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Nonlinear and linearized vibration analysis of plates and shells

subjected to compressive loading
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1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

2 Department of Mechanical Engineering, College of Engineering,
Prince Mohammad Bin Fahd University. Kingdom of Saudi Arabia.

Abstract: The present work provides a numerical model for carrying out virtual Vibration Correla-
tion Technique (VCT) for computing the buckling load, identifying the natural frequencies variation
with progressive higher applied load, and providing an efficient means for the verification of the
experimental VCT results. The presented nonlinear approach is based on the Carrera Unified For-
mulation (CUF). Since far nonlinear regimes are investigated, the full Green-Lagrange strain tensor
is adopted. Furthermore, geometrical nonlinear equations are written in a total Lagrangian frame-
work and solved with an opportune Newton-Raphson method. For a robustness assessment of the
virtual VCT, different flat panel and shell structures are studied and compared with results found
in the available literature. The results prove that the proposed approach provides results with an
excellent correlation with the experimental ones, allowing to predict the buckling load and the natural
frequencies variation in the nonlinear regime with high reliability.

Keywords: Buckling; Natural frequencies; Vibration Correlation Technique; Carrera Unified For-
mulation; Two-dimensional (2D) model; Geometrical nonlinearity.

1 Introduction

Experimental campaigns continue to be essential for the design and validation of the methodolo-
gies of the new structures. However, studying the stability of structures subjected to compressive
loads, it is noticeable how difficult it is to determine the buckling load by carrying out static tests
experimentally. This complexity is due to the presence of imperfections in the specimens or to dif-
ferent boundary conditions, which have a remarkable influence on the critical load. Therefore, the
possibility of carrying out nondestructive experimental tests for the prediction of the critical load
is essential. In fact, robust and reliable nondestructive methods have been extensively studied for
decades in order to minimize the time and cost of operations.

The first nondestructive method appeared in the early 1930s, intending to compute the buckling
load of simple beam models using the Southwell method [1]. One of the most reliable nondestructive
approaches adopted in the aerospace industry is the Vibration Correlation Technique (VCT) [2, 3].
This method calculates the buckling load and the equivalent boundary conditions by interpolating
the natural frequencies of the structures for progressively increasing applied loads without reaching
the point of instability. VCT has generally divided into two main groups: 1) to determine the in situ
boundary condition; 2) to predict the buckling loads. The first experimental VCT investigations
were data from the 1950s, with the studies conducted by Lurie [4], Meier [5] and Chu [6].
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The VCT is achieved by applying compression loads to the structures well below the calculated
critical load and extrapolating the value of the buckling load for which the frequency tends to zero.
Considering simple supports, the relation between frequencies squared and compressive loadings
is totally linear. In this particular case, the vibration mode is identical to the buckling mode.
Instead, for other constraints, important deviations from linearity can be significant. In addition,
initial geometric imperfections have a noticeable effect on the critical load. Therefore, nonlinear
studies are required to perform accurate analysis and verification of the results. Massonnet [7], for
example, observed in his nonlinear studies on imperfect curved plates that the vibration frequency
increases after the plate had buckled due to the nonlinear effect of post-buckling distortions. The
defined variation in frequency slope as a load function could indicate another criterion for buckling
prediction. In this context, several experiments were performed obtaining the same conclusions
regarding the increase in frequencies after buckling [8, 9, 10]. An important literature review focused
on the most important research on nonlinear vibrations in structures can be found in [11].

VCTs were applied to beams columns [12, 13, 14] for decades by reaching maturity in industrial
applicability, whereas further improvements are still being developed for plates and shells. The
applicability and verification of the VCT for computing the critical load for plate and shell structures
is a vivid research area. The literature on this topic is vast. For instance, recent studies were
presented by Abramovich [15], where the VCT was adopted to obtain the buckling loads of stiffened
metallic and laminated curved panels. The same author summarized the current state-of-the-art of
the VCT studies in [16]. A modified-VCT provided by Arbelo [17], based on the considerations made
by Souza [18], was adopted by Skukis et al. [19] in order to capture the critical loads of unstiffened
shell with circular cut-outs under compressive load. Singhtanadgid and Sukajit [20] derived from
the differential governing equations the link between applied loadings and natural frequencies of
plate structures. After that, the numerical determination of buckling loads was compared with
the experimental solutions. The appropriateness of the VCT for buckling estimation in metallic
shell structures under compressive loading was investigated by Skukis et al. [21]. A semi-analytical
VCT formulation to have a direct prediction of critical loads of shells was provided by Jansen
et al. [22]. Franzoni et al. [23] carried out experimental verification of the VCT robustness to
investigate the buckling of laminated shell structures. The same author [24] presented an analytical
and numerical verification of the VCT to derive the critical load of imperfection-sensitive metallic
cylindrical structures. Readers are referred to the books of Singer et al. [2, 3] and Abramovich [25]
for a detailed and complete description of the experimental setup and results.

The principal aim of this research is to present a numerical model for carrying out virtual
VCT to compute the buckling load, to evaluate the natural frequencies variation with progressively
increasing loadings, and to create an efficient means for the verification of the experimental VCT
results, considering the geometrical nonlinear relations. The investigated structure is subjected to
progressively higher applied loads, and for each state of equilibrium, on the deformed structure,
the natural frequencies are calculated by solving a linearized eigenvalue problem, obtained from an
analysis of the free vibration on the structure.

The presented nonlinear approach is formulated in the domain of the Carrera Unified Formulation
(CUF) [26, 27]. The main advantage of CUF is that the structural model becomes an input of the
analysis. In this way, no ad-hoc formulations are necessary to obtain refined models. According to
CUF, all the theories of structures can be obtained as degenerated cases of an arbitrary expansion
of the generalized unknowns. By adopting this procedure, the nonlinear governing equations and
the relative finite element (FE) arrays of the two-dimensional (2D) theories are written in terms of
Fundamental Nuclei (FNs). FNs represent the basic building blocks of the presented theory. Different
engineering problems and fields have been analyzed employing the CUF [28, 29, 30, 31, 32, 33]. In
this paper, this method is adopted to manage with vibrations.

This article is organized as follows: (i) some essential aspects regarding the CUF and the virtual
VCT methodology used in this research are provided in the first Section 2; (ii) next, Section 3
discusses the numerical examples; (iii) finally, Section 4 reports the main conclusions.
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2 Virtual Vibration Correlation Technique

2.1 Carrera Unified Formulation

In this article, the isotropic structures are modelled using refined 2D CUF models. Consider a 2D
model, which is described in Fig. 1 using a Cartesian system (x,y,z) for plates and an orthogonal
curvilinear system (α,β,z) for shells, where x, y and α, β denote the two in-plane directions and z
is the through-the-thickness direction. The nonlinear problem is formulated in a total Lagrangian

β

R

h

α

R
�a

b

x
h

y

z

(a) (b)

Figure 1: Geometry and reference system of a generic (a) plate and (b) doubly-curved shell.

framework and the Green-Lagrange strain tensor ε is considered. The displacement-strain relations
are written as:

ε = εl + εnl = (bl + bnl)u (1)

where the three-dimensional (3D) displacement, strain and stress vectors of a generic point within
the structural domain of a shell are defined as follows:

u = { uα, uβ, uz }T

ε = {εαα, εββ , εzz, εαz, εβz, εαβ}T

σ = {σαα, σββ , σzz, σαz, σβz, σαβ}T

(2)

Although derivation is carried out for shells in the following sections, it should be underlined that
similar relations hold for plates. In Eq. 1, bl and bnl represent linear and nonlinear differential
operators. Readers can be found the complete form of these matrices in [34].

According to CUF, the 3D displacement field in the dynamic case u(α, β, z; t) is defined as an
arbitrary through-the-thickness expansion of the in-plane variables:

u(α, β, z; t) = Fτ (z)uτ (α, β; t) τ = 1, ...,M (3)

in which uτ (α, β; t) is the generalized in-plane displacement vector, Fτ represent the expansion
functions of the thickness coordinate z, M is the order of expansion in the thickness direction and t
denotes time. Readers are referred to [27] for a full explanation about the mathematical derivation
of the 2D FE formulation in the domain of CUF. In this article, Lagrange polynomials (LE) are
adopted for the expansion functions Fτ . Note that the acronym LEN, considered in this article,
denotes the LE of order N assumed in the z direction.

The finite element method (FEM) is used to approximate the in-plane generalized displacement
vector employing the shape function Ni(α, β).

uτ (α, β; t) = Ni(α, β)qτi(t) i = 1, 2, ..., Nn (4)
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in which qτi represents the vector of the unknown nodal variables, Nn denotes the number of nodes
per element and the i stands for summation. In particular, the classical 2D nine-node quadratic
(Q9) FE will be assumed in the following analyses as the shape function in the α−β plane, see Fig.
2.

Ni( , )

Q9

F (z)

Figure 2: The 2D model approximations of a typical shell structure.

By having the strain (ε) and considering the CUF (Eq. 3) and FEM (Eq. 4) relations into Eq.
1, the strain vector can be formulated in algebric form as:

ε = (Bτi
l +Bτi

nl)qτi (5)

where Bτi
l = bl(FτNi) and Bτi

nl = bnl(FτNi). These linear and nonlinear matrices can be found in
[35].

2.2 Nonlinear free vibration of structures

Vibration analysis is briefly introduced in this section. For this purpose, the virtual variation of the
strain energy is formulated to derive the secant stiffness matrix (KS). Namely:

δLint = δqTsjK
ijτs
0 qτi + δqTsjK

ijτs
lnl qτi + δqTsjK

ijτs
nll qτi + δqTsjK

ijτs
nlnlqτi

= δqTsjK
ijτs
S qτi

(6)

where Kijτs
0 is the linear contribution of KS and Kijτs

lnl , Kijτs
nll and Kijτs

nlnl indicate the nonlinear
contributions of different orders, respectively. These components are written in the form of CUF 3×3
Fundamental Nuclei (FNs). For clarity, FNs represent the basic building blocks of the presented
theory. The FN is independent of the theory approximation and can be expanded against Fτ
approximation (τ, s = 1, ...,M) and Ni shape functions (i, j = 1, ..., Nn) to obtain the final stiffness
matrix of any high-order model. Readers are referred to [27] to see how it is possible to build a
matrix of the node, of the element and, finally, the global stiffness matrix KS by exploiting the FNs.

By employing the principle of virtual work, the virtual variations of internal and external work,
where the latter is not reported here for the sake of brevity, are considered to obtain the system of
nonlinear equilibrium equations.

Kijτs
S qτi = psj (7)

Kijτs
S and psj are the FNs of the secant stiffness matrix and the vector of the nodal loadings,

respectively. This set of equations is solved using the Newton-Raphson method based on the arc-
length approach [36, 37].

Similarly, the FNs of the mass matrix are obtained from the virtual variation of the inertial loads:

δLine = δqTsjM
ijτsq̈τi (8)
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in which M ijτs represents the FN of the mass matrix and q̈τi indicates the nodal acceleration vector;
the dot stands for time derivative. The derivation of FN of the mass matrix is provided in [27].

Because the modal behaviour of a structure is not a property of the geometric and mechanical
characteristics, but it is a property of the state of equilibrium, eigenfrequencies and eigenmodes
may suffer abrupt aberrations in deep nonlinear regimes. To investigate this aspect, the vibration
analysis is carried out around a linearized (non-trivial) equilibrium state along the nonlinear path.
By linearizing the virtual variation of the nonlinear strain energy, the tangent stiffness matrix (KT )
is introduced.

δ(δLint + δLine − δLext) = δqTsj(K
ijτs
0 +Kijτs

T1 )δqτi + δqTsjK
ijτs
σ δqτi + δqTsjM

ijτsδq̈τi =

= δqTsjK
ijτs
T δqτi + δqTsjM

ijτsδq̈τi = 0

(9)

In deriving Eq. 9, the mass matrix is assumed linear and δ2Lext = 0 (loading is conservative).
Kijτs
T represents the FN of the tangent stiffness matrix, Kijτs

0 indicates the linear component of

KT , Kijτs
T1 = 2Kijτs

lnl +Kijτs
nll +2Kijτs

nlnl denotes the nonlinear contribution, and Kijτs
σ is the so-called

geometric stiffness, which is a function of the linear (Kσl) and nonlinear (Kσnl
) pre-stress state,

where:
σ = C(εl + εnl)

σl = Cεl

(10)

and C is the material elastic matrix. The full expressions of these matrices for plates and shells can
be found in [35].

Displacement variation in Eq. 9 are small so that harmonic vibration can be assumed and the
system solved as a linear eigenvalue problem. In summary, the virtual VCT analysis to investigate
the vibration around nonlinear equilibrium states can be carried out as follows:

� First, the static geometrical nonlinear problem is solved using the Newton-Raphson method
based on the arc-length approach.

� Once the nonlinear equilibrium curve is computed, the tangent stiffness matrix is obtained in
each states of interest, see Fig. 3.

P

u

KT5

KT1

KT2

KT4

KT3

2

1

4

5

2 - 3

u1 u2 u4 u5

Equilibrium path

Equilibrium states 1, 2, 3, 4, 5

1

2

3

4

5

u3

Figure 3: KT for representative states of equilibrium of a generic nonlinear equilibrium curve.
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� Then, by considering the incremental linearized equilibrium condition of Eq. 9 and assuming
harmonic motion around non-trivial equilibrium states,

δqτi(t) = δq̃τie
iωt

δq̈τi(t) = −ω2δq̃τie
iωt

(11)

the equations of motion is simplified into a linear eigenvalues problem from which it is possible
to evaluate natural frequencies and mode shapes:

(Kijτs
T − ω2M ijτs)δq̃τi = 0 (12)

where ω represents the natural frequency and δq̃τi is the eigenvector.

� For the sake of clarity, it is important to underline how the nonlinear vibrations exhibit low
amplitudes; consequently, it is legitimate to use a linearization around the state of equilibrium
for the resolution of the problem.

Typically, a resolution based on a linear approach is adopted in most works in the literature. For
this reason, the comparison between linear and nonlinear approaches is emphasized in this work,
showing the need to adopt a full nonlinear formulation to perform accurate analyzes.

By performing the linearization around trivial equilibrium state, the stiffness matrix is given by:

KT
∼= K0 + λKσl (13)

where λ is the load factor.

3 Numerical examples

This section examines representative benchmark problems, emphasizing the capabilities of this pro-
posed approach to perform virtual VCT to compute the critical load of structures, to evaluate the
natural frequencies variation with progressively higher loadings, and to provide a verification of the
experimental VCT results. For this purpose, flat panel and shell structures were investigated and
compared with the available literature results.

3.1 Flat panels

Two different aluminium plates subjected to compressive load are considered as the first analysis
case. In particular, for the plate 2 also traction load was considered. These benchmark cases have
the following geometrical characteristics: a) plate 1 : width (a) is 355 mm, length (b) equal to 355
mm and the thickness (t) is 2 mm; b) plate 2 : a=b= 200 mm and t= 1.955 mm. The boundary
conditions of these two plate structures are shown in Fig. 4. In particular, these constraints are
clamped-clamped-simply supported-simply supported (CCSS) for plate 1 and clamped-clamped-
clamped-free (CCCF) for plate 2. Both structures have the following material properties, E= 70
GPa, ν= 0.33 and ρ= 2780 kg/m3.

First, to carry out an accurate investigation, a convergence analysis is performed. Consequently,
the convergent model for these aluminium plate structures is reached employing at least 10×10Q9
for the in-plane mesh approximation and only one LE2 in the thickness direction. The convergence
analysis is not shown here for the sake of brevity. Nevertheless, convergence performance of the
proposed finite elements can be appreciated in [38].

Figure 5 shows the equilibrium curves of the aluminium plates under compressive load. In the
case of nonlinear analysis, a defect load applied in the center of the plates, d= 0.01 N, was used.
First, the variation of natural frequencies versus compressive loading via trivial linearized solution
is illustrated in Fig. 6. In particular, for plate 2, both tensile and compressive loads are considered.
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load.
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Figure 6: Natural frequencies variation versus compressive loading via trivial linearized solution for
the aluminium plates.
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Figure 7: Characteristics first four free vibration mode shapes for the aluminium plate 1.
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Figure 8: Characteristics first five free vibration mode shapes for the aluminium plate 2.
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The characteristics first four vibration mode shapes of the aluminium plate 1 and the first five
vibration mode shapes of the aluminium plate 2 at P= 0 N are provided in Fig. 7 and Fig. 8.
Instead, the natural frequencies variation versus compressive loading via full nonlinear solution is
represented in Fig. 9.

 0

 100

 200

 300

 400

 500

 0  5000  10000  15000  20000

f,
 H

z

-P, N

Mode (1,1)
Mode (1,2)
Mode (2,1)
Mode (2,2)

(a) Plate 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

-30000 -20000 -10000  0  10000  20000  30000

f,
 H

z

-P, N

 Mode (1,1)
 Mode (1,2)
 Mode (2,1)
 Mode (1,3)
 Mode (2,2)

(b) Plate 2

Figure 9: Natural frequencies variation versus compressive loading via full nonlinear solution. Alu-
minium flat panels.

Table 1 shows the aluminum plates’ buckling load values compared to experimental results. For
clarity, the simulation results come from a simple linearized buckling analysis, in which the tangent
stiffness is approximated as the sum of the linear matrix and the geometric stiffness resulting from
linear stress state. Discrepancies between the numerical solution based on the current approach
and the experimental buckling load are described as a percentage difference. In particular, the

Model
Plate 1 Plate 2

Buckling Load %Diff Buckling Load %Diff

Present Numerical solution 10.28 2.80 11.85 1.82
Exp. Measurement [17, 20] 10.00 - 12.07 -

Table 1: The linearized bucking loads in [kN] of aluminium plates.

discrepancy of the measured critical load employing the proposed methodology is minimal compared
to experimental solutions.

Figure 10 illustrates the comparison between the natural frequencies variation for progressively
increasing loading obtained via trivial linearized solution, via full nonlinear solution and the ex-
perimental results. The results provided in Fig. 10 show that the approach based on the trivial
linearized solution allows one to evaluate the frequency variation of these benchmark cases at lower
levels of the compressive load with accuracy. The deviation of the linear results from the nonlin-
ear and experimental ones becomes remarkable for higher compressive load levels. In particular,
considering the trivial linearized approach, it can be noted that the frequency of the first vibration
mode tends to zero at the buckling load value. On the other hand, the nonlinear and experimental
solutions exhibited a different behaviour. In detail, the first vibration mode reaches a minimum
value near the critical load, and after the buckling, the frequencies increase. This definite change
in the slope of the frequencies represents a criterion for the buckling prediction. This difference
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Figure 10: Comparison between the natural frequencies variation versus compressive loading via
trivial linearized solution, via full nonlinear solution and experimental results for aluminium plates.

between trivial linearized solution and full nonlinear approach is due to the nonlinear effects of the
post-buckling. The results obtained using the proposed nonlinear virtual VCT approach show an ex-
cellent correlation with the experimental ones, allowing to calculate the critical load and to evaluate
the natural frequencies variation in nonlinear regime with high reliability. The small discrepancies
between the numerical and experimental solutions are probably attributed to variations between
the actual boundary conditions adopted during the test and the numerical constraints and initial
geometric imperfections.

3.2 Curved panel

Different curved panels subjected to compressive load are analyzed as the second analysis case.
The investigated models have the following geometric data: L= 355 mm, a= 355 mm, t= 2 mm.
The representation of the curved panel with R/a= 5 is illustrated in Fig. 11. Regarding the
boundary conditions, the constraints are the same considered for the plate 1 in the previous case.
The material properties for these curved panels are: E= 70 GPa, ν= 0.33 and ρ= 2780 kg/m3. The
convergent model for these curved panel structures is reached employing 10×10Q9 for the in-plane
mesh approximation and only one LE2 in the thickness direction.

L

R

Load

�

a

�

�

z

Figure 11: Curved panel with R/a= 5 subjected to compressive load.

The nonlinear quasi-static analysis has been performed for different values of R/a to evaluate the
effect of the curvature. In contrast, VCT is only shown for the case R/a= 5 for the sake of brevity.
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Figure 12a depicts the quasi-static equilibrium curves for the investigated metallic curved panels
considering different R/a values. In detail, the equilibrium path of the curved panel case with R/a=
5 with some of the most relevant deformed configurations is reported in Fig. 12b. For different

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-P
, 

N

-uβ x 10
3
, m x 10

3
-uβ , m

(a) (b)

Linear 
R/a= 5 

0

10000

20000

30000

40000

50000

60000

0 0.5 1 1.5 2

-P
, 
N

R/a= 7
R/a= 10
R/a= 20
R/a= 50

Figure 12: Equilibrium curve of the curved panels subjected to compressive load. (a) Different
curvatures; (b) R/a= 5.

states of interest, the trend of the first ten natural frequencies with respect to the progressive load
by means of the trivial linearized solution is provided in Fig. 13a. Instead, the natural frequency
variation of mode 1 versus compressive loading via full nonlinear solution is depicted in Fig. 13b.
It can be observed that considering the nonlinearity, the trend of the natural frequencies is very
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Figure 13: Natural frequency variation versus compressive loading via (a) trivial linearized solution
and (b) full nonlinear solution. Curved panel with R/a= 5.

complex. The nonlinear variation of the natural frequencies was divided into three parts, Fig. 14, to
plot more modes and have a better and clearer representation. The characteristics first ten vibration
mode shapes of the curved panel with R/a= 5 at P= 0 N are provided in Fig. 15. As a result,
it is possible to evaluate the complex trend of the natural frequencies with respect to the higher
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Figure 14: Nonlinear variation of the natural frequencies all along the quasi-static equilibrium path.
Curved panel with R/a= 5.
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Figure 15: Characteristics first ten free vibration mode shapes for the curved panel with R/a= 5.

progressive compressive loadings and to predict the linear and nonlinear buckling load by performing
a nonlinear study.

4 Conclusions

The present paper provides a numerical methodology of the Vibration Correlation Technique (VCT)
for metallic plates and shells, which represents one of the most employed nondestructive methods
to evaluate the critical load of different aerospace structures. This method allows to determine the
buckling load of structures by interpolating the natural frequencies for progressive higher loadings
without reaching the instability point. The proposed method aims to provide a novel virtual VCT
approach capable of predicting the buckling load, characterizing the natural frequencies’ variation,
and having an efficient means to verify the experimental VCT results. The analyses on flat panel
and shell structures conducted in the domain of the Carrera Unified Formulation (CUF) and com-
pared with the results found in the available VCT literature have demonstrated that this nonlinear
approach is able to obtain results with high reliability and provide reasonable confidence for future
applications in this topic. In particular, future works will concern the virtual VCT analysis of un-
stiffened and stiffened isotropic and composite plates and shells and of variable-angle-tow (VAT)
composite structures.
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