
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Helping Novice Developers Harness Security Issues in Cloud-IoT Systems / Corno, Fulvio; De Russis, Luigi; Mannella,
Luca. - In: JOURNAL OF RELIABLE INTELLIGENT ENVIRONMENTS. - ISSN 2199-4676. - ELETTRONICO. - 8:(2022),
pp. 261-283. [10.1007/s40860-022-00175-4]

Original

Helping Novice Developers Harness Security Issues in Cloud-IoT Systems

Publisher:

Published
DOI:10.1007/s40860-022-00175-4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2960962 since: 2022-08-30T15:32:44Z

Springer

Springer Nature 2021 LATEX template

Helping Novice Developers Harness Security Issues in

Cloud-IoT Systems

Fulvio Corno1, Luigi De Russis1 and Luca Mannella1*

1Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, Torino, 10129, Italy.

*Corresponding author(s). E-mail(s): luca.mannella@polito.it;
Contributing authors: fulvio.corno@polito.it; luigi.derussis@polito.it;

Abstract

The development of cloud-connected Internet of Things (IoT) systems is becoming more
and more affordable, even to novice programmers, thanks to dedicated cloud platforms
that already integrate the core functionality needed by an IoT system. In this con-
text, a growing number of IoT systems are being developed and deployed on open net-
works, often without integrating adequate security in the process. Novice IoT program-
mers, in particular, tend to overlook security issues, as confirmed by a small user study.
Starting from this risk, the paper analyzes the security features available in two major
cloud-IoT platforms (Amazon Web Services and Microsoft Azure) and highlights those set-
tings, tools, and practices designed to ensure more secure implementations. We observed that
these platforms would reasonably address many security problems detected in the study, if
only the correct features were identified and used. The paper finally contributes a set of
guidelines to support novice IoT developers in avoiding the main and recurrent security
issues in their projects and better exploiting cloud-IoT platforms’ inherent security features.

Keywords: AWS, Azure, Cloud, Cybersecurity, Guidelines, IoT, Novice Programmers

1 Introduction

Internet of Things (IoT) and cloud computing
are two widespread emerging technologies that
are becoming very popular not only for scholars
and expert developers but also for hobbyists and
novice developers. Many users are now using IoT
devices in their houses [1], and the cloud com-
puting market is expanding year after year. The
growth of these two fields brings to the inclusion
of IoT functionalities inside the cloud platforms
and the emergence of specialized features needed
in IoT systems. In the last years, these platforms
aided the development of IoT solutions thanks

to the already integrated functionality a cloud-
connected IoT application needs. Nowadays, these
platforms are quite easy to use, even by novice
programmers, and more affordable than a few
years ago. Furthermore, cloud computing service
providers allow their customers to pay only for
the resources effectively consumed, facilitating the
entry of many developers into this market.

Currently, according to Gartner’s evaluation
[2], the major cloud platforms for infrastruc-
ture and services are: Amazon Web Services
(AWS), Microsoft Azure, Google Cloud Platform

1

Springer Nature 2021 LATEX template

2 Article Title

(GCP), Alibaba Cloud, Oracle Cloud Infrastruc-
ture (OCI), Tencent Cloud, and IBM Cloud.
Furthermore, all these platforms include specific
tools designed for developing IoT applications or
interacting with IoT devices.

Unfortunately, such expansion comes with a
price. This growing number of IoT applications
are too often designed, developed, and deployed on
open networks without integrating adequate pri-
vacy and security in the process [1]. For instance,
one of the most known IoT failures is the Mirai
Botnet [3]. Using hard-coded and easy-to-guess
passwords in thousands of IoT devices allowed
attackers to create several massive botnets able
to execute powerful Distributed Denial of Ser-
vice (DDoS) attacks. Another famous cyberse-
curity flaw in the IoT domain occurred in the
implantable cardiac devices developed by St. Jude
Medical1 (now part of Abbott Laboratories). In
this case, the vulnerability occurred in the trans-
mitter (a device called Merlin@home) that reads
the cardiac device’s data and remotely shares it
with doctors without authentication or encryp-
tion. Indeed, an attacker could easily impersonate
a transmitter unit and communicate with the car-
diac device. In this way, malicious users could
control the device depleting the battery or admin-
istering incorrect pacing or shocks. However,
sometimes the attack could start from the cloud
platform and compromise the device. Indeed, at
the beginning of last year, a new CVE related to
a core component of the Kalay cloud platform for
IoT devices offered by ThroughTek was created
[4]. By exploiting this flaw, a malicious user could
steal the credentials used by a user to access one
of her devices. To proceed, the attacker should
obtain the unique identifier of the device. Then,
registering another device with the same identi-
fier on the network, she overwrites the original
device on Kalay servers. Once this association is
established, the next victim’s connection will be
directed by the server to the attacker, allowing her
to steal the credentials.

The burden of ensuring the security of com-
plex IoT systems falls ultimately on the devel-
opers, and security considerations add to the
complexity of this already challenging applica-
tion domain. Building a fully secure system is

1https://www.muddywatersresearch.com/research/stj/

mw-is-short-stj/, last visited on October 06th, 2021.

challenging and requires a deep understanding
of all the issues involved. However, even novice
programmers could reach a basic level of secu-
rity, avoiding the most basic vulnerabilities, if
they apply security-by-design concepts, following
a clear and focused set of guidelines during their
development process.

Nevertheless, designing a secure application
from the beginning is not always straightforward,
especially for a novice developer. However, this
task could be tough even for experienced devel-
opers if they are new to a particular technology
(especially in a diversified programming field like
the IoT). It is challenging to avoid security issues
“by design” if programmers do not feel comfort-
able with a specific technology. Hence, in this
work, we focused on novice IoT programmers, by
considering software developers who are not new
to the programming world in general, but they had
never developed a full-working and production-
ready IoT system.

The goal of this paper is to help novice IoT pro-
grammers realizing more secure cloud-IoT solu-
tions. To achieve this goal, the paper provides
a set of straightforward guidelines that could be
easily followed by developers new to this specific
application domain, suited to the major cloud-
IoT platforms. To conduct this work, we started
from preliminary results presented in [5], where
we exposed a use case developed in the context
of a training activity. In that use case, a group of
novice IoT developers created a could-IoT appli-
cation using a major cloud platform. Initial results
showed that developers often did not accurately
consider some security issues in their design and
implementation, thus motivating further research
for providing them an adequate support. The
results initially presented in [5] are briefly recalled
and extended in this paper (Section 5), where
we try to understand the security perception of
this class of developers and the impact of this
perception on their developed applications.

Taking into account the survey’s findings, this
paper analyzes some relevant security features
available in Amazon Web Services (AWS) and
Microsoft Azure, two of the major cloud IoT plat-
forms, to comprehend if they could compensate for
novice IoT programmers’ lack of security knowl-
edge. AWS and Azure are well-known cloud plat-
forms, with a wide industry adoption and compa-
rable functionalities, according to both industry

https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/
https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/

Springer Nature 2021 LATEX template

Article Title 3

[2] and academic [6–8] studies. In particular, we
observed that the two platforms could reasonably
counter many security problems detected in the
study if the developers identify and use the correct
features.

As a final contribution, to support novice IoT
developers in shunning the major security issues
in a generic IoT architecture, we developed a set of
guidelines helpful to exploit the inherent security
features of cloud-IoT platforms.

This paper is structured as follows. We ana-
lyze the related works in Section 2. Then, Section
3 introduces the two cloud platforms considered in
the study: AWS and Azure. We present an illus-
trative use case in Section 4, where we identify
some possible attack points (Section 4.1). Section
5 presents the user study results expanding the
work in [5] and examines the perception of the pre-
viously cited issues by our novice IoT developers.
Section 6 analyzes how the previously highlighted
attack points could be faced by the two cloud
platforms. Then, the paper discusses in Section 7
the actual severity of the previously cited issues
considering both the developers’ perceptions and
the cloud-IoT platforms’ design. Building on the
previous analysis, Section 8 proposes some guide-
lines to support novice IoT developers in avoiding
the security issues previously discussed in their
projects. In the end, Section 9 concludes the
paper and proposes some considerations for future
activities.

2 Related Work

Nowadays, cloud computing is a well-known con-
cept. The benefits and the opportunities offered
by this technology are evident not only for devel-
opers but also for the general public. Nevertheless,
opening such a distributed technology to many
different platform users from anywhere in the
world could create many security threats. For
this reason, companies [9] and researchers [10, 11]
have analyzed the security risks and issues of
cloud computing since the very beginning of this
paradigm.

Even the way of thinking of novice developers
is a field of research already examined by schol-
ars. In 1989, Soloway and Spohrer published a
whole book [12] to illustrate the major issues for

this kind of developer. The first research activi-
ties were mainly focused on better understanding
how this class of developers faces the most com-
plicated programming feature like, for instance,
recursion [13]. More recently, Lahtien et al. [14]
conducted a vast survey — including 559 students
and 34 teachers from five different countries —
focused on the main common problems in learning
how to develop computer programs by a univer-
sity student. In this study, researchers discovered
that novice developers’ most recurrent problem is
not comprehending a computer science course’s
notions but learning how to apply them concretely.
The outcome of this research could explain why,
even if the developers involved in our survey are
conscious of a few security concepts, they did not
try to apply them during the development of their
prototypes. Understanding the main problems of
these developers and helping them improve their
skills is still an active research topic. Scholars not
only study novice programmers in universities,
but they are also interested in understanding the
main issues in a life-long context. For instance, in
a recent study, Billy Javier analyzed the difficul-
ties of life-long novice programmers and provided
some suggestions to improve the courses given to
them [15].

Even our research group had already con-
ducted some research activities related to novice
programmers. For two consecutive years, we stud-
ied novice IoT programmers of the “Ambient
Intelligence” course, held in Politecnico di Torino
(precisely 2014 and 2015 editions). In one of our
previous studies [16], we spotlighted some of the
most painful points for this category of develop-
ers. Notably, we realized that novice developers
perceived their tasks as extremely difficult when
they are associated with: integrating various sub-
systems, interaction with proprietary third-party
services, and the configuration of mobile, web,
or hybrid applications. Furthermore, we are still
investigating their issues and studying possible
solutions to help programmers create better IoT
solutions using tools like a computational note-
book focused on IoT technologies and physical
computing [17, 18].

However, it is not so common to find studies
related to the security perception of a novice pro-
grammer. Usually, researchers analyze this kind
of perception from a non-technical point of view.
For instance, considering the security perception

Springer Nature 2021 LATEX template

4 Article Title

from a platform user point of view, it is demon-
strated that there is a relationship between a
well-designed human-computer interface and the
users’ security perception [19]. Another example
of this kind of study is the work of Varga et
al. [20]. They published an article related to the
cyber-threat perception of actors belonging to the
Swedish financial sector.

Discussing the IoT domain instead, in line with
the recent literature, IoT systems appear to be
in a critical situation. According to the study of
Kumar et al. [1], people started considerably using
IoT systems in their houses. Indeed, roughly 40%
of houses worldwide have at least an IoT device;
meanwhile, this percentage rises to approximately
70% only in North America. In their work, Kumar
et al. investigated an extensive data set of IoT
devices (83M) located in a significant amount of
real houses (15.5M). Thanks to this analysis, they
discovered that an unexpected amount of devices
still support protocols considered not secure nowa-
days, like the File Transfer Protocol (FTP) and
Telnet. In addition to this large study, they per-
formed an in-depth analysis of the data retrieved
on a specific day. These data were retrieved from
the users actively using Avast Wi-Fi inspector2.
From the outcome of this specific analysis, they
discovered that 62% of the scanned houses were
afflicted by at least one known vulnerability.

In another paper [21], Kafle et al. proved
a lateral privilege escalation attack on a cloud-
IoT environment (specifically on Google Nest3).
Their study demonstrated that the low security
of a cloud platform is sometimes related to third-
party programmers’ mistakes. Indeed, even if Nest
attempted to maintain its platform secure through
a review process, they decided not to execute this
inspection on the applications downloaded by less
than 50 users. Unfortunately, applications with a
low number of downloads are more likely devel-
oped by novice programmers (or explicitly created
with a malicious purpose).

Even if other scholars are studying security
requirements [22], best practices [23], and counter-
measures to the weaknesses of IoT systems (e.g.,
through sharp Intrusion Detection Systems [24]),

2https://support.avast.com/en-id/article/104/, last visited

on January 27th, 2022.
3https://store.google.com/category/google nest, last visited

on January 27th, 2022.

our works aims at better analyzing the archi-
tectural elements involved in a typical cloud-IoT
application. Indeed, even if the best practices pro-
vided by Momenzadeh et al. [23] were verified
against some cloud-IoT platforms, they are more
focused on the point of view of the platforms’
developers. Instead, our final goal is to provide
a straightforward methodology that a novice IoT
programmer (in their role as a final user of the
cloud platform) could use from the very begin-
ning to design and implement a more reliable IoT
system interacting with a cloud back-end.

3 Cloud Platforms Overview

This section introduces the two cloud-IoT plat-
forms analyzed in more detail in our study, that
will be used to highlight the common security
issues, and their solution, and to inform the
definition of the guidelines presented in Section 8.

3.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) is an on-demand
cloud computing platform developed and main-
tained by Amazon. This platform provides many
basic abstract technical infrastructure and dis-
tributed computing building blocks and tools.
AWS offers its cloud services according to the
three main common cloud paradigms: Infrastruc-
ture as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS).

On the security page of their website4, Ama-
zon declares to put much effort into keeping AWS
a reliable service for its customers. In their white
papers, Amazon guarantees that AWS’s IT infras-
tructure is designed and managed in alignment
with security best practices and several IT security
standards [25, 26]. This commitment also seems to
be confirmed by the work of other scholars [27].

Nevertheless, one of the main points clearly
explained inside the AWS policy is the shared
responsibility model [28]. Considering that the cus-
tomers share with AWS the control over the IT
environment, security could not be considered a
duty of Amazon entirely, but it is a responsibil-
ity shared with any customer that uses AWS. For
this reason, programmers must not underestimate

4https://aws.amazon.com/security/, last visited on January

12th, 2022.

https://support.avast.com/en-id/article/104/
https://store.google.com/category/google_nest
https://aws.amazon.com/security/

Springer Nature 2021 LATEX template

Article Title 5

Fig. 1 AWS IoT services overview.

their role in keeping the application developed
through AWS secure. This model could be partic-
ularly tricky for novice developers. Their lack of
knowledge could more easily bring them to over-
look their responsibilities when creating projects
with a very famous cloud platform.

To support developers, AWS IoT provides
some cloud services helpful in connecting each IoT
device to others and to AWS cloud services. More-
over, AWS IoT offers device software helpful to
integrate these devices into AWS IoT-based solu-
tions. Amazon divides its IoT components into
three categories (Figure 1): Device Software, Con-
trol Services, and Data Services. In particular,
considering that in this study, we focused our
attention on the interconnection of the devices
to the platform, instead of on the various possi-
ble devices, we mainly considered the components
belonging to the second category (Control Ser-
vices).

3.2 Microsoft Azure

Microsoft Azure (initially known as Windows
Azure) is a public cloud computing platform
offered and maintained by Microsoft. It supports
many different services both from Microsoft and
third parties. Like AWS, Azure offers its cloud

services in three different ways: IaaS, PaaS, and
SaaS.

Microsoft security documentation reports that
“security is integrated into every aspect of
Azure”5. The latter provides various services and
tools to help developers create secure solutions, as
also analyzed in previous studies [7, 29].

However, similarly to Amazon, Microsoft
released a white paper to clarify the concept of
a shared responsibility when developers are using
a cloud platform offered by a third-party [30].
Though the customers’ responsibilities visually
decrease according to the kind of infrastructure
used in their model, the responsibility is always
shared. Therefore, even when using Microsoft’s
platform, the programmers should not underesti-
mate their role during the applications’ develop-
ment.

Specifically, the main focus of our Azure anal-
ysis is Azure IoT, a collection of cloud services
designed to connect, monitor and control a large
number of IoT assets. Microsoft classifies its com-
ponents in two main categories: Azure Services for
IoT and IoT and Edge Device Support. (Figure
2). Among them, similarly to AWS, Microsoft

5https://docs.microsoft.com/en-us/azure/security/, last

visited on January 14th, 2021.

https://docs.microsoft.com/en-us/azure/security/

Springer Nature 2021 LATEX template

6 Article Title

Fig. 2 Azure IoT technologies and services.

offers device software to integrate and connect
IoT devices with its cloud platform. In addi-
tion, Azure also proposes Azure IoT Central, a
fully-managed platform that can be used to cre-
ate an IoT solution starting from an application
template.

4 Use Case

An initial understanding of the security issues
faced by a novice developer was formalized in
a small-scale study, conducted in the context
of a professional training course for a consult-
ing engineering company in Turin, Italy. The
course’s main goal was to teach a small group of
programmers how to develop a cloud-IoT-based
application from scratch. This course started by
introducing the IoT world, explaining possible
advantages, disadvantages, and challenges. It also
explained one of the most used protocols in
this field: Message Queuing Telemetry Transport
(MQTT). After this, the programmers learned
the fundamentals of cloud computing technologies
starting from a general perspective. Subsequently,
they were introduced to AWS, focusing on cloud
computing for IoT. In the end, the software devel-
opers received some additional concepts related to
developing an HTTP-based server using the Rep-
resentational State Transfer (REST) approach.

The course was organized in nine non-
consecutive days (distributed among six weeks),
with theoretical sections in the mornings and
practical experiences in the afternoons: one intro-
ductory lecture, four lectures reserved to cloud
computing, and four lectures for AWS-IoT. To
successfully pass the course, the attendees, divided
into groups, had to develop a full-working proto-
type with all the components shown in Figure 3.

The participants had to present also their proto-
type in a final discussion one week after the end
of the course. The prototype had to be composed
of the following cloud components:

• an IoT gateway: to manage bidirectional com-
munication with IoT devices;

• an APIs gateway: to manage requests from
developers and final users;

• a serverless component: to run code in
response to events, to schedule processes, and
to interact with some acting devices;

• a database: to quickly store a potentially mas-
sive flow of data from many IoT devices.

If we consider the mapping of the high-level
architectural components onto the services offered
by the cloud platforms, we examined as IoT gate-
way the IoT Core in AWS and the IoT Hub
in Azure. The service for managing the Applica-
tion Programming Interfaces (APIs) is called API
Gateway in AWS and API Management in Azure.
Regarding the serverless component, it could be
mapped as Lambda in AWS, while Azure simply
called it Functions. To conclude, talking about the
database, considering that NoSQL databases are
very suitable for IoT applications [31], we decide
to adopt: DynamoDB in AWS and Cosmos DB in
Azure.

Adding more details on the third component, it
allows running code without managing servers or
creating workload-aware scaling logic. The great
advantage of using such a component is that
developers have only to provide the code, and
the platform automatically runs it allocating exe-
cution power based on the incoming requests.
Furthermore, these services support many differ-
ent programming languages. AWS Lambda sup-
ports Java, Go, PowerShell, Node.js JavaScript,

Springer Nature 2021 LATEX template

Article Title 7

Fig. 3 The architectural schema of a use case application in AWS.

C#, Python, and Ruby code. In addition, it pro-
vides a runtime API that allows developers to use
any additional programming languages. Instead,
Azure Functions support C#, JavaScript Node.js,
and F# since version 1. Then, from version 2,
they also support Java, PowerShell, Python, and
TypeScript.

Regarding the communication protocols, for
this prototype, we suggested taking advantage of
the two primary protocols explained during the
course and typically used in basic IoT applica-
tions: MQTT and HTTP.

No custom hardware was developed, and IoT
devices were selected among available off-the-shelf
ones, as the scope of the course was more on the
cloud and interoperability aspects, rather than on
connected embedded devices.

4.1 Main architecture attack points

From an architectural of view, it is possible to
divide the main hardware and software compo-
nents of a simple cloud-IoT project into four
different categories:

• Sensing devices: devices used to retrieve some
data from the physical world (e.g., a tempera-
ture sensor).

• Acting devices: devices used to act on the
physical world (e.g., a smart lamp).

• The cloud: a cloud back-end server able to
manipulate and store all the data necessary for
the application.

• Front-end devices: used to interact with the
back-end (e.g., a mobile application).

Springer Nature 2021 LATEX template

8 Article Title

Considering the proposed architecture (Figure
3), we defined the main attack points accord-
ing to the state-of-the-art security issues in the
IoT field (e.g., [1, 21, 24, 32]). In particular,
to conduct this analysis, we decided to use the
STRIDE threat model [33]. Initially developed
in the Security Engineering and Communications
group at Microsoft, different scholars used this
model in many different research activities related
to IoT (e.g., for the security of Cyber-Physical
Systems [34], Smart Cities [35], or Smart Grids
[36]), and it is applicable and suitable to the use
case. STRIDE is an acronym for the six categories
used by the model to classify security threats:
Spoofing, Tampering, Repudiation, Information
disclosure, Denial of Service (DoS), and Elevation
of privilege. Each of these threat categories is asso-
ciated with a related security property: Authentic-
ity, Integrity, Non-repudiability, Confidentiality,
Availability, and Authorization, respectively. In
this specific use case, we were not interested in
enforcing non-repudiability, so we did not consider
issues related to repudiation threats.

We want to clarify that we defined these attack
points having a cloud-centered approach in mind.
For this reason, we did not consider issues related
to the possible constrained capabilities of the IoT
devices or the security of the mobile applications
installed on the front-end devices. We followed this
approach in defining the principal architecture’s
issues to create a scenario that is as generic as
possible, analyzing a set of threats independent of
the physical devices used by the developers.

According to the STRIDE framework, we iden-
tified the following five main attack points in the
use case architecture:

1. the data flows between a sensor and the back-
end;

2. the data flows between the back-end and a
physical actuator (e.g., a smart lamp);

3. the data flows between the API Gateway and
the user’s device;

4. the developed code stored and executed inside
the back-end (e.g., the serverless component);

5. the back-end database (i.e., the NoSQL
database).

Considering the first three attack points (1,
2, and 3), all the data flows could be primarily
subject to spoofing and tampering. Some possi-
ble attacks related to these threats are Replay

attacks6 or Man-In-The-Middle (MITM) attacks7.
This last attack is particularly relevant because
it could exploit basically all the security threats
presented by the STRIDE model.

Moreover, discussing the code executed on the
back-end (point 4), in the proposed IoT archi-
tecture it was implemented by using the AWS
Lambda component to develop the back-end’s
functionalities. This component is reasonably the
best point for executing an elevation of privilege
attack. Furthermore, from this component it could
also be easy to obtain access to sensible informa-
tion (i.e., information disclosure). Indeed, if the
code on the back-end of the application is com-
promised, attackers could become able to execute
arbitrary functions inside the developed system.

In conclusion, if the back-end database (point
5) is not well protected and the stored data are not
adequately encrypted, the content of the database
could be altered (i.e., tampering) or the system
might be a victim of a steal of information (i.e.,
information disclosure) — this information could
be directly used by the malicious user or sold (e.g.,
login credentials or payment data are interesting
information to sell).

5 Developers Security
Perspective

The analysis of the security perspectives in devel-
oping the proposed use case (Section 4) will allow
us to better comprehend the behavior of novice
programmers in similar scenarios. In particular,
we aim at understanding if and how the features of
the cloud platforms’ components may compensate
from the developers’ lack of specific knowledge.

Hence, to understand their way of thinking, we
prepared a survey starting from the use case pre-
sented in Section 4. The main research questions
behind the delivered survey are:

• RQ1: What is the security perception of the
novice IoT developers?

• RQ2: Did novice IoT developers think about
security issues during application development?

• RQ3: Did novice IoT developers act to increase
the cybersecurity of their application?

6An attack in which a valid data pack is stored and sent by
a malicious user in a different moment.

7An attack in which a malicious user intercepts and modifies
the data meanwhile they are being transmitted.

Springer Nature 2021 LATEX template

Article Title 9

This section explains the survey structure and
presents the answers provided by our participants.

5.1 Survey Structure

At the end of the course, after the closing review
of the projects — when the students are already
aware if they successfully passed the final exam-
ination — we asked the attendees to voluntarily
participate in a survey. We provided them a link
to an anonymous online questionnaire hosted on
Google Form. All the questions in the survey
required a mandatory answer. When all partici-
pants completed the survey, we solicited an open
discussion to better understand the meaning of
their answers.

The three main sections of the survey were:
“Background and Individual Studying”, “Possi-
ble Attack Points”, and “Countermeasures and
Best Practices”. We divided the survey in differ-
ent parts to put the participants’ focus on different
aspects, without overloading them with too much
information.

Indeed, in the first section, we never explicitly
mentioned to the attendees that the use case archi-
tecture had vulnerabilities. In that part, we were
interested in understanding their thoughts before
being influenced by our use case analysis. So,
the first open question of this part was: “Among
the various aspects of an IoT system, in your
opinion, how important is security?”. We started
giving participants a blank space for collecting
some insights about their cybersecurity perception
before influencing them in any way. Therefore,
we asked two closed questions: “How much do
you feel expert about cybersecurity?” and “Using
AWS, who is responsible for the security of the
system you develop?”. The first question requires
a numerical answer from one (“not expert at all”)
to five (“very expert”); the second one has three
possible answers: “the developer”, “Amazon”, and
“both of them”. Then, after showing Figure 3
as a reminder of their systems’ architecture, we
proposed two open questions to force them to
think about (and explain) what they did during
the application’s development. The two questions
were: “Are there any potential security issues in
this architecture? If so, which ones?”, and “If you
have indicated any issues, how would you manage
them during the application’s development?”.

The purpose of the second part of the question-
naire, “Possible Attack Points”, was to understand
what they think about the attack points we iden-
tified and presented in Section 4.1. This survey
section is composed of three closed questions and
one open question. The first question requires the
learners to sort the five attack points presented in
Section 4.1 from the easiest to the most difficult
to attack. Then, we asked them to sort the same
attack points according to the possible severity
if an attack succeeded. After that, the program-
mers had to answer the following open question:
“what do you think would be the worst possi-
ble consequence in case the most serious point is
attacked?”. To conclude, we asked the attendees
how many of those points they considered attack-
able while developing their projects. This closed
question required a numerical answer from zero to
five.

While the first two sections were more focused
on the first two research questions, the goal of
the last part of the survey is to understand if the
participants tried to take some countermeasures
to improve their applications’ security (i.e., the
main focus is on RQ3). This section has five open
questions and one closed question. Specifically,
we asked our novice IoT developers to explained
what criteria they used for their password, and
if they had created more users for their applica-
tions. Then, we investigated if they thought about
encryption of data in transit and data at rest
(specifically on the database). The only closed
question of the section is related to security sup-
port applications: “did you know that AWS offers
some security support applications? (e.g., AWS
IoT Device Defender8)”. This question has three
possible answers: “yes”, “no”, and “yes, but never
used”. An open follow-up question digs in more
detail: “did you consider using a support applica-
tion (e.g., AWS IoT Device Defender) to develop
your system? (Please, answer Yes/No and why)”.

To summarize, we reported in Table 1 all the
closed questions of the presented survey, while
Table 2 contains all the open questions.

8https://aws.amazon.com/iot-device-defender/, last visited
on February 1st, 2021.

https://aws.amazon.com/iot-device-defender/

Springer Nature 2021 LATEX template

10 Article Title

Table 1 Survey Closed Questions

Question Description

How much do you feel expert about cybersecurity? Values from one to five.
Using AWS, who is responsible for the security of
the system you develop?

Three possible answers.

Sort the following architecture elements from the
easiest to the most difficult to attack.

Ranking order of the 5 options.

Sort the same elements according to the potential
severity in case of a successful attack.

Ranking order of the 5 options.

How many of these elements did you considered as
“potentially attackable” during the development?

Values from zero to five.

Did you know that AWS offers some security
support tool? (e.g., AWS IoT Device Defender)

Three possible answers.

Table 2 Survey Open Questions

Question

Among the various aspects of an IoT system, in your opinion, how important is security?
Are there any potential security issues in this architecture? If so, which ones?
If you have indicated any issues, how would you manage them during the application’s development?
What do you think would be the worst possible consequence in case the most serious point is attacked?
What criteria did you use for choosing your passwords?
Did you create multiple users (with different permissions) to access your services (e.g., AWS Lambda)?
(Please, answer Yes/No and why)
Did you ever verify if connections to and from AWS are encrypted (e.g., using TLS)? (Please, answer
Yes/No and why)
Did you ever verify if the data contained on the database are encrypted at rest? (Please, answer Yes/No
and why) Did you consider using a support tool (e.g., AWS IoT Device Defender) to develop your
system? (Please, answer Yes/No and why)

5.2 Survey Results

Nine novice IoT programmers attended the profes-
sional training course; we collected answers from
six of them (i.e., the survey had an answer rate
of 67%). All the attendees were male, and they
followed this course to start working on their
first cloud-IoT project for the consulting company.
However, most of them already had professional
experience on developing or testing embedded sys-
tems, in the context of industrial automation and
railway industries.

On one hand, the participants felt very inex-
perienced about cybersecurity. Indeed on a scale
from one to five (where one means “not expert at
all” while five means “very expert”), five devel-
opers out of six answered one, while the remain-
ing one selected two (Figure 4). On the other
hand, according to the collected insights, they all

thought cybersecurity is quite important. Indeed,
one participant declared that cybersecurity is
“very important”, another said it is “on average
important”, and a third one states that “authenti-
cation is an important feature”. In addition, three
developers also specified that cybersecurity rele-
vance depends on the severity of the implemented
software solution.

An interesting outcome comes from the ques-
tion: “Using AWS, who is responsible for the
security of the system you develop?”. Indeed,
four developers said that responsibility is shared
among “both developer and AWS”, while the
other two participants consider the responsibil-
ity entirely of the developer. No one assigns the
responsibility uniquely to AWS (Figure 5).

All the attendees think that the implemented
architecture could include at least one security
issue; in fact, every developer highlighted some

Springer Nature 2021 LATEX template

Article Title 11

Fig. 4 Novice IoT programmers’ perceived competence
about cybersecurity. One means “not expert at all” while
five means “very expert”.

Fig. 5 Novice IoT programmers’ perception of security
responsibilities.

threat in the open question: “Are there any poten-
tial security issues in this architecture? If so, which
ones?”. However, in the related open question, all
of them declared they did not act to mitigate the
previously cited threats.

Discussing the second part of the survey (the
one related to the attack points presented in
Section 4.1), Figure 6 shows that half of our novice
IoT programmers consider potentially attackable
at most two of the five attack points (three
answers). It is also noticeable that two partici-
pants did not consider any of the raised issues
during the application’s development.

In addition, the participants declared that the
AWS database is the attack point most secure
among the presented elements. On the contrary,
the data flows between the AWS back-end and the
sensors/actuators are considered the less secure
points equally. These answers are reported in
Table 3. As we already explained in Section 5.1,
the range of values goes from one, “not easy at
all” (to attack), to five, “very easy” (to attack).

Fig. 6 The number of attack points considered attackable
by the novice IoT programmers.

Proceeding with the possible severity in case
of a successful attack, our participants declared
that the most critical point is the data flow from
the back-end to the actuators. Then, the second
most critical point is represented by the developed
Lambda functions, while the third is the data flow
from sensors to the back-end. These answers are
available in Table 4. The range of values is between
one, (attack) “not serious at all”, and five, “very
serious” (attack).

Instead, considering the open answer to the
question: “what do you think would be the worst
possible consequence in case the most serious
point is attacked?”, five participants consider a
cyber-physical attack9 the worst possible threat.
Indeed, they are mainly afraid that an attacker
could take control of the system to damage a
machine or a person. Another concern cited by
three developers is related to data manipulation
or data loss.

To conclude the presentation of our survey
results, we are going to discuss the answers col-
lected in the last survey section. The first open
question asked information about the chosen pass-
words for the AWS accounts. According to the
answers, all participants created a strong pass-
word (probably because AWS enforces a password
policy). However, when we asked if they had cre-
ated any additional account with lesser privileges,
only one developer declared to had used the ser-
vice for creating secondary accounts. In contrast,
others simply used the root account. In addition,
in their open answers, just two participants spec-
ified that they did not create additional accounts

9A security breach in cyberspace that impacts the physical
environment (e.g., activating or deactivating a machine).

Springer Nature 2021 LATEX template

12 Article Title

Table 3 Ease of attacking architecture elements according to the novice IoT programmers. The reported values represent
the number of developers choosing that answer.

Attack Points 1 (Not Easy) 2 3 4 5 (Very Easy)

Sending data from sensors to AWS 1 1 1 1 2
The developed lambda functions 1 1 3 0 1
The Amazon’s database 2 1 1 2 0
The REST APIs 1 1 1 2 1
Sending commands to actuation devices 1 2 0 1 2

Table 4 Potential severity in case of a successful attack for various architectural elements, according to the novice IoT
programmers. The values inside the tables represent the number of developers choosing that answer.

Attack Points 1 (Not Serious) 2 3 4 5 (Very Serious)

Sending data from sensors to AWS 2 0 2 1 1
The developed lambda functions 1 1 1 1 2
The Amazon’s database 2 3 1 0 0
The REST APIs 1 1 2 2 0
Sending commands to actuation devices 0 1 0 2 3

(with fewer privileges) during the project’s devel-
opment. However, they are aware that they should
have created at least one. Discussing now data
flow encryption, four attendees stated they did not
check whether the platform uses a mechanism for
encrypting the data. Only one developer declared
to have verified that the Transport Layer Security
(TLS) protocol was used on the data flow from
the sensors to the AWS back-end. Moreover, con-
sidering the encryption of data at rest, a large
majority of participants (five) answered that they
did not check if AWS encrypts by default the data
stored inside DynamoDB. To conclude, discussing
the last two questions, any of the participants had
used an additional tool to improve the security of
his application. One developer declared to have
heard about AWS IoT Device Defender, but he did
not use it for his project due to the time constraint
of delivering the application on time.

6 Cloud-IoT Platforms
Analysis

This section describes what countermeasures
could be taken by the two platforms’ components
against the attack points presented in Section 4.1.

Considering that this paper (and our use case)
is focused on a cloud-IoT scenario, our secu-
rity analysis is more focused on AWS IoT and
Azure IoT, the sets of components offered by

the platforms for this specific application domain.
However, we also have considered elements not
strictly belonging to IoT but still valuable for a
cloud-IoT use case. For instance, the already cited
serverless computing services offered by the two
platforms (Section 3). Indeed, considering their
characteristics, this kind of component seems par-
ticularly valuable for a novice programmer new to
the IoT world.

Therefore, in this section, we will analyze the
components that better fit the use case (Section
4).

6.1 Data Flow Analysis

Data flows are the target of three of the attack
points discussed in Section 4.1. Data transmission
is a critical process; at that moment, data could
be eavesdropped, altered, and even forged. The
first threat could reduce the application’s privacy,
but the other two can even alter its functionalities.
The traditional approach to counter these issues
is encrypting the transferred information.

One of the most common protocols used for
this purpose is HTTPS. This protocol augments
classic HTTP adding the Transport Layer Security
(TLS) protocol. TLS was defined by the Internet
Engineering Task Force (IETF) in 1999 [37], and
it is a transport layer protocol based on asym-
metric cryptography. It is the successor of the
now-deprecated Secure Sockets Layer (SSL), and

Springer Nature 2021 LATEX template

Article Title 13

its latest version, TLS 1.3, was released in August
2018 inside RFC 8446 [38]. Recently, in March
2021, IETF formally deprecated TLS 1.0 and 1.1
and, even if TLS 1.2 is still considered accept-
able, they recommended starting the migration to
the latest version [39]. However, choosing the cor-
rect version of TLS is not enough to obtain an
adequate level of protection. This protocol could
use many different cipher suites10, so selecting an
appropriate suite is crucial to configure a secure
connection. Until TLS 1.2, cipher suites include a
key exchange algorithm, an authentication algo-
rithm, a link encryption algorithm, and a message
authentication code (MAC) algorithm. From ver-
sion 1.3, the first three algorithms were replaced
by an Authenticated Encryption with Associated
Data (AEAD) algorithm. This particular class of
algorithms simultaneously ensures the confiden-
tiality and the authenticity of both encrypted and
unencrypted information in the messages. There-
fore, when possible, developers should always pre-
fer TLS 1.3, which has a faster hand-shake and
is more secure by design. When using this ver-
sion is impossible, programmers should not adopt
a deprecated version of the protocol and config-
ure their applications to handle only secure cipher
suites. To verify the current status of a cipher
suite, developers may benefit from online tools like
Ciphersuite.info [40].

Another protocol used mainly to establish bidi-
rectional communication among the IoT devices
and the IoT gateway is MQTT [41]. MQTT is
a publish-subscribe network protocol designed by
the Organization for the Advancement of Struc-
tured Information Standards (OASIS) to trans-
port messages between any kind of device. It is
lightweight and typically runs over the TCP/IP
stack. For these reasons, it is particularly suit-
able for IoT applications. Like HTTP, MQTT does
not implement any particularly effective secu-
rity protection by default. So, even in this case,
to guarantee confidentiality and integrity of the
transmitted data, developer should apply encryp-
tion mechanisms. Considering that MQTT is an
application protocol, like HTTP, one of the most
common ways to protect the transferred data is
using TLS. As we will see, adopting MQTT over

10A cipher suite is a pool of algorithms used to establish a
secure network connection.

TLS (MQTTS) is a strategy supported and sug-
gested by both the cloud platforms analyzed in
this section.

6.1.1 AWS Data Flow Management

To ensure the security of transmitted data, AWS
documentation says that users should always con-
nect to the AWS back-end employing encryption
mechanisms like TLS [26].

The first analyzed Amazon component is the
AWS API Gateway. This service makes it easier
for developers to create, publish, maintain, mon-
itor, and secure APIs. It handles all the tasks
involved in accepting and processing many con-
current API calls, including traffic management,
authorization, access control, throttling, monitor-
ing, and API version management. To test this
component, we created a simple Lambda func-
tion associated with an API Gateway. Then, we
interacted with the gateway using Postman, a
widespread API platform created to build and
test APIs [42]. Actually, we observed that when
users create new public access to this gateway, the
TLS protection is enabled by default. However,
even if this component could help developers to
have a reliable and secure contact with the AWS
back-end, we noticed that the TLS security policy
enabled by default is version 1.0 (as it is pos-
sible to see also on the AWS website11). As we
discussed before, IETF deprecated this version,
so Amazon should not allow this configuration
as the default one. Moreover, AWS’s TLS ver-
sion 1.0 security policy supports some weak cipher
suites like “DES-CBC3-SHA”12. This cipher suite
contains the Triple Data Encryption Standard,
an encryption algorithm that the National Insti-
tute of Standards and Technology (NIST) for-
mally deprecated and will disallow from 2023 [43].
However, not all the AWS API Gateway end-
points have this security policy enabled by default.
Indeed, AWS also provides specific endpoints for
organizations that must comply with the Federal
Information Processing Standard (FIPS) Publica-
tion 140-2. FIPS 140-2 is a USA and Canadian
government standard that specifies the security

11https://docs.aws.amazon.com/apigateway/latest/
developerguide/apigateway-custom-domain-tls-version.html,

last visited on September 16th, 2021.
12https://ciphersuite.info/cs/TLS RSA WITH 3DES EDE

CBC SHA/, last visited on February 04th, 2022.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://ciphersuite.info/cs/TLS_RSA_WITH_3DES_EDE_CBC_SHA/
https://ciphersuite.info/cs/TLS_RSA_WITH_3DES_EDE_CBC_SHA/

Springer Nature 2021 LATEX template

14 Article Title

requirements for cryptographic modules that pro-
tect sensitive information. From April 1st, 2021,
Amazon had updated these endpoints to use TLS
1.2 and above13. Hence, at least for these end-
points, the Amazon approach is a good trade-off
between usability and state-of-the-art security.

Considering the AWS IoT Core instead, this
component is a cloud service that enables con-
nected devices to interact with the back-end and
each other securely. It can process many devices
and messages and route those messages to AWS
IoT endpoints and other devices. Unlike the AWS
API Gateway, this service is more secure by
default; indeed, it uses a minimum of TLS v1.2
to establish all the communications14. This ver-
sion is used for Web Sockets, HTTPS (HTTP over
TLS), and MQTTS (MQTT over TLS) connec-
tions. As an additional requirement, AWS refuses
all the TLS connections without the extension
field Server Name Indication15. Instead, talking
about the security of the possible cipher suites,
there are still few allowed cipher suites involving
the usage of SHA1 as their authentication algo-
rithm. NIST already deprecated this algorithm
in 2011 [43], and some scholars demonstrated its
insecurity in 2017 [44].

However, connecting IoT devices to AWS IoT
Core is quite easy. If the developers follow the
tutorial on the AWS website, they will get a pair
of public-private keys to establish a secure con-
nection for each IoT device. Furthermore, AWS
also provides some IoT Device Software Devel-
opment Kit (SDK) to simplify the connection
process. At the time of writing, Amazon provides
five open source SDKs written in C++, Embedded
C, Python, JavaScript, and Java. Using the avail-
able IoT Device SDKs is the suggested approach
for connecting every IoT device to the AWS back-
end. Indeed, in this case, AWS implements a good
trade-off between usability and state-of-the-art
security.

Regarding the possible data flows among an
AWS Lambda function and a physical device,
AWS Lambda blocks inbound network connec-
tions. On the other side, the component allows for

13https://aws.amazon.com/compliance/fips/, last visited on

September 16th, 2021.
14https://docs.aws.amazon.com/iot/latest/developerguide/

transport-security.html, last visited on September 16th, 2021.
15https://datatracker.ietf.org/doc/html/rfc6066#section-3,

last visited on September 28th, 2021.

outbound connections only TCP/IP and UDP/IP
sockets.

Currently, if a user requires additional secu-
rity, AWS offers the possibility to create and
configure a virtual private network in the cloud
called Virtual Private Cloud (VPC). This solu-
tion also enables the possibility of using IPsec to
contact the VPC. IPsec is the secure version of
the traditional Internet Protocol (IP), and it was
designed to provide cryptographically-based secu-
rity for IPv4 and IPv6 [45]. Even if this approach
would give more security to the transmitted data,
it could not be so intuitive for a novice developer.

Furthermore, Amazon offers two additional
components called AWS IoT Device Management
and AWS IoT Device Defender to facilitate the
management of the IoT devices connected to the
AWS platform. The first one is a component
agnostic to the device type that simplifies securely
registering, organizing, monitoring, and remotely
managing IoT devices at scale. Instead, the sec-
ond component automatically audits IoT config-
urations associated with the connected devices
against a set of defined IoT security best prac-
tices. If something seems to deviate from the
expected behaviors, IoT Device Defender pushes
an alarm so the developer can take action to mit-
igate the issue. In particular, AWS suggests using
these components when the number of connected
devices is significant.

6.1.2 Azure Data Flow Management

Even Azure recommends always protecting data
in transit with an encryption strategy like HTTPS
or a VPN16). In particular, to connect cus-
tomers’ networks to Azure, Microsoft offers a
VPN Gateway service that enables the usage of
IPsec. Users could also utilize this service to send
encrypted traffic between Azure virtual networks
over Microsoft’s infrastructure.

The first analyzed component of this section is
API Management. Like AWS API Gateway, this
element helps developers properly manage their
exposed APIs. In this case, to test the compo-
nent, together with Postman, we used the API
testing environment offered by Azure. Currently,
when users create a new endpoint for their APIs,

16https://docs.microsoft.com/en-us/azure/security, last

visited on January 17th, 2022.

https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://docs.microsoft.com/en-us/azure/security

Springer Nature 2021 LATEX template

Article Title 15

TLS protection is enabled by default to v1.2. How-
ever, even if the previous versions are disabled
by default, during the creation process, users can
decide to increase the endpoint’s compatibility
with older versions of TLS and with the obsolete
SSL 3.0.

Concerning the second component, the devel-
opers can reach the Azure IoT Hub using both
HTTP and MQTT. However, the cloud ser-
vice ensures that all device communications are
secured with TLS17. Specifically, IoT Hub offers
two authentication methods between the IoT
devices and the back-end. Users can use a Shared
Access Signature (SAS) token authentication or
an X.509 certificate. A SAS token is a string
previously generated (and not stored) by the
back-end used by a client (device) to be rec-
ognized by the server. This token also contains
an HMAC-SHA256 signature string to authenti-
cate and protect the integrity of the communica-
tions through this method. An X.509 certificate
is a standard format for public key certificates
introduced by the International Telecommunica-
tion Union – Telecommunication Standardization
Bureau (ITU-T). It is a certificate used in many
internet protocols, including TLS. By default, the
IoT Hub establishes a connection with the IoT
devices using TLS 1.2, 1.1, and 1.0 (in this spe-
cific order). However, it is possible to disable the
deprecated version of TLS inside the IoT Hub con-
figuration, but only in some geographical regions
(mainly in the United States).

Similarly to AWS, also Azure provides a Soft-
ware Development Kit (SDK) to help developers
interact with the IoT Hub. In particular, Microsoft
offers an IoT Hub Service SDK an IoT Hub Device
SDK. The first SDK is designed to facilitate build-
ing applications that interact with the IoT Hub
(e.g., for managing devices connected to the hub).
It is currently available for .NET, Java, Node.js,
and Python. Instead, the second SDK simplifies
the process of connecting IoT devices to Azure.
It is currently available for the same program-
ming language as the previous one, plus C and
Embedded C languages. In addition, this SDK
also supports Real-Time Operating Systems for

17https://docs.microsoft.com/en-us/azure/iot-hub/

iot-hub-mqtt-support, last visited on January 28th, 2022.

embedding devices like Azure RTOS and FreeR-
TOS. Microsoft strongly suggests taking advan-
tage of these SDKs, even through a blog post
that specifies why developers should use them to
increase their applications’ security18).

Considering the communications among a
client and an Azure Function, by default, the func-
tion’s endpoints allow connection only with plain
HTTP or with HTTPS. However, every Azure
endpoint can enforce HTTPS-only connections
and specify the minimum allowed version of TLS
among 1.0, 1.1, and 1.2.

To conclude, among Azure components, there
is a valuable tool for enhancing the security of
the IoT applications, which is called Microsoft
Defender for IoT. This component allows moni-
toring the whole IoT solution from a dashboard.
Once enabled, it helps developers connect their
IoT devices and uses Defender for Cloud — an
Azure tool for security posture management and
threat protection — to provide security recom-
mendations and alerts for the connected resources.

6.2 Back-end Analysis

Considering that back-end security is a duty of the
cloud platforms’ providers, in this section, we ana-
lyzed what a user could do to protect the access to
the back-end services better or to reduce damages
in case of unauthorized access. Obviously, users
must register an account (and successively authen-
ticate themselves) to access the cloud back-end
functionalities (like AWS Lambda or the Azure
Functions). During these interactions, registration
and login data flows are protected using HTTPS.
Indeed, assuming that both platforms (and the
associated services) had implemented registra-
tion and login correctly, the two primary possible
ways to compromise the back-end are associated
with an inadequate privileges policy and choos-
ing weak passwords. So, in this section, we will
discuss what kind of accounts customers could
create and how they can choose passwords. Fur-
thermore, an example of a proper privileges policy
that we suggest adopting is the Principle of Least
Privilege [46]. The main idea of this principle is
to give to any user, application, or process only

18https://azure.microsoft.com/it-it/blog/
benefits-of-using-the-azure-iot-sdks-in-your-azure-iot-solution/,

last visited on January 18th, 2022.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://azure.microsoft.com/it-it/blog/benefits-of-using-the-azure-iot-sdks-in-your-azure-iot-solution/
https://azure.microsoft.com/it-it/blog/benefits-of-using-the-azure-iot-sdks-in-your-azure-iot-solution/

Springer Nature 2021 LATEX template

16 Article Title

the minimum privileges necessary to complete its
tasks.

6.2.1 AWS Back-end Management

AWS offers two kinds of accounts for authenti-
cating users: root user and Identity and Access
Management (IAM) user. When a customer reg-
isters an account to AWS, Amazon automatically
associates a root user to that account. Root
accounts have the highest possible privileges on
the AWS platform. Using these accounts, users
can generate an arbitrary number of IAM accounts
and assign them the privileges necessary for their
activities (e.g., the right to read data from a par-
ticular database or the possibility to use a specific
service). According to the Principle of Least Priv-
ilege, Amazon recommends to its customers to use
the root account mainly for generating some IAM
accounts (and for those tasks that require neces-
sary to be administrator). However, they do not
enforce this best practice in any way. From our
point of view, AWS should force its users to take
advantage of this feature and create at least an
IAM account. Clearly, Amazon should explain to
its customers why they are forced to do so. We
think that this approach could help new users
better understand the importance of this security
concept.

Talking about the password policy, AWS
enforces a quite robust policy both for root and
IAM accounts. At the time of writing, users
must create passwords with a minimum length of
eight characters, including at least two of these
characteristics:

• including a digit;
• including a non-alphanumeric character;
• including lowercase and uppercase characters.

Furthermore, a root user can build different pass-
word policies for the created IAM account — when
a root user creates an IAM account, she can con-
figure a temporary password and ask the IAM user
to change it at first login.

Nevertheless, we observed that AWS seems
not to have taken any specific countermeasures
for password dictionary attacks. E.g., a password

like “Amaz0nWS” is correctly accepted when reg-
istering a new account19. However, AWS could
automatically generate passwords for the IAM
accounts. These auto-generated passwords include
all the previously cited characteristics and have a
length of 16 characters.

To conclude, we observed that through the
IAM control panel, users could enable a sec-
ond authentication factor both for root and IAM
accounts. However, this security enhancement is
only suggested, and it is not enforced in any way.

6.2.2 Azure Back-end Management

To access Azure services, users must have a
Microsoft or a GitHub account. So, the pass-
word policy applied for Azure is the same as
these accounts. Unfortunately, the password pol-
icy enforced by Microsoft accounts is not very
robust. Currently, it forces the users to cre-
ate passwords with a minimum length of eight
symbols and at least two of the following four
characteristics:

• including at least number;
• including at least a non-alphanumeric symbol;
• including a lowercase character;
• including an uppercase character.

From one side, at least Microsoft implements small
countermeasures against dictionary attacks. We
tried to create an account using the password
“Microsoft”, and the registration process refused
that specific password for over-usage. On the other
side, we noticed that after this rejection, the reg-
istration process reduced the minimum number of
characters for the password to six, and we have
been allowed to use the password “MAzure”.

Instead, the password policy enforced by
GitHub accounts is slightly more robust. Cur-
rently, users have two possible choices: a password
with a minimum length of 15 characters or a pass-
word with eight symbols containing at least a
lowercase character and at least a number. Even
GitHub tests the inserted password for dictionary
attacks. We tried to create an account using the
password “github22”, and we received the error:
“password may be compromised”. Nevertheless,
the registration process allowed, and considered

19Currently, according to “How Secure is My Password?”
[47], a malicious user could crack this password in around one
hour.

Springer Nature 2021 LATEX template

Article Title 17

strong, passwords like “msazure1” or “microsoft-
github”. Currently, according to “How Secure is
My Password?” [47], an attacker could crack the
first two passwords in around one minute and the
third one in 1000 years. However, this third pass-
word is considered more robust only thanks to its
length [48]. In fact, the tool suggests that the pass-
word should include not only letters and that if it
is a dictionary word could be easily cracked.

Once users had access to the Azure back-
end, Microsoft offers the possibility of creating
other accounts with limited privileges using Azure
Active Directory, its cloud-based identity and
access management service. Surprisingly these
accounts have a default password policy slightly
more robust than a traditional Microsoft account.
Since it requires a minimum length of eight sym-
bols and at least three of the following four types
of symbols:

• digits;
• lowercase characters;
• uppercase characters;
• non-alphanumeric (among a proposed set).

When secondary users log in for the first time,
Azure forces them to change the password (always
respecting the previously cited criteria) and con-
figure a second authentication factor (even if they
can ignore this last step for the first 14 days).

6.3 Database Analysis

Continuous flows of data usually characterize
IoT projects. When these communications hap-
pen among a considerable amount of devices at
a high frequency, the quantity of data to man-
age and store becomes easily massive. For this
reason, in our use case, we proposed to use a high-
performance non-relational database. This section
analyzes how the two platforms manage the secu-
rity of their most famous NoSQL databases: AWS
DynamoDB and Azure Cosmos DB.

In this section, we analyzed three crucial points
of database management: data encryption at rest,
backups, and access to the database. The first fea-
ture is essential to reduce the possibility that, in
case a database is stolen, thieves can read it. The
second feature is important both for reliability and
security reasons. Indeed, a backup could be help-
ful to protect data against accidental writes or
delete operations and even against direct attacks

on the stored data. Instead, correctly managing
how users can access the database is important
not only for ensuring that they can dispose only
of the correct data but also for protecting data in
transit.

6.3.1 AWS Database Management

Amazon provides different database solu-
tions (both relational and NoSQL), and it
offers database-related services such as data-
warehouses. In particular, in our use case, we
proposed to our students using DynamoDB, a
NoSQL database service that provides fast per-
formance with seamless scalability. Even in this
case, users can access Amazon DynamoDB via
TSL-encrypted endpoints.

By default, the DynamoDB service encrypts all
data at rest to enhance data security. To cipher the
data, AWS uses the Advanced Encryption Stan-
dard (AES) algorithm with the longest possible
key (256 bits)[49]. This algorithm was approved by
FIPS, and it is considered secure both for govern-
ment and non-government organizations. Indeed,
it is also part of the Commercial National Secu-
rity Algorithm Suite20) To encrypt each table,
AWS generates and uses a default encryption
key. The platform kept these keys inside the Key
Management Service (KMS). In addition to this
default encryption approach (also called AWS
owned key), on which the developer has no con-
trol over the encryption keys, Amazon provides
two other different strategies. The first one, called
AWS managed key, allows customers to store a
custom key and leaves the management to the
KMS. The other one, called customer managed
key, gives the user complete control over the KMS
keys. Keys are stored inside the AWS account,
but they are created, owned, and managed by
the programmer. Each time a user creates a new
table, DynamoDB offers the possibility to choose
between these three strategies. The encryption
strategy can be modified at any time.

To avoid the risk of losing data, Amazon offers
two different approaches to backup database con-
tent: on-demand backup and point-in-time recov-
ery. As the name suggests, the first approach
creates a full backup on-demand of the desired

20https://apps.nsa.gov/iaarchive/programs/iad-initiatives/

cnsa-suite.cfm, last visited on January 13th, 2022.

https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

Springer Nature 2021 LATEX template

18 Article Title

DynamoDB tables. This approach is particu-
larly indicated for long-term data retention and
archival. Meanwhile, the point-in-time recovery
approach sets up an automatic periodic backup
for all the selected tables. With this strategy, it
is possible to restore data at any point in time
within the last 35 days. As additional functional-
ity, developers can store the backups in the same
region where the application is deployed or even
in a different one.

To control who can use the DynamoDB
resources and API, the users have to set up
permissions in the IAM service. Through IAM pol-
icy, a user can also specify a fine-grained access
control policy (e.g., to allow or deny access to spe-
cific rows or columns). Additionally, each request
to the database must contain a valid HMAC-
SHA-256 signature. HMAC (Hash-based Message
Authentication Code) is an authentication code
to be sent together with the request, generated
using SHA-256 (Secure Hash Algorithm), a stan-
dard cryptographic hash function belonging to
the SHA-2 family [50]. Even if more strong hash
algorithms are now available (like SHA-512 or
the SHA-3 family [51]), SHA-256 is still consid-
ered a robust alternative. To help programmers
in creating their applications, the AWS Software
Developer Kits automatically sign users’ requests.
However, developers can also write their HTTP
requests providing the signature in the header of
the requests.

In conclusion, we could say that AWS correctly
manages the security of its databases by default.
Developers should only remember to enable the
back-up of their databases.

6.3.2 Azure Database Management

Even Azure offers several databases (relational
and non-relational) and data warehousing solu-
tions. Considering our use case, the Azure
database that better fits our needs is reason-
ably Azure Cosmos DB — that is also the sug-
gested Azure database for IoT applications. This
database is comparable with AWS Dynamo DB,
it is a NoSQL database with a fast response time,
a high availability, and it is able to scale auto-
matically. In addition, this database could also
be manipulated with the same APIs of MongoDB
and Cassandra. Like DynamoDB, also Cosmos DB
service encrypts all data at rest by default using

AES-256 and a key managed directly by Microsoft.
Unlike AWS, Azure does not provide its customers
a different way of managing the default encryption
but allows users to add an optional second layer
of encryption using a customer-managed key. The
keys used to enable this additional security must
be stored inside the Azure Key Vault, an Azure
service designed to manage keys, certificates, and
secrets in general like passwords or tokens.

To protect customers’ data, Cosmos DB ser-
vice automatically performs backups of all data
at regular intervals. Similar to AWS, Microsoft
offers two types of backup: periodic backup mode
and continuous backup mode. The first approach
is the default one. Azure executes backups period-
ically but to restore a specific backup is necessary
to contact the support team. The user decides
the interval of time between the backups. Instead,
the second approach gives users the capability to
restore data at any point in time during the last 30
days. Users can migrate from periodic backup to
continuous back at any moment, but this migra-
tion is not reversible. In addition, also Cosmos
DB allows developers to store multiple copies of
their backups in one or more different geographical
regions.

Discussing how to access the database, Cos-
mos DB provides three approaches to manage
data access. Developers can use primary/sec-
ondary keys, role-based access control (RBAC), or
resource tokens.

The first approach is the most powerful. It pro-
vides access to all the database account’s admin-
istrative resources. The only possible limitation is
to specify that keys are read-only. The purpose of
having two keys is twofold. From one side, it allows
users to keep using Azure services when they want
to update a key. For example, users could tem-
porarily use the secondary key without downtime
while Azure is generating a new primary key. On
the other side, users could give trusted partners
the secondary key. If one of them, for any reason,
is not trusted anymore, the users could use their
primary key to easily replace the shared key.

The second approach is the most similar
to the AWS IAM policies. After specifying an
Azure Active Directory (AAD) identity, users can
authenticate and authorize requests with fine-
grained policies. Currently, Azure allows speci-
fying three possible scopes: an account scope, a
database scope, and a container scope. With an

Springer Nature 2021 LATEX template

Article Title 19

account scope, users can access all the databases
of a specific account. With a database scope, it is
possible to access specific databases of a particu-
lar account. Meanwhile, the container scope is the
finest. In Azure, a container is a schema-agnostic
set of items. So, users can define their containers
and then provide them access using this approach.

The last approach, resource tokens, is used
when users want to provide specific access to
some resources to clients without giving them pri-
mary keys. These tokens can be built manually or
generated using an Azure SDK.

In the end, we could say that even
Azure appropriately manages the security of its
databases by default with a good level of flexibil-
ity.

7 Discussion

Section 5 presented the research questions that led
to the survey design. This Section discusses how
the collected responses address the questions, also
contemplating the security features available on
both platforms and discussed in Section 6. These
two elements guided us in creating the guidelines
presented in Section 8.

As regards the security perception of the
involved elements, the database was indicated by
the novice IoT developers as the most secure
architecture item. Nevertheless, the interviewees
recognized possible data loss (i.e., information
disclosure) as one of the most critical issues.
According to the obtained results, this security
perception could have been quite dangerous con-
sidering that almost no one acted to verify if the
data were encrypted at rest or not. Fortunately,
in this case, both platforms have a default mech-
anism to protect the data stored inside NoSQL
databases. Nonetheless, even if the platforms take
care of this problem, programmers should remem-
ber to manage critical information properly. For
instance, the importance of hashing the users’
passwords in a real application is well-known.
Unluckily, we did not include users’ registration in
our use case, so we did not collect any informa-
tion on this specific behavior. However, we would
like to remind readers that this protection mech-
anism has to be implemented by the developers
(meanwhile, the analyzed platforms automatically
manage it for their customers’ accounts).

Contrarily, the less secure architecture points
for our attendees are the data flows from (and to)
the back-end. In more detail, the data flows from
the back-end to the actuators are considered the
most dangerous point if an attack succeeds. Specif-
ically, the developers are mainly apprehensive
about cyber-physical attacks. Considering so, it is
particularly worrying that only a couple of devel-
opers verify the security of the communication
channels, even because they can be targeted basi-
cally by all the security threats presented by the
STRIDE model (Section 4.1). This fact increases
our idea that unencrypted connections should not
exist in a cloud-IoT scenario. Considering this
specific issue, from one side, Amazon seems to dis-
allow all the unencrypted connections between IoT
devices and the back-end. On the other side, we
observed that Azure left some unencrypted data
flows available by default. From our point of view,
in line with the survey’s outcomes, the default con-
figuration should not include unencrypted com-
munications. Regarding the connections with the
API gateways, Amazon does not allow to contact
this service without protecting the communication
with TLS. However, by default, all the versions
of TLS are enabled, even the versions deprecated
by IETF (currently TLS 1.0 and 1.1 [39]), which
are more subject to spoofing and tampering. Con-
trarily, on Azure, the default configuration has
only TLS v1.2 enabled. So, while Azure protec-
tion is adequate, AWS protection is sufficient on
this component, but it could not be enough if the
users do not act to change the default behavior.

Continuing our discussion, we noticed that
although the surveyed developers think that
cybersecurity is generally quite significant, they
do not consider themselves proficient in this field.
These data lead us to assume that the program-
mers did not pay particular attention to security
threats during the development of their solutions
due to the above-mentioned low self-confidence.
However, it is also noticeable that no one thought
to employ a supplementary tool to enhance the
solution’s robustness (e.g., enabling a service like
AWS IoT Device Defender). From our point of
view, counterbalancing their declared low knowl-
edge with a service designed to help on that spe-
cific issue could have been a reasonable approach.
Nevertheless, to the question: “Using AWS, who
is responsible for the security of the system you
develop?” no one replied that the responsibility

Springer Nature 2021 LATEX template

20 Article Title

is entirely assigned to the cloud platform. For
two attendees, the solution’s security is entirely
a developer’s responsibility; meanwhile, for the
other participants, the responsibility is equally
shared between the developer and the hosting
platform. Hence, we can conclude that develop-
ers are aware of their role in keeping a cloud-IoT
application secure.

Focusing more on the second and third
research questions, once we explicitly asked the
participants to evaluate whether the use case
architecture could include security issues, all
found at least one possible vulnerability. Never-
theless, during the development of their projects,
no one declared to take any action to mitigate the
problem. We could try to explain this behavior
by considering that this project is the outcome of
a training course, and cybersecurity aspects were
not the central focus of our teaching sessions.

According to the retrieved answers, we can
reply to the second research question by stating
that, unfortunately, the participants did not pay
particular attention to security threats during the
development of their first cloud-IoT applications.
Reasonably, we can infer that, as a direct conse-
quence, they did not either act to increase their
applications’ cybersecurity. This behavior is a bit
curious, considering that nobody tries to delegate
the cloud platform for their security duties.

In addition, even though all the partici-
pants had created a strong password — probably
because the platform policy forced them — almost
no one had used the AWS IAM service to cre-
ate separate accounts with different privileges.
Using a unique account for all the possible oper-
ations could create many problems if a malicious
user obtained the root account’s password. For
instance, with a root user it is very easy to tam-
per with the code executed on the back-end or
the content of the database. Moreover, also the
risk of information disclosure is very high. The
fact that only one developer configured an IAM
account increases our idea that it is necessary
to drive users to take advantage of this kind of
account. From our point of view, if the cloud plat-
forms forced their customers to create at least a
secondary account, users would consider more this
particular functionality. Hence, a tutorial phase
dedicated to this specific issue could help novice

(IoT) programmers to understand why it is impor-
tant to use a good privilege policy and the possible
threats of a successful elevation of privileges.

To conclude, we discovered that developers
did not underestimate their role in cybersecu-
rity. However, as previously stated, they did not
pay particular attention to the security issues
during the development of their first cloud-IoT
applications. Clearly, this low attention entails
decreased actions to increase their applications’
security. For these reasons, we believe that provid-
ing a set of straightforward guidelines could help
developers think more about the cybersecurity of
their applications and, consequently, take better
countermeasures to reduce security threats.

8 Proposed Guidelines

After considering the most relevant security issues
according to our novice IoT programmers and ana-
lyzing how the two cloud platforms address these
problems, we would like to provide a straightfor-
ward set of guidelines (GL) that could be helpful
to design a more secure cloud-IoT application
from the very beginning.

To begin with, we have to consider that IoT
systems involve many different components like
sensors, actuators, mini-pc, embedded boards,
micro-controllers, cloud platforms, and many
more. Due to the different elements included,
developers usually have to handle many different
technologies and programming languages. Logi-
cally, it is difficult for a novice programmer to
approach this challenging environment, but even
for a reasonably experienced programmer could be
tough to develop an application in this context.

Many researchers have already demonstrated
that following a security-by-design methodology is
one of the best ways to achieve a good security
level in many ICT applications. In particular, the
importance of this approach was already discussed
both in the cloud and in the IoT domains [52]. For
this reason, we could say that such an approach
is fundamental in a cloud-IoT application. Specif-
ically, we developed this set of guidelines starting
from the adoption of AWS in our use case but, tak-
ing into account also the additional platform, we
believe that the reader could easily generalize the
exposed concepts to other cloud-IoT platforms.

In this study, we concentrated our research
activities mainly on the platforms’ security (and

Springer Nature 2021 LATEX template

Article Title 21

their connections) without investigating too much
the problems related to the IoT physical devices.
However, this does not mean that things are
less critical. Indeed, we are currently working on
another study focused on understanding the most
common security issues of such devices.

The first guideline we want to provide is apply-
ing a proper model or framework when developers
start building a new IoT application. In partic-
ular, in our use case, we decided to apply the
STRIDE framework [33] (already explained in
Section 4.1). This framework is easy, consolidated,
and already applied in several research activities
[34–36]. We think it could be a good choice for
developing cloud-IoT solutions having security in
mind. Indeed, leading developers to think about
security issues before starting the development
of their applications would reduce the number of
possible future threats.

GL1: Design a new application using a threat
model from the beginning (e.g., STRIDE).

In the following sections, the paper discusses
how to configure the components analyzed in
Section 6.

8.1 Data Flows and Devices
Protection

IoT systems have many possible connections
transporting commands, measures, or relevant
information. As we already discussed before,
the data-flows are very subject to the STRIDE
threats, so protecting them is one of the more cru-
cial aspects of such a system. One of the first steps
to achieve a good level of protection is to disable
the possibility of contacting the cloud back-end
without encryption and authentication. It is also
essential that the IoT devices communicate with
each other using encrypted channels to reduce
potential issues. This protection will avoid threats
like spoofing or tampering and avoid information
disclosure if a malicious user tries to eavesdrop on
the data.

GL2: Protect every data flow with encryption
mechanisms.

Considering TLS, as we already discussed in
Section 6.1, the minimum version of TLS now con-
sidered safe is TLS 1.2. However, establishing the
correct protocol version is not enough. Another

critical step to achieve a good level of protection
against possible attacks is to configure correctly
the cipher suite used to exchange messages. To
help developers in this task, we strongly suggest
using tools like CipherSuite.info [40]. This tool is
available through a website where everyone can
search for a specific cipher suite and evaluate its
effectiveness. The possible evaluations are:

• insecure: do not use it any circumstances;
• weak: old ciphers that should be disabled (use

only in particular circumstances);
• secure: state-of-the-art ciphers;
• recommended: secure ciphers that also sup-

port Perfect Forward Secrecy21.

If developers are starting a new application
from scratch, we strongly suggest choosing a rec-
ommended cipher suite. In this way, they will
have the highest possible security. In any case,
we strongly discourage the usage of an insecure
or weak cipher suite. Even if programmers are
re-configuring an already existent solution, they
always should avoid using a suite belonging to
these classes.

These configurations should be applied to all
possible data flows in the project (e.g., from an
IoT device to the back-end and vice versa). For
instance, in our use case, we proposed imple-
menting a device gateway based on Flask22 for
managing all the acting devices. To comply with
what we discussed so far, developers have to con-
figure this gateway to accept at least only TLS
1.2 communications. The same approach should
also be adopted for the API gateways, especially
if developers plan not to expose only public APIs.

GL3: Ensure that all encryption mechanisms are
correctly configured; when using TLS, configure
at least TLS 1.2, and select a recommended cipher
suite.

Instead, considering the connection of the IoT
devices with the back-ends, as we already dis-
cussed in Section 6.1, both platforms encourage
connecting each IoT device to their back-end using
the available SDKs. From one side, using these
tools could simplify the connection process. On

21A feature of specific key agreement protocols that ensures
that session keys will not be compromised even if long-term
secrets used in the session key exchange are compromised.

22A very widespread open-source web micro-framework
developed in Python.

Springer Nature 2021 LATEX template

22 Article Title

the other side, they could also reduce the pos-
sibility of introducing programming errors and
consequently increase the application’s security.

GL4: When available, always use the platforms’
SDKs to connect an IoT device to the cloud
platform.

Moreover, we observed that various scholars
consider managing, fixing, and updating many IoT
devices particularly difficult. So, they also pro-
posed some possible solutions [53, 54]. For this
reason, when the number of connected devices
is significant, we particularly suggest employing
additional tools offered by the platforms. For
instance, in AWS, instead of using the AWS IoT
Core component, users can take advantage of the
AWS IoT Device Management. In addition, to
improve the security of the connected devices,
we also suggest enabling support tools like the
AWS IoT Device Defender or Microsoft Defender
for IoT (especially if there are many devices
connected).

GL5: Always use services implemented by the
platform to manage the devices.

8.2 Back-end Protection

We already discussed the security of the data-flows
that allow reaching the back-end. The infrastruc-
ture security issues of the back-end are principally
a duty of the cloud platforms, so we will not
deeper investigate this part. From our point of
view, the developers have essentially to face these
three issues:

• write secure code inside the serverless comput-
ing service;

• choosing appropriate credentials for accessing
the back-end;

• using a good privileges policy.

Writing secure code is a very complex and
widespread research topic, and it could change
accordingly to the used programming language.
Suppose the developed code is not secure enough.
In that case, malicious users could easily exploit
this vulnerability to execute a DoS attack or, less
easily, tamper or obtain some relevant data (infor-
mation disclosure). In some cases, they could
even execute an elevation of privileges attack.
Considering that both platforms support many

programming languages, providing simple guide-
lines to follow on this specific topic is challenging.
We can only suggest to developers not to neglect
this relevant aspect and go deep into studying
the desired programming language. Fortunately,
nowadays, many code checkers can help developers
write code in a more reliable and secure way. Some
of the code checkers features could sometimes also
be enabled directly inside compilers. Two possible
examples are Snyk Code [55] — a tool that pro-
vides a static application security testing solution
for scanning source code — and Upsource [56] —
a code review and project analytic tool.

GL6: Always use compiler features and code
checkers to avoid insecure library functions or
language constructs.

Concerning the second issue, it is clear that
choosing weak credentials could bring hazardous
scenarios. A malicious user who owns root cre-
dentials can completely control the back-end and
create all the threats presented in the STRIDE
model. In Section 6.2, we discussed the pass-
word policies of both platforms. AWS had a
more robust policy for the primary account, while
the policy adopted for the secondary accounts is
almost the same. However, both platforms are
quite weak against dictionary attacks. Users could
use tools like “How Secure is My Password?”
[47] to check the robustness of their passwords,
but they should be aware that respecting the
criteria imposed by the cloud platforms (or by
other associated websites) is not enough to cre-
ate a truly secure password. Unfortunately, there
are many misconceptions about password secu-
rity [57]. For instance, it is always a bad idea
to include in the password the website’s name
(i.e., Amazon, AWS, Microsoft, or Azure) user’s
personal information (e.g., name, age, born year,
children’s names, hometown, et cetera). Indeed,
we would recommend users to avoid always using
easy to guess words and choose long passwords
(even longer than the suggested length). Other
researches demonstrated that using at least two
words separated by other characters could be a
good trade-off between security and usability [58].
Moreover, including (at least) three special char-
acters in a password seems to be an excellent way
to improve password entropy [59]. In conclusion,
mixing these two approaches could be a perfect

Springer Nature 2021 LATEX template

Article Title 23

way to create a strong and quite easy-to-remember
password.

In our analysis, we noticed that AWS did not
enforce two-factor authentication of the accounts,
while Azure enforced this policy (even if it allows
users to delay the configuration of this addi-
tional security mechanism). However, users should
always enable two-factor authentication when the
platform provides this possibility, especially for
root accounts.

GL7: Always use two-factor authentication
and/or complex passwords (e.g., at least two
words, including at least three special characters).

Regarding the last issue, users should apply
what we reported so far both to the main account
and to all the created secondary accounts. As we
previously discussed in Section 6.2, even if AWS
recommends using the root account mainly for cre-
ating IAM accounts, none of the two platforms
enforce this recommendation in any way. We want
to encourage developers to follow this best prac-
tice and create some secondary accounts applying
the password strategy presented before. Moreover,
an easy policy that novice developers could use is
the Principle of Least Privilege [46]. Users should
create a secondary account for each primary task
and configure it to have only the privileges nec-
essary to carry on the related activities. In this
way, even if a malicious user compromises one
of these accounts, the other functionalities could
remain safe. For instance, in our use case, the API
Gateway should be adequately configured, assign-
ing to each endpoint the proper privileges, if users
plan to expose not only public APIs. Moreover,
multiple users must not share the same account,
especially if they need access to different privileges
or resources.

GL8: Always create secondary accounts (e.g., use
IAM accounts in AWS and create other accounts
in Azure).

GL9: Assign to each secondary account the fewest
possible privileges.

GL10: Each developer must have their own
account.

8.3 Database Protection

A very relevant element to keep into considera-
tion is the security of the data at rest stored in

the databases. Indeed, if not adequately protected,
data at rest could be easily modified or disclosed.
Database encryption is essential to reduce damage
in case of data leaks. Furthermore, the possibility
of altering a table containing the list of registered
users and administrators could create a Denial of
Service or an unauthorized elevation of privileges.
As we already discussed in Section 6.3, both Ama-
zon DynamoDB and Azure Cosmos DB already
provide an automatic encryption mechanism. If
the developed application does not manage very
sensible data, we suggest to the novice IoT devel-
opers simply use the default encryption provided
by the platforms. However, However, suppose it
is necessary (or reasonable) to have a more reli-
able encryption key or increase the security of
this process. In that case, both solutions offer the
possibility of improving the default encryption. If
a user plans to use another cloud platform, she
should verify if it offers default data at rest encryp-
tion or if she has to implement this feature by
herself.

GL11: Always ensure that data protection at rest
is enabled.

When the application involves user authenti-
cation, in case a malicious user would be able
to break the database cryptography, a very well-
known Defense in Depth [60] strategy to apply
is to add additional security to password storage.
Usually, developers can achieve this protection
through a hashing algorithm. Hashing users’ pass-
word allows the application to work correctly,
without explicitly storing actual passwords —
which could be a hazardous disclosure in case of a
data leak. There are many hashing algorithms that
developers could use. We suggest following the
recommendations of NIST or similar institutions.
Currently, NIST suggests using at least an algo-
rithm belonging to the SHA-2 family [50]. If possi-
ble, developers should consider using an algorithm
from the SHA-3 family [51]. To further improve
the security of the hash algorithm, it is also a
good practice to add “salt” to passwords. This
quite old technique consists of adding a random-
generated string to each password’s beginning
or end before hashing [61]. Basically, instead of
simply hashing the password h(pwd), the pro-
gram computes something like h(pwd+salt) or
h(salt+pwd). To further improve the security of
this approach, programmers must use a different

Springer Nature 2021 LATEX template

24 Article Title

salt value for each stored password. These values
are then associated with the correspondent users
and stored (in clear text) in the back-end. Accord-
ing to some researchers, the suggested length for
salt values is between 10 and 32 characters (i.e.,
from 80 to 256 bits) [62]. Moreover, to achieve an
even higher level of security, developers can follow
more sophisticated salt generation approaches.
For instance, Boonkrong and Somboonpattanakit
proposed an algorithm for generating and storing
salt values directly from the passwords themselves
[62].

GL12: Always apply Defense in Depth mecha-
nisms.

GL13: If the developed application involves user
registration or authentication, salt and hash the
passwords.

Another good practice for improving the devel-
oped application’s reliability and security is con-
figuring a periodic database backup.

Here we have two different scenarios. On one
side, Microsoft forces users to have at least a peri-
odic backup: no backup is not an option. On the
other side, AWS does not automatically enable
this configuration by default (also because it
requires an additional payment). We strongly sug-
gest always activating (at least) the point-in-time
backup of the more sensitive tables.

GL14: Always enable at least periodic database
backups (possibly even in different regions).

9 Conclusions

Starting from a preliminary study conducted on
a small pool of novice IoT developers, this paper
analyzes the more relevant security features avail-
able in two major cloud-IoT platforms. In partic-
ular, it highlights those settings, tools, and prac-
tices useful to achieve a higher level of reliability
and security. Even if we noticed that the develop-
ers involved in the study did not correctly consider
security issues in their IoT projects during the
design and implementation phases, we observed
that the platforms effectively support many of the
highlighted security best practices and recommen-
dations. However, sometimes, developers have to
identify and use the correct features to reach a
proper level of protection. Indeed, after discussing

the outcome of the survey and the relevant fea-
tures of the two cloud-IoT platforms, this work
contributes a set of guidelines to support novice
IoT developers in reaching such protection. The
final purpose of these guidelines is to avoid the
primary and recurrent security issues in cloud-IoT
projects and better exploit the inherent features
of the cloud-IoT platforms.

9.1 Future Works

In our future works, we would like to have a more
focused survey on a larger sample of novice IoT
programmers to know more about the security
perception of this class of developers. In addition,
to complete the view of the cloud-IoT environ-
ments, we also are interested in investigating
the most common security issues in IoT devices
and IoT gateways. For this reason, we are now
reviewing many novice programmers’ IoT projects
developed for widespread IoT boards as Arduino-
like devices. We are also investigating the security
of a famous open-source smart home gateway:
Home Assistant.

Acknowledgments. We want to acknowledge
the employees who voluntarily decided to par-
ticipate in the survey to conduct this research
activity.

References

[1] Deepak Kumar, Kelly Shen, Benton Case,
Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir
Durumeric. All things considered: an analy-
sis of IoT devices on home networks. In 28th
USENIX Security Symposium (USENIX
Security 19), pages 1169–1185, 2019. ISBN
978-1-939133-06-9. URL https://www.
usenix.org/conference/usenixsecurity19/
presentation/kumar-deepak.

[2] Raj Bala, Bob Gill, Dennis Smith, Kevin
Ji, and David Wright. Magic quadrant
for cloud infrastructure and platform ser-
vices. Technical report, Gartner Inc., July
2021. URL https://www.gartner.com/doc/
reprints?id=1-271OE4VR&ct=210802.

[3] Manos Antonakakis, Tim April, Michael
Bailey, Matt Bernhard, Elie Bursztein,

https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802

Springer Nature 2021 LATEX template

Article Title 25

Table 5 Guidelines summary.

ID Guideline Description

GL1 Use a threat model Design a new application using a security model from the
beginning (e.g., STRIDE).

GL2 Protect data in transit Protect every data flow with encryption mechanisms.
GL3 Configure encryption correctly Ensure that all encryption mechanisms are correctly config-

ured; when using TLS, configure at least TLS 1.2, and select
a recommended cipher suite.

GL4 Use platforms’ SDKs When available, always use the platforms’ SDKs to connect
an IoT device to the cloud platform.

GL5 Use platforms’ support services Always use services implemented by the platform to manage
the devices.

GL6 Verify code security Always use compiler features and code checkers to avoid
insecure library functions or language constructs.

GL7 Verify authentication security Always use two-factor authentication and/or complex pass-
words (e.g., at least two words, including at least three
special characters).

GL8 Use secondary accounts Always create secondary accounts (e.g., use IAM accounts
in AWS and create other accounts in Azure).

GL9 Use POLP Assign to each secondary account the fewest possible privi-
leges.

GL10 Do not share accounts Each developer must have his or her own account.
GL11 Protect data at rest Always ensure that data protection at rest is enabled.
GL12 Apply more protections Always apply Defense in Depth mechanisms.
GL13 Hash passwords If the developed application involves user registration or

authentication, salt and hash the passwords.
GL14 Have backups Always enable at least periodic database backups (possibly

even in different regions).

Jaime Cochran, Zakir Durumeric, J. Alex
Halderman, Luca Invernizzi, Michalis Kallit-
sis, Deepak Kumar, Chaz Lever, Zane Ma,
Joshua Mason, Damian Menscher, Chad
Seaman, Nick Sullivan, Kurt Thomas, and
Yi Zhou. Understanding the mirai botnet. In
26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver,
BC, August 2017. USENIX Association.
ISBN 978-1-931971-40-9. URL https://www.
usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis.

[4] CVE-2021-28372. Available from MITRE,
CVE-ID CVE-2021-28372., March 13 2021.
URL http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-28372.

[5] Fulvio Corno, Luigi De Russis, and Luca
Mannella. Perception of security issues in

the development of Cloud-IoT systems by a
novice programmer. In Intelligent Environ-
ments 2021, pages 5–15. IOS Press, 2021.
URL https://doi.org/10.3233/AISE210074.

[6] Borislav S DJordjević, Slobodan P Jovanović,
and Valentina V Timčenko. Cloud com-
puting in amazon and microsoft azure plat-
forms: Performance and service compari-
son. In 2014 22nd Telecommunications
Forum Telfor (TELFOR), pages 931–934.
IEEE, 2014. URL https://doi.org/10.1109/
TELFOR.2014.7034558.

[7] Teodoro Montanaro, Ilaria Sergi, Stefano
Limelli, and Luigi Patrono. Fog comput-
ing: Implementation of a simple fog sce-
nario through iot public services. In 2021
6th International Conference on Smart and
Sustainable Technologies (SpliTech), pages

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28372
https://doi.org/10.3233/AISE210074
https://doi.org/10.1109/TELFOR.2014.7034558
https://doi.org/10.1109/TELFOR.2014.7034558

Springer Nature 2021 LATEX template

26 Article Title

1–6, 2021. URL https://doi.org/10.23919/
SpliTech52315.2021.9566323.

[8] Daniel Barcelona-Pons and Pedro Garćıa-
López. Benchmarking parallelism in faas
platforms. Future Generation Computer
Systems, 124:268–284, 2021. ISSN 0167-
739X. URL https://doi.org/10.1016/j.future.
2021.06.005.

[9] Jon Brodkin. Gartner: Seven cloud-
computing security risks. Technical
report, Network World, 2008. URL https:
//www.infoworld.com/article/2652198/
gartner--seven-cloud-computing-security-risks.
html.

[10] Mariana Carroll, Alta Van Der Merwe, and
Paula Kotze. Secure cloud computing: Bene-
fits, risks and controls. In 2011 Information
Security for South Africa, pages 1–9. IEEE,
2011. URL https://doi.org/10.1109/ISSA.
2011.6027519.

[11] Akhil Behl and Kanika Behl. An analysis
of cloud computing security issues. In 2012
World Congress on Information and Commu-
nication Technologies, pages 109–114. IEEE,
2012. URL https://doi.org/10.1109/WICT.
2012.6409059.

[12] Elliot Soloway and James C Spohrer.
Studying the novice programmer.
Lawrence Erlbaum Associates, Inc.,
365 Broadway, Hillsdale, New Jer-
sey 07642 United States, 1989. URL
https://doi.org/10.4324/9781315808321.

[13] Hank Kahney. What do novice program-
mers know about recursion. In Proceedings
of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’83, pages
235—-239, New York, NY, USA, 1983. Asso-
ciation for Computing Machinery. ISBN
0897911210. URL https://doi.org/10.1145/
800045.801618.

[14] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-
Matti Järvinen. A study of the difficulties of
novice programmers. Acm sigcse bulletin, 37
(3):14–18, jun 2005. ISSN 0097-8418. URL
https://doi.org/10.1145/1151954.1067453.

[15] Billy Javier. Understanding their voices from
within: Difficulties and code comprehension
of life-long novice programmers. Interna-
tional Journal of Arts, Sciences and Educa-
tion, 1(1):53–73, 2021. URL https://www.
ijase.org/index.php/ijase/article/view/1.

[16] Fulvio Corno, Luigi De Russis, and
Juan Pablo Sáenz. Pain points for novice
programmers of ambient intelligence sys-
tems: An exploratory study. In 2017 IEEE
41st Annual Computer Software and Appli-
cations Conference (COMPSAC), volume 1,
pages 250–255. IEEE, 2017. URL https:
//doi.org/10.1109/COMPSAC.2017.186.

[17] Fulvio Corno, Luigi De Russis, and
Juan Pablo Sáenz. Towards computational
notebooks for IoT development. In Extended
Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems,
CHI EA ’19, pages 1––6, New York, NY,
USA, 2019. Association for Computing
Machinery. ISBN 9781450359719. URL
https://doi.org/10.1145/3290607.3312963.

[18] Fulvio Corno, Luigi De Russis, and
Juan Pablo Saenz. On computational
notebooks to empower physical com-
puting novices. In Companion of the
2021 ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems,
EICS ’21, pages 22—-25, New York, NY,
USA, 2021. Association for Computing
Machinery. ISBN 9781450384490. URL
https://doi.org/10.1145/3459926.3464752.

[19] Faouzi Kamoun and Mohanad Halaweh. User
interface design and e-commerce security per-
ception: An empirical study. International
Journal of E-Business Research (IJEBR), 8
(2):15–32, 2012. URL https://doi.org/10.
4018/jebr.2012040102.

[20] Stefan Varga, Joel Brynielsson, and Ulrik
Franke. Cyber-threat perception and risk
management in the swedish financial sector.
Computers & Security, page 102239, 2021.
ISSN 0167-4048. URL https://doi.org/10.
1016/j.cose.2021.102239.

https://doi.org/10.23919/SpliTech52315.2021.9566323
https://doi.org/10.23919/SpliTech52315.2021.9566323
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1016/j.future.2021.06.005
https://www.infoworld.com/article/2652198/gartner--seven-cloud-computing-security-risks.html
https://www.infoworld.com/article/2652198/gartner--seven-cloud-computing-security-risks.html
https://www.infoworld.com/article/2652198/gartner--seven-cloud-computing-security-risks.html
https://www.infoworld.com/article/2652198/gartner--seven-cloud-computing-security-risks.html
https://doi.org/10.1109/ISSA.2011.6027519
https://doi.org/10.1109/ISSA.2011.6027519
https://doi.org/10.1109/WICT.2012.6409059
https://doi.org/10.1109/WICT.2012.6409059
https://doi.org/10.4324/9781315808321
https://doi.org/10.1145/800045.801618
https://doi.org/10.1145/800045.801618
https://doi.org/10.1145/1151954.1067453
https://www.ijase.org/index.php/ijase/article/view/1
https://www.ijase.org/index.php/ijase/article/view/1
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1145/3290607.3312963
https://doi.org/10.1145/3459926.3464752
https://doi.org/10.4018/jebr.2012040102
https://doi.org/10.4018/jebr.2012040102
https://doi.org/10.1016/j.cose.2021.102239
https://doi.org/10.1016/j.cose.2021.102239

Springer Nature 2021 LATEX template

Article Title 27

[21] Kaushal Kafle, Kevin Moran, Sunil Manand-
har, Adwait Nadkarni, and Denys Poshy-
vanyk. Security in centralized data store-
based home automation platforms: A sys-
tematic analysis of nest and hue. ACM
Transactions on Cyber-Physical Systems, 5
(1):1–27, December 2020. ISSN 2378-962X.
URL https://doi.org/10.1145/3418286.

[22] Shantanu Pal, Michael Hitchens, Tahiry
Rabehaja, and Subhas Mukhopadhyay. Secu-
rity requirements for the internet of things: A
systematic approach. Sensors, 20(20), 2020.
ISSN 1424-8220. URL https://doi.org/10.
3390/s20205897.

[23] Behnood Momenzadeh, Helen Dougherty,
Matthew Remmel, Steven Myers, and L. Jean
Camp. Best practices would make things bet-
ter in the IoT. IEEE Security & Privacy,
18(4):38–47, 2020. URL https://doi.org/10.
1109/MSEC.2020.2987780.

[24] Eirini Anthi, Lowri Williams, Ma lgorzata
S lowińska, George Theodorakopoulos, and
Pete Burnap. A supervised intrusion detec-
tion system for smart home IoT devices.
IEEE Internet of Things Journal, 6(5):9042–
9053, 2019. URL https://doi.org/10.1109/
JIOT.2019.2926365.

[25] Amazon Web Services Inc. Intro-
duction to AWS security. Technical
report, Amazon Web Services Inc., 410
Terry Avenue North Seattle, WA 98109
United States, January 2020. URL
https://d1.awsstatic.com/whitepapers/
Security/Intro to AWS Security.pdf.

[26] Amazon Web Services Inc. Amazon
web services: Overview of security pro-
cesses. Technical report, Amazon Web Ser-
vices Inc., 410 Terry Avenue North Seat-
tle, WA 98109 United States, March 2020.
URL https://d0.awsstatic.com/whitepapers/
aws-security-whitepaper.pdf.

[27] Saakshi Narula, Arushi Jain, et al. Cloud
computing security: Amazon web service.
In 2015 Fifth International Conference
on Advanced Computing & Communica-
tion Technologies, pages 501–505. IEEE,

2015. URL https://doi.org/10.1109/ACCT.
2015.20.

[28] Marta Taggart, Bradley Roach, and Patrick
Woods. Amazon web services: Risk and
compliance. Technical report, Amazon Web
Services Inc., 410 Terry Avenue North Seat-
tle, WA 98109 USA, 2020. URL https://
d1.awsstatic.com/whitepapers/compliance/
AWS Risk and Compliance Whitepaper.pdf.

[29] Navneet Bhardwaj, Abhik Banerjee, and
Agniswar Roy. Case study of azure and azure
security practices. Machine Learning Tech-
niques and Analytics for Cloud Security, page
339, 2021. URL ”https://doi.org/10.1002/
9781119764113.ch16”.

[30] Frank Simorjay and Eric Tierling. Shared
responsibility for cloud computing. Technical
report, Microsoft Corporation, One Microsoft
Way, Redmond, WA, 98052, USA, 2019. URL
https://azure.microsoft.com/it-it/resources/
shared-responsibilities-for-cloud-computing/.

[31] Souad Amghar, Safae Cherdal, and Salma
Mouline. Which nosql database for iot appli-
cations? In 2018 International Conference
on Selected Topics in Mobile and Wire-
less Networking (MoWNeT), pages 131–137,
June 2018. URL https://doi.org/10.1109/
MoWNet.2018.8428922.

[32] Danny Yuxing Huang, Noah Apthorpe, Frank
Li, Gunes Acar, and Nick Feamster. IoT
inspector: Crowdsourcing labeled network
traffic from smart home devices at scale. Pro-
ceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(2):
1–21, jun 2020. URL https://doi.org/10.
1145/3397333.

[33] Shawn Hernan, Scott Lambert, Tomasz Ost-
wald, and Adam Shostack. Threat modeling-
uncover security design flaws using the stride
approach. MSDN Magazine-Louisville, pages
68–75, 2006.

[34] Rafiullah Khan, Kieran McLaughlin, David
Laverty, and Sakir Sezer. STRIDE-based
threat modeling for cyber-physical sys-
tems. In 2017 IEEE PES Innovative

https://doi.org/10.1145/3418286
https://doi.org/10.3390/s20205897
https://doi.org/10.3390/s20205897
https://doi.org/10.1109/MSEC.2020.2987780
https://doi.org/10.1109/MSEC.2020.2987780
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/JIOT.2019.2926365
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://doi.org/10.1109/ACCT.2015.20
https://doi.org/10.1109/ACCT.2015.20
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
"https://doi.org/10.1002/9781119764113.ch16"
"https://doi.org/10.1002/9781119764113.ch16"
https://azure.microsoft.com/it-it/resources/shared-responsibilities-for-cloud-computing/
https://azure.microsoft.com/it-it/resources/shared-responsibilities-for-cloud-computing/
https://doi.org/10.1109/MoWNet.2018.8428922
https://doi.org/10.1109/MoWNet.2018.8428922
https://doi.org/10.1145/3397333
https://doi.org/10.1145/3397333

Springer Nature 2021 LATEX template

28 Article Title

Smart Grid Technologies Conference Europe
(ISGT-Europe), pages 1–6. IEEE, 2017.
URL https://doi.org/10.1109/ISGTEurope.
2017.8260283.

[35] Malik Nadeem Anwar, Mohammed Nazir,
and Adeeb Mansoor Ansari. Modeling
security threats for smart cities: A stride-
based approach. Smart Cities—Opportunities
and Challenges. Springer, pages 387–396,
01 2020. URL https://doi.org/10.1007/
978-981-15-2545-2 33.

[36] Bojan Jelacic, Daniela Rosic, Imre Lendak,
Marina Stanojevic, and Sebastijan Stoja.
STRIDE to a secure smart grid in a hybrid
cloud. In Computer Security, pages 77–
90. Springer, 2017. URL https://doi.org/10.
1007/978-3-319-72817-9 6.

[37] Christopher Allen and Tim Dierks. The
TLS Protocol Version 1.0. RFC 2246, Jan-
uary 1999. URL https://doi.org/10.17487/
RFC2246.

[38] Eric Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.3. RFC 8446,
August 2018. URL https://doi.org/10.17487/
RFC8446.

[39] Kathleen Moriarty and Stephen Farrell. Dep-
recating TLS 1.0 and TLS 1.1. RFC 8996,
March 2021. URL https://doi.org/10.17487/
RFC8996.

[40] Hans Christian Rudolph and Nils Grund-
mann. Ciphersuite, 2022. URL https://
ciphersuite.info/. [Online: accessed 03-Feb-
2022].

[41] OASIS. MQTT version 5.0 documentation,
2022. URL ”https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.html”. [Online:
accessed 27-Jan-2022].

[42] Postman Inc. Postman, 2022. URL https:
//www.postman.com/. [Online: accessed 24-
Jan-2022].

[43] Elaine Barker and Allen Roginsky. Transi-
tioning the use of cryptographic algorithms
and key lengths, 2019-03-21 2019. URL https:

//doi.org/10.6028/NIST.SP.800-131Ar2.

[44] Marc Stevens, Elie Bursztein, Pierre Karp-
man, Ange Albertini, and Yarik Markov.
The first collision for full sha-1. In
Jonathan Katz and Hovav Shacham, edi-
tors, Advances in Cryptology – CRYPTO
2017, pages 570–596, Cham, 2017. Springer,
Springer International Publishing. ISBN
978-3-319-63688-7. URL https://doi.org/10.
1007/978-3-319-63688-7 19.

[45] Karen Seo and Stephen Kent. Security Archi-
tecture for the Internet Protocol. RFC 4301,
December 2005. URL https://doi.org/10.
17487/RFC4301.

[46] Fred B Schneider. Least privilege and more
[computer security]. IEEE Security & Pri-
vacy, 1(5):55–59, 2003. URL https://doi.org/
10.1109/MSECP.2003.1236236.

[47] Security.org. Online tool: How secure is my
password?, 2022. URL https://www.security.
org/how-secure-is-my-password/. [Online:
accessed 19-Jan-2022].

[48] Blase Ur, Patrick Gage Kelley, Saranga
Komanduri, Joel Lee, Michael Maass,
Michelle L. Mazurek, Timothy Passaro,
Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor.
How does your password measure up? the
effect of strength meters on password cre-
ation. In 21st USENIX Security Symposium
(USENIX Security 12), pages 65–80, Belle-
vue, WA, August 2012. USENIX Association.
ISBN 978-931971-95-9. URL https://www.
usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/ur.

[49] Morris Dworkin, Elaine Barker, James
Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James
Dray. Advanced encryption stan-
dard (aes), 2001-11-26 2001. URL
https://doi.org/10.6028/NIST.FIPS.197.

[50] Quynh Dang. Secure hash standard, 2015-
08-04 2015. URL https://doi.org/10.6028/
NIST.FIPS.180-4.

https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1007/978-981-15-2545-2_33
https://doi.org/10.1007/978-981-15-2545-2_33
https://doi.org/10.1007/978-3-319-72817-9_6
https://doi.org/10.1007/978-3-319-72817-9_6
https://doi.org/10.17487/RFC2246
https://doi.org/10.17487/RFC2246
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8996
https://doi.org/10.17487/RFC8996
https://ciphersuite.info/
https://ciphersuite.info/
"https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html"
"https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html"
https://www.postman.com/
https://www.postman.com/
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.17487/RFC4301
https://doi.org/10.17487/RFC4301
https://doi.org/10.1109/MSECP.2003.1236236
https://doi.org/10.1109/MSECP.2003.1236236
https://www.security.org/how-secure-is-my-password/
https://www.security.org/how-secure-is-my-password/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/ur
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/ur
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/ur
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4

Springer Nature 2021 LATEX template

Article Title 29

[51] Morris J Dworkin. Sha-3 standard:
Permutation-based hash and extendable-
output functions, 2015-08-04 2015. URL
https://doi.org/10.6028/NIST.FIPS.202.

[52] João B. F. Sequeiros, Francisco T. Chimuco,
Musa G. Samaila, Mário M. Freire, and Pedro
R. M. Inácio. Attack and system modeling
applied to IoT, cloud, and mobile ecosys-
tems: Embedding security by design. ACM
Comput. Surv., 53(2), March 2020. ISSN
0360-0300. URL https://doi.org/10.1145/
3376123.

[53] Antonio Langiu, Carlo Alberto Boano,
Markus Schuß, and Kay Römer. UpKit:
An open-source, portable, and lightweight
update framework for constrained IoT
devices. In 2019 IEEE 39th International
Conference on Distributed Computing Sys-
tems (ICDCS), pages 2101–2112, 2019. URL
https://doi.org/10.1109/ICDCS.2019.00207.

[54] Georgios Selimis, Rui Wang, Roel Maes,
Geert-Jan Schrijen, Mario Münzer, Stefan
Ilić, Frans M. J. Willems, and Lieneke
Kusters. RESCURE: A security solu-
tion for IoT life cycle. In Proceedings
of the 15th International Conference on
Availability, Reliability and Security, ARES
’20, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN
9781450388337. URL https://doi.org/10.
1145/3407023.3407075.

[55] Snyk. Snyk code, 2022. URL https://snyk.
io/product/snyk-code/. [Online: accessed 03-
Feb-2022].

[56] Jetbrain. Upsource, 2022. URL https://www.
jetbrains.com/upsource/. [Online: accessed
03-Feb-2022].

[57] Blase Ur, Fumiko Noma, Jonathan Bees,
Sean M. Segreti, Richard Shay, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor.
“I added ‘!’ at the end to make it secure”:
Observing password creation in the lab.
In Eleventh Symposium On Usable Pri-
vacy and Security (SOUPS 2015), pages
123–140, Ottawa, July 2015. USENIX
Association. ISBN 978-1-931971-249.

URL https://www.usenix.org/conference/
soups2015/proceedings/presentation/ur.

[58] Richard Shay, Saranga Komanduri, Adam L.
Durity, Phillip (Seyoung) Huh, Michelle L.
Mazurek, Sean M. Segreti, Blase Ur, Lujo
Bauer, Nicolas Christin, and Lorrie Faith
Cranor. Can long passwords be secure and
usable? In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Sys-
tems, CHI ’14, pages 2927–2936, New York,
NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450324731. URL https:
//doi.org/10.1145/2556288.2557377.

[59] Wanli Ma, John Campbell, Dat Tran, and
Dale Kleeman. Password entropy and pass-
word quality. In 2010 Fourth International
Conference on Network and System Security,
pages 583–587. IEEE, Sep. 2010. URL https:
//doi.org/10.1109/NSS.2010.18.

[60] Clifton L Smith. Understanding concepts in
the defence in depth strategy. In IEEE 37th
Annual 2003 International Carnahan Confer-
ence onSecurity Technology, 2003. Proceed-
ings., pages 8–16. IEEE, 2003. URL https:
//doi.org/10.1109/CCST.2003.1297528.

[61] Robert Morris and Ken Thompson. Password
security: A case history. Commun. ACM, 22
(11):594–597, November 1979. ISSN 0001-
0782. URL https://doi.org/10.1145/359168.
359172.

[62] Sirapat Boonkrong and Chaowalit Som-
boonpattanakit. Dynamic salt generation
and placement for secure password storing.
IAENG International Journal of Com-
puter Science, 43(1):27–36, 2016. URL
http://www.iaeng.org/IJCS/issues v43/
issue 1/IJCS 43 1 04.pdf.

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1145/3376123
https://doi.org/10.1145/3376123
https://doi.org/10.1109/ICDCS.2019.00207
https://doi.org/10.1145/3407023.3407075
https://doi.org/10.1145/3407023.3407075
https://snyk.io/product/snyk-code/
https://snyk.io/product/snyk-code/
https://www.jetbrains.com/upsource/
https://www.jetbrains.com/upsource/
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1109/CCST.2003.1297528
https://doi.org/10.1109/CCST.2003.1297528
https://doi.org/10.1145/359168.359172
https://doi.org/10.1145/359168.359172
http://www.iaeng.org/IJCS/issues_v43/issue_1/IJCS_43_1_04.pdf
http://www.iaeng.org/IJCS/issues_v43/issue_1/IJCS_43_1_04.pdf

	Introduction
	Related Work
	Cloud Platforms Overview
	Amazon Web Services (AWS)
	Microsoft Azure

	Use Case
	Main architecture attack points

	Developers Security Perspective
	Survey Structure
	Survey Results

	Cloud-IoT Platforms Analysis
	Data Flow Analysis
	AWS Data Flow Management
	Azure Data Flow Management

	Back-end Analysis
	AWS Back-end Management
	Azure Back-end Management

	Database Analysis
	AWS Database Management
	Azure Database Management

	Discussion
	Proposed Guidelines
	Data Flows and Devices Protection
	Back-end Protection
	Database Protection

	Conclusions
	Future Works
	Acknowledgments

