the flow variables ϕ, which are split in a mean (ϕ̄) and fluctuating (ϕ′)
part:

ϕ = ϕ̄ + ϕ′. (2.51)
Applying the Reynolds decomposition to the continuity (Eq. (2.3)) and Navier-
Stokes (Eq. (2.4)), assuming again negligible mass transfer, they may be written
as:

∂

∂t
(αiρi) + ∇ (αiρiūi) = 0, (2.52)

∂

∂t
(ρiαiūi)+∇·(ρiαiūiūi) = −αi∇p̄+ρiαig+αiµi∇2ūi+∇·

(︂
αiρiu′

iu
′
i

)︂
+F . (2.53)
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The usage of the Reynolds decomposition on the Navier-Stokes equations generated
a new unknown term in Eq. (2.53) called Reynolds stress tensor, τ i:

τ i = ρiu′
iu

′
i (2.54)

The estimation of the unknown quantity τ i generates a closure problem: additional
transport equations for the six independent components of τ i would generate more
unknown quantities (each one being a component of a third-order tensor) and so
on. The solution of this issue is based on the Boussinesq approximation [75], which
proposes an analogy of the Reynolds stress tensor with the viscous stress tensor σi

(Eq. (2.5)), assuming that it is dependent on the mean velocity gradient:

τ i = µi,t

(︂
∇ūi + (∇ūi)T

)︂
− 2

3 (ρiki + µi,t∇ · ūi) I (2.55)

µi,t is the turbulent viscosity of phase i and its calculation is the core of the RANS
models. In bubble columns modeling, the two equation models are the most popular
choice [114], which calculate µi,t from two additional turbulent quantities. Those
quantities are the turbulent kinetic energy and the turbulent dissipation rate (k-ϵ
models) or the specific dissipation rate (k-ω models) and they are computed with
additional transport equations.

k-ϵ models

In k-ϵ models additional transport equations for the turbulent kinetic energy and
dissipation rate are solved. The first k-ϵ model proposed is also known as stan-
dard k-ϵ [115] and it was developed on the assumption of fully turbulent flows.
Considering the liquid phase:

∂

∂t
(αlρlkl) + ∇ · (αlρlklūl) =

= ∇ ·
(︃

αl

(︃
µl + µl,t

σk

)︃
∇kl

)︃
+ αl (Gk,l + Gb,l − ρlϵl) + αlρlSk,l (2.56)

∂

∂t
(αlρlϵl) + ∇ · (αlρlϵlūl) =

= ∇ ·
(︃

αl

(︃
µl + µl,t

σϵ

)︃
∇ϵl

)︃
+ αl

ϵl

kl

(C1,ϵGk,l + C1,ϵC3,ϵGb,l − C2,ϵρlϵl) + αlρlSϵ,l

(2.57)

where

• σk and σϵ are the Prandtl turbulent numbers;
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• Gk,l and Gk,l are production terms expressing the generation of turbulent ki-
netic energy due respectively to the mean gradients of the flows and buoyancy
effects;

• Sk,l and Sϵ,l take into account other possible source terms;

• C1,ϵ, C2,ϵ, C3,ϵ are model constants.

The liquid turbulent viscosity is therefore calculated as

µl,t = Cµρl
k2

l

ϵl

(2.58)

with Cµ = 0.09.
The standard k-ϵ model proved excellent performance in modeling turbulent isotropic
flows at high Reynolds number, but showed shortcomings in describing swirling
flows, curvature flows and flows at low and medium Reynolds number. For this
reason several variants were proposed, among which the RNG k-ϵ and the realiz-
able k-ϵ models stand out. The former is obtained by applying the renormalization
group theory to the Navier Stokes equations [116] and adds an extra production
term in the turbulent dissipation rate transport equation, providing better results
for medium-low Reynolds number. The realizable k-ϵ model, on the other hand,
calculates ϵl using a transport equation based on the the mean square vorticity
fluctuation [117]. This approach is particular successful in modeling swirling flows
and flows near curvatures.
All these three models have been extensively used for simulating bubble columns
[21, 23, 24, 39, 105, 118, 119], even though it was recently shown the better perfor-
mance of the RNG k-ϵ, especially for high gas velocity [15,16].

k-ω models

k-ω models estimate the turbulent viscosity through the kinetic turbulent energy
and the specific turbulent dissipation rate ω, which, similarly to the k-ϵ models,
are computed solving two additional transport equations [120]. Those models were
proven to be more effective for boundary-bounded turbulent flows (wall functions
are not required) and flows at low Reynolds number. In the case of the liquid phase,
the specific turbulent dissipation rate is defined as:

ωl = ϵl

kl

(2.59)

In the standard formulations, the transport equations for kl and ωl are:

∂

∂t
(αlρlkl) + ∇ · (αlρlklūl) = ∇ ·

(︃
αl

(︃
µl + µl,t

σk

)︃
∇kl

)︃
+ αlGk,l + αlρlSk,l (2.60)
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∂

∂t
(αlρlωl) + ∇ · (αlρlωlūl) = ∇ ·

(︃
αl

(︃
µl + µl,t

σω

)︃
∇ωl

)︃
+ αlGω,l + αlρlSω,l (2.61)

with σk σω being the Prandtl turbulent numbers, Gk,l and Gω,l the production
terms and Sk,l and Sω,l additional source terms eventually specified by the user.
A popular variation is the shear stress transport (SST) k-ω model, [121] which
adopts the k-ω formulations in the viscous sub-layer close to the walls and k-ϵ in
the free-stream zones, overcoming the excessive dependence of the k-ω model on
the boundary conditions in free-stream condition.
k-ω turbulence models are less popular than k-ϵ in the description of bubble columns
[16,119,122] even though the quality of the results is comparable.

2.4.2 LES models
The large eddy simulation models rely on a filtering rather than an averaging pro-
cedure of the flow variables. In this case, the filtered part of the variable, ϕ̄(x, t)
is obtained through the application of a filter function G(x, t) to the unfiltered
variable ϕ(x, t):

ϕ̄(x, t) =
∫︂ +∞

−∞

∫︂ +∞

−∞
ϕ(ξ, τ)G(x − ξ, t − τ)dτdξ (2.62)

with the unfiltered part, related to the small scales of motion, or subgrid-scales
(SGS):

ϕ′ = ϕ − ϕ̄ (2.63)
The filter equation G(x, t) may be of different kinds and shapes and a detailed
list may be found in the study by Sagaut [123]. However, the most straightforward
choice is the top hat filter, which, neglecting the time-based filtering, may be written
as:

G(x − ξ) =
⎧⎨⎩

1
∆ |x − ξ| ≤ ∆

2
0 elsewhere

. (2.64)

and it is represented in Fig. 2.12.
In brief, when the top hat filter is applied, the motion related to the scales larger
than ∆ are filtered out and hence completed resolved, while the subgrid-scale,
smaller than ∆, must be modeled in some way.
The application of the filtering process to the momentum transfer equation yields
(considering, in the sake of simplicity, a single-phase flow):

∂ū

∂t
+ ∇ · (uu) = ν∇2ū − 1

ρ
∇p̄ (2.65)
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Figure 2.12: 1-dimension top hat filter.

the advective term uu is not known and, after some math, it can be split in several
terms:

uu = ūū + C + L + R: (2.66)

• C = ūu′ is the cross-term stress representing the interactions between the
solved and modeled scales and cannot be computed exactly, it is usually
ignored at high Reynolds number [124];

• L = ūū − ūū is the Leonard stress and describes the interactions between
the large scales [125]: it can be directly calculated [126], approximated or
neglected [120];

• R = u′u′ is the Reynolds sub-grid stress tensor and express the interactions
at smaller (i.e. modeled) scales [124].

The summation of C, L and R is denoted as subgrid tensor τ :

τ = C + L + R. (2.67)

Eq. (2.67) is the core of the LES framework and the choice of the models describing
the subgrid scale is of crucial matter. If the cross-term and the Leonard stresses
are assumed to be negligible, then the whole modeling of the LES approach comes
down to the modeling of the subgrid scale.
Assuming, once more, the validity of the Boussinesq approximation which, in the
LES case, relies on the similarity of the energy transfer from the larger to the smaller
scale and the molecular diffusion, the deviatoric part of τ , τ d may be written as:

τ d = −νSGS

(︂
∇ū + (∇ū)T

)︂
(2.68)
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where νSGS is the subgrid viscosity.
Since the LES formulation was first developed, numerous methods for the calcu-
lation of νSGS have been proposed. Two main approaches may be distinguished
[123, 127]: the functional and structural approach. In the former, the modeling
effort is focused on the evaluation of the impact of the subgrid tensor τ on the re-
solved scale rather than on the tensor itself; therefore, in these models, the analysis
of the energy cascade is crucial. On the other hand, the structural models aim to
provide an approximation of the subgrid tensor.
In the functional approach, Sagaut identified three main groups of subgrid viscosity
models [123], respectively based on:

• the resolved scales. Following this approach, νSGS is calculated from the
global quantities, such as the velocity or the strain rate field, at the resolved
scale. Despite these models are the simplest to implement, they rely on
strong assumptions, such as the the actual existence of a subgrid scale (i.e.
the flow must not be entirely described by the resolved part) and the local
equilibrium hypothesis, under which there is not accumulation of energy along
the spectrum;

• the energy at the cut-off length ∆. These models estimate the subgrid vis-
cosity from the energy of the resolved scale with highest frequency. Yet being
based on the resolved scale as well, this kind of models only uses the local
information of the flow at the cut-off scale, and not of the entire resolved scale
like the previous models;

• the subgrid scale itself. These models are more complex than the previous
two groups and they are based on additional information and assumptions
regarding the subgrid scale.

Among the structural models, the simplest are known as similarity models because
they are grounded on the hypothesis that the larger unresolved scales behave like
the smallest resolved scales [128].
Nevertheless, a detailed analysis of the subgrid scale viscosity models falls outside
the aim of this work: in the following a brief description of the most common
applications for the calculation of µSGS in multiphase dispersed flows is provided
(more details on two-phase turbulence in Section 2.4.3).

Smagorinsky model

The first pioneering work on the modeling of SGS scale was performed by Smagorin-
sky [129] and it has been one of the most used for both single and multiphase flows.
This model is based on the resolved scale since it estimates νSGS from variables and
properties of the larger scales of the flow:

µSGS = ρl (Cs∆)
√︃

2
⃓⃓⃓
S̄
⃓⃓⃓2

(2.69)
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where S̄ is the resolved strain rate tensor

S̄ = 1
2
(︂
∇ū + (∇ū)T

)︂
, (2.70)

and Cs is a model constant. It is usually set equal to 0.1, but other values are often
used up to 0.3 [124,130–132].
Despite being over-dissipative and the several attempts in the development of more
advanced formulations of the SGS eddy viscosity, the Smagorinsky model still per-
forms remarkably well and it remains among the most popular choices for the de-
scription of the SGS scales thanks to its computational straightforwardness. A fur-
ther improvement was achieved by the so-called dynamic Smagorinsky model [133],
according to which the Smagorinsky constant Cs is not fixed a a priori but it is
a function of the local resolved flow fields and it is calculated through a second
filtering operation. Although the more rigorous formulation, it requires a larger
computational effort and it may cause instability due to large fluctuations of the
calculated Cs.

Smagorinsky-Zhang model

This model is an extension of the Smagorinsky model, specifically developed by
Zhang for dispersed bubbly flows [23]. It adds to Eq. (2.69) an extra turbulent
viscosity for the liquid phase accounting for the bubble induced turbulence effect (a
detailed analysis is provided in Section 2.4.3) based on the original model proposed
by Sato and Sekoguchi [134]:

µl,eff = µl,SGS + µl,BIT (2.71)

where
µl,BIT = Cµ,BIT ρlαg |ūg − ūl| (2.72)

and Cµ,BIT = 0.6.

Niceno model

The Smagorinsky-based models discussed above are algebraic models, since they
directly calculate the SGS eddy viscosity without using additional transport equa-
tions. This approach is computationally simple because it does not provide in-
formation on the the unresolved turbulent kinetic energy: it does not account for
any backscatter of turbulent energy from the small to the large scales, hence its
dissipative behavior. This issue is partially overcome by the approach proposed by
Niceno et al. [135], which relies on one additional transport equation for the subgrid
turbulent kinetic energy, kSGS

∂kSGS

∂t
+ ū · ∇kSGS = ∇ ((µ + µSGS) ∇kSGS) + µSGS|S̄| − Cϵ

k
3/2
SGS

∆ (2.73)
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with Cϵ = 1.05 and
µl,SGS = ρlρCk∆

√︂
kSGS, (2.74)

being Ck = 0.094.
The models above described were successfully used in LES simulation of bubble
columns with various operating conditions [17,28,30,38,89,114,136], with different
outcomes in the identification of the best SGS eddy viscosity model. However, the
operating conditions in these studies, such as one dimensional flow or extremely
low velocity of the gas at the injection, were quite far from industrial applications.
On the contrary, in the present thesis the Smagorinsky, Smagorinsky-Zhang and
Niceno models were applied to the heterogeneous regime, which is the most relevant
for industrial applications, and, as discussed in Chapter 7, the Smagorinsky-Zhang
model was able to best predict the local flow patterns [97].
Another specific problem of the turbulence of two-phase systems and, in particular
of the LES models, is the choice of the filter length ∆, which needs to be set not
only seeking that a good percentage of the overall flow must be fully resolved, but
also considering the relationship with the size of the dispersed phase. As a general
thumb rule, valid thus also for single phase flows, at least the 80% of the turbulent
kinetic energy should be fully resolved to obtain a reliable LES simulation [137]
(Fig. 2.13). Therefore, the filter length ∆ should be set accordingly. However, in
dispersed bubbly systems, there may be the risk that ∆ is set to a value too close
or too far from the bubble diameter db. A ∆/db excessively high may cause some
loss of information on the mesoscale, while a low value could lead to instability
since the bubble behavior may fall partially in the resolved scale and partially in
the subgrid scale. Milleli et al. found that ∆/db should be between 1.2 and 1.5 to
get optimal results [138].

2.4.3 Bubble Induced Turbulence
A peculiar and discussed phenomenon of bubbly flows is the so called bubble in-
duced turbulence (BIT) effect. According to the BIT description, the gas bubbles
transfer some energy to the liquid phase, where is then converted into turbulence
and eventually dissipated. The recent literature has put a great effort into the in-
vestigation of the BIT phenomena [44] and, to this purpose, DNS simulations have
shred some lights on the relevance of BIT effects [112].
The first approach for the implementations of the BIT effects is grounded on the
introduction of a BIT viscosity that is summed up to the eddy viscosity calculated
by the turbulence model (Eq. (2.71)). Within this perspective, the most popu-
lar and successful correlation was developed by Sato et al. [134, 139] and it was
already shown in Section 2.4.2 (Eq. (2.72)). The linear combinability of the shear-
induced and bubble induced turbulence has been already experimentally confirmed
for systems with low gas fraction [140], while its suitability for less dilute systems
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∆
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Figure 2.13: Choice of ∆ in LES simulation: at least 80% of turbulent kinetic
energy field should be resolved.

is still matter of discussion. Moreover, the Sato model neglects non-linear effects
such as the stretching of vortices and the related deformation of the close bubbles,
which may have an impact on the interfacial momentum mass terms like the drag
force [44]. Nevertheless, this method is still widely used in Euler-Euler modeling of
bubble columns, although its relevance depends on the specific simulated case [10].
A more refined approach relies on the inclusion of the BIT effects as source terms
the turbulence transport equations, in particular for k and ϵ for the liquid phase
in RANS simulations. Accordingly, one- [141] and two-equations [43, 142] models
were proposed to include the extra terms related to the BIT effects. The principal
assumption of these models is that the major contribute to the generation of in-
terfacial turbulent energy is due to the momentum exchange involved by the drag
force. Therefore, the source term for the turbulent kinetic energy is written as

SBIT
k,l = F D · |ug − ul| . (2.75)

In two-equations models, the source term for the liquid turbulence dissipation rate
is often calculated from SBIT

k,l as

SBIT
ϵ,l = Cϵ,BIT

SBIT
k,l

τ
, (2.76)

with Cϵ,BIT and τ being respectively a fitting constant and a time scale whose
choice may be different according to the authors [43, 143–145]. However, as afore-
mentioned, these models are mostly suited for RANS simulations, where the k-ϵ is
the most direct approach; in LES simulations BIT effects are usually accounted for
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using Eq. (2.72). In this regard, recent studies [44] highlighted that the impact of
BIT effects in the simulations might sensibly improve with the inclusion of bubbles
polydispersity and an accurate near wall modeling.

2.5 Population balance modeling
The Eulerian formulations have one serious lack: the size of the dispersed phase, i.e.
the bubble diameter, must be fixed constantly throughout the simulation. Although
this approximation could be still valid in the homogeneous regime, surely it does
not correspond to the reality in the heterogeneous regime, where the bubble size
distribution is wider due to higher gas velocity. Therefore, the interfacial area,
mass transfer coefficient and gas hold-up predicted by the simulations might be
considerably different from the experimental measurements. An estimation of the
bubble diameter distribution, especially at high gas velocity, thus seems essential
to properly model the flow.
A common way to overcome this limitation of the Eulerian descriptions is to solve
one or more population balance equations coupled with the fluid dynamics equa-
tions, for the estimation of the bubble size distribution [146,147]. For this purpose,
the population balance models (PBM) rely on the solution of the transport equation
for the bubbles number density function (NDF), n(x, ξ). The NDF is a function
of the external coordinates x = (x, y, z, t), i.e. the physical space coordinates, and
the internal coordinates ξ = (ξ1, . . . , ξN), which are related to specific properties
of the dispersed phase such as the size or the temperature [147]. The population
balance is monovariate if there is only one internal coordinate, usually correspond-
ing to the bubble diameter (ξ ≡ L)1 or multivariate if ξ is a vector of two or more
components, such as the specific bubble velocity, the temperature or the chemical
composition, in addition to the diameter. The density function is defined in such
a way that n(x, ξ)dxdξ is the number of particles located in volume dx and with
internal coordinates inside the range dξ.
The equation for n(x, ξ) takes into account the variation of the number of bubbles
in the control volume due to both continuous and discrete events, the former cor-
responding to the bubbles carried by the net fluid flow in the control volume and
the latter to coalescence or breakage phenomena:

1In this chapter bubble diameter and bubble size are used as synonyms and denoted with L
in the sake of simplicity.
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∂

∂t

(︄∫︂
Vx

dx
∫︂

Vξ

dξn

)︄
+
∫︂

Vξ

dξ
∫︂

Vx

(nu) · dAx +
∫︂

Vx

dx
∫︂

Vξ

(nξ̇) · dAξ =

=
∫︂

Vx

dx
∫︂

Vξ

dξSξ (2.77)

where Vx and Vξ are respectively the volume control of the external and internal
coordinates, Ax and Aξ are the relative surface vectors, u and ξ̇ are the rate of
change of the external (i.e. velocity) and internal coordinates, and, finally Sξ is the
source term that accounts the discontinuous events involving bubbles depending on
the internal coordinates ξ.
Applying the Reynolds-Gauss theorem to Eq. (2.77) and assuming that it must be
valid for any chosen control volume:

∂n

∂t
+ ∇x · (un) + ∇ξ ·

(︂
ξ̇n
)︂

= Sξ (2.78)

In flows where the temperature is uniform and the gas bubbles have constant chem-
ical composition, the dependence of the NDF on these internal coordinates may be
neglected. If the bubbles have their own velocity distribution, ξ contains, in ad-
dition to the bubble size L, the corresponding velocity as well, and Eq. (2.78)
is known as General Population Balance Equation (GPBE). However, under the
assumption that bubble velocity does not depend on its size and it is hence equal
to the velocity calculated through the Navier-Stokes equations, the NDF solely de-
pends on the bubble size and the Population Balance Equation (PBE) is obtained:

∂

∂t
n(L) + ∇ · (ugn(L)) + ∂

∂L

(︂
L̇n(L)

)︂
= S(L) (2.79)

with L̇ being the rate of change of the bubble size due to the mass transfer, which
is neglected in this work.
The source term S(L) accounts for the discontinuous events affecting the bubbles
size. These events may be mainly categorized in three groups, according to their
order [147]:

• zero-order events. They depend solely on the continuous phase flow proper-
ties, such as the nucleation of bubbles in boiling or cavitation. They are not
considered in this study;

• first-order events. They involve only one bubble and originate from its inter-
action with the liquid phase. Breakage is a first-order event;

• second-order events. In these events two bubbles and their interaction with
the surrounding liquid are involved. Coalescence is a second-order event.
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Moreover, S(L) may be split in four terms [148], accounting for the birth and death,
due to both coalescence and breakage, of bubbles of size L:

S(L) = BC(L) − DC(L) + BB(L) − DB(L) (2.80)

• BC(L) and DC(L) are the terms modeling the birth and death due to the
coalescence:

BC(L) = L2

2

∫︂ ∞

0
h
(︃(︂

L3 − λ3
)︂1/3

, λ
)︃

n
(︃(︂

L3 − λ3
)︂1/3

)︃
n(λ)dλ, (2.81)

DC(L) =
∫︂ ∞

0
h(L, λ)n(L)n(λ)dλ, (2.82)

where h(L, λ) is the kernel modeling the coalescence of two bubbles of size L
and λ;

• BB(L) and DB(L) are the terms modeling the birth and death due to the
breakage:

BB(L)
∫︂ ∞

L
β(L, λ)g(λ)n(λ)dλ, (2.83)

DB(L) = g(L)n(L), (2.84)
with g(L) denoting the break-up frequency of a bubble of size L and β(L, λ)
is the daughter size distribution originated from the breakage of one mother
bubble of size λ.

2.5.1 Breakage kernels
As aforementioned, the breakage event of a bubble depends on the characteristics
of the flow of the liquid in the close neighborhood, which causes the bubble defor-
mation and, eventually, if the external stress overcomes the bubble resistance, the
break-up. In particular, bubble breakage can mainly occur as a consequence of four
possible mechanisms [149,150]:

• turbulence fluctuations. It is the most frequent breakage mechanism in in-
dustrial bubble columns. The liquid velocity fluctuations around the bubble
cause bubble deformation and elongation until break-up takes place. In par-
ticular, it is assumed that only the eddies belonging to the inertial subrange
contribute to the phenomenon, since the larger eddies only participate with
convective motion and smaller eddies do not have enough energy;

• macroscopic shear stress. It is mainly related to large bubbles. It is caused
by a local steep velocity gradient in the liquid flow that deforms and breaks
the bubble in daughters of similar size;
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• turbulent shear stress. It is relevant when the size of the bubbles is comparable
with the Kolmogorov length scale. In this mechanism, the bubble is sheared-
off by local microscopic velocity gradients in the turbulent eddies;

• interfacial instabilities. Caused by Rayleigh-Taylor and Kelvin–Helmholtz
instabilities.

Given its industrial relevance, only the turbulence fluctuations breakage mechanism
is considered in this work.
Under the assumptions of homogeneous and isotropic turbulence and of bubble size
belonging to the inertial subrange, four main criteria to activate break-up have
been individuated in the literature, as detailed below.

a) Turbulent kinetic energy of the bubble larger than a critical value

The first pioneering model for break-up was proposed by Coulaloglou and Tavlarides
for liquid-liquid dispersions [151]. They assumed that break-up occurs if the kinetic
energy transmitted to the bubble by hitting eddies is larger than its surface energy,
with the additional hypothesis of a normal distribution of the kinetic energy. The
break-up rate is:

g(L) = C1L
−2/3ϵ1/3 exp

[︄
− C2γ

ρdϵ2/3L5/3

]︄
, (2.85)

where ρd is density of the dispersed phase and γ the interfacial tension.
The authors also proposed a correction for the damping effects on the turbulent
intensity at high gas fraction

g(L) = C3L
−2/3 ϵ1/3

1 + αd

exp
[︄
−C4γ(1 + αd)2

ρdϵ2/3L5/3

]︄
. (2.86)

Lasheras et al. [152] adapted this model to gas-liquid dispersion replacing the dis-
persed phase density with the continuous phase density, since Eq. (2.85) and Eq.
(2.86) considerably underpredict the breakage rate if applied to such systems:

g(L) = C1L
−2/3ϵ1/3 exp

[︄
− C2γ

ρlϵ2/3L5/3

]︄
. (2.87)

g(L) = C3L
−2/3 ϵ1/3

1 + αd

exp
[︄
−C4γ(1 + αd)2

ρlϵ2/3L5/3

]︄
. (2.88)

b) Velocity fluctuations around the bubble larger than a critical value

Narsimhan et al. [153] proposed a stochastic formulation of the breakage frequency
for liquid droplets in liquid media, assuming that it is caused by the collisions of
eddies of different scales, that can be described as a Poisson process.

40



2.5 – Population balance modeling

Alopaeus et al. [154] adjusted this model including the dependency of the eddy-
droplet collision frequency on the turbulent dissipation rate and the effect of the
fluid particle viscous stresses:

g(L) = C7ϵ
1/3erfc

√︄
C8

γ

ρlϵ2/3L5/3 + C9
µg√

ρlρgϵ1/3L4/3 (2.89)

Lakkonnen et al. [155], pointed out that for gas-liquid dispersions the viscous
stresses in the fluid particles are negligible and applied Eq. (2.89) to bubbly flows
substituting µg with µl:

g(L) = C7ϵ
1/3erfc

√︄
C8

γ

ρlϵ2/3L5/3 + C9
µl√

ρlρgϵ1/3L4/3 (2.90)

c) Turbulent kinetic energy of the hitting eddy larger than a critical
value

One of the most popular model belonging to this criterion was proposed by Prince
and Blanch [156], who proposed an analogy of the interaction eddy-bubble with
collisions in ideal gases. As in the collision kernels (Section 2.5.3), they suggested
to calculate the breakage frequency as the product of the frequency he(L, Le) and
efficiency ηe(L, Le) of the collision between a bubble of size L and a turbulent eddy
of size Le:

g(L) =
∫︂ ∞

0
he(L, Le)ηe(L, Le)dLe. (2.91)

They assumed he(L, Le) proportional to the relative velocity between eddies and
bubbles and ηe(L, Le) equal to the probability that the hitting eddy has enough
energy to break the bubble. The minimum energy is deduced from the critical
Weber number Wecr, estimated equal to 2.3. The final expression for g(L) is:

g(L) =
∫︂ κmax

κmin

0.14π

0.16

(︃
L + 2

κ

)︃2 (︄
L2/3 +

(︃2
κ

)︃2/3)︄1/2

ϵ1/3 exp
[︄
−1.18

22/3
γκ2/3

ρlLϵ2/3

]︄
κ2dκ

(2.92)
with κ = 2/Le.
Luo and Svendsen presented a similar model [157] based on the kinetic gas the-
ory, including also the daughter size distribution in the breakage frequency. This
breakage kernel assumes that the minimum energy corresponds to the increase in
the surface energy during the disruption, Eb(L). Moreover, it does not require any
additional or empirical constant:

g(L) =
∫︂ 0.5

0
g(L, λ)d(L/λ), (2.93)

he(L, λ) = 0.93(1 − αd)
(︃

ϵ

L2

)︃1/3 ∫︂ 1

ξmin

(1 + ξ)2

ξ11/3 exp
[︄
− Eb(L)

E(Le)

]︄
dξ, (2.94)

41



Fundamental modeling

where E(Le) is the energy of the hitting eddy, ξmin = Le,min/L and Le,min is the
minimum size of the eddies that can contribute to the break-up .

d) Inertial force of the hitting eddy greater than the interfacial force of
the smallest daughter particle

In this category, the most relevant model was proposed by Lehr et al. [158] who
followed a similar approach to Luo and Svendsen. The expression of the breakage
frequency relies on the balance of the interfacial forces between the hitting eddy
and the smaller daughter value and its final formulation is:

g(L) = 0.5L5/3ϵ19/15ρ
7/5
l

γ7/5 exp
[︄
−

√
2γ9/5

L3ρ
9/5
l ϵ6/5

]︄
(2.95)

2.5.2 Daughter size distribution
The distribution of the size of the two or more bubbles generated by the break-
age of one mother bubble is called daughter size distribution (DSD). The DSD
may be either empirical, phenomenological or statistical [150]. Empirical DSD are
valid only for the specific operating conditions for which they were developed and
therefore they cannot be used in other cases. Phenomenological models rely on
the Kolmogorov description of turbulence and they are usually classified according
to shape of the DSD function, which can be bell-shaped [159], U-shaped [160] or
M-shaped. The DSD derived by Lehr et al. [158] belongs to the latter category and
presupposes binary breakage:

β(L, λ) = 9L2
√

πλ3

exp

⎡⎢⎣9
4

⎡⎣log
⎡⎣22/5Lρ

3/5
l ϵ2/5

γ3/5

⎤⎦⎤⎦2
⎤⎥⎦

1 + erfc
⎡⎣3

2 log
⎡⎣215λρ

3/5
l ϵ2/5

γ3/5

⎤⎦⎤⎦ , (2.96)

where λ denotes the size of the mother bubble and L of the larger among the two
daughter bubbles.
Among the statistical models, the most popular was proposed by Laakkonen et
al. [155,161] using a beta function:

β(L, λ) = 1
2(C + 1)(C + 2)(C + 3)(C + 4)

(︄
L2

λ3

)︄(︄
L3

λ3

)︄2 (︄
1 − L3

λ3

)︄C

(2.97)

if only binary breakage is considered, C = 2 and Eq. (2.97) becomes:

β(L, λ) = 180
(︄

L2

λ3

)︄(︄
L3

λ3

)︄2 (︄
1 − L3

λ3

)︄2

(2.98)
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2.5.3 Coalescence kernels
In contrast to breakage, coalescence is a more complex phenomenon since it involves
the mutual interactions between two bubbles and the surrounding fluid [162]. In
this perspective, a coalescence event can be decomposed in two parts, each one due
to a different interaction:

• bubbles collision. It is the first step in the coalescence process and it occurs
due to the interaction between the bubbles and the surrounding liquid, whose
flow field leads, through different mechanisms, to the bubbles encounter. It
is modeled through the collision frequency function, h0(L1, L2);

• bubbles interaction. Not every collision leads to coalescence, since the bub-
bles, after colliding, may bounce and leave apart: thus, a collision efficiency
is introduced η(L1, L2) .

The final coalescence kernel is the product between the collision frequency and
efficiency:

h(L1, L2) = h0(L1, L2)η(L1, L2). (2.99)

Collision frequency

a) Collisions due to turbulent fluctuations The most frequent mechanism
of collision is due to the turbulent fluctuations, where the chaotic motion of the
turbulent eddies of the inertial subrange leads two bubble to collision. In this
scenario, bubbles are modeled as gas molecules in the gas kinetic theory [150]. As
for the breakage frequency due to turbulent fluctuations, the collision frequency
may be seen as proportional to the volume swept by the bubbles in the time unit
and, therefore, it may be expressed as the product of the collision-sectional area
S(L1, L2) and the bubbles relative velocity urel(L1, L2):

h0(L1, L2) = S(L1, L2)urel(L1, L2). (2.100)

Assuming that the bubbles have spherical shape, the collision cross section is

S(L1, L2) = π

4 (L1 + L2)2 (2.101)

The relative velocity may be estimated considering that the bubbles have the
velocity of turbulent eddies of the same size and belonging to the inertial sub-
range [151,156]:

urel(L1, L2) =
√︂

u2
e,1 + u2

e,2. (2.102)
If the turbulence is isotropic and homogeneous and therefore the Komolgorov de-
scription can be applied [109], the eddy velocity ue can be calculated as

u2
e = 2ϵ2/3L2/3

e , (2.103)
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Eq. (2.102) thus becomes:

urel(L1, L2) =
√

2ϵ1/3
√︂

L
2/3
1 + L

2/3
2 . (2.104)

Therefore the collision frequency (Eq. (2.100)) may be eventually written as:

h0(L1, L2) =
√

2π

4 (L1 + L2)2ϵ1/3
√︂

L
2/3
1 + L

2/3
2 . (2.105)

Prince and Blanch [156] substituted
√

2π
4 with a constant C1 ranging from 0.28 to

1.11 according to the investigated system:

h0(L1, L2) = C1(L1 + L2)2ϵ1/3
√︂

L
2/3
1 + L

2/3
2 . (2.106)

Eq. (2.106) was later adjusted by introducing two new parameters, Θ and Λ, taking
into account respectively the possible presence of other bubbles in the colliding path
and the ratio between the mean distance between two bubbles and their effective
turbulent path [150]. Several expressions have been proposed for Θ:

• Wu et al. [163]:
Θ = 1

α
1/3
g,max

(︂
α

1/3
g,max − α

1/3
g

)︂ , (2.107)

with αg,max corresponding to the maximum gas volume fraction for bubbles
dispersed in water, set equal to 0.8;

• Wang et al. [164,165]:
Θ = αg,max

αg,max − αg

, (2.108)

• Lehr et al. [158]:

Θ = exp
⎡⎣−

(︄
α1/3

g,max − α1/3
g

αg

)︄2⎤⎦, (2.109)

with αg,max =0.6.

Similarly, many correlations for Λ are available in the literature, the most relevant
were developed by Wu et al. [163] and Wang et al. [164,165]. The former is:

Λ = 1 − exp
[︃
−CΛ

Le

H12

]︃
≈ 1 − exp

[︄
−CΛ

α1/3
g,max α1/3

g

α
1/3
g,max − α

1/3
g

]︄
, (2.110)

where H12 is the mean distance between the two bubbles and Cλ a constant set
equal to 3. The model proposed by Wang is similar:

Λ =
(︃

exp
[︃
−H12

l12

]︃)︃
, (2.111)
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where l12 is the mean turbulent path for the bubbles collision.
The conclusive expression for the collision frequency due to turbulent fluctuations
according to Wang et al. [165] is then:

h0(L1, L2) = C ′
2ΘΛ(L1 + L2)2ϵ1/3

√︂
L

2/3
1 + L

2/3
2 . (2.112)

b) Collisions due to other mechanisms However, bubbles can collide due to
other mechanisms involving eddy capture, macroscopic velocity gradient, buoyancy
and wake entrainment [162] and, therefore, appropriate collision frequency functions
have been developed for describing them [166,167].
Wang et al. [165] modeled the global coalescence kernel due to the wake entrainment
as follows:

h(L1, L2) = 15.4ΞL2
1uslip,1 exp

[︄
−0.46ρ

1/2
l ϵ1/3γ−1/2

(︃
L1L2

L1 + L2

)︃5/6]︄
(2.113)

with

uslip,1 = 0.71
√︂

gL1, (2.114)

Ξ =

⎧⎪⎪⎨⎪⎪⎩
(L2−Lc

2 )6[︂
(L2−Lc

2 )6
+(Lc

2 )6
]︂ L2 ≥ Lc/2

0 otherwise
(2.115)

and
Lc = 4

√︄
γ

g (ρl − ρg) . (2.116)

Moreover, Prince and Blanch modeled other mechanisms of bubble collisions, such
as the ones due to buoyancy and shear rate in the liquid velocity field [156]. The
former is expressed by

h0(L1, L2) = 0.25π (L1 + L2)2 |ub,1b − ub,2| (2.117)

where ub is the bubble rise velocity:

ub =
(︄

2.14γ

ρlL
+ 0.505gL

)︄0.5

. (2.118)

On the other hand, they modeled the collision efficiency due to shear rate effects
as:

h0(L1, L2) = 1
6(L1 + L2)3 dul

dR
, (2.119)

with dul

dR
being the average shear rate of the liquid velocity and it can be computed

in accordance with Walters and Blanch [168].

45



Fundamental modeling

Collision efficiency

Three main approaches have been developed for the modeling of the collision effi-
cacy, due to the interaction between the colliding bubbles.

a) Energy approach. The efficacy is related to the ratio of the interfacial energy
Eγ and the collision kinetic energy Ek [169]:

η(L1, L2) = exp
[︃
−C

Eγ

Ek

]︃
, (2.120)

where C is a proportional constant. Sovová [169] suggested the following expression:

η(L1, L2) = exp
⎡⎣−Csov

γ(V 2/3
1 + V

2/3
2 )(V1 + V2)

ρlϵ2/3V1V2(V 11/9
1 + V

11/9
2 )

⎤⎦ , (2.121)

with Csov being a model constant.

b) Critical velocity approach. The outcome of the collision depends on the
relative velocity of the bubbles along the direction perpendicular to the contact
surface: coalescence occurs only if this value is smaller than a critical threshold
ucr. In accordance with experimental observations, Lehr et al. [158] suggested this
expression:

η(L1, L2) = min
[︃

ucr

urel
,1
]︃

, (2.122)

where ucr = 0.08 m/s for pure water-air systems and smaller for contaminated
systems.

c) Film drainage approach. Following this approach, coalescence occurs only
if the bubbles contact time is larger than the drainage time, i.e. the time interval
necessary for the drainage of the liquid film trapped between the bubbles:

η(L1, L2) = exp
[︃
−τC

τD

]︃
. (2.123)

The drainage mechanism depends on the bubbles rigidity and the mobility of the
interface: if the bubbles are small they can be assumed to behave like spherical rigid
particles, while the presence of contaminants decreases the interface mobility [150].
Coulaloglou and Tavlarides [151] proposed the following expression for nonde-
formable bubbles with immobile interfaces

η(L1, L2) = exp
[︄
−CCT

µlρlϵ

γ2

(︃
L1L2

L1 + L2

)︃4]︄
, (2.124)
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which was also adjusted for its application in case of high gas volume fraction:

η(L1, L2) = exp
[︄
−CCT

µlρlϵ

γ2(1 + αg)3

(︃
L1L2

L1 + L2

)︃4]︄
, (2.125)

It is worth noting that other expressions were developed for the coalescence effi-
ciency following the time drainage approach [157,164,165], although Eq. (2.124) is
the most used.

2.5.4 Quadrature Method of Moments
The different methods developed in the last decades to solve the PBE may be
distinguished in three categories: class [170] and MUSIG [171] methods discretize
the internal coordinate but they require considerable computational efforts, Monte
Carlo methods [23] are based on stochastic differential equations and they are even
more computationally demanding, methods of moments solve the transport equa-
tions of some moments of the NDF [46]. In this work the Quadrature Methods of
Moments (QMOM) [172,173] for univariate PBE is used and a brief description is
given in this section. An extensive discussion of the subject can be found in the
work by Marchisio and Fox [147].
As in the other moments based methods, in QMOM the PBE is not solved directly
but, instead, the transport equations of low-order moments of the NDF are solved.
The moment of order k respect to the only internal coordinate L is defined as

mk =
∫︂ ∞

0
Lkn(L)dL (2.126)

and the relative transport equation is

∂ρgmk

∂t
+ ∇ · (ρgugmk) = ρgSk, (2.127)

where Sk is the normalized source term related to the moment of order k. The
moments defined in Eq. (2.126) are not only abstract mathematical entities, but
they are linked to the characteristic of the bubble dispersion: m0 is related to the
number of bubbles per unit volume, m2 and m3 to the interfacial area and bubble
volume through a shape factor respectively equal to π and π/6 for spherical bubbles.
Moreover, the ratio of those moments corresponds to the Sauter mean diameter d32,
which is the diameter of a sphere with same volume-surface ratio:

d32 = m3

m2
. (2.128)

Eq. (2.127) generates a closure problem that must be overcome, since the source
term depends on the NDF, which is unknown. With this aim, The QMOM uses a
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Gaussian quadrature approximation of order N to estimate NDF with the following
form:

n(L) ≈
N∑︂

i=1
wiδ(L − Li), (2.129)

where wi and Li indicate the weights and abscissas of the node i and δ the Dirac
delta function. Applying the quadrature to Eq. (2.126)

mk =
∫︂ ∞

0
Lkn(L)dL ≈

N∑︂
i=1

wiL
k
i (2.130)

Eq. (2.130) implies that first 2N moments must be known in order to calculate the
N nodes and N weights needed for the Gaussian quadrature approximation in Eq.
(2.129). With this aim, an inversion algorithm can be used [147].
After applying the quadrature approximation, the source term for the k-th moment
may be written in a discretized form:

Sk ≈ 1
2

N∑︂
i=1

wi

N∑︂
j=1

wihi,j

[︂
(L3

i + L3
j)k/3 − Lk

i − Lk
j

]︂
+

N∑︂
i=1

wigi(βk
i − Lk

i ), (2.131)

where hi,j = h(Li, Lj), gi = g(Li) and βk
i is the moment of order k for the bubble size

distribution relative to the daughter bubble of size Li. If the expression proposed
by Laakkoneen is used (Eq. (2.97)) an analytical formulation of βk

i may be derived:

βk
i = 3240Lk

i

(k + 9)(k + 12)(k + 15) (2.132)
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Chapter 3

Mass transfer and slurry columns

In this chapter additional insights on particular aspects of the modeling of bubble
columns are provided. In particular, in Section 3.1 a short overview of the modeling
of the mass transfer phenomenon is given, focusing on the techniques to estimate the
mass transfer coefficient, klal, from CFD simulations. In Section 3.2 the modeling
of slurry bubble columns is analyzed and the main differences with the two-phase
systems are highlighted.

3.1 Mass transfer modeling
Although a detailed description and modeling of the mass transfer phenomenon falls
outside the aim of this work, an estimation of the mass transfer coefficient, klal can
be performed thanks to the CFD simulation. The assessment of this phenomenon
is of crucial matter in modeling reactive systems, where the reactants and products
transport between two or more phases is of pivotal interest for the performances of
the whole process.
A common assumption is to consider the mass transfer between the liquid bulk
and the bubbles interface as the limiting resistance because of the small diffusivity
of the solute in the liquid phase and the small solubility of gaseous solutes in the
liquid.
Therefore, the molecular flux of the species A can be written as

JA = klal(χ∗
A − χA), (3.1)

where kl is the mass transfer coefficient, al is the interfacial area, χ∗
A is the molar

concentration of A at the interface, which can be calculated through the Henry
law if the concentration of A in the bulk of the gas phase is known, and χA is the
concentration in the bulk of the liquid phase.
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3.1.1 Estimation of kl

Several studies have been performed for the estimation of the liquid side mass
transfer coefficient kl from the flow properties [174,175]. The basic approach is the
two-film theory [176], that assumes the presence of stagnant films on both sides
of the interface and, following the Fick law, estimated kl as the ratio between the
diffusivity and the film thickness. However, in bubble columns the mass transfer is
an unsteady phenomenon and this description is not suitable.
Higbie’s pioneering work [177] proposed the penetration theory for the evaluation
of the mass transfer at the interfaces. According to Higbie’s description, an element
of fluid migrates toward the interface where it remains for a certain residence time,
thus allowing the mass exchange with the gas phase. However, the residence time
is short enough to not allow the transferred species to penetrate in the liquid bulk.
Under the hypothesis of unsteady and laminar flow close to the interface, kl may
be expressed as:

kl = 2√
π

√︄
Dluslip

db

, (3.2)

where Dl is the diffusivity coefficient in the liquid and uslip is the bubble slip velocity.
Danckwerts [178] further extended this theory, suggesting that the surface renewal
period depends on the turbulence of the system. Lamont and Scott [179] proposed
the idea that the mass transfer is controlled only be the renewal rate of small turbu-
lence eddies and, in the framework of the Kolmogorov description of the turbulence,
they derived:

kl = 0.4

⌜⃓⃓⎷Dl

√︄
ϵ

νl

. (3.3)

3.1.2 Estimation of al

In bubble columns, however, klal is mainly dependent on the variation of al rather
than kl [180], thus a proper estimation of the interfacial area is fundamental for the
proper modeling of the mass transfer.
As first approximation and with the assumption of spherical bubbles with uniform
diameter, al can be estimated as

al = 6αg

db

(3.4)

If coupled CFD-PBM simulations are performed, al can be estimated from the
moments calculations taking into account the distribution of bubble size. Applying
Eq. (2.126) for k = 2 it is possible to calculate the moment of order two:

m2(x) =
∫︂ ∞

0
L2n(L, x)dL. (3.5)
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Recalling that n(L, x) is a number density function and, therefore, n(L, x)dL in-
dicates the number of bubbles with size between L and L + dL at the position x,
it is clear that m2(x) provides information on the bubbles interface area. Indeed,
the two quantities are linked through the shape factor π:

a = πm2. (3.6)

In coupled CFD-PBM simulations the computation of interfacial area through Eq.
(3.6) is particularly straightforward, being m2 directly calculated throughout the
domain.

3.2 Effect of the dispersed solid
As mentioned in Chapter 1 it is extremely common in the industrial practice the
usage of three phase bubble columns, which contain solid particles in the liquid
phase working as catalysts for a wide range of chemical reactions. The addition of
solid particles significantly changes the fluid dynamics of the bubble columns and
the interactions between the bubbles themselves, accordingly to the particles size
and properties [4]:

• the global gas hold-up Φ decreases as the solid particles concentration and
density increase [181–184], while the effect of the particles size seems to de-
pend on their wettability [185], but there is no universal agreement on the
mechanisms [186];

• the majority of authors agrees that small solid particles usually promote bub-
bles coalescence [56, 187, 188], thus leading to larger bubbles mean diameter
and lower interfacial area. This can be explained assuming that the parti-
cles migrate mainly toward the bubble-liquid interface, reducing the drainage
time and thus improving the collision efficacy;

• assuming that the only non-negligible resistance to mass transfer is at the
liquid-gas interface, the effect of solid particles on the mass transfer coefficient
klal mainly depends on their impact on bubble coalescence: if the bubble
diameter db decreases, klal decreases as well due to the predominant effect
of the interfacial area al, although kl could also increase as a consequence of
the enhanced refreshment rate of the liquid at the interface [189] and of the
absorption/desorption and catalytic capability of the particles [190];

• it was found [191] that the presence of small (ds =100 µm) hydrophilic par-
ticles causes a shift of the transition and heterogeneous regime at lower gas
velocity (Fig. 3.1). Moreover, for Cs ≥ 5%, only the heterogeneous regime
was detected, regardless of the gas velocity.
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Figure 3.1: Flow regimes map in slurry bubble columns, extracted from [191].

However, these considerations are valid in the most common industrial operating
conditions, i.e. particles diameter ds between 10 and 2000 µm; for smaller particles
at volume concentration Cs ≤ 6% or larger particles at Cs ≥ 10% the observed
impact is opposite [9]: the interfacial area increases, the bubbles are smaller and,
consequentially, the global gas hold-up is higher.

3.2.1 CFD modeling
There are two main approaches to include the presence of solid particles in the
computational modeling of bubble columns, according to the particles inertia [192]:

• negligible particles inertia. This assumption is valid for small particles ( ds ≤
100 µm) which follow the liquid streamlines. In this case, the mixture liquid-
solid may be approximated as a single pseudo-homogeneous slurry phase [104,
193];

• non-negligible particles inertia. This is the preferable framework in case of
particles with ds > 100 µm, since their own inertia can not be neglected. The
solid particles are treated as a separate phase, therefore a proper selection
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Figure 3.2: Slurry viscosity correlations: Vand et al. [197], Thomas et al. [198],
Saxena and Chen [199].

of models to describe the gas-solid or liquid-gas or both interactions must be
performed [57,194,195].

In most industrial applications catalytic particles are often micro or nanosized to
maximize the interfacial area and the catalytic activity. Therefore, the pseudo-
homogeneous phase approach allows to obtain a reliable model of the slurry bubble
column with a low computational impact.
Following this approach, the density and viscosity of the slurry phase are calculated
adjusting the liquid density and viscosity as functions of the solid concentration. In
particular, the slurry density is calculated through a volume average of the liquid
and solid viscosity [196]:

ρsl = Csρs + (1 − Cs)ρl (3.7)
For the estimation of the slurry viscosity a number of correlations based on the
Einstein equation for the viscosity of suspensions have been proposed [194] (Fig.
3.2):

• Vand et al. [197]:
µsl = µl exp

[︃ 2.5Cs

1 − 0.609Cs

]︃
(3.8)

• Thomas [198]:

µsl = µl

(︂
1 + 2.5Cs + 10.05C2

s + 0.00273 exp[16.6Cs]
)︂

(3.9)
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• Saxena and Chen [199]:
µsl = µl(1 + 4.5Cs) (3.10)

3.2.2 PBM modeling
The solid particles move mainly towards the bubbles interface and, necessarily, play
an active role on the bubbles interactions, enhancing or hindering the coalescence
and breakage phenomena. As pointed out by Mühlbauer et al. [192], in the recent
literature the coupling of CFD simulations to slurry bubble columns to PBM, ac-
counting for the impact of the solid particles on these phenomena, may be achieved
with three different approaches:

• Adjusting of existing coalescence and breakage kernels through the introduc-
tion of fitting constants [200] or the combination of different kernels [59]. This
approach is often aimed to reproduce the outcome of specific experimental
measurements and lacks of universal applicability;

• Modifying the turbulence dissipation rate which is attenuated in dilute sus-
pensions [201]. Troishko and Zdravistch [193] modeled this attenuation as a
function of the volumic solid concentration:

ϵ

ϵ0
= exp[−1.2846Cs] (3.11)

• introducing a solid-effect multiplier β [56] which takes into account the en-
hancing effect of the solid particles on the coalescence efficiency by reducing
the drainage time:

η(L1, L2) = exp
[︄
−βτC

τD

]︄
(3.12)

The multiplier β was experimentally calculated and it is depicted in Fig. 3.3
as function of the solid loading.
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Figure 3.3: Solid-effect multiplier for the coalescence efficiency extracted from [56].
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Chapter 4

Experimental set-ups

In this chapter the experimental set-ups used for the models validation are presented
and briefly discussed. Four different systems were used: two circular columns and
two square columns. The circular columns were used to validate the general features
of the model such as blending, turbulence and population balance implementations.
On the other hand, the experimental studies that adopted square columns focused
on particular aspects such as the impact of solid particles and the mass transfer
and, therefore, they contributed to the validation of the modeling of the specific
phenomenon.

4.1 Gemello set-up
The first experimental set-up used in this work for validation is the one investigated
by Gemello et al. [16,41] and it is depicted in Fig. 4.1. It is a circular column with
water and air respectively used as liquid and gas phases at room conditions and the
operating details are summarized in Table 4.1. In particular the sparger consists
in a perforated plate with 92 holes of 0.5 mm and, since the outer holes are not on
the edge of plate, the effective diameter of the aerated region of sparger Din was
set to 0.38 m. The total height is 3.6 m and the initial liquid height is 1.6 m. The
investigated gas superficial velocity ranged from 0 03 to 0.25 m s−1, thus exploring
both homogeneous and heterogeneous regimes. In the original experimental work,
the effect of various degrees of contamination of the water on the hydrodynamics is
analyzed as well, although in the present work only the results obtained with pure
water are used for model validation.
The key aspect of this set-up is the abundance of local experimental measurements:
radial profiles of gas fraction, liquid velocity and bubble diameter are provided
at different locations of the columns and at various gas superficial velocity: this
large amount of experimental values allows a solid validation of the computational
models.
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Figure 4.1: Experimental configuration of Gemello column. (a) Front view: the
total height is 3.6 m, the initial liquid height is 1.6 m and the outer diameter of the
column is 0.4 m. (b) Sparger view (extracted from [41]): the aerated area of the
sparger is limited to a diameter of 0.38 m.
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4.2 – McClure set-up

Property Value Units
D 0.4 m
Ht 3.6 m
H0 1.6 m
Din 0.38 m
µl 1.003 mPa s
ρl 998.2 kg m−3

µg 0.0182 mPa s
γ 0.072 N m−1

db 6.5 mm
U 0.03-0.09-0.16 m s−1

Table 4.1: Details of Gemello set-up.

4.2 McClure set-up
A similar system was investigated by McClure et al. [29, 67] and its features are
summarized in Table 4.2. The key feature of this study is the usage of three
different spargers. In particular, two spargers with different hole size inject the
gas symmetrically into the column, while in the third it is fed asymmetrically only
through one half of the sparger. In this study the focus was is put on sparger #1
and sparger #3 (Fig. 4.2), where the hole size is equal to 0.5 mm and the only
difference is the injection type, i.e. symmetrical or asymmetrical.
The asymmetric injection provided by sparger #3 results in a different distribution
of the flow inside the column, because the gas mainly flows in the half of the column
where it is injected. The features of this flows have many implications, especially
on the investigation of the transversal interfacial forces such as the lift force, and,
therefore, it could be used to assess their effective relevance.
Moreover, the experimental configuration has a truncated cone shape below the
sparger. However, since this part of the domain has a negligible impact on the
fluid dynamics of the gassed region, in the computational domain used for the
simulations it is omitted. Therefore, only the part of the column above the sparger
was simulated and is discussed in the following.
Another significant difference with the column studied by Gemello et al. is the
aspect ratio, i.e. the ratio between the total height Ht and the diameter D, which,
in this experimental set-up, is lower, resulting in a wider and smaller column.

59



Experimental set-ups

Figure 4.2: Experimental configuration of McClure column (extracted from [67]):
the flow variables are sampled at the middle and top probe. Among the spargers
used experimentally, the sparger #2 is not investigated in this study.

4.3 Ojima set-up
Unlikely the previously described systems, the one investigated by Ojima et al. [56]
is not cylindrical but has a square cross section whose side (and hydraulic diameter)
is equal to 0.2 m The column is depicted in Fig. 4.3 and the details are reported in
Table 4.3.
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4.3 – Ojima set-up

Property Value Units
D 0.39 m
Ht 1.865 m
H0 0.865 m
Din 0.38 m
µl 1.003 mPa s
ρl 998.2 kg m−3

µg 0.0182 mPa s
γ 0.072 N m−1

db 7.5 mm
U 0.16 -0.25 m s−1

Table 4.2: Details of McClure set-up.

Figure 4.3: Experimental configuration of Ojima column (extracted from [56]). The
total height of the column is 1.2 m, while the samplings are performed at z/DH =
1, 2 and 3.
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Property Value Units
DH 0.2 m
Ht 1.2 m
H0 0.865 m
DH,in 0.19 m
µl 1.003 mPa s
ρl 998.2 kg m−3

µg 0.0182 mPa s
γ 0.072 N m−1

ds 100 µm
Cs 0 ÷ 0.50 % -

ρs 2400 kg m−3

U 0.02 -0.034 m s−1

Table 4.3: Details of Ojima set-up.

The peculiarity of this study is that both two and three phase systems were inves-
tigated: air and water were used as gas and liquid phase and, furthermore, silica
particles, with volumetric solid loading Cs ranging from 0 to 50%, were used as
solid phase. The diameter of the used particles is equal to 100 µm, therefore their
inertia is small enough to allow the usage of the pseudo-homogeneous slurry phase
mentioned in Section 3.2.1.
Moreover, this is one of the few works on slurry bubble columns presenting local
information of the volume gas fraction and bubble diameter, which are crucial for
model validation. In fact, the experimental measurements of these local properties
are particular challenging in slurry systems due to the cloudiness given to the
presence of solid particles. Those difficulties increase as the solid concentration
or the gas velocity increases and, therefore, the choice of experimental works for
validating CFD models developed for slurry bubble columns is markedly arduous.

4.4 Kouzbour set-up
The last experimental work used in this study for model validation was performed
by Kouzbour et al. [202, 203] using a square column having the same hydraulic
diameter as the column investigated by Ojima: it is represented in Fig. 4.4 and
further details are reported in Table 4.4.
Similarly to the work performed by Gemello, this study focused on the presence
of contaminants of different kinds (such as cationic and anionic surfactants) in the
liquid medium and their impact on the hydrodynamics of the column and, specif-
ically, on the global gas hold-up and the mass transfer coefficient. In particular,
this latter is experimentally measured with two oximeters placed at different heights
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Figure 4.4: Experimental configuration of Kouzbour column (extracted from [202]).
The gas hold-up is sampled with two sensors at z = 0.5 and 1.65 m (left side of the
column in the picture) while the oxygen concentration is sampled at z = 0.11 and
1.5 m (right side of the column in the picture).

that measure the oxygen concentration in water with and without the presence of
impurities. The corresponding mass transfer coefficient klal is then calculated and
referred to a standard temperature through an extrapolation.
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Property Value Units
DH 0.2 m
Ht 3.0 m
H0 1.65 m
DH,in m
µl 1.003 mPa s
ρl 998.2 kg m−3

µg 0.0182 mPa s
γ 0.072 N m−1

U 0.01 ÷ 0.09 m s−1

Table 4.4: Details of Kouzbour set-up. Liquid properties relate to uncontaminated
water.
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Chapter 5

Phase blending: analysis and
applications

In this chapter1 it is described the application of the Euler-Euler methodology in
a RANS turbulence framework to simulate the cylindrical air-water bubble col-
umn investigated by Gemello et al. (Section 4.1) using the open-source CFD code
OpenFOAM.
In particular the implementation of the so-called "blending approach", outlined in
Section 2.3, is analyzed, with the aim of describing the regions of high gas content
through its application. To the best of our knowledge, this approach has not yet
exhaustively discussed in the scientific literature. The comparison of the results to
numerical and experimental data available in the literature shows how the correct
outcome may be achieved with a remarkable gain in computational speed and
simulation robustness with respect to the usual method. The study was performed
using a linear blending model, although the same conclusions might be drawn when
the hyperbolic method is applied.

5.1 Introduction
As mentioned in Section 2.3, a fine blending implementation is crucial to take into
account phase inversion and to achieve numerical stability in the simulation of
dispersed multiphase systems. In this perspective, both air-in-water and water-in-
air dispersions occur in bubble columns and are describable in OpenFOAM blending

1This chapter is mainly based on the conference proceeding [45]: F. Maniscalco, M. Shiea, A.
Buffo, D. Marchisio, and M. Vanni, “Performance of the blending factor approach for modeling
the interfacial forces in bubble columns operating at high gas hold up,” in Proceedings from the
14th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries (S. A.
Press, ed.), pp. 64–71, 2020.
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implementation.
However, in the description of bubble columns the most relevant case is the dis-
persion of air in water, therefore the usage of the relative blending factors f1 will
be discussed, being fundamental in the prediction of the fluid dynamical properties
of interest (gas fraction, water and air velocity, etc). The evaluation of f2, the
blending factor for the dispersion of water and droplets in air, is relevant only at
excessively high gas velocity, when phase inversion may occur locally, or in the head
space: an accurate modeling of this part of the domain would require a convenient
choice of αF D and αP D for the water phase, in addition to a proper selection of the
drag law. Nevertheless, the main interest of this work is the modeling of the lower
part of the domain, where the air is dispersed into water: the blending parameters
and the interfacial laws for the upper part are selected in such a way to guarantee
numerical stability. If blending were not implemented, the solver would treat the
head space as if air were still the dispersed phase and water the continuous one,
leading to serious convergence issues.

5.2 Computational set-up
Simulations were performed using twoPhaseEulerFoam solver by OpenFOAM 5.0.
To simulate the system, experimentally investigated by Raimundo et al. [204] and
Gemello et al. [16] whose details are summarized in Table 4.1, a grid of 45600
cells was generated (Fig. 5.1): approximately 20 cells are set along the diameter
direction and each one of them is 3 cm high in the axial direction.
The simulation were carried out from time 0 to 180 s, being the presented results
averaged from time 80 s to 180 s in order to discard the initial behavior, which is
too sensitive to the starting condition. The investigated range of superficial gas
velocity starts from 0.03 reaching 0.25 m s−1, spacing thus from homogeneous to
heterogeneous hydrodynamics regime. The fluids are air and water.
An adaptive time-step was used, as the maximum Courant number was set to
0.65. According to Gemello et al. [16] RNG k-ϵ guarantees the most accurate result
for bubbly flows, but this turbulence model is unavailable in twoPhaseEulerFoam:
therefore the standard k-ε was used for the continuous phase, being the dispersed
phase treated as laminar. Simulations were performed using a fixed bubble diameter
equal to 6.5 mm.
The drag coefficient CD was calculated accordingly to Tomiyama correlation for
partially contaminated air-water systems (Eq. (2.19)) and the swarm factor cor-
rection term h (Eq. (2.21)) proposed by Simonnet et al. (Eq. (2.24)). The usage
of the swarm factor with the blending model is further discussed in Section 5.3.1.
The other interfacial forces, described in Section 2.2.3, were not considered.
The inlet section was modeled as an homogeneous area with uniform properties,
whose diameter was set to 0.38 m. The gas fraction was fixed equal to 0.5 and
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(a) (b)

Figure 5.1: Computational mesh used for RANS simulation of Gemello set-up: (a)
side view, (b) bottom view. The red area is not included in the sparger.

the liquid z-velocity (as well x and y components for both phases) to 0. Air inlet
z-velocity was accordingly set in such a way that the resultant superficial velocity
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was equal to the desired value. The values of k and ϵ corresponded to turbulence
intensity and viscosity ratio equal to 5 % and 10. At the top of the column a zero
gradient condition was applied to all variables, with these conditions:

• gas fraction equal to 1 in case of backflow;

• pressureInletOutletVelocity for both gas and liquid velocities, which cor-
responds to the usual pressure outlet condition;

• inletOutlet for k and ϵ, which corresponds to a zero gradient condition
with a user-defined value in case of backflow. These are set equivalently to a
turbulence intensity equal to 0.01 % and turbulent length scale equal to the
column diameter. The former two are typically OpenFOAM outlet conditions.

A standard wall function was used as wall condition for the turbulent variables,
coupled with no-slip condition for the water velocity, slip condition for the air
velocity and a zero gradient condition for the other variables.
The equations were spatially discretized using the Van Leer scheme [205], while the
Crank-Nicolson scheme [206] was adopted for the time discretization.

5.3 Result and discussion
Experimental and simulation data here used for comparison are taken from Raimundo
[204] and Gemello et al. [207]: in particular simulation results from the latter were
computed using Ansys Fluent, RNG k-ϵ model for turbulence and setting h0 equal
to 0.15 in Eq. (2.27).

5.3.1 Use of swarm correction, h0 and blending parameters
Swarm and blending factors are both multiplicative coefficients of the drag force
term, although their physical meaning is significantly different: while the former
takes into account the presence of a plurality of bubbles, the latter works as indi-
cator of the continuous or dispersed phase.
In particular the limitation of the Simmonet’s relation for swarm factor with the
lower bound h0 was proposed mainly for reasons of numerical stability: in some
commercial solvers it is required the definition a priori of the dispersed and the
continuous phases, which in systems such as bubble column reactors may cause
instability when the air fraction overcomes the dispersed-continuous threshold. Eq.
(2.24) approaches quickly to 0 when the local value of the gas phase fraction over-
comes 0.35: at this value the gas is physically still dispersed but the drag term is
close to 0, originating a miscalculation of the fluid dynamical quantities, leading to
the non-physical outcome of big clusters of bubbles [16]. Imposing the minimum
value h0 apparently solves this issue, but it does not exist a rigorous method for
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its determination, since it is chosen dependently on the gas superficial velocity and
the size of the column, making the simulation not fully-predictive.
The blending factor implementation, on the other hand, tackles this problem dif-
ferently, accounting for the phase inversion: when the gas fraction is high, the drag
force is reduced according to the blending factor and, when it overcomes the max-
imum dispersion value, air is treated as the continuous phase and the air-in-water
drag force is not taken into account. Therefore, a valid choice of the blending model
may replace the limitation to the swarm factor, with the advantage that the pa-
rameters are not dependent on the particular experimental configuration at certain
operating conditions.

5.3.2 Blending approach vs h0 approach
Fig. 5.2 and 5.3 show the results obtained with the blending model in OpenFOAM
implementing the original swarm correction formula proposed by Simonnet (Eq.
(2.24)) and compare them with both experimental measurements and the outcome
of the simulations performed by Gemello et al. [16], who limited the Simmonet
correlation as in (2.27) using h0 = 0.15. The blended model slightly overestimates
the gas fraction, especially in the central part of the section. This fact is due to the
use of standard k-ϵ turbulence model for the liquid phase, which results in higher
prediction for αg in the heterogeneous regime in comparison with the RNG k-ϵ
model used by Gemello et al. [16].
On the other hand, both models provide an excellent prediction of the axial water
velocity (Fig. 5.3) in the homogeneous and heterogeneous regimes. Also in this
case, the lower prediction suggested by OpenFOAM owes to a different turbulence
model rather than the usage of blending factors.
To remove the effect of the different code and turbulence model used by Gemello
et al. [16] from the comparison, the simulations based on the h0 correction of the
swarm effect were repeated in OpenFOAM using the twoPhaseEulerFoam solver
with the standard k-ϵ model and without blending.
Comparison with the blending approach is shown in Fig. 5.4 and 5.5. The gas
fraction prediction matches exactly at the center of the column, while the model
implementing blending slightly overestimates the trend shifting toward the walls,
in homogeneous and heterogeneous regime as well: in both scenarios the agreement
of the simulation data to the experimental results may be considered satisfying.
The predicted axial velocity profiles (Fig. 5.5) are nearly coincident, proving how
the choice between presenting a lower limit for the swarm correction factor and
the usage of blending factors has a negligible impact on them. For this reason,
the choice of the model and/or the eventual parameters adjustment needs to be
executed on the basis of the prediction of αg rather than the liquid velocity.
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Figure 5.2: Time-averaged gas fraction profiles at height z/D = 2.5 at superficial
gas velocity (a) 0.03 m s−1 and (b) 0.16 m s−1: comparison with Gemello et al. [16].
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Figure 5.3: Time-averaged liquid z-velocity profiles at height z/D = 3.75 at super-
ficial gas velocity (a) 0.03 m s−1 and (b) 0.16 m s−1: comparison with Gemello et
al. [16].
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5.3.3 Blending factors impact
In the modeling of bubble columns it is recommended to vary the blending pa-
rameters described in section 2.3 from the default values for both air and water
(αF D and αP D equal respectively to 0.3 and 0.5) used for the calculation of f1 (Eq.
(2.45)) and f2 (Eq. (2.46)) since they cause divergence issues.
As stated before, the primary interest in the head space is to achieve numerical
stability rather than an accurate prediction of the water drops dispersion: since
the water fraction values are extremely low in this domain area, the αF D,l and
αP D,l parameters relative to water have been set equal to 0.05 and 0.2.
The choice must be conducted more carefully when considering the gas dispersion
into water; the maximum gas fraction achievable by the gaseous phase, correspond-
ing to a close-packing state of bubbles, is approximately 0.75 [107]: blending param-
eters thus for air must be chosen accordingly, a reasonable guess for the maximum
value corresponding to partial dispersion may fall in the range 0.7–0.8. The limit
for the total dispersion however needs to be set somewhere 0.1 and 0.5: a lower
value will be unreasonably too close to zero and, on the other hand, a value larger
than 0.5 will cause a steep linear variation from 0 to 1 in f1.
Fig. 5.6a shows how the variation of αF D,g (here and in the following the g subscript
is dropped in sake of simplicity) affects the results in gas fraction and liquid velocity
prediction for the heterogeneous regime (U = 0.16 m s−1), spanning from 0.2 to 0.5.
It is clear that the impact is totally absent in the outer part of the cross-section,
where the gas fraction is in fact lower than 0.2, being thus completely included in
the total dispersion range for any value of αF D considered. In the central part of the
column the predictions, although quite close, do not match perfectly: the gas phase
here is considered as partly dispersed and the blending factor varies accordingly to
the specified αF D. The maximum deviation at the center of the column is however
less than 1%, comparable or even smaller than the experimental error, showing, in
any case, the robustness of the results.
Water axial velocity profiles are reported in Fig. 5.6b: the trends deviation is
even smaller compared to Fig. 5.6a, except for the column axis where a negligible
divergence is notable.
Considering the more accurate prediction of the gas fraction trend and the willing
to set the slope of the linear piece of f1 to the slightest possible value to make
the simulation more stable, the best choice for αF D,g is 0.2. Moreover, αP D,g have
to be set as well: again simulations using the values of 0.7 and .0.8 were run and
the results are shown in Fig. 5.7. Unlikely the fully dispersion, this limit value
has a complete negligible impact even on the air distribution throughout a section:
both values therefore may be used but, in the light of what stated ahead, setting
αP D,g = 0.8 would guarantee a less steep linear variation in the blending factor.
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Figure 5.4: Time-averaged gas fraction profiles at height z/D = 2.5 at superficial
gas velocity (a) 0.03 m s−1 and (b) 0.16 m s−1: comparison between the h0 approach
(with h0 = 0.15) and the blending method in OpenFOAM.
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Figure 5.5: Time-averaged liquid z-velocity profiles at height z/D = 3.75 at su-
perficial gas velocity (a) 0.03 m s−1 and (b) 0.16 m s−1: comparison between the h0
approach (with h0 = 0.15) and the blending method in OpenFOAM.
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Figure 5.6: Time-averaged gas fraction (at height z/D = 2.5) (a) and water z-
velocity profiles (at height z/D = 3.75) (b) at superficial gas velocity 0.16 m s−1:
impact of αF D,g parameter and comparison with experimental data (dots).
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Figure 5.7: Time-averaged gas fraction (at height z/D = 2.5) (a) and water z-
velocity profiles (at height z/D = 3.75) (b) at superficial gas velocity 0.16 m s−1:
impact of αP D,g parameter and comparison with experimental data (dots).
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5.3.4 Impact of the lift force
Figs. 5.8 and 5.9 compare the volume gas fraction and water z-velocity profiles
obtained activating the lift force using the lift coefficient CL proposed by Tomiyama
(Eq. (2.29)) with the ones where it is disabled and experimental data. The lift force
has a negligible impact in the homogeneous regime, being the velocity profiles nearly
uniform throughout the radial section; however when the superficial gas velocity
U allows the transition between homogeneous and heterogeneous regime, both gas
fraction and liquid axial velocity profiles flatten out if the lift force is activated.
This is probably due to the radial distribution of the water velocity, which causes
a significant variation in the vorticity field (i.e. the curl of the water velocity,
often denoted as ω), affecting the resulting lift force value according to Eq. (2.28).
Fig. 5.10 shows the radial behavior of the magnitude of the vorticity vector at
two different heights and superficial velocities. In the heterogeneous regime ω can
reach a value 5 times higher with respect to the homogeneous one, confirming that
the discrepancies revealed in Fig. 5.9 are caused by the wide quasi-parabolic water
velocity profile.
The use of Tomiyama correlation for lift force thus overpredicts the migration of
the air bubbles in the wall direction, especially in the outer radial areas: here
the vorticity reaches the highest values, flattening the corresponding gas fraction
profile.
The reason of the worsening of the numerical prediction caused by the activation of
the lift force could be twofold. On one hand, the correlation proposed by Tomiyama
for the calculation of the lift coefficient is strongly dependent on the Eötvös number
and, therefore, on the bubble size. The assumption of fixed bubble size thus may
strongly impact the role of the lift force, since a proper implementation would
require a full calculation of the bubble size distribution. On the other hand, the
activation of the sole lift force might be not enough to enrich the quality of the flow
prediction, thus possibly requiring the activation of other counteracting interfacial
forces that balance the lift force. However it can be concluded that the lift force
does not lead to an improvement in the modeling of the flow, as clearly shown by
Figs. 5.8 and 5.9.
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Figure 5.8: Time-averaged gas fraction profiles at height z/D = 2.5 at superfi-
cial gas velocity (a) 0.03 m s−1, (b) 0.09 m s−1 and (c) 0.16 m s−1: impact of the
activation of lift force.
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Figure 5.9: Time-averaged water z-velocity profiles at height z/D = 3.75 at super-
ficial gas velocity (a) 0.03 m s−1, (b) 0.09 m s−1 and (c) 0.16 m s−1: impact of the
activation of lift force.
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Figure 5.10: Time-averaged vorticity magnitude radial profiles at height z/D = 2.5
(a) and 3.75 (b).
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Figure 5.11: Computational time of simulation at different superficial gas velocities
(4 processing units used).

5.3.5 Performance enhancement
Since the implementation of blending allows the local identification of the dispersed
phase throughout the domain, the performed simulations may show a remarkable
gain in numerical performance and computational speed compared to model where
such blending is disabled. As a results, the portion of the domain above the free
surface of liquid is properly modeled as a water-in-air dispersion, preventing the con-
vergences issues previously caused by ignoring the phase inversion. Fig. 5.11 shows
the computational time requested by the simulations with and without blending
at various superficial velocities; every simulation is performed using 4 processing
units Intel Xeon E5-2680 v3 2.50 GHz. It is clear that, both in homogeneous and
heterogeneous regime simulations, the blending implementation allows a notable
speed up in the overall duration of the computations, with a decrease of about 50%
in the elapsed time.

5.4 Conclusions
The implementation of the blending approach, together with its capability of cap-
turing the phase inversion, showed an excellent potential of predicting the fluid
dynamics of a two phase column and significant improvements in computational
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performances compared with other models that do not account such blending ap-
proach.
Moreover, it was proved that Gemello modification of Simonnet law for swarm
correction, which sometimes appears ambiguous, may be replaced by an appropriate
choice of blending parameters, leading to significant improvements in computational
performances. In fact, this approach provides a more physical description of the
dispersion, preventing the usage of semi-empirical correlations requiring ad hoc
parameters to adjust the numerical issues arising from the miscalculation of the
drag force when the gas hold-up is high. This matter is addressed through a
definition of a partial dispersion zone, where the drag force relevance is often and
eventually vanished as the phase-inversion zone is reached. The choice of these
parameters was then investigated, with a sensitivity analysis that, starting from
physical assumptions, led to their determination.
Moreover, the activation of lift force was then analyzed using the coefficient pro-
posed by Tomiyama, showing that in the studied system this model overestimates
the bubble migration toward the column walls, with the final result of flatter profiles
for the local gas fraction.
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Chapter 6

Slurry columns modeling

Before going through the application of the blending modeling, described in Chapter
5, to the LES turbulence models coupled with population balance in Chapter 7 and
8, this chapter 1 spotlights a variation of a classic RANS-modeled bubble column,
where solid particles are dispersed in the liquid medium. Here the Ojima column,
described in Section 4.3, is modeled and simulated with different percentage of
solid loading. To conclude, the population balance modeling was coupled to the
simulations to predict the bubble diameter in the presence of solid.
The main goal was the analysis of the impact of solid particles on the overall and
local fluid dynamics of bubble columns and the comparison of their behavior with
the analogous two-phase systems.
However, given the difficulty to obtain exhaustive experimental data from these
systems due to their turbidity as mentioned in Section 4.3, an exhaustive valida-
tion cannot be performed until local experimental distributions of quantities such
volume gas fraction, bubble diameter or velocities of at least one phase are thor-
oughly measured in slurry columns. In this perspective, the Ojima column was
chosen because the experimental work performed, in terms of local measurements,
is among the widest available in the literature. Nevertheless, being a square col-
umn, the traditional RANS approaches did not work perfectly and some numerical
issues were detected at the corners of the sections. Therefore, some adjustments
were required, like the activation of the lift and wall lubrication forces, to obtain
satisfactory agreement with the experimental data even without the presence of
the solid particles. Once the right modeling of the gas-liquid flow was identified,
the method was be applied to gas-liquid-solid flows to test properly the validity of
the approach with an additional solid phase, achieving good agreement with the
experimental measurements.

1This chapter is mainly based on the paper [45]: F. Maniscalco, A. Raponi, M. Vanni, and
A. Buffo, “Computational modeling of the impact of solid particles on the gas hold-up in slurry
bubble columns,” Chemical Engineering Transactions, vol. 86, pp. 1141–1146, 2021.
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6.1 Computational set-up
The square bubble column investigated by Ojima [56] (Section 4.3) was simulated
in Ansys Fluent 19 using a computational mesh made up of about 32000 cells with
an average cell size of about 6 mm, selected after a mesh independency test. The
final mesh is similar to the mesh that is used for the Kouzbour set-up in Chapter 8
(Fig. 8.1), which has the same geometry and dimensions. The average cell size is
1.5 cm.
Since the silica microparticles have mean diameter equal to 100 µm, the modeling
approach used to account for their presence is the one considering the mix solid-
liquid as a single pseudo-homogeneous slurry phase, described in Section 3.2.1.
Therefore, the slurry viscosity and density as functions of the particles density and
loading were calculated using Eq. (3.7) and Eq. (3.8).
The simulations performed with the inclusion of PBM were conducted to evaluate if
the distribution of the bubble diameter has a detectable impact on the distribution
of the gas fraction, which is the only quantity experimentally measured in terms of
local distribution in this study. Therefore, the QMOM with 6 moments, described
in Section 2.5.4, was applied to solve the population balance equations. The break-
age events were accounted for by using the breakage frequency and daughter size
distribution suggested by Laakkonen (Eq. (2.90) and Eq. (2.98)).
On the other hand, the identification of the appropriate coalescence kernel is less
straightforward since coalescence implies various collision mechanisms [56]. In par-
ticular, we used a linear combination of (i) the coalescence kernel proposed by Wang
modeling the collisions due to the wake entrainment effects (Eq. (2.113)) and (ii)
the correlations proposed by Prince and Blanch modeling the coalescence due to
turbulence fluctuations (Eq. (2.106)), buoyancy (Eq. (2.117)) and shear rate effects
(Eq. (2.119)). This approach is required by the multiple phenomena characterizing
bubble coalescence where solid particles are involved as well. With this perspective,
the coalescence efficiency related to the velocity fluctuations, buoyancy and local
shear rate is adjusted by the multiplier β, discussed in Section 3.2.2: the role of
solid particles is predominant in these mechanisms and hence it must be taken into
account in the relative coalescence kernel. The solid particles do not play a role in
the coalescence mechanism caused by the wake entrainment phenomenon, therefore
its presence is not accounted in the corresponding kernel (i.e. the multiplier β is not
present in the expression of the coalescence efficiency related to wake entrainment).
The final overall coalescence kernel used may expressed as:

h(L1, L2) = hW (L1, L2) + h0,P BηP B = hW (L1, L2) + (ht
0 + hb

0 + hs
0)ηP B, (6.1)

where hW (L1, L2) denotes the Wang coalescence kernel due to wake entrainment
and h0,P B the collision frequency expressed by Prince and Blanch as summation
of terms modeling turbulent fluctuations (ht

0), buoyancy (hb
0) and shear rate (hs

0)
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Figure 6.1: Time-averaged volume gas fraction at z/L = 3 with 0% of solid loading
at gas velocity U = 0.02 m s−1. In the legend, each letter is the initial of the
activated interfacial forces in the relative plotted line: (d) drag force, (s) swarm
correction, (l) lift force, (w) wall lubrication force.

effects, while ηP B is the collision efficacy, modified to account for the presence of
solid particles as in Eq. (3.12).
Once more, since in bubble columns the flow pattern reaches only a pseudo-stationary
state, the simulations were performed transiently and the results presented in the
following section are averaged on a time period equal to 180 s, after having discarded
the first 80 s of simulations to exclude the initial transient behavior.
In simulations with fixed bubble size, the bubble diameter was set equal to 8 mm
accordingly to experimental observations. The gas phase was assumed laminar,
while the slurry phase was modeled as turbulent accordingly to the standard k-ϵ
model.
The drag force was implemented using the drag coefficient law proposed by Tomiyama
for partially contaminated air-water systems (Eq. (2.19)) with the swarm factor
correction suggested by Gemello (Eq. (2.27)) since in Ansys Fluent a fine phase
blending modeling, such as the one investigated in OpenFOAM in Chapter 5 is not
available. The choice of other interfacial forces is further discussed in Section 6.2.
At the inlet section the gas fraction was set to 0.5 and the velocity was set accord-
ingly to the gas superficial velocity considered, while the turbulence intensity and
viscosity ratio are equal to 0.05 and 10 respectively.
The local profiles shown in the next section are obtained averaging the sampling
performed through the two perpendicular lines passing through the center of the
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Figure 6.2: Contour plot of the time averaged gas volume fraction in the axial
section at U = 0.02 m s−1 and 0% of solid loading with (left) and without (right)
the lift force.

section.

6.2 Interfacial forces
Primarily, a pure gas-liquid system was considered in order to assess the effective
relevance of the interfacial forces besides the drag force. Local profiles of gas fraction
at elevation z/L = 3, evaluated with gas superficial velocity equal to 0.02 m s−1,
are reported in Fig. 6.1 for different sets of interfacial forces. In particular, the lift
force and the wall lubrication force, with the coefficients proposed by Tomiyama
(Eq. (2.29) and Eq. (2.40)) were tested. What stands out is that the combination
of the drag force, including the correction accounting for the swarm effect, with the
lift and wall lubrication forces provides the most accurate results. In fact, when
the lift force is omitted the gas fraction profile is unrealistically flat. This is also
evident when looking at the contour plots of the gas fraction in an axial section of
the column with and without the presence of the lift force (Fig. 6.2). If the lift
force is not activated, the distribution of the gas fraction is flat not only through a
radial section, as shown in Fig. 6.1, but also along the longitudinal coordinate of
the column.
To isolate the impact of the correlation used for the calculation of the lift coefficient
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Figure 6.3: Contour plot of the time averaged gas volume fraction in a horizontal
section (z/L = 3) at U = 0.034 m s−1 and 0% of solid loading with different lift
coefficients. (a) Tomiyama, (b) no lift, (c) Legendre-Magnaudet, (d) Moraga.

CL, simulations were performed also using the correlations proposed by Moraga (Eq.
(2.33)) and Legendre-Magnaudet (Eq. (2.35)). Time-averaged contour plots of the
gas fraction in a horizontal section, at z/L = 3 are depicted in Fig. 6.3 with various
lift coefficients. What emerges is that the usage of other coefficients than the one
proposed by Tomiyama leads to a unrealistic flat distribution of the gas fraction
field, which does not correspond to experimental observations. Therefore, it can be
concluded, at least using Ansys Fluent to simulate this specific case, the lift force
with CL calculated accordingly to Tomiyama must be included to achieve realistic
results.
The role of the wall lubrication force is to numerically stabilize the simulations,
especially at the corners of the column, peculiar features of a square geometry.
Analyzing once more the contour plot of the time-averaged gas fraction in a radial
section at at z/L = 3 (Fig. 6.4), it clearly appears that the wall lubrication force,
here calculated using the correlation proposed by Tomiyama, reported in Eq. (2.40)
significantly reduces the numerical issues occurring at the corners of the section,
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0 0.20

Figure 6.4: Contour plot of the time averaged gas volume fraction in a radial section
(z/L = 3) at U = 0.034 m s−1 and 0% of solid loading without (left) and with (right)
lubrication force. Red circles indicate the numerical issues at the corner partially
solved by the wall lubrication force.

where the mean gas fraction reaches unrealistic high value if lubrication is neglected.
To conclude, the set of the interfacial forces that must be activated to perform
stable RANS simulations and achieve physical results for this case is composed
of the drag force, corrected by the swarm term, wall lubrication and lift force.
With this set-up, the time averaged radial profiles of the gas fraction αg provide a
satisfactory agreement with the experimental measurements for Cs up to 20%, as
shown in Fig. 6.5.
With the purpose of further improving the quality of the results and, mostly, con-
solidating the numerical stability achieved with the implementation of the wall
lubrication force, the inlet condition of the gas velocity was modified by simulating
a noisy disturbance on the velocity distribution at the sparger. The idea behind on
this choice relies on the possibility that the velocity fluctuations may dismiss the
gas accumulation at the corners of the section. The noise of the inlet gas velocity is
implemented as summation of sinusoidal functions, whose spatial average is equal
to the undisturbed inlet velocity:

U(x, y, t) = U0

[︄
1 + 0.2

[︄(︄ 3∑︂
k=1

ak(t) sin
(︃

2kπ
x

L

)︃)︄
+
(︄ 3∑︂

k=1
bk(t) sin

(︃
2kπ

y

L

)︃)︄]︄]︄
(6.2)

with U0 being the undisturbed inlet velocity. ak(t) and bk(t) are time dependent
coefficients:

ak(t) = sin
(︃2π

T
t + αk

)︃
, (6.3)
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Figure 6.5: Time averaged volume gas fraction at z/L = 3 with (a) 10% and (b)
20% of solid loading and gas superficial velocity of 2.0 and 3.4 cm s−1

bk(t) = sin
(︃2π

T
t + βk

)︃
. (6.4)

Here T is the period in the time domain, αk and βk random numbers in the range
[−π, π]. Fig. 6.6 shows the inlet velocity distribution for U0 = 0.02 m s−1.
Nevertheless, this variation of the inlet velocity did not show a significant effect
on the final outcome of the simulations, and therefore is omitted in the following
CFD-PBM simulations.
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Figure 6.6: Instantaneous snapshot of the velocity disturbance at the inlet section
with U0 = 0.02 m s−1.

6.3 CFD-PBM simulations
The quality of the results may be also improved if the bubble diameter is not
fixed but estimated locally throughout the domain. With this aim, a population
balance model was coupled to the CFD simulations as described in Section 6.1.
However, the experimental work did not provide a local distribution of the mean
bubble diameter and, therefore, the impact of the CFD-PBM coupling should be
assessed by the variation of the local gas fraction radial profiles compared with the
simulations performed at fixed diameter.
The outcome of the simulations confirms the experimental trend, where it was
reported that the increase in the volumetric concentration of the solid particles
promotes coalescence and the increase of the mean bubble size. Fig. 6.7 shows the
instantaneous contour plot of the Sauter mean diameter, d32 at the superficial gas
velocity U equal to 0.02 m s−1 and with solid loading Cs equal to 10% and 20%. The
increase in the bubble size is remarkable (from about 6 to 15 mm) and is notable
throughout the column and it is consistent with the experimental observation by
Ojima et al. [56], who followed up the evolution of the size of a single bubble
with the addition of the solid particles. However, as aforementioned, a thorough
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Figure 6.7: Contour plot of the instantaneous Sauter diameter in the axial section
at U = 0.02 m s−1 and solid loading equal to 10% (left) and 20% (right).

validation of the model is not practicable given the lack of the local distribution of
the bubble size along the column.
When comparing the local distribution of the gas fraction with and without the
usage of PBM, shown in Fig. 6.8, it is striking that, in such conditions, the im-
plementation of a PBM modeling and the subsequent estimation of the local mean
bubble size did not contribute to a noteworthy improvement of the results and the
prediction of the experimental data, especially when the gas superficial velocity is
equal to 0.02 m s−1. The difference is larger when U is increased to 0.034 m s−1; how-
ever, in our opinion, there is not a considerable gain in the accuracy of the results
to compensate the usage of PBM models, which are considerably computational
demanding.
Moreover, at U = 0.034 m s−1 a slight underprediction of the gas fraction in the
outer region, close to the walls, may be detected, especially with Cs = 10%. This
could suggest that solid particles may have an impact on the later motion of the
bubbles and, hence, on the lift force as well. In this scenario, the lift coefficient CL

should be corrected in order to consider this effect promoted by the solid particles.
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Figure 6.8: Time averaged volume gas fraction at z/L = 3 obtained with CFD
(solid lines) and CFD-PBM (dotted lines) simulations with (a) 10% and (b) 20%
solid loading at U = 0.02 (black lines) and 0.034 m s−1 (red lines).

6.4 Conclusions
The simulations here discussed tried to shed lights on the modeling of slurry bubble
columns, confirming the difficulty of the formulation of a consistent model. This
difficulty is even worsened by the experimental procedures for sampling flow quan-
tities such as gas fraction or bubble diameter, which become challenging to perform
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when solid particles are present in the liquid medium.
Furthermore, the square section of the column and the adoption of the RANS
turbulence approach produced numerical issues, especially at the corners of the
section and exceedingly flat profiles. As a consequence, the modeling of this system
required specific assumptions to provide satisfactory results, such as the implemen-
tation of the wall lubrication force and the lift force, even for pure two-phase flows.
However, the modeling framework identified with the gas-liquid simulations was
successfully applied for the gas-liquid-solid configurations as well.
The coupling of a population balance model to the CFD simulations allowed to esti-
mate the bubble size distribution in the column but, however, did not significantly
improve the quality of the results obtained using a fixed bubble diameter.
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Chapter 7

LES and LES-PBM modeling

In this chapter1 the blending model, described in Chapter 5 in the framework of
a RANS turbulence approach, is further extended to a LES turbulence approach.
To strengthen its validity, three formulations for the subgrid-scale viscosity were
tested in different regimes and operating conditions. Results showed the excellent
capability of the LES framework to predict such flows.
To conclude, a PBM model is coupled to LES simulation which is, to best of our
knowledge, a major novelty in the computational modeling of the bubble columns.

7.1 Introduction
In the computational description of bubble columns, turbulence modeling is crucial
and has been a topical matter of scientific interest. In particular, the ambitious
aim of the latest research efforts is the formulation of a simple and effective model
for covering a wide range of operating conditions, from transition to fully turbulent
regimes [10,38,114].
Within this framework, the RANS approach is the most used and k-ϵ closures have
shown the best performances [16, 29]. However, the intrinsic averaging process of
RANS models inevitably causes loss of information, especially when the flow field
is complex as in bubble columns. On the other hand, LES models attempt to
address, at least partially, this issue: in such models the turbulence spectrum is
exactly resolved at the larger scales, while only the turbulence phenomena related
to the smaller scales of motion are modeled. In this perspective, a cut off length
∆ is defined to separate the resolved and modeled field (Fig. 2.13). Nevertheless,
when applied to multiphase system, the LES approach presents several points to be

1This chapter is partly based on the paper [97]: F. Maniscalco, A. Buffo, D. Marchisio, and
M. Vanni, “Numerical simulation of bubble columns: LES turbulence model and interphase forces
blending approach,” Chemical Engineering Research and Design, vol. 173, pp. 1–14, 2021.
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addressed as well, such as the determination of the SGS length or the modeling for
the smaller scales compared to the dimension of the dispersed phase, as described
in Section 2.4.3.
Only lately the LES turbulence descriptions have been used for modeling bubble
columns [18]. However, they have been mainly applied to simple systems, such as
plumes [17,89] or flat 2D systems [208–210], or low gas superficial velocity and hold-
up [28, 30, 38, 136], which are often far from industrial operating conditions. Here
an Eulerian model is proposed, based on a LES description of the turbulence and
the blending approach discussed in Chapter 5. The model is capable of properly
describe the fluid dynamics of industrial-scale bubble columns under a large variety
of operating conditions, from low to high gas velocity and for partially and fully
aerated columns and, in this respect, it is superior to the usual RANS approach.
Different test cases were used to further sustain the model validation: the fully
aerated column experimentally studied by Gemello et al. [16] and described in
Section 4.1 and the column investigated by McClure et al. [29, 67] and described
in Section 4.2 and here represented in Fig. 7.1, where the gas can be fed either
symmetrically (activating both sparger areas at the basis of the column, observable
in Fig. 7.1) or asymmetrically (activating only one of the two halves of the sparger).

7.2 Computational set-up
As performed in Chapter 5 using a RANS approach, simulations were performed
in the framework of the Eulerian-Eulerian method, using the drag force, including
the swarm correction term, as the only interfacial force. While the impact of the
lift is assessed in Section 7.3.3, the other interfacial forces are here omitted since,
as discussed in Section 2.2.3, their role is secondary compared to the drag force.
Simulations were, once again, performed using the OpenFOAM 5.0 code twoPhaseEulerFoam
setting an adaptive time step in such a way that the maximum Courant number
is equal to 0.65. The maximum time step, which is used if the maximum Courant
number condition returns a larger one, is equal to 0.001 s. As in the previous chap-
ters, the results presented in the following sections were time averaged for 100 s
after discarding an initial transient equal to 80 s, with the aim of removing the
initial transient behavior from the statistics. In the discretization of the equations,
the same temporal and spatial schemes as reported in Section 5.2 are here used.
The computational meshes, selected after a mesh independency analysis, have an
average cell size between 0.015 and 0.020 m with a total number of cells equal to
60000 for the Gemello configuration and 41920 for both McClure symmetrical and
asymmetrical operating conditions. The same grids were used also for the LES
simulation, since they approximately satisfy the criterion proposed by Milelli et
al. [18, 138], for whom the cell size should be 1.2-1.5 times the bubble size.
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Figure 7.1: Configuration of McClure (left) and Gemello (right) columns, including
an insight of the inlet sections. The instantaneous gas fraction αg is plotted. The
height Ht of the meshed cylinders is 1.865 m for McClure and 3.6 m for Gemello,
and it is significantly higher than the liquid level.

7.2.1 Further considerations on computational meshes
To further confirm the suitability of the meshes, it must be verified that at least 80%
of the turbulent kinetic energy field is entirely resolved [137]. As a consequence, no
more than 20% of the turbulent eddies are described by the SGS model. Therefore,
the two fields of the resolved (kl,res) and sub-grid scale modeled (kl,SGS) energy
should be explicitly computed and compared. While the latter is calculated by
the turbulence model, the former is explicitly calculated from the resolved water
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velocity field. With this aim ul, was split into the time-averaged and fluctuating
terms 2:

ul = ūl + u′
l. (7.1)

kl,res is then computed as the half of the trace of the resolved Reynolds stress tensor
(u′

lu
′
l) :

kl,res = 1
2 tr(u′

lu
′
l). (7.2)

However, when the flow is pseudo-stationary as in bubble columns, the choice of ūl

as time average between 80 and 180 s could lead to a sensible overestimation of kl,res,
being the flow largely variable in time scales within this period. To address this
issue, ūl, and kl,res were calculating adopting a moving average with a window equal
to D/U ≈ 2.54 s if U = 0.16 m s−1. The choice of this window must be carefully
performed, since it must be wide enough to distinguish average and instantaneous
velocity, but, on the other hand, narrow enough to not overestimate the resolved
turbulent kinetic energy. Fig. 7.2 reports the instantaneous and time-averaged
z-velocity for a point at r/R = 0.45 and z = 1 m in the Gemello column.
Therefore, the instantaneous values of u′

l, the ratio kl,res
kl,res+kl,SGS

was first evaluated
instantly and then time averaged from 80 to 180 s in the domains. Fig. 7.3 reports
the percentage of resolved liquid turbulent kinetic energy at z = 1 m and z =
0.415 m for the investigated systems with gas superficial velocity U = 0.16 m s−1.
The results clearly indicate that more than 80% of the turbulent kinetic field is
fully resolved, thus further confirming the meshes suitability.

7.2.2 PBM modeling
In the last part of this chapter (Section 7.3.6) coupled CFD-PBM are discussed,
with the aim to assess the capability of a LES turbulence framework to predict
the distribution of the mean bubble diameter as well. In fact, a population bal-
ance approach, and the relative solving algorithm, have not been coupled yet to a
LES turbulence framework for describing the complex fluid dynamics involved in
a bubble column. In this perspective, the aim would be to assess if LES modeling
could be a valid alternative to the simpler and more popular RANS approaches
when PBM equations are further added to the model. In fact, RANS-PBM model-
ing have often presented some issues especially in the heterogeneous regime, when
the turbulence is well developed and the prediction of the bubbles breakage and
coalescence, and therefore of the bubbles size, becomes harder [41].

2It is important to stress that this operation is performed on the resolved velocity fields:
therefore the overbar · and the apostrophe ′ denote respectively a time-averaged and a fluctuating
term of the resolved field.
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(McClure) of the percentage of the resolved liquid turbulent kinetic energy, kl,res,
at U = 0.16 m s−1

With this purpose, the PBM modeling was implemented and solved using the
QMOM algorithm described in Section 2.5.4 and six additional transport equations,
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each one relative to the corresponding moment, from order zero to five, of the NDF
(Eq. (2.126)). In order to preserve numerical stability, the upwind scheme [211]
was used for the spatial discretization of the six moments equations, while the time
derivatives are discretized applying the Crank-Nicolson scheme [206], as for the
other flow variables.
Breakage was modeled using the Laakkonen breakage rate (Eq. (2.90)) and daughter
size distribution (Eq. (2.98)) regardless of the hydrodynamical regime. On the other
hand, the coalescence is modeled differently in the homogeneous and heterogeneous
regime since the prevailing mechanism leading to bubble collision and, eventually,
coalescence is different as well. Therefore, for the homogeneous regime the original
collision frequency first proposed by Prince and Blanch (Eq. (2.106) with C1 = 0.28
was used, together with the coalescence efficiency proposed by Coulaloglou and
Tavlarides (Eq. (2.124)) since, at such low gas velocity, the outcome of a collision is
mainly related to the drainage time of the liquid film trapped by the two colliding
bubbles. In Eq. (2.124) CCT was set equal to 6 × 109. On the other hand, when the
gas velocity is high and the heterogeneous regime is reached, Eq. (2.106) must be
corrected in order to account for the high values of gas fraction: hence Eq. (2.112),
first proposed by Wang is used. In particular, C ′

2 was set equal to 0.15, while
Eqs. (2.108) and (2.110) were respectively used to calculate Θ and Λ in Eq. (2.112),
with CΛ = 3.0 and αg,max = 0.8. Moreover, in this scenario, characterized by
higher velocities, the coalescence efficiency is mainly related to the relative velocities
between colliding bubbles, therefore the efficacy developed by Lehr (Eq. (2.122)) is
used.
In the simulation, PBM was activated after the flow reached the pseudo-stationary
state using a constant diameter. At the inlet, a log-normal distribution was assumed
using as mean diameter the value experimentally observed and a deviation of 0.15
(a brief discussion on the impact of the inlet conditions is performed at the end of
this chapter). As in the previous chapters, the results were sampled and then time
averaged for 100 s after the pseudo-stationary state is anew reached.

7.3 Results and discussion

7.3.1 RANS and LES turbulence
Since the two columns here investigated have different aspect ratios, it would be
interesting to look into the developments of the flow patterns above a certain height:
in this way, the possible impact of the inlet section is vanished out.
Fig. 7.4 reports the averaged radial profiles of the volume gas fraction αg and
the liquid axial velocity uz

l at different heights for the symmetrical configurations
computed with the Smagorinsky-Zhang model (Section 7.3.2). Although the aspect
ratio varies sensibly, the flow settling does not change significantly from one system
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Figure 7.4: Time-averaged radial profiles of gas fraction (top) liquid axial velocity
(bottom) at different heights for U = 0.16 m s−1 in Gemello (left) and McClure
symmetrical column (right) calculated by the Smagorinsky-Zhang LES model.

to the other, reaching a developed condition throughout the columns, as soon as
the impact of the sparger becomes negligible.
A comparison of the turbulent fields, i.e. the liquid turbulent kinetic energy kl

and the turbulence dissipation rate ϵl, provides additional information about the
difference with the same fields calculated by the traditional RANS models such as
the standard k-ϵ. This comparison is interesting not only to investigate how these
different models estimate the turbulent quantities, but, also to understand the effect
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on the PBM coupling, whose modeling largely uses the turbulent dissipation rate
as input variables for the formulation of the breakage and coalescence kernels. To
this purpose, in the LES simulation the turbulence dissipation rate related to the
liquid phase ϵl is estimated as [97]:

ϵl = 2νl,eff
(︂
S̄l : S̄l

)︂
(7.3)

where S̄l is the strain rate of the resolved liquid field.
The time averaged radial profiles of the turbulent kinetic energy and turbulent
dissipation rate, in the operating condition of symmetrical gas feed for both systems,
are displayed in Fig. 7.5. The results are mostly consistent with the literature, and,
in particular, confirm that the RANS standard k-ε model provides the highest
estimation of kl not only between specific RANS models, as reported in the work
of Gemello [207], but also compared to the Smagorinsky-Zhang LES model.
Furthermore, another useful tool for model comparison could be the total power
input related to the gas injection,

Ein = π

4 D2H0U(ρl − ρg)g, (7.4)

and the comparison with the integral of the turbulence dissipation rate calculated
over the volume occupied by the gas-in-liquid dispersion V ,

Et =
∫︂

V
αlεlρl dV , (7.5)

Under the assumption that the whole energy furnished by the gas is entirely dis-
sipated by the turbulence, the two terms should correspond. However, this com-
parison is non-trivial: Khan et al. [114] showed that this equivalence may not be
valid in the heterogeneous regime and, recently, Magolan et al. [212] urged that the
inclusion of the bubble induced turbulence may possibly result in large errors in the
computation of the turbulent quantities. This could be the case of the investigation
performed in this Chapter: for instance, at U = 0.16 m s−1 in the Gemello configu-
ration the gas injection provides approximately 310 W, while the volume integral of
the turbulence dissipation (Eq. (7.5)) yields 65 W for the standard k-ε model and
80 W for the Smagorinsky-Zhang model. Likewise, in the McClure symmetrical
configuration the energy input associated to the gas is 185 W, whereas Et for both
cases is around 30 W.

7.3.2 LES turbulence models comparison
Several turbulence models were tested and they are compared in this section. With
this aim, the simulations were performed at U = 0.16 m s−1 to guarantee a suffi-
ciently high degree of turbulence.
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Figure 7.5: Time-averaged radial profiles of liquid turbulent kinetic energy (top)
and turbulence dissipation rate (bottom) at U = 0.16 m s−1 in Gemello column at
z = 1 m (left) and McClure symmetrical column at z = 0.415 m (right).

On these grounds, the LES models for the calculation of the SGS viscosity de-
scribed in Section 2.4.2 were used, and the outcome was compared to the stan-
dard k-ϵ RANS model as well . Results are respectively shown in Fig. 7.6 for the
Gemello and Fig. 7.7 for the McClure symmetrical configurations. What mostly
emerges is a broad equivalence of the LES models in predicting the behavior of the
symmetrically-fed systems. Moreover, all LES models showed positive prediction
performances, given the good match with experimental measurements that can be
noted for both gas volume fraction and liquid axial velocity profiles. As largely
discussed in Chapter 5, the results provided by the RANS formulation present a
satisfactory accuracy as well; however, the deviation with experimental data is
larger compared with the LES models.
Nonetheless, the most interesting results come from the simulations of the McClure
set-up performed in the operating conditions of asymmetrical gas feed and they
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Figure 7.6: Effect of turbulence models at U = 0.16 m s−1 in Gemello column and
comparison with experimental data (circles): time-averaged radial profiles of the
gas fraction at z = 1 m (top) and the liquid axial velocity at z = 1.5 m (bottom).

are depicted in Fig. 7.8. In particular, the three models within the LES framework
showed a striking ability of capturing the peculiar flow patterns arising from an
asymmetrical gas injection. In contrast, the RANS standard k-ϵ model was not ca-
pable to perform in the same way. The reason for such distance between LES and
RANS turbulence models should be looked for in the radically different approach
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Figure 7.7: Effect of turbulence models at U = 0.16 m s−1 in McClure symmetrical
column and comparison with experimental data (circles) : time-averaged radial
profiles of the gas fraction (top) and the liquid axial velocity (bottom) at z =
0.415 m (left) and z = 0.915 m (right).

in modeling the turbulence whose effects are exacerbated by the asymmetrical con-
dition. As pointed out in Section 2.4, the RANS description involves an averaging
procedure that unavoidably generates a loss of information on the flow field vari-
ance. The strong non-uniformity of the flow, originated by the asymmetrical gas
injection, further shows up the weakness of this model.
On the other hand, the Smagorinsky, Smagorinsky-Zhang and Niceno LES models
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showed a shared better capability to describe the asymmetrical gas flow, even if with
different outcomes. However, it can be noted that the Smagorinsky-Zhang model,
which takes into account also BIT effects, provided the most accurate description
of the flow patterns and, therefore, the optimal results. This fact suggests that, in
such heavily non-uniformity of the flow, BIT could play a much more relevant role
compared to the systems where the gas is fed throughout the section of the sparger.
Notwithstanding this, Niceno turbulence model, which computes the SGS viscosity
including BIT as well, did not prove the same effectiveness. A straightforward
explanation for this outcome is difficult, although it might be related to the average
size of the computational grid, which may be not fine enough to solve with an
acceptable degree of accuracy the transport equation for kl, required by the Niceno
model.
In conclusion, the most performing LES turbulence model to describe both sym-
metrical and asymmetrical operating conditions appears to be the one proposed
by Smagorinsky with the addition of the BIT phenomenon inclusion, coherently
with Eqs. (2.69) and (2.71), namely the Smagorinsky-Zhang model. It should be
noted that the usage of a LES turbulence approach could be successfully applied to
square column as well, as discussed in Chapter 8. In particular, the choice of the
LES over the traditional RANS approach allowed to simulate these systems using
only the swarm-corrected drag force as interfacial forces, thus addressing the issues
highlighted in Chapter 6 which were only partially solved by the inclusion of sec-
ondary interfacial forces. Therefore, the adoption of a LES turbulence framework
could represent a big step forward toward the formulation of a single model valid
for every operating condition or column geometry.
Finally, Figs. 7.9 and 7.10 delineate a picture of the flow field in the asymmetrical
and symmetrical gas-feeding conditions in McClure set-up (the outcome for the
Gemello set-up is analogous to the latter), depicting respectively the contour plot
of the volume gas fraction and the vector plot of the liquid z-velocity, both as
time averaged variables. As widely expected, since the gas feed in the asymmetric
case is performed only in the left half side of the cross-section area, the flow field
is strongly asymmetrical in the lower region close to sparger. As the gas bubbles
flow up, the flow becomes progressively more symmetric approaching the liquid free
surface, coherently with experimental inspections [67]. On the contrary, when the
gas injection is performed uniformly across the sparger, a symmetric flow field is
reached throughout the system, including the region directly above the sparger.

7.3.3 Impact of the lift force
In Section 5.3.4 it was proved that, in the framework of RANS turbulence descrip-
tion coupled with blending models, the implementation of the lift force may lead to
significant mispredictions of the flow patterns: the aim of this Section is to verify if
this is valid for the LES approach as well. Furthermore, the operating condition of
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Figure 7.8: Effect of turbulence models at U = 0.16 m s−1 in McClure asymmetrical
column and comparison with experimental data (circles) : time-averaged radial
profiles of the gas fraction (top) and the liquid axial velocity (bottom) at z =
0.415 m (left) and z = 0.915 m (right).

the asymmetrical feed is crucial to this purpose because, being a transversal force, it
acts perpendicularly to the main direction of the bubbles flow and is related to the
phases velocity gradient. Therefore, if present, the lift force should be predominant
in the asymmetrical conditions.
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Figure 7.9: Contour plots of the time-averaged gas volume fraction at U =
0.16 m s−1 in McClure asymmetric (left) symmetric and (right) configuration.

Figure 7.10: Vector plots of the time-averaged liquid velocity (m s−1), depicted
accordingly to its magnitude, at U = 0.16 m s−1 in McClure asymmetric (left) and
symmetric (right) configuration.
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The asymmetric system was then further simulated adopting the LES Smagorinksy-
Zhang model and, in the first place, activating the lift force using Tomiyama cor-
relation for CL, reported in Eq. (2.29). Results, shown in Fig. 7.11 clearly indicate
that, in systems where the gas is fed uniformly, the activation of the lift force has
a low impact compared to the case where CL = 0 with extremely marginal im-
provements in the prediction of the flow variables in such system: as an example,
Fig. 7.11 reports the results of the symmetrically-fed McClure configuration.
However, the most interesting results come from the comparison performed in the
asymmetrical conditions. Instead of improving the quality of the results, the acti-
vation of the lift force even leads to serious miscalculations of both the gas fraction
and liquid z-velocity profiles. The radial profiles calculated with the implementa-
tion of the lift force sensibly differ from the experimental measurements, if they
are compared with the uniformly-fed systems. This is related to the fact that the
lift force strongly pushes the bubbles towards the wall of the aerated half column
in a non-physical manner, suggesting that the correlation developed by Tomiyama
for the lift coefficient leads to an incorrect calculation of this interfacial force. In
fact, the prediction of the flow fields in the asymmetric column is satisfactory by
the sole adoption of drag force and the swarm correction as interfacial force, the
LES Smagorinsky-Zhang turbulence model and the linear blending approach, hence
without any additional secondary interfacial force such as the lift.
Nonetheless, it should be stressed that the correlation developed by Tomiyama
for the lift force coefficient broadly depends on the bubble Eötvös number and,
therefore, on the bubble diameter db: in particular, for the range of bubble diameter
here used, the dependence is particularly strong and a little change in the bubble
size may have an impact on the sign of CL and, consequentially, on the direction of
the lift force, which may point either toward the center of the column or toward the
walls. As example, in the set-up of Gemello, with db = 6.5 mm, CL = 0.03 while,
in the McClure configurations, db = 7.5 mm yields CL = −0.14. In order to discard
this potential bias, the partially aerated system was also simulated using constant
lift coefficients, ranging from -0.2 to +0.2.
The results (Fig. 7.11) confirmed again that the lift force is not suitable to be taken
into account for the studied systems in this computational framework. In particular,
the usage of the Tomiyama lift coefficient clearly overpredicts the lateral motion
of the bubbles, as well as the adoption of a positive constant lift coefficient. On
the other hand, negative values of CL produce better results, but still far from
the experimental measurements. To conclude, it can be said that the activation
of the lift force alone, in the simulation of large bubble columns and using the
model here presented (LES turbulence framework and phases blending approach
with fixed bubble diameter), does not lead to a significant improvement of the
results, regardless of the value used for the lift coefficient CL. As suggested in
Section 5.3.4, this outcome could also be ascribed to the activation of the sole lift
force, hence the lack of other transverse forces, such as the turbulent dispersion
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Figure 7.11: Effect of the lift force coefficient at U = 0.16 m s−1 in McClure symmet-
rical (left) and asymmetrical (right) configuration at z = 0.415 m and comparison
with experimental data (circles). Time-averaged radial profiles of the gas fraction
(top) and the axial liquid velocity (bottom).

force, balancing the lift force might contribute to the mispreditiction of the flow
patterns. However, this point is worthy of deeper investigation in the future, under
the perspective of the definitive assessment of the role of the lift force.
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7.3.4 Extension to transitional and homogeneous regime
The results above discussed are all related to simulations performed at U = 0.16 m s−1,
which corresponds to a fully developed turbulent flow if the column diameter is
equal to 0.39 or 0.4 m [213]. In this condition the agitation is intense and the in-
teractions between bubbles, that may lead either to breakage or coalescence, occur
in the whole air-in-water dispersion. However, when the gas superficial velocity
is reduced, the system reaches back the pure homogeneous regime, where, as ex-
plained in Chapter 1, the degree if agitation is lower and bubbles interact more
rarely than in the heterogeneous regime. Hence, to assess the validity of the model
in the homogeneous and transition hydrodynamic regimes as well, the Gemello
set-up was further investigated at lower gas superficial velocity U and, in particu-
lar, at 0.03 m s−1 and 0.09 m s−1, corresponding approximately to homogeneous and
transition regime respectively. Fig. 7.12 summarizes the radial profiles of the time
averaged αg and uz

l . The Smagorinsky-Zhang LES model coupled with the blending
approach proved again a good capability of prediction, even at these lower superfi-
cial velocity, conferming the outcome of the corresponding RANS k-ε simulations
performed for the same setup and discussed in Chapter 5.
To further strengthen the wide range of applicability of this model, the global
gas hold-up, Φ, which is the average percentage of volume increase in the air-water
system compared to the initial air-free volume of water (Eq. (1.1)), is calculated and
then compared to experimental data or values computed from general correlations.
The value of Φ is experimentally determined according to the difference in liquid
height before and after the gas injection [16] or through differential pressure method
[67]. In the simulations here performed, the global hold-up is calculated as the ratio
of the volume of the gas-liquid dispersion, identified by summing the total volume of
the cells where the local time averaged αg is larger than 0.8, and the initial volume of
liquid. The comparison is performed in Fig. 7.13 for superficial gas velocities up to
0.20 m s−1 both for fully (Gemello) and partially aerated systems, also reporting the
correlation for the global hold-up developed by Reilly et al. [214], which estimates
Φ with a statistical approach using the data available in the literature for fully
aerated columns with D larger than 0.15 m.
The prediction of the LES model are very accurate when the gas superficial velocity
is smaller than 0.15 m s−1. Beyond this value the global gas hold-up is slightly un-
derestimated by the model here presented. This could be due to the polydispersity
of the system, which becomes more relevant as the gas velocity increases [215].

7.3.5 Computational performances
As performed in Section 5.3.5 for RANS simulations, the investigation of the com-
putational demand of this model might provide interesting insides, being a point
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Figure 7.12: Effect of the hydrodynamical regime variation in Gemello column with
Smagorinksy-Zhang LES turbulence model and comparison with experimental data
(circles). Time-averaged radial profiles of the gas fraction at z = 1 m (top) and the
liquid axial velocity at z = 1.5 m (bottom).

worthy of further studies. In fact, LES models are known to require larger compu-
tational resources compared with RANS. The main reason is that the bigger part
of the turbulent spectrum is fully resolved by LES, while in RANS the turbulence
is entirely modeled regardless of the considered length scale. Fig. 7.14 summa-
rizes the computational time elapsed per 100 cells of domain for three investigated
systems at U = 0.16 m s−1, keeping mesh unchanged for both turbulence models,
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which are the standard k-ϵ model for the RANS and the Smagorinsky-Zhang for
the LES approach. As expected, the latter showed an heavier computational de-
mand compared with the former. Nonetheless, the increase in computational time
detected when using the LES model is smaller than 50% in all the configurations.
This drawback is highly compensated by the larger accuracy in the results provided
by the Smagorinsky-Zhang model, especially for the partially aerated system where
the difference of computational performances is the lowest and, at the same time,
the discrepancy in the performances between the LES and RANS models is the
highest.

7.3.6 CFD-PBM simulations
To conclude, we included the PBM in the present CFD model and it was imple-
mented as described in Section 7.2.2. Fig. 7.15 compares the mean Sauter diameter
obtained with LES Smagorinsky-Zhang and RANS standard k-ϵ models with exper-
imental data sampled in Gemello set-up at U = 0.03 m s−1. Once more it emerges
the remarkable capability of the Smagorinsky-Zhang model to describe such bub-
bly flows, compared with the classical RANS approach. This outcome could be
due to different reasons, related to the distinct calculation in the two models of the
the characteristic flow variables such as gas fraction or liquid velocity as discussed
above. However, the main reason should be looked for in the different prediction of
the turbulence dissipation rate as highlighted in Fig. 7.5, whose field is an ’input’
parameter for both coalescence and breakage kernel. Therefore, different estima-
tions of the field of ϵ may lead to significant discrepancies in the prediction of the
mean bubble diameter, as pointed out by Fig. 7.15 for the homogeneous regime and
Fig. 7.16 for the heterogeneous regime.
In Section 7.2.2 it was mentioned that in the different hydrodynamical regimes the
predominant phenomena involved in bubble coalescence may change, and therefore
different coalescence kernels were used. Fig. 7.17 further confirms this hypothesis,
showing that, if at low gas velocity the coalescence is modeled in the framework
proposed by Wang, the predicted bubble diameter profiles sensibly diverge from
the experimental data.
This is also confirmed at the heterogeneous regime, by performing the same simu-
lation at U = 0.16 m s−1, whose results are reported in Fig. 7.18. The outcome is
reversed if compared to the homogeneous regime: the coupling of the Wang collision
frequency and Lehr coalescence efficacy provided a notably more precise prediction
of the mean Sauter diameter compared to Fig. 7.17.
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Figure 7.15: Time averaged radial profiles of the mean Sauter diameter at z = 1 m
and U = 0.03 m s−1 in the Gemello set-up: comparison between LES Smagorinsky-
Zhang model and RANS standard k-ϵ model.
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Figure 7.16: Time averaged radial profiles of the mean Sauter diameter at z = 1 m
and U = 0.16 m s−1 in the Gemello set-up: comparison between LES Smagorinsky-
Zhang model and RANS standard k-ϵ model.
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Figure 7.17: Time averaged radial profiles of the mean Sauter diameter at z = 1 m
and U = 0.03 m s−1 in the Gemello set-up: comparison between coalescence kernels
as described in Section Section 7.2.2.
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Figure 7.18: Time averaged radial profiles of the mean Sauter diameter at z = 1 m
and U = 0.16 m s−1 in the Gemello set-up: comparison between coalescence kernels
as described in Section 7.2.2.
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7.4 Conclusions
LES turbulence models were successfully applied, in the framework of an Eulerian-
Eulerian formulation, for the modeling of bubble columns. In particular, the LES
description showed excellent performances in predicting the flow at both low and
high gas velocity. To further maximize the validity of this approach, different
operating conditions were tested, by simulating systems with symmetrical and non-
symmetrical gas injection. LES model widely outperformed the classical RANS
k-ϵ approach and, in particular, the formulation proposed by Smagorinsky for the
computation of the subgrid turbulence viscosity, coupled with the inclusion of the
BIT effects, presented the best results among the LES models.
The relevance of the lift force was then tested, with particular focus on the asym-
metrical gas feed condition, being the configuration where this force was expected
to be relevant at the most. To isolate the impact of the bubble diameter on the lift
coefficient, constant values were used as well. Results showed that the inclusion of
the lift force did not lead to an improvement of the result accuracy.
Finally, coupled CFD-PBM simulations were performed to assess the capability
of the LES turbulence approach to estimate the bubble size distribution. The
outcome revealed that, if the coalescence is properly modeling in accordance with
the hydrodynamical regime, the Smagorinsky-Zhang model provides once more
excellent ability to estimate the local mean bubble diameter, at both low and gas
high velocity.
The successful coupling of PBM-LES simulations applied to bubbly flows may open
new scenarios in the description of bubble columns. In the next chapter, as an
example, it will be applied for the estimation of the mass transfer coefficient in a
different experimental set-up.
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Appendix: sensitivity the inlet conditions in PBM
simulations
A further interesting point could be the investigation of how the boundary con-
ditions of the PBM equations, i.e. the mean bubble size and the variance in the
log-normal distribution imposed at inlet, impact on the evolution of the bubble
diameter through the axial coordinate. We used experimental data of the column
of Gemello in the homogeneous regime (U = 0.03 m s−1)
Fig. 7.19 shows the axial profiles of d32 with different means and deviations µ
set at the inlet section using the RANS k-ϵ approach. What emerges is that the
inlet value of the Sauter diameter is highly relevant only in the bottom part of
the column: after a distance approximately equal to the column diameter (which
is also the length commonly recognized within the flow stabilizes), the variation
with z is sensibly smaller. Morever, it can be identified a range of ’optimal’ initial
mean diameters, between 8 and 10 mm: within this interval, that includes the value
experimentally observed, the axial evolution of d32 is extremely similar. Therefore,
it can be concluded that, in the specification of the inlet conditions for the bubble
diameter, a certain margin for error is allowed, at least in the homogeneous regime.
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Figure 7.19: Time-averaged Sauter diameter axial profiles at U = 0.03 m s−1 using
RANS k-ϵ approach. Impact of the mean Sauter diameter (d̄32) and of the standard
deviation (µ) of the log-normal distribution imposed at the inlet section.
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Chapter 8

LES-PBM simulations for mass
transfer estimation

In this chapter1 the coupled LES-PBM model, described in Chapter 7, is adopted
to investigate the fluid dynamics and quantify the mass transfer phenomenon in the
square bubble column described in Section 4.4. In Chapter 6 it was discussed that
the adoption of a RANS turbulence framework to describe square bubble columns
could lead to numerical issues, whose solution requires further specific modeling
assumptions. On the other hand, in this Chapter it is shown that the LES turbu-
lence description allows to address these points without further assumptions on the
secondary interfacial forces, using only the drag force, with the swarm correction,
as interfacial forces, as performed for the cylindrical columns.
Moreover, the effect of the presence of small quantities of sodium dodecyl solfate
(SDS) in the liquid phase is studied, with a particular focus on its effect on the
bubble size distribution and mass transfer performances. In particular, the predic-
tion of the mass transfer coefficient is a test to assess the quality of the population
balance approach.

8.1 Introduction
The experimental work performed by Kouzbour et al. [202,203] investigated the role
of surfactants, and of SDS in particular, on the gas hold up, bubble size and mass
transfer coefficient for O2 in the square bubble column described in Section 4.4,
using gas superficial velocity up to 0.09 m s−1. It was reported that the addition

1This chapter is mainly based on the paper [203]: S. Kouzbour, F. Maniscalco, A. Buffo,
M. Vanni, X. F. Grau, G. Bouchaib and Y. Stiriba, “Effects of SDS surface-active agents on
hydrodynamics and oxygen mass transfer in a square bubble column reactor: Experimental and
CFD modeling study” (to be submitted to Chemical Engineering Science).
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of SDS, regardless of its concentration, leads to higher global gas hold-up, with a
difference up to 25% compared with the experiments performed with water. This is
probably due to the role of SDS in bubbles interactions, which inhibits coalescence
and leads to a smaller average size of the bubbles, resulting in a larger gas hold-up.
This phenomenon is also at the root of other main findings of the study: the mass
transfer coefficient klal is larger as the SDS is added in the heterogeneous regime.
The impact of the addition of SDS to the liquid phase is actually twofold: on one
side it decreases kl because the corresponding oxygen diffusivity in water is lower,
since the SDS molecules migrate toward the bubble-liquid interface, hindering the
O2 transfer from one phase to the other; on the other side, it increases al due to
the inhibition of bubbles coalescence and, therefore, the lower mean bubble size.
Among these two effects, the latter is predominant and, therefore, klal increases in
the contaminated systems.
In this Chapter, the LES-PBM model described in Chapter 7 is applied to assess
its potential to predict the above phenomena.

8.2 Computational set-up
The simulations were performed using the computational grid described in Fig. 8.1.
In particular, the same criterion discussed in Section 7.2 is followed, with the re-
sulting cell size ranging from 6.8 to 14 mm
As done for the other set-ups, the sampled fields were time averaged after the flow
reached the pseudo-stationary state: here the results presented in Section 8.3 were
averaged over a time period equal to 60 s. The CFD model used in Chapter 7 is
analogously applied: the only interfacial force considered is the swarm-corrected
drag force, using the drag coefficient proposed by Tomiyama for partially contam-
inated air-water systems (Eq. (2.19)) and the Simonnet swarm factor (Eq. (2.24)).
The phase blending is implemented as well, as described in Chapter 5.
Considering the investigated range of gas velocity, the PBM was implemented as
done in Chapter 7 using the coalescence kernel valid for the homogeneous regime.
Coherently, the mean diameter at the inlet was set accordingly to the values esti-
mated by visual inspection of the experimental flows. In the QMOM algorithm, the
six moments of the NDF were then calculated, as done in Section 7.3.6, by assum-
ing a log-normal distribution with standard variation equal to 0.15. The boundary
conditions and numerical schemes described in Chapter 5 and Chapter 7 are here
adopted as well.
Furthermore, it could be argued that the presence of contaminants should be prop-
erly accounted in the coalescence and breakage kernels given their impact on the
bubbles interface mobility [150] and the hindrance effect on the bubbles coalescence.
However, the range of concentrations used for the SDS solutions, spanning from 0
to 30 ppm, is extremely low: hence here the effect of the contaminant is considered
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only by reducing the interfacial tension γ, which was experimentally measured as
function of the SDS concentration.
In the computational estimation of klal, kl was calculated used the correlation pro-
posed by Lamont and Scott (Eq. (3.3)) and the reduction of the oxygen diffusivity
coefficient in water due to presence of SDS is extrapolated by the experimental
measurements performed by Hebrard et al. [216]. The specific interfacial area al

was computed from the LES-PBM simulations using Eq. (3.6).
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(a) (b)

Figure 8.1: Computational mesh used for LES simulation of Kouzbour set-up: (a)
side view (the height is cut to 2.5 m), (b) bottom view. The red area is not included
in the sparger.
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Figure 8.2: Global gas hold-up Φ obtained through LES-PBM simulation compar-
ison with experimental measurements for air-water and air-SDS solution systems.

8.3 Results and discussion
Firstly, in order to assess the general validity of the CFD model, the global hold-up
obtained adopting the LES Smagorinsky-Zhang model coupled with PBM equa-
tions was calculated for both systems (air-water and air-SDS solution) in a wide
range of gas velocity. Fig. 8.2 reports the computational values of Φ as function
of the superficial gas velocity U and compares them with the corresponding exper-
imental measurements. It should be noted that the simulations performed using
fixed diameter (i.e. without PBM equations) provided broadly similar values, and
therefore they were not reported in this work.
A noteworthy difference between computational and experimental data may be
detected in the early transition regime, while an overall good agreement is reached
in the homogeneous regime and in the second part of the transition regime, which
approaches the heterogeneous regime. Furthermore, the gas hold-up predicted for
the contaminated system is larger than the corresponding value for air-water, in
line with the experimental trends. Hence, these results confirm the suitability of the
LES description to describe the flow in bubble columns with square section. This
feature, further highlighted by the comparison of local profiles of αg and uz

l reported
in Fig. 8.5, appears to be in contrast with the criticality reported in Chapter 6,
arisen from the application of the RANS framework to the Ojima square bubble
column. In that case, lift and wall lubrication forces had been necessarily accounted
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Figure 8.3: Instantaneous contour plots of Sauter mean diameter at U = 7.95 cm s−1

for (a) tap water and (b) contaminated water with 30 ppm of SDS.

for, in addition to the drag force, to retain numerical stability and correctly estimate
the flow. Therefore, the LES description here seems to overcome these issues,
correctly modeling the flows with the same choice of interfacial forces (drag only
with the swarm correction) used for the cylindrical systems.
Fig. 8.3 depicts the instantaneous field of the Sauter mean diameter d32 along
the axial coordinate, calculated using the LES-PBM model, whether the liquid
phase is water or a 30 ppm solution of SDS. What emerges is that the addition of
the contaminant leads to a smaller average size of bubbles, which is in line with
the experimental findings. In fact, SDS molecules are adsorbed preferentially at
the bubble-liquid interface, reducing the interface mobility and hence hindering
coalescence. In the computational model, this effect is taken into account by using
the effective surface tension γ correlated to the mixture air-SDS solution used.
The impact of SDS is also detectable calculating the time averaged horizontal pro-
files of the volume gas fraction and liquid axial velocity and comparing them to
results obtained using water as the continuous phase (Fig. 8.4). It can be noted
that the presence of the contaminant has an effect on the liquid velocity field as
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Figure 8.4: Impact of contamination. Time averaged gas fraction (a) and liquid
axial velocity (b) horizontal profiles obtained with CFD-PBM simulations at U =
3.57 and 7.95 cm s−1 and z = 1 m for tap water and contaminated water with 30
ppm of SDS.
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Figure 8.5: Impact of population balance modeling. Time averaged gas fraction (a)
and liquid axial velocity (b) horizontal profiles obtained with CFD simulations for
the configuration with tap water at Ug = 3.57 and 7.95 cm s−1 and z = 1 m with
and without population balance modeling.

well, especially at high gas velocity. This could be related to the aforementioned
increase of gas hold-up which, in turn, is due to the presence of smaller bubbles.
The resulting bubble crowding is then heavier, reducing the axial component of the
liquid velocity: this is particularly evident at the center of the column.
However, focusing on the local field of the gas fraction and liquid axial velocity, the
addition of the PBM model has a negligible impact on their prediction, as showed
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Figure 8.6: Estimation of the mass transfer coefficient through CFD-PBM simula-
tions and comparison with experimental measurements for tap water at the bottom
(a) and top (b) probe.

in Fig. 8.5, if the mean bubble diameter experimentally observed is used in each
single case as fixed value.

8.3.1 klal estimation
The local estimation of the mean bubble size, provided by the PBM equations,
is crucial when the computation of the liquid side mass transfer coefficient klal is
pursued. In this perspective, the calculation of al is particularly straightforward,
being related to the moment of the NDF of order two through Eq. (3.6), which is
directly calculated by the QMOM algorithm.
Figs. 8.6 and 8.7 report the simulated and experimental mass transfer coefficient,
respectively for the water-air and SDS solution - air systems, as functions of the
gas superficial velocity. The sampling is computationally performed at the actual
positions of the two oximeters, namely the bottom and top probe: therefore the klal

calculated with LES-PBM simulations is an average in the region of the domain
corresponding to the experimental measurements.
It immediately stands out the growing trend of klal with the gas superficial velocity.
This is unquestionably related to the higher degree of agitation of the system,
which is directly proportional to the velocity of the gas bubbles. This results in an
increased surface renewal mobility and, therefore, in an enhancement of the mass
transfer mechanisms.
Another aspect that emerges is that the mass transfer coefficient measured or cal-
culated at the top probe is generally higher than the one detected by the bottom
probe. This fact is due to the establishment of the flow patterns, which occurs
along the axial direction. The distance between the sparger and the bottom probe
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Figure 8.7: Estimation of the mass transfer coefficient through CFD-PBM simu-
lations and comparison with experimental measurements for water contaminated
with 30 ppm SDS at the bottom (a) and top (b) probe.

is only 0.11 m, lower than the the hydraulic diameter. The consequence is that
this probe samples in a portion of space where the flow and the resulting agitation
have not fully developed yet, inevitably resulting in lower values of klal. On the
other hand, the top probe fetches data from a well developed region of the flow and
therefore the relative mass transfer coefficients are higher.
Moreover, among the two opposite effects on klal caused by the addition of SDS to
the liquid phase mentioned in Section 8.1, i.e. the decrease of kl due to the lower
oxygen diffusivity and the increase of al due to the smaller average bubble size,
the latter appears predominant from LES-PBM simulations, in line, again, with
experimental measurements.
To conclude, it should be stressed the excellent potentiality of the computational
model that computed klal with marginal errors, regardless of the location of the
probe or the composition of the liquid phase. This is further highlighted by Fig. 8.8,
which compares in a parity plot experimental and computational values of the mass
transfer coefficient.

8.4 Conclusions
The LES-PBM model discussed in Chapter 7 was successfully applied to a square
bubble column to simulate the flow characteristics. Either water or a SDS solution
is used as liquid phase, which is accounted for in the value of the gas-liquid surface
tension.
In particular, since the model was applied without any additional adjustment or
modification on the interfacial forces, the excellent results may suggest that it could
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Figure 8.8: Parity plot of klal. Comparison of experimental measurements and
computational estimations.

be used for slurry bubble columns as well, possibly solving the issues deriving from
the application of a RANS turbulence description pointed out in Chapter 6.
The simulations confirmed the observed experimental trend consisting in a increas-
ing gas hold-up with the addition of the contaminant due to the inhibition of
bubbles coalescence and the resulting reduction of their average diameter.
The implementation of a PBM model allowed to assess the bubble size distribution
and well contributed to the prediction of the flows. However, the most relevant
contribution of this implementation is the correct estimation of the bubbles interface
area and therefore, of klal. In fact, the proposed model showed its considerable
capacity of quantifying the oxygen mass transfer mechanism with particularly high
precision, as suggested by the comparison with experimental data.
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Chapter 9

Final remarks

This work attempted to shred some lights on several aspects of the modeling of
bubble columns, following the spirit of the latest trends in the scientific research,
whose ambitious aim is to reach a single model valid for the widest range of geome-
tries and operating conditions. In this perspective, multiple operating conditions
and experimental set-ups were chosen for data comparison and model validation to
maximize the validity of the latter.
It was showed that a proper modeling of phase interactions and phase inversion
is crucial to achieve stability in the numerical simulations. In particular, a fine
modeling of the phase blending, capable to distinguish locally the continuous and
dispersed phases, was discussed and a detailed tuning of its parameters was per-
formed. This blending modeling equaled the performances of other models relying
on fitting parameters based on a particular test case, and, at the same time, re-
ported an additional speed up of the simulation time up to 50%. The blending
model, first analyzed in a framework of a RANS description of the turbulence, was
then successfully applied to LES simulation as well.
Afterwards, a three phase square bubble column was investigated adopting the
RANS turbulence description. Given the small size of the solid particles, the solid-
liquid mixture was described in accordance with the pseudo-homogeneous model.
The particular geometry of the column required the activation of secondary inter-
facial forces such as the lift and the wall lubrication force. Nevertheless, the final
prediction of the local gas fraction, tested up to a solid loading equal to 20%, was
undoubtedly satisfactory. Secondarily, it was also tested the efficacy of a PBM
implementation, accounting for the impact of solid particles on the bubbles inter-
actions. However, this did not lead to a significant improvement of the quality of
the results.
Moreover, the aforementioned LES turbulence approach was used to describe the
flow in cylindrical bubble columns at high gas superficial velocity and with different
conditions of gas injection. Results showed that the Smagorinsky model for the
calculations of the subgrid-scale turbulent viscosity, coupled with the inclusion of
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a BIT viscosity as well, provided an excellent estimation of the flows in all the
studied operating conditions, especially if compared to the RANS approach. This
outcome is particularly noticeable in the operating conditions where the gas is fed
only trough one half of the sparger.
In both RANS and LES simulations the impact of the activation of the lift force
was assessed. When the gas is fed uniformly, there is no significant improvement of
the quality in the prediction of the flow. On the other hand, in the asymmetrical
feed conditions, the inclusion of this force led to serious miscalculations of the flow
variables, regardless of the value of the lift coefficient.
The Smagorinsky-Zhang model was then coupled to a PBM implementation to
evaluate the local distribution of the mean bubble diameter as well, in both homo-
geneous and heterogeneous regimes. In particular, while both bubbles breakage and
collision frequencies were assumed to be mainly related to turbulent fluctuations,
the coalescence efficiency adopted in the PBM kernels is based on the drainage
time of the liquid film trapped the colliding bubbles for the homogeneous regime,
and on the relative velocity of the colliding bubbles for the heterogeneous regime.
These assumptions led to an optimal estimation of the Sauter diameter compared
to experimental data.
Additionally, the LES-PBM model was used to evaluate the fluid dynamics and the
mass transfer coefficient in a square bubble column, with and without small con-
centration of SDS. The model successfully reproduced the observed experimental
behavior and, in particular, the impact of the SDS on the mass transfer coefficient,
which was increased by the addition of the contaminant because the latter hinders
coalescence and leads to smaller bubbles, eventually corresponding to a larger spe-
cific interfacial area. In particular, the PBM-LES description was able to predict
klal with a remarkably small error percentage.
Considering the outcome of this work, a future development could be the application
of the LES-PBM model to the description of slurry bubble columns. It was shown
in Chapter 6 that the adoption of the RANS framework to describe turbulence
in square bubble columns generated nonphysical results and numerical issues at
the four corners of the section. The inclusion of secondary interfacial forces, the
lift force and, especially, the wall lubrication force, was then crucial to address, at
least partially, these points. On the other side, the simulations performed within
the LES description of the square column analyzed in Chapter 8 did not present
any numerical issues at the corners of the section. This outcome suggests that the
computational instabilities detected in Chapter 6 were probably generated by the
RANS models of the turbulence, regardless of the presence of the solid particles in
the liquid phase. Therefore, it would be valuable to evaluate if the LES approach
could solve these issues when the presence of solid particles is included as well.
Moreover, the results arisen from the inclusion of the lift force and bubble induced
turbulence effect suggest that the future research should focus more on their actual
relevance, with the aim of thoroughly assess the respective role and importance in
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both numerical and physical terms. In this perspective, the achievement of a final
and conclusive evaluation of these phenomena is advisable and, in this light, this
doctoral dissertation provided new insights for the forthcoming studies in this field.
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Nomenclature

Latin symbols
S strain of rate tensor s−1

g gravitational acceleration m s−2

u velocity m s−1

CD drag coefficient -
CL lift coefficient -
Cs volumetric solid loading -
D column diameter m
Din sparger diameter m
DH hydraulic diameter m
Ein power input due to gas injection W
Et volume integral of turbulence dissipation rate W
Ht column height m
H0 liquid static height m
I identity matrix -
R column radius m
U gas superficial velocity m s−1

al air-liquid interface area per volume m−1

d32 Sauter bubble diameter m
db bubble diameter m
ds particle diameter m
h swarm factor -
k turbulent kinetic energy m2 s−2

kl liquid side mass transfer coefficient m s−1

p pressure Pa
r radial coordinate m
z axial coordinate (distance from the sparger) m
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Nomenclature

Greek symbols
∆ LES filter length m
Φ Global gas hold-up -
σ stress tensor Pa
ω vorticity s−1

α volume fraction -
γ surface tension N m−1

ϵ turbulence dissipation rate m2 s−3

µ dynamic viscosity Pa s
ν kinematic viscosity Pa s
ρ density kg m−3

Subscripts
FD fully dispersed
PD partially dispersed
TD turbulent dispersion
VM virtual mass
WL wall lubrication
eff effective
lam laminar
g gas
l liquid
res resolved scale
t turbulent

Acronyms
BIT bubble induced turbulence
CFD computational fluid dynamics
DSD daughter size distribution
LES large eddy simulation
PBM population balance modeling
RANS Reynolds averaged Navier-Stokes
SDS sodium dodecyl solfate
SGS sub-grid scale

Dimensionless numbers
Reb bubble Reynolds number uldbρl/µl

Eob bubble Eötvös number (ρl − ρg)gd2
b/γ
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