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a b s t r a c t 

Smart buildings play a crucial role toward decarbonizing society, as globally buildings emit about one-third of 

greenhouse gases. In the last few years, machine learning has achieved a notable momentum that, if properly har- 

nessed, may unleash its potential for advanced analytics and control of smart buildings, enabling the technique 

to scale up for supporting the decarbonization of the building sector. In this perspective, transfer learning aims 

to improve the performance of a target learner exploiting knowledge in related environments. The present work 

provides a comprehensive overview of transfer learning applications in smart buildings, classifying and analyzing 

77 papers according to their applications, algorithms, and adopted metrics. The study identified four main appli- 

cation areas of transfer learning: (1) building load prediction, (2) occupancy detection and activity recognition, 

(3) building dynamics modeling, and (4) energy systems control. Furthermore, the review highlighted the role 

of deep learning in transfer learning applications that has been used in more than half of the analyzed studies. 

The paper also discusses how to integrate transfer learning in a smart building’s ecosystem, identifying, for each 

application area, the research gaps and guidelines for future research directions. 
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. Introduction 

With the introduction of carbon neutral targets, the energy system

s undergoing profound changes. The centralized architecture of the

lectrical grid, in which fossil-fuel plants generate electricity, are being

hifted towards a distributed architecture that leverages renewable en-

rgy sources, energy storage, and optimal management [1] . As a result,

he shift from fossil fuel to renewable energy sources will be accelerated

ven more [2] . Buildings account for about 40% of total energy use, and

rid-interactive Efficient Buildings (GEB) [3] play a key role in the en-

rgy transition benefiting building owners, occupants, and the electric

rid [4] . Smart meters and grid automation technology account for the

ajority of digital grid investment, and digitalisation offers enormous

otential to improve the efficiency, flexibility, and resilience of energy

ystems. In this perspective, coordinated optimization and collaborative

anagement of various smart grid actors will become a trend [5] , paving

he way for power systems to fully enter the digital era, leveraging new

echnologies such as the Internet of Things (IoT), real-time monitor-

ng and control, peer-to-peer energy, and smart contracts [6] to ensure

ore efficient, reliable, and sustainable electricity dispatch. To support

he penetration of GEBs in the smart grid, several countries plan a mass
∗ Corresponding author. 
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eployment of advanced metering infrastructure (AMI) [7] that can pro-

ide useful insights on user’s consumption patterns and distributed en-

rgy resources (DER) production. In this context, smart meters, artificial

ntelligence (AI), and connectivity can be used in different phases of the

uilding cycle to improve power demand and generation forecasts, and

o extract energy usage patterns. Data-driven models can be used for

uilding operation and control, automating decision-making and easing

he deployment of energy management at scale. 

.1. Motivation and scope of the review 

The growing adoption of automation and control systems, informa-

ion, and communication technologies (ICT) and IoT sensors in smart

uildings has contributed recently to an unprecedented availability of

ong-term monitoring data related to the energy performance and indoor

uality of the built environment. As a consequence, complex building-

elated databases are more available than in the past, and their explo-

ation provides the opportunity to effectively characterise the actual

uilding energy behaviour and to optimise the performance of its en-

rgy systems during operation. The size, complexity, and heterogeneity

f building-related databases make it increasingly necessary for the in-

roduction of frameworks based on an effective coupling of machine
nuary 2022 
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Nomenclature 

Acronyms 

AMI Advanced Metering Infrastructure 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ASO Automated System Optimization 

BNN Bayesian Neural Network 

BAS Building Automation System 

CNN Convolutional Neural Network 

DTL Decoder Transfer Learning 

DL Deep Learning 

DNN Deep Neural Network 

DRL Deep Reinforcement Learning 

DR Demand Response 

DSM Demand Side Management 

DER Distributed Energy Resources 

EIS Energy Information System 

FDD Fault Detection and Diagnosis 

GRU Gated Recurrent Units 

GEB Grid-interactive Efficient Building 

HVAC Heating Ventilation and Air Conditioning 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

LSTM Long Short-Term Memory 

ML Machine Learning 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MPC Model Predictive Control 

MLP Multi-Layer Perceptron 

NILM Non-Intrusive Load Monitoring 

PCC Pearson Correlation Coefficient 

PV Photovoltaic 

PCA Principal Component Analysis 

RNN Recurrent Neural Network 

RL Reinforcement Learning 

RMSE Root Mean Square Error 

RBC Rule Based Controller 

SSS Sub-keyword Synonym Searching 

SMAPE Symmetric Mean Absolute Percentage Error 

TL Transfer Learning 

earning and energy domain knowledge to extract ready-to-implement

trategies for optimizing the building energy performance exploiting this

assive amount of building-related data [8] . Machine learning (ML)

ethods proved to be effective tools to valorize the knowledge that can

e extracted from data to support the optimization of building energy

erformance [9,10] and have been applied in various applications across

he building life cycle to improve building performance and occupant

omfort and health [11] . The most promising applications for building

nergy management are: the prediction of energy demand required for

he efficient operation of a building [12] , the optimization of building

peration [13–15] , the detection and commissioning of operational fail-

res of building equipment [16,17] , the energy benchmarking analysis

18,19] , the characterisation of energy demand profiles [20–22] , and

he assessment of the impact of user behaviour [23] . Currently the build-

ng industry is exploiting ML with the progressive introduction of energy

anagement and information systems (EMIS), which enhance and inte-

rate the functionalities of traditional building automation system (BAS)

o analyse and control building energy use and system performance. 

The EMIS includes the energy information systems (EIS) and fault

etection and diagnostic (FDD) systems, which are aimed to support

he decisions by means of informative solutions (one-way communica-

ion with the BAS), and the automated system optimization (ASO) tools,
2 
hich optimize the control settings (two-way communication paradigm

ith the BAS) [24] . EIS include both predictive and descriptive ana-

ytics for performing tasks such as load prediction, anomaly detection,

dvanced benchmarking, load profiling, and schedule optimisation of

uilding energy systems. FDD systems help to detect abnormal system

tates whose identification and diagnosis can lead to significant energy

avings. The 2016–2020 Smart Energy Analytics Campaign [24] as-

essed the costs and benefits of EMIS installations for a number of dif-

erent building types and sizes, including 104 commercial organizations

cross the United States and more than 6500 buildings. By the second

ear of installation, a median annual energy savings of three percent

ith EIS, and of nine percent with FDD tools, was evaluated, support-

ng the use of such technologies in buildings. ASO includes predictive

nd adaptive control solutions (e.g., model predictive control or rein-

orcement learning-based control) to optimise the settings of building

nergy systems considering the trade-off between multiple and contrast-

ng objectives for enhancing energy flexibility, renewable energy inte-

ration, and building performance, achieving an annual cost reduction

hat ranges from 11% to 16% with respect to conventional building en-

rgy management systems (BEMS) [25] . 

One area demonstrating large potential benefits in the ASO field is

he development and application of reinforcement learning-based build-

ng controls to optimize energy efficiency and energy flexibility [26,27] .

o fully exploit the flexibility associated with buildings, the scale of

nalysis was shifted from individual devices or buildings to the so-called

luster of buildings [28] , communities [29] , districts [30] , or integrated

icrogrid [31] , in which multi-agent control techniques have recently

roven to be effective. In this context, to overcome the computational

omplexity associated with the control of such environments, machine

earning and deep learning techniques [32,33] have been used to lighten

arge-scale building simulations. 

However, collecting and preparing a large amount of high quality

ata to train machine learning algorithms is time consuming and not

lways feasible, as most buildings lack reliable sensing or metering sys-

ems or lack the IT infrastructure to collect and store the data. There-

ore, machine learning techniques have not yet been widely adopted by

he industry, and real applications are often limited to research or early

tage demonstration projects. To address this gap, one key technique

eeded is to transfer machine learning models trained and validated for

uildings with rich data to buildings with limited or poor data. With

his motivation in mind and given that existing efforts such as [34] and

35] reviewed TL for specific topics only, activity recognition and de-

and response respectively, and no in-depth literature review on trans-

er learning in smart buildings exists, we aimed to conduct a compre-

ensive and structured review on transfer learning. This study focused

n how transfer learning is used for modeling, prediction, performance

iagnosis, and performance optimization of commercial and residential

uildings. 

.2. Structure of the review 

This review effort aimed to provide insights into significant questions

n transfer learning for buildings research and applications. In particu-

ar, Fig. 1 unfolds the structure of the review and the associated research

uestions that were considered for the work. The first part of the paper

overs motivation behind the use of transfer learning in buildings, trying

o understand how TL can integrate into the buildings research ecosys-

em and when to use it. Then attention is shifted towards background

nd applications, studying the different methods to transfer knowledge

nd which are the most common applications. The review also covers

he questions of which algorithms, tools, and common platforms have

een used and how it is possible to assess TL performance. Lastly, chal-

enges and future directions are identified, providing useful guidelines

or researchers. 

The paper is structured as follows. First, Section 2 provides the fun-

amental background of the review, by introducing notations, defini-
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Fig. 1. Research questions and paper overview 

Table 1 

Transfer learning notations. 

Notation Definition 

 Input feature space 

 Label space 

 Predictive learning task 

Subscript S Denotes source 

Subscript T Denotes target 

𝑃 ( 𝑋) Marginal distribution 

𝑃 ( 𝑌 |𝑋) Conditional probability 

𝑃 ( 𝑌 ) Label distribution 

 𝑆 = 𝑓{  𝑆 , 𝑃 ( 𝑋 𝑆 )} Source domain data 

 𝑇 = 𝑓{  𝑇 , 𝑃 ( 𝑋 𝑇 )} Target domain data 
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s  
ions, and terminology of transfer learning. Then, Section 3 describes

he search method applied in the review process. Section 4 categorizes

he reviewed papers based on the TL applications previously cited, also

lassifying papers according to the ML techniques and the type of TL

sed. Section 5 discuss the main findings of the review, along with po-

ential future directions and applications. Finally, conclusions are given

n Section 6 , covering the research questions in Fig. 1 , with condensed

nswers. 

. Background on transfer learning 

.1. Transfer learning 

In this subsection, the notations used within the paper are reported in

able 1 , and transfer learning related definitions are described for con-

enience. In addition, transfer learning categorization, examples, and

eviews in the built environment are provided. 

The starting point for the definition of transfer learning is the descrip-

ion of the concepts of “domain ” and “task, ” reported below according

o Pan and Yang [36] . 
3 
efinition 1. Domain: a domain  consists of two components, a fea-

ure space  and a marginal probability distribution 𝑃 ( 𝑋) where 𝑋 =
 𝑥 1 , … , 𝑥 𝑛 } ∈  . 

For example, if the learning task is the electrical load prediction of

 building, modelled as a regression problem, then  is the space of all

nfluencing variables, (e.g., external temperature, occupancy, historical

oad), while 𝑥 𝑖 represents the 𝑖 𝑡ℎ influencing variables and 𝑋 a specific

earning sample. 

efinition 2. Task: a task consists of two components, a label space

 and an objective predictive function 𝑓 ( ⋅) (denoted by  = { 𝑌 , 𝑓 ( ⋅)} ),
hich is not observed but can be learned from the training data, repre-

ented by a pair { 𝑥 𝑖 , 𝑦 𝑖 } , where 𝑥 𝑖 ∈  and 𝑦 𝑖 ∈  . The function 𝑓 ( ⋅) is
sed to approximate the conditional probability 𝑃 ( 𝑦 |𝑥 ) and predict the

orresponding label of a new instance 𝑥 . 

Considering the same application of building load prediction, 𝑌 is a

ontinuous space with the possible values of the building load. 

Lastly, transfer learning definition is provided and, to ease the com-

rehension, the definition only considers the case of one source domain

 𝑆 and one target domain  𝑇 , since it represents the most common

esearch problem. In particular, we denote the source domain data as

 𝑆 = {( 𝑥 𝑆1 , 𝑦 𝑆1 ) , … , ( 𝑥 𝑆𝑛 𝑆 , 𝑦 𝑆𝑛 𝑠 )} , where 𝑥 𝑆𝑖 ∈ 𝑋 𝑆 is the data instance

nd 𝑦 𝑆𝑖 ∈ 𝑌 𝑆 is the corresponding output. Similarly, the target domain

ata are denoted as 𝐷 𝑇 = {( 𝑥 𝑇 1 , 𝑦 𝑇 1 ) , … , ( 𝑥 𝑇 𝑛 𝑇 , 𝑦 𝑇 𝑛 𝑇 )} , where 𝑥 𝑇 𝑖 ∈ 𝑋 𝑇 

nd 𝑦 𝑇 𝑖 ∈ 𝑌 𝑇 are the corresponding outputs. In many cases, transfer

earning provides advantages where 0 ≤ 𝑛 𝑇 ≪ 𝑛 𝑆 . 

efinition 3. Transfer Learning: Given a source domain  𝑆 and learn-

ng task  𝑆 , a target domain  𝑇 , and a learning task  𝑇 , transfer learning

ims to help improve the learning of the target predictive function 𝑓 ( ⋅)
n  𝑇 using the knowledge in  𝑆 and  𝑆 , where  𝑆 ≠  𝑇 , or  𝑆 ≠  𝑇 . 

A schematic representation of the application of transfer learning

n buildings is shown in Fig. 2 , highlighting the differences with re-

pect to a classical machine learning problem, while below examples
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Fig. 2. Schematic representation of machine learning and transfer learning 

problem in buildings. 
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elated to the built environment are discussed to ease the compre-

ension of transfer learning. Using Definition 1 , a domain is a pair

 = {  , 𝑃 ( 𝑋)} . Thus, two domains are different if they have (1) differ-

nt feature spaces  𝑆 ≠  𝑇 or (2) different marginal probability distri-

utions 𝑃 ( 𝑋 𝑆 ) ≠ 𝑃 ( 𝑋 𝑇 ) . Considering forecasting of building load, case

1) corresponds to when the two buildings have different energy sys-

ems, such as the presence/or absence of PV systems. Case (2) can be

ound in buildings with two different occupancy schedules or located in

ifferent climates. 

Like the domain, learning tasks also can be different in two ways.

hey can either have (1) different label spaces,  𝑆 ≠  𝑇 or (2) different

onditional probability distributions 

𝑃 ( 𝑌 𝑆 |𝑋 𝑆 ) ≠ 𝑃 ( 𝑌 𝑇 |𝑋 𝑇 ) . Recalling the building example, case (1) rep-

esents the situation where the aim of the source domain is to predict

uilding electrical load, while the target domain focuses only on thermal

elated load prediction. Case (2) corresponds to the situation where the

ource and the target building are very unbalanced in terms of power

sage. 

.2. Categorization of transfer learning 

Transfer learning problems can be categorized based on different

ombinations among source and target domains, tasks, and solutions

dopted. 
4 
.2.1. Label classification 

The first classification is based on the task similarity and label avail-

bility, and categorizes transfer learning in three subsettings: induc-

ive transfer learning, transductive transfer learning, and unsupervised

ransfer learning, depending on the label availability, hereafter called

abel classification. 

• In the inductive transfer learning setting, the target task is different

from the source task (  𝑆 ≠  𝑇 ), no matter whether the source and

target domains are the same or not. In that case, inductive transfer

learning aims to help improve the learning of the target predictive

function 𝑓 𝑇 ( ⋅) in  𝑇 , using the knowledge in  𝑆 and  𝑆 , exploit-

ing some labelled data in the target domain to induce the objective

predictive model 𝑓 𝑇 ( ⋅) . 
• In the transductive transfer learning setting, the source and target

tasks are the same (  𝑆 =  𝑇 ), while the source and target domains

are different (  𝑆 ≠  𝑇 ). In this case, transductive transfer learning

aims to improve the learning of the target predictive function 𝑓 𝑇 ( ⋅) in
 𝑇 , using the knowledge in  𝑆 and  𝑆 . In the transductive transfer

learning, no labelled data in the target domain are available, but

labelled data in the source domain are available. 
• Lastly, in the unsupervised transfer learning setting, the target task

is different from but related to the source task (  𝑆 ≠  𝑇 ). However,

the unsupervised transfer learning focuses on solving unsupervised

learning tasks in the target domain. In that case, no labelled data

are available in both source and target domains during the training

process. 

.2.2. Space classification 

A further categorization is based on the similarity between source

nd target spaces (feature and label). Hereafter, this will be called space

lassification. In the space classification, if  𝑆 =  𝑇 and  𝑆 =  𝑇 , the

cenario is classified as homogeneous transfer learning. Otherwise, if

 𝑆 ≠  𝑇 and/or  𝑆 ≠  𝑇 , the scenario is classified as heterogeneous

ransfer learning. 

It is important to note that label and space classifications can coex-

st, since the domain and tasks are characterized by feature and label

pace, but also by their conditional distribution. To introduce the prob-

em of transfer learning in the context of buildings, Table 2 summarizes

ow the two classifications can coexist with examples taken from the re-

iewed works, highlighting different methods and applications analysed

n smart buildings. 

.2.3. Solution classification 

Lastly, transfer learning also can be categorized based on the

trategy adopted to share the knowledge, i.e., data instance-based,

odel parameter-based, feature representation-based, and relational

nowledge-based strategies; this classification hereafter will be called

olution classification. To support easy understanding of those concepts,

efinitions are illustrated for the application of building load predic-

ion, as reported in Fig. 3 . The load prediction is a multi-variate time

eries problem that can highly benefits from transfer learning, work-

ng either with data (time series), reweighting or extracting features

instance-based and feature representation-based) or directly adapting

odel parameters (parameter-transfer or relational knowledge-based). 

• The instance-based TL approach assumes that certain parts of the

data in the source domain  𝑆 ,  𝑆 can be reused for learning in the

target domain  𝑇 when some historical target task data  𝑇 are avail-

able. Instance-based TL select and reweight data in the source do-

main to facilitate the data-driven task in the target domain. This

technique is typically used when the data variables are the same

across different domains, and it increases the amount of data avail-

able for training without substantially changing the algorithm itself.
• The feature representation-based TL extracts and exploits features

to map instances from the source and target domains to improve
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Table 2 

Joint categorization of label and space classification according to domain and task with practical examples related to machine learning applications in energy 

and buildings. 

Domain Task Example 

Homogeneous Inductive Learning  𝑆 =  𝑇  𝑆 ≠  𝑇 Transfer learning is used to enhance building monthly electric load prediction leveraging 

information from similar buildings in different districts, that exhibits a different 

conditional probability [37] . 

Heterogeneous Inductive Learning  𝑆 ≠  𝑇  𝑆 ≠  𝑇 Transfer learning is used to fine-tune a pretrained neural network initially built to 

perform multi-class classification, to increase the accuracy of a prediction model for 

building temperature setback identification [38] . 

Homogeneous Transductive Learning  𝑆 =  𝑇 , 𝑃 ( 𝑋 𝑆 ) ≠ 𝑃 ( 𝑋 𝑇 )  𝑆 =  𝑇 Transfer learning is used for improving the accuracy of home activity estimation by 

exploiting the data of a source house applied to a target house with no labelled data [39] . 

Heterogeneous Transductive Learning  𝑆 ≠  𝑇  𝑆 =  𝑇 Transfer learning is used to predict building dynamics by extracting features from 

multiple households in an online fashion, without having access to labelled data [40] . 

Fig. 3. Illustration of transfer learning according to the solution classification using the example of building load prediction (adapted from [41] ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Different solutions used in different label settings. 

Inductive Transductive Unsupervised 

Instance-based ✓ ✓
Feature-based ✓ ✓ ✓
Parameter-based ✓
Relation-based ✓
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T  
training on the target task. Feature representation-based TL is fur-

ther classified in two approaches: the first approach transforms the

features of the source through reweighting, to match the target do-

main (asymmetric feature transformation) more closely. The second

approach discovers underlying meaningful structures between the

domains to find a common latent feature space (symmetric feature

transformation). 
• The model parameter-based TL assumes that the source tasks and

the target tasks share some parameters or prior distributions of the

hyper-parameters of the models (e.g., neural networks). The latter is

based on the assumption that models developed for similar tasks will

have similar model parameters or hyper-parameters. The knowledge

gained from the source task is transferred to another task as shared

model weights in this case. The recent success of deep learning has

spawned a new type of transfer learning, network-based transfer

learning [42] , which belongs to the parameter-based transfer learn-

ing category and can be further classified based on the strategy used

to share model parameters. 
• The first way is to use the pretrained model for feature extraction.

In this case, the weights of some layers are fixed, except for the

input/output layer, which are domain dependent and need to be

fine-tuned using target data. The main advantage is represented

by the reduced amount of data needed to train the model, as well

as the possibility to exploit data from different domains. 
• The second way is to use the pretrained model for weight initial-

ization and fine-tuning. In such a case, the weights of the pre-
5 
trained model are used for initialization purposes only and can

be adjusted through a fine-tuning process. 

Fig. 4 displays the two strategies adopted to perform parameter-

based TL, henceforth called feature-extraction and weight-initialization.
• Relational knowledge-based TL is generally used with multi-

relational datasets. The underlying assumption is that some relation-

ship among the data in the source and target domains are similar.

Thus, the knowledge to be transferred is the relationship among the

data. 

Table 3 reports the cases where different solutions are used for each

abel setting. It can be observed that instance-based TL can be used

ithin both inductive and transductive settings, while feature-based TL

s the only solution that can be employed within all the settings. On the

ther hand, parameter-based and relation-based TL can only be used in

n inductive settings, showing the necessity of labelled data to apply

L. The literature review revealed that inductive TL is the most popu-
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Fig. 4. Parameter-based transfer learning further classified in feature-extraction (left) and weight-initialization (right) 
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ar approach, while unsupervised TL is only adopted in the context of

eature-based TL. 

Although the first review of transfer learning of Pan and Yang [36] is

ecent, the evolution of deep learning rapidly increased and broadened

he application in smart buildings of such methods, leading to the ne-

essity of other reviews. In particular, Weiss et al. [43] provided an

verview of TL with recent applications (up to 2016), while Day and

hoshgoftaar [44] provided a deep analysis of heterogeneous TL. More

ecently, Zhuang et al. [45] provided a comprehensive survey about TL

rom the perspectives of data and model, and Liang et al. [46] described

he recent advances in TL. Tan et al. [42] analysed the role of deep TL,

roposing a specific categorization. Lastly [47,48] reviewed the phe-

omena of negative transfer, together with the main factors leading to

egative transfer, and which algorithms can help to mitigate it. 

.2.4. Transfer learning in reinforcement learning 

Despite providing a complete classification for transfer learning in

upervised and unsupervised settings, Pan and Yang [36] mentioned

hat their review excluded reinforcement learning, due to the inherent

ifference from supervised and unsupervised learning. Recently, sev-

ral reviews, including Lazaric et al. [49] and Taylor and Stone [50] ,

nalysed the applications of transfer learning in the context of rein-

orcement learning. Furthermore, Zhu et al. [51] provided an overview

n the application of TL in the context of deep reinforcement learn-

ng (DRL). Zhu et al. [51] classified TL methods based on the type of

nowledge transferred, introducing five types of TL for DRL: i) reward

haping, ii) learning from demonstrations, iii) policy transfer, iv) inter-

ask mapping, and v) representation transfer. A detailed introduction to

einforcement learning can be found in [52] . 

To provide a complete overview of the applications of transfer learn-

ng in smart buildings, the present work employed the same classifica-

ion of Pan and Yang [36] , adapting it for the case of RL. 

The main differences with respect to the previously introduced def-

nition lie in the fact that in a RL problem the conditional probability

f the task is influenced by both the transition function and the reward

unction, which affect the agent’s behaviour. Moreover, with respect to

 traditional machine learning problem, in a reinforcement learning set-

ing the input feature space ( ) and label space ( ) commonly refers to

s state space ( ) and action space (  ). 

In the context of a smart building, different parts of the environment

an alter the underlying transition function, thus affecting the condi-
6 
ional probability of the control policy (e.g., different weather, different

nergy systems, different user behaviour). Furthermore, in RL the re-

ard function is computed after an interaction with the environment,

o longer making it necessary to use labels. According to these differ-

nces, a new definition of task is provided. 

efinition 4. Task: in a reinforcement learning setting, a task consists

f three components, an action space 𝐴 , a reward function 𝑟 and a transi-

ion 𝑓 ( ⋅) , denoted by  = { 𝐴, 𝑟 , 𝑓 ( ⋅) }. The function 𝑓 ( ⋅) is used to approx-

mate the conditional probability 𝑃 ( 𝑠 𝑡 +1 , 𝑟 𝑡 |𝑠 𝑡 , 𝑎 𝑡 ) and select the optimal

ction. The goal of the agent is to find a control policy able to maximize

he expected reward. 

It should be noticed that since the transition function 𝑓 ( ⋅) depends

n states, actions and reward, in a transfer learning setting it will nec-

ssarily be different. Therefore, in a RL problem, dealing with the same

ask (  𝑆 =  𝑇 ) implies dealing with the same action space 𝐴 and re-

ard function 𝑟 , thus allowing to reuse the label classification previ-

usly introduced (inductive and transductive). Recalling the space clas-

ifications in Section 2.2.1 and the newly introduced label classification,

able 4 describes the different cases that can be encountered during the

ransfer of reinforcement learning in smart buildings. The present work

efers to this classification when encountering application of TL for RL

n building energy systems. Lastly, looking at solution classifications,

olicy transfer in DRL falls in the category of parameter-based TL. 

. Method 

The novelty of the topic required the application of a specific

ethodology, described below, to include as much as possible all rel-

vant works in the field of transfer learning applied to buildings. The

rst step was to use the Scopus search engine to identify and select rel-

vant papers using the keywords: 

 𝑆1 = Transfer learning & Building & Energy 

urthermore, sub-keyword synonym searching (SSS) [53] was per-

ormed to cover the most common terminology of ML in buildings, cou-

ling it with TL. As described in [53] , the aim of the SSS methodology

s to exhaust relevant papers by effectively searching literature using

ffective keywords, synonyms, and their combinations. As an example,

building load prediction ” can often be referred to as “energy forecast in

uildings, ” despite being the same research field. Therefore, this paper
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Table 4 

Joint categorization of label and space classification according to domain and task with practical examples related to reinforcement learning in 

buildings. 

Domain Task Example 

Homogeneous Inductive Learning  𝑆 =  𝑇 𝑟 𝑆 ≠

𝑟 𝑇 

Reward function of the control problem changes from building energy cost minimization 

to peak load shaving. ∧
 𝑆 =  𝑇 

Heterogeneous Inductive 

Learning 

 𝑆 ≠  𝑇 𝑟 𝑆 ≠ 𝑟 𝑇 The energy system changes (i.e., actions or states change accordingly) but the reward 

function is the same, or the reward function changes together with the energy system 

and the action space. 

∨ ∨
 𝑆 ≠  𝑇  𝑆 ≠  𝑇 

Homogeneous Transductive 

Learning 

 𝑆 =  𝑇 𝑟 𝑆 = 
𝑟 𝑇 

The same controller including states, actions and reward is deployed with a different 

time-schedule of electricity price tariff. ∧
 𝑆 =  𝑇 

∧
𝑃 ( 𝑆 𝑆 ) ≠ 𝑃 ( 𝑆 𝑇 ) 

Heterogeneous Transductive 

Learning 

 𝑠 ≠

 𝑇 

𝑟 𝑆 = 𝑟 𝑇 The controller is deployed with the same actions and reward, but with a different 

state-space to consider different energy systems in the building. ∧
 𝑠 =  𝑇 

Table 5 

Summary of studies related to energy systems control. 

ID Objectives ML problem Dataset Methods Label Space Solution NN 

[64] The paper aims to optimize the scheduling of a microgrid 

exploiting knowledge of another microgrid 

Regression Measurement DDPG Transductive Homogeneous Parameter Weights 

[66] The work aims to optimize the operational planning of a 

battery using the knowledge of another battery in a different 

building 

Classification Measurement Fitted Q- 

iteration,K-Shape, 

MILP 

Transductive Homogeneous Parameter Weights 

[68] The work uses transfer learning to share the knowledge of the 

optimal action of an HVAC from one building to another, to 

reduce energy consumption, costs and increase comfort 

Classification Measurement DQN Transductive Heterogeneous Parameter Weights 

[69] The paper has the aim to increase the convergence rate of RL 

applied in new home by using the knowledge of a similar home 

with transfer learning 

Regression Both PPO Transductive Homogeneous Parameter Weights 

[70] The work deals with potential scalability issues associated to 

RL considering grouping dependent electrical devices and 

applying TL, speeding up the process 

Classification Simulation DPG,DQN Transductive Homogeneous Parameter Weights 

[67] The work examines the effects of TL on varying the spatial 

dimensions or geographical locations when learning policies 

for HVAC control 

Classification Measurement Tabular 

Q-Learning 

Transductive Homogeneous Parameter Weights 

[65] The work studies different ways to apply TL in multiple homes, 

to reduce energy costs and increase PV self-consumption in a 

microgrid 

Classification Simulation DQN Transductive Homogeneous Parameter Weights 
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xploited domain expertise to identify the main applications of ML in

uildings (Load Prediction, Occupancy Detection, Building Dynamics,

uilding Systems Control), further described in Section 2 , while not los-

ng generality thanks to the previous search (TS1). The second search

ombined for each of the four applications, the sub-keywords C1 and C2

if present). The full list of sub-keywords C1 and C2 is shown in Fig. 5

nd an example is reported below. 

For the application of the “load prediction, ” the SSS methodol-

gy combines different keywords, exploring all the possible combi-

ations among the four subsets: {Transfer Learning, Domain Adapta-

ion}, {Building, Home, District, City}, {Consumption, Electricity, En-

rgy, Load} and {Forecasting, Prediction}. As a result, the iterative pro-

edure search for 2x4x4x2 = 64 keywords for load prediction, 24 key-

ords for occupancy detection, 32 keywords for building dynamics, and

2 keywords for building systems control. 

 𝑆2 = { 𝐴 & 𝐵 & ( 𝐶1 & 𝐶2)} 

Lastly, papers were manually filtered according to their relevance,

ithout including citations thresholds due to the novelty of the topic,

hile preferring journal articles over conference articles when dealing

ith similar topics. The extracted papers were manually reviewed, cat-

gorized, and organized into five categories, henceforth called: “Load

rediction ”, “Occupancy & Activities ”, “Building Dynamics ”, “Systems

ontrol ”, and “Other ”, with the latter including all the possible appli-

ations of TL in buildings not included in the previous categories. A

raphical representation is reported in Fig. 6 . 
7 
. Results of the review 

This section describes in detail the results of the review. First, a meta-

ata analysis is performed, to assess trends related to the applications

f transfer learning in smart buildings. Then, the main application areas

re identified and described, followed by an overview of the approaches

sed. Lastly, the most used tools and metrics are discussed. 

.1. Metadata analysis 

Fig. 7 shows a summary of the reviewed literature. Fig. 7 (a) dis-

lays the keywords cloud of the reviewed articles, where the size of

he text indicates the frequency of a keyword being used. ”Transfer

earning, ” ”building, ” and ”energy ” were among the most popular words

epresenting the main topic of the analysis. Other words such as ”fore-

asting, ” ”deep learning, ” ”neural network, ” and ”occupancy ” highlight

oth topics and methods used within the reviewed articles. Fig. 7 (b)

hows the geographical distribution of researchers studying TL. A total

f 31 unique countries were found, with top contributors represented by

hina (20.3%), the United States (15.1%), and Australia, Canada, and

apan (5.4% each). Lastly, Fig. 7 (c) displays the journal article (con-

erence papers, posters, and book chapters were excluded) distribution

ver the year and per journal. Among the 77 reviewed papers, 47 were

ublished in 26 different journals. The main journals include Energy and

uildings (12.7%), Energies (10.6%), Association for Computing Machinery

ACM) (10.6%), and Institute of Electrical and Electronics Engineers (IEEE)
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Table 6 

Summary of studies related to occupancy detection and activity recognition. 

ID Objectives ML problem Dataset Methods Label Space Solution NN 

[86] Transfer learning is used to increase the accuracy of activity 

recognition in buildings with respect to unsupervised learning 

models 

Classification Measurement PCA Transductive Heterogeneous Feature 

[78] transfer learning is used to develop an intelligent human counting 

system,further utilized for energy optimization in smart building 

management 

Regression Measurement CNN Inductive Heterogeneous Parameter Weights 

[103] The work aims at collecting data from multiple houses and use TL 

to perform activity recognition in houses with unlabelled data, 

increasing the accuracy of the models 

Classification Measurement 1 Nearest 

Neighbor 

(1NN) 

Transductive Heterogeneous Feature 

[102] The paper exploit activity recognition to evalute the heat gains and 

further use a LSTM to simulate building dynamics. Lastly, it uses 

these information to perform control reducing the energy 

consumption of a classroom 

Classification Measurement CNN, LSTM Inductive Heterogeneous Parameter Weights 

[77] Transfer learning is used to overcome data unavailability for 

occupancy prediction task in a room exploiting data of other rooms 

Classification Measurement MLP, LSTM, 

RF,SVM 

Inductive Homogeneous Parameter Weights 

[88] The work uses TL to improve activity recognition in smart homes, 

mapping sensors from multiple houses applying LSTM trained on 

the entire dataset, outperforming standard models in case of no 

labelled data and avoiding negative transfer 

Classification Measurement Word2Vec Transductive Heterogeneous Feature 

[106] The paper evaluates similarities between two houses and uses using 

unsupervised TL to improve the accuracy of activity recognition 

Measurement LSTM Unsupervised Heterogeneous Feature 

[87] The paper exploits TL to solve the problem of fully retrain 

occupancy forecasting models on fresh data, speeding up their 

convergence 

Classification Measurement LSTM Inductive Homogeneous Parameter Weights 

[80] The work has the aim to predict occupancy using synthetic data 

and CO 2 sensors, applying TL to overcome data unavailability 

Classification Simulation CDBLSTM 

(Convolu- 

tional deep 

bidirectional 

LSTM) 

Inductive Homogeneous Parameter Features 

[84] The paper proposes an approach for improving the accuracy of 

home activity estimation using both transductive and unsupervised 

TL 

Classification Measurement DT,RF Unsupervised Heterogeneous Feature 

[81] The paper explores the use of TL for human occupancy counting 

using CO 2 levels in a room, overcoming data unavailability problem 

Classification Measurement DA-HOC, 

SD-HOC, SVR 

Transductive Homogeneous Feature 

[83] The paper aims to increase activity recognition accuracy in 

different homes, mapping data into a common feature space and 

relating it to a semantic space that describes the sensors 

Classification Measurement binary sensor 

semantic and 

time 

information 

method 

(BSST) 

Inductive Heterogeneous Feature 

[85] The paper performs TL for visual activity recognition, exploiting 

already pretrained models to reduce the amount of data needed to 

create a model from scratch 

Classification Measurement CNN, DT, SVM Inductive Heterogeneous Parameter Weights 

[39] The paper aims to tackle the data unavailability problem for 

activity recognition, transferring features from one house to 

another to increase the accuracy 

Classification Measurement Feature Space 

Remapping 

(FSR), PCA 

Transductive Heterogeneous Feature 

[82] The paper exploited the Brick schema for representing metadata in 

IoT-enabled environments, exploiting transfer learning to ease the 

occupancy prediction task 

Regression Measurement Knowledge 

Graph 

Inductive Homogeneous Parameter Weights 

[79] The paper uses a pretrained AlexNet to extract features from images 

captured by thermal cameras to identify the number of occupants 

Regression Measurement CNN Inductive Heterogeneous Feature 
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10.6%). In general Fig. 7 (c) confirms the growing interest for the topic

n the recent years, with a greater presence in energy and building re-

ated journals, followed by journals in the IT field. 

.2. Application areas of transfer learning in smart buildings 

Fig. 8 (a) and 8 (b) show the application distribution over recent

ears and by topic of TL in smart buildings. The main application of TL

n smart buildings is related to load prediction, which represents about

4% of the surveyed works. Another common application is related to

ccupancy detection and activity recognition, while during recent years

n increasing trend of works focused on building dynamics and systems

ontrol works was observed. The following subsections describe the pa-

ers collected for the present review according to their different appli-

ation fields. 

.2.1. Load prediction 

Building load prediction is an essential part of many building control

nd analytics activities, as well as grid-interactive and energy-efficient
8 
uilding operations. It may be found in a variety of applications across

he built environment, from single components to multiple buildings.

mong the 77 articles reviewed, 25 used transfer learning to facilitate

ore accurate, data-efficient, and robust load prediction. The literature

hows that transfer learning can be used at different scales, from the pre-

iction of appliance consumption through non-intrusive load monitor-

ng (NILM) [54] ; to specific equipment such as heating, ventilation, and

ir conditioning (HVAC) systems [55] ; and wastewater treatment [56] .

oreover, it has been applied at the whole building scale [57,58] or

istrict level [59] , with hourly [55] or monthly resolution [37] . 

Among the techniques used to predict appliance consumption, the

ost popular is NILM. It refers to the process of analyzing changes in the

oltage and current of a building to deduce which appliances are used in

he house and their individual energy consumption. In D’Incecco et al.

60] , the features extracted by using CNN are transferred across differ-

nt appliances (e.g., kettle, microwave, washing machine) and across

ouseholds in different regions (e.g., the UK and United States), and the

egression layer is then fine-tuned. D’Incecco et al. [60] confirmed that

t is possible to train a universal model for residential appliances that
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Table 7 

Summary of studies related to building dynamics. 

ID Objectives ML problem Dataset Methods Label Space Solution NN 

[117] The work uses ANN and TL to speed the dataset creation process 

when dealing with multiple elements, obtaining the energy use 

intensity of the represented buildings 

Regression Simulation MLP Inductive Homogeneous Parameter Weights 

[75] This paper has presented results from using different type of 

transfer learning to accelerate the real world performance of 

black-box systems, used to represent the dynamics of hot water 

systems 

Regression Measurement MLP Inductive Heterogeneous Parameter Weights 

[73] The work analyse the effect of DNN architecture on TL for the 

prediciton of building thermal responses for HVAC controls, 

favoring the use of DNN rather than shallow NN 

Regression Measurement MLP Inductive Homogeneous Parameter Weights 

[40] The presented paper proposes different methods to predict 

temperature evolution inside a buildings in an online way, coupling 

the prediction with an MPC controller 

Regression Simulation TCA Transductive Heterogeneous Feature 

[72] The works discuss pros and cons of transferring the tail or the head 

of the DNN for building dynamics prediction (T and RH), claiming 

that transferring the head is equal to transferring building property, 

while transferring the tail may be more related to physical laws 

Regression Simulation MLP Inductive Homogeneous Parameter Both 

[116] The paper employs DL and TL to speed building performance 

simulation, reusing the heating prediction layer to increase the 

performance of the cooling prediciton layer, reducing prediction 

gap for a high number of buildings. 

Regression Simulation MLP,LSTM Inductive Homogeneous Parameter Features 

[76] The paper aims to predict and evaluate thermal comfort of 

occupants using learning-based approach for thermal comfort 

modeling, overcoming the problems of data and parameter 

inadequacy. 

Classification Measurement MLP Inductive Heterogeneous Parameter Features 

[74] The paper develops a Resistance-Capacitance model for 

temperature dynamics, coupling clustering techniques and TL for 

buildings with insufficient data about building properties, 

increasing prediction accuracy 

Regression Measurement BNN Inductive Homogeneous Parameter Weights 

[138] The authors proposed an online transfer learning framework to 

predict building dynamics, in which the online prediction are 

evaluated as a weight are combined from an offline source domain 

and the online target domain 

Regression Simulation GOTL Transductive Homogeneous Instance 

[71] The works employs TL to adapt pretrained models for building 

dynamics from one building to another, increasing the predictive 

performance of target model with only a limited amount of data 

Regression Measurement LSTM,RNN Inductive Homogeneous Parameter Weights 

Fig. 5. Input for the second topic search (TS2) 

that explored the combination of target, do- 

main, and application using sub-keywords, 

where ∗ indicates both the singular and plural 

form 
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an be then adapted by using reduced training data, thus achieving the

racle NILM, remarkable computational savings as well as a decreased

ependency on specific appliance-labelled data. In Liu et al. [61] , the

oltage-current (V-I) trajectory is first visually represented as images

hrough color encoding, to enhance the load signature’s uniqueness and

o enable TL from image recognition. Then a deep learning model pre-

rained on a visual recognition dataset is transferred to train the NILM

lassifier. 
9 
Moving at higher scale, building or city load prediction can be seen as

ypical time-series data and can be predicted using recurrent neural net-

ork (RNN) and its variants, such as long short-term memory (LSTM).

or those neural networks, transfer learning can be applied using weight

nitialization or feature extraction, as explained in Section 2 . 

Whole building load prediction represents the most analysed topic

n smart buildings, due to the data availability, especially at the meter

evel. Fang et al. [57] used transfer learning to enhance energy predic-
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Table 8 

Summary of studies related to load prediction. 

ID Objectives ML problem Dataset Methods Label Space Solution NN 

[37] The work uses TL to enhance building monthly electric load prediction in different districts, with a 

DNN-based forecasting model on the source data, fine-tuned on the target data 

Regression Measurement MLP, MLR, RF, XGB Inductive Homogeneous Parameter Weights 

[111] The paper exploits clustering and TL to enhance the performance of a prediction model for energy 

consumption, speeding up the process with respect to traditional TL 

Regression Measurement K-means, LSTM Inductive Homogeneous Parameter Weights 

[108] The paper employs TL to overcome the problem of lack of training data BAS energy models to 

perform energy prediction, providing insights on how to select appropriate source buildings 

Regression Measurement MLP, MLR, RF, XGB Inductive Heterogeneous Parameter Weights 

[54] The paper study the relation of feature selection among several electrical appliances, exploiting 

transfer learning to increase their classification in NILM application 

Classification Measurement KNN, LDA, MLP, PCA, RF Inductive Heterogeneous Feature 

[56] The paper compared different TL approaches to improve the performance of wastewater treatment 

plant prediction 

Regression Measurement CNN, GRU, LSTM Inductive Homogeneous Parameter Both 

[105] The paper addresses generalizability problems in NILM for load disaggregation using GANs and two 

TL solutions, feature-based and parameter-based 

Classification Measurement MLP, GAN Inductive Heterogeneous Feature 

[57] The paper uses transfer learning to enhance energy prediction in buildings with few labelled data 

exploiting feature extraction and domain adaption, studying the effects of different time horizon, 

architectures and buildings 

Measurement CNN, FC, LSTM-DANN, RF Inductive Homogeneous Parameter Features 

[128] The paper employs transfer learning to perform short-term load prediction, proposing an effective 

method on how to find the single building most useful to perform weight-initialization TL 

Regression Measurement LGBM, LSTM, RF, XCORR, 

XGB 

Inductive Homogeneous Parameter Weight- 

initialization 

[109] The paper propose a nove approach to perform load prediction with no data at all or augmenting 

data in case of a small dataset 

Regression Measurement BIGAN, FC, LSTM, SVR Inductive Homogeneous Parameter Features 

[62] The work studies the application of transfer learning for building forecast prediction analysing how 

data availability and duration period availability influences parameter-based TL 

Regression Measurement CNN, LSTM Inductive Homogeneous Parameter Both 

[55] The objective of the work is to exploit information of a building with a detailed sensor systems to 

perform a medium-term energy prediction on another building with few available data 

Regression Both MLP, SVR, TrAdaBoost Transductive Homogeneous Instance 

[59] The objective of the work is to predict thermal load using data from other buildings based on an 

introduced similarity index and transfer learning 

Regression Measurement LSTM Inductive Homogeneous Parameter Weights 

[129] The main objective of the work is to use RL, together with TL to perform energy prediction of 

multiple buildings extracting common features from other residential or commercial buildings 

Regression Measurement DBN, SARSA, Q-Learning Transductive Heterogeneous Feature 

[121] This paper proposes Hephaestus, a novel cross-building energy prediction method based on transfer 

learning with seasonal and trend adjustment to improve prediction for a target buildings 

Regression Measurement Hephestus, MLP, SVR Inductive Homogeneous Parameter Features 

[119] The paper proposes 2 TL models (seq2seq LSTM and CNN + attention) to increase accuracy prediction 

in target building with low data availability, comparing their effectiveness 

Regression Measurement CNN, seq2seq LSTM Inductive Homogeneous Parameter Both 

[118] The paper explores the use of ML models to predict energy consumption of a leisure center, proposing 

a TL approach to enhance the performance of energy prediction in other leisure center, analysing the 

possibility to exploit information of an office building as additional source 

Regression Measurement DT, EET, KNN, LightGBM, RF Inductive Homogeneous Parameter Weights 

[130] This paper proposes Similarity-based Chained Transfer Learning (SBCTL), a novel solution for 

building neural network-based forecasting models for a large number of smart meters, using 

previously fine-tuned network to transfer to the most similar meter, with an iterative process 

Regression Both Seq2seq RNN, 

Similarity-Based Chained 

Transfer Learning (SBCTL) 

Inductive Homogeneous Parameter Weights 

[127] The paper compares transfer learning and meta learning with statistical methods and DL methods, 

showing the superiority of TL and Metalearning with few or no data at all, representing a suitable 

solution for short-term load prediction 

Regression Measurement ARIMA, EGB, LSTM, ResNet 

LSTM, Seq2seq RNN 

Inductive Homogeneous Parameter Weights 

[63] The paper proposes a TL approach to increase the prediction performance of a model that forecast the 

customers’ response to incentives, where the forecasting accuracy of a certain customer is improved 

using information of related customer 

Regression Measurement MLP Inductive Homogeneous Instance 

[58] The paper proposes a TL approach for energy forecasting in absence of data, using CNN to extract 

feature reducing the amount of data needed to effectively perform the prediction 

Regression Measurement CNN Inductive Homogeneous Parameter Features 

[61] The paper exploits TL to increase the accuracy of a NILM model, encoding Voltage-Current trajectory 

as images t and using a pretrained dataset to train a NILM classifier 

Classification Measurement CNN Inductive Heterogeneous Parameter Features 

[110] The paper exploits weight-initialization transfer learning to increase the performance of residential 

short-term forecasting 

Regression Measurement CNN Inductive Heterogeneous Parameter Weights 

[60] The paper exploits TL to increase the performance of a regression model to predict appliances 

consumption, achieving two benefits: reduce the number of sensors for each appliance to be installed 

and offer computational savings 

Regression Measurement CNN Inductive Heterogeneous Parameter Features 

[104] The work uses a model trained on the most similar building to enhance the load prediction on the 

target building, using several metrics to evaluate similarities among time series 

Regression Measurement DT, MLR, MRF, RF Inductive Homogeneous Instance 

[115] The paper propose domain adaptation for energy disaggregation models, improving the performance 

and reducing labelled data requirement of the model 

Classification Measurement CNN Inductive Homogeneous Parameter Features 
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Table 9 

Summary of studies related to other building and energy related applications. 

ID Objectives ML problem Dataset Methods Label Space Solution NN 

[94] The paper aims to solve the problem of insufficient samples in training data for 

weather forecasting in ML using TL, transferring the data from related cities and 

building a forecast model based on the extended dataset 

Regression Measurement Transductive Homogeneous Instance 

[96] The paper uses TL to overcome data unavailability to perform wind power 

forecasting in different zones, increasing prediction performance 

Regression Measurement GBDT Transductive Homogeneous Instance 

[97] The objective of the study is to exploit transfer learning to increase classification 

accuracy of earthquake damage detection in building, using a pretrained neural 

network adopted for image classification, increasing the performance of the classifier 

Classification Measurement CNN, CVA, RF, SVM Inductive Heterogeneous Parameter Features 

[112] The paper addresses the need to speed up inspection work after construction in 

buildings, using a transfer learning approach that lead to higher accuracy and better 

efficiency, paving the way for the integration of fully autonomous mobile robot 

systems 

Classification Measurement R-CNN Inductive Heterogeneous Parameter Features 

[113] The paper uses TL to overcome labelled data unavailability to detect historical 

buildings, using pretrained ResNet50 as backbone and image augmentation to 

increase dataset dimensions 

Classification Measurement R-CNN Inductive Heterogeneous Parameter Features 

[107] The paper presents an architecture that exploits deep features selection and TL to 

overcome limited dataset when dealing with intelligent decision support for power 

transformers 

Classification Measurement DBN, MLP, BLOCK HSIC 

Lasso 

Inductive Heterogeneous Feature 

[100] The work aims at increasing the accuracy of a prediction model for the building 

identification using pretrained CNN and TL 

Classification Simulation CNN Inductive Heterogeneous Parameter Features 

[89] The paper uses TL to build a binary classifier for HVAC component degradation to 

overcome lack of labelled data, increasing classifier accuracy and reducing 

computational cost 

Classification Measurement Inductive Homogeneous Parameter Weights 

[95] The work aims at predicting thermal comfort in different buildings and climatic 

zone using transfer learning, overcoming traditional ML methods with the highest 

performance in different buildings with the same climate 

Classification Measurement Adaboost, DT, GAN, 

KNN, MLP, RF 

Inductive Heterogeneous Parameter Features 

[120] The objective of the work is to exploit TL to predict FDD in chillers, performing 

domain adaption to account for different size 

Classification Measurement BN, DT, KNN, SVM Inductive Heterogeneous Parameter Both 

[92] The main objective of the work is to exploit TL to reconstruct missing data in 

buildings, combining transfer learning with DL techniques 

Regression Measurement FCNN, KNN, LSTM, 

LSTM-BIT (LSTM with 

bidirectional input 

transfer), RNN, RF, SVM 

Inductive Homogeneous Parameter Weights 

[38] The paper exploits TL to identify night setback in District Heating systems. This is 

done transforming time series into images (heatmaps) and using transferred 

knowledge from the Imagenet dataset to properly classify the presence or not of 

night setbacks 

Classification Measurement CNN Inductive Heterogeneous Parameter Features 

[93] The paper exploits RL and TL to extend the comfort model from one building to 

another building 

Regression Measurement MLP, Q-learning Inductive Heterogeneous Parameter Weights 

[98] The paper proposes a method that employs TL to detect and classify seven classes of 

old building damage in Medina of Fez and Meknes in Morocco 

Classification Measurement Logistic Regression, 

RF,SVM 

Inductive Heterogeneous Parameter Weights 

[91] The paper proposes a method to automatically map building’s sensoring and control 

points according to several features, able to identify common characteristics in 

different buildings even with different metadata conventions 

Classification Measurement CNN Transductive Homogeneous Feature 

[114] The paper employs parameter-based TL with feature-extraction to increase the 

accuracy of a building image recognition model, comparing several pretrained 

architectures 

Classification Measurement CNN, CRNN, DTL, GAN, 

LSTM 

Inductive Heterogeneous Parameter Features 

[101] The paper introduces a deep decoder transfer-learning (DTL) framework to address 

personal air quality prediction problem, using a pretrained DNN and the Wasserstein 

distance to match the heterogeneous distribution between the source and target 

domains 

Regression Measurement CNN Inductive Heterogeneous Parameter Features 

[90] The paper performs an in-depth analysis of the application of TL for fault detection 

and diagnosis of chillers, exploring several architectures and boundary conditions 

Classification Measurement CNN Inductive Heterogeneous parameter-based Both 

[99] The paper employs TL for PV panel defects detection, using a pretrained AlexNet to 

increase the effectiveness of the proposed classifier, addressing the problem of 

labelled data unavailability 

Classification Measurement Inductive Heterogeneous Parameter Features 

1
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Fig. 6. Machine learning applications in a smart building 

Fig. 7. Overview of the reviewed literature: (a) keyword wordcloud of the selected literature; (b) geographical distribution of the researchers; (c) publication by 

journal of recent years 
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ion in buildings with few labelled data, employing an LSTM as feature

xtraction and further fine-tuning a regression layer for domain adap-

ion, studying the effects of different time horizons, architectures, and

uildings. Fan et al. [62] compared several parameter-based architec-

ures to enhance building forecasting prediction, analysing how data

vailability and duration period affects performance. Lastly, Cai et al.

63] exploited TL to increase the accuracy of incentive-based Demand

esponse (DR), characterized by stochastic and sporadic events, using

ata from similar customers. 

.2.2. Systems control 

BAS are computer-based automated systems that monitor and regu-

ate all energy-related systems in buildings, including mechanical and

lectrical equipment. BAS are frequently used to automate all services

nd operations within a building in order to optimize its performance,

fficiency, and energy usage. With a significant role in distributed en-
12 
rgy resources exploitation and energy transition, this technology en-

bles the execution of essential energy management activities such as

utomating demand response techniques and supervising energy prices.

mong the 77 papers reviewed, 7 used transfer learning to enhance

uilding systems control. The papers exploited a policy-transfer ap-

roach [51] in combination with RL to optimize control at different

cales: microgrid [64,65] , batteries [66] , HVAC systems [67,68] , and

ppliances [69,70] . A key pain point of applying RL controllers in build-

ngs is the training process that is time- and data-demanding before it

an converge. To address this problem, Zhang et al. [69] first identi-

ed several homes similar to the target home that have the same num-

er and type of appliances. Then the RL controller was trained on the

ource home and fine-tuned for the target homes. The results showed

hat TL can effectively reduce the training time of a new policy if the

arget home is similar to the source homes. Tsang et al. [70] used trans-

er learning to train a DRL controller of Household Energy Management.
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Fig. 8. Overview of the application of TL in smart buildings (a) publication by application over recent years; (b) distribution of the applications; and (c) parallel 

categorical plot using different classification within the review 
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c  
he agents in the target domain are advised by the suggested actions of

he existing model pretrained in the source domain. 

Xu et al. [68] applied the same process, shifting the domain from ap-

liances to HVAC systems, transferring the policy of DRL-based HVAC

ontrollers from source buildings to target buildings with different ma-

erials and layouts, HVAC equipment, and weather conditions. Further-

ore, they analysed a case with a different number of thermal zones,

eing the only work that used heterogeneous TL for control applica-

ion, thanks to its ability to generalize over thermal zones. Similarly,

issa et al. [67] studied the effect of transferring the policy of an HVAC

ontroller from one room to another in the same building, performing

everal experiments to test the robustness of the controller and assess-

ng the impact on occupant discomfort time, showing reductions using a

L approach. Looking at microgrid scale, Fan et al. [64] evaluated sim-

larity between the production and generation of two different micro-

rids to find the optimal way to transfer knowledge, sharing the weight

f the DRL neural networks and speeding the controller performance,

aving the way for possible application at a large scale. Lissa et al.

65] proposed an inter-agent transfer, in which knowledge is shared

ith another agent with similar characteristics, and this agent is able to

erge the transferred knowledge with its own experience. This concept

s called parallel transfer learning, where the knowledge to be shared be-

ween agents does not need to wait until the end of the process to be

vailable. Lastly, Mbuwir et al. [66] applied transfer learning to speed

he convergence of the learning algorithm to optimize thermal and bat-

ery storage planning, improving also its scalability. The results show

hat reinforcement learning coupled with transfer learning can repre-

ent a suitable alternative when few data are available, despite further

tudies are needed to demonstrate the ability of transfer learning to gen-

ralize across multiple buildings, especially when controlling different

nergy systems. 

.2.3. Building dynamics 

Building thermal dynamic models (predicting how the building ther-

al state will evolve under different weather, disturbances, and other
13 
actors) have many applications, including but not limited to advanced

ontrols such as Model Predictive Control (MPC) and DRL or the in-

reased accuracy of load prediction models. Conventional building ther-

al models are developed through a physics-based approach, such as in

nergyPlus. The shortcomings of physics-based building modelling are

he high time and expertise demand needed to develop such a model and

he need for a great deal of information about the building and system

eatures. An alternative approach to model building thermal dynamics is

ata driven modelling. However, a large amount of historical data may

e needed to train such data-driven building thermal dynamics models,

hich is challenging, especially for buildings that are brand new or not

et commissioned [71] . This highlights how transfer learning can be

everaged for this application. Among the 77 papers reviewed, 10 focus

n using transfer learning to develop building dynamics models. Jiang

nd Lee [71] pretrained an LSTM S2S model using a large amount of data

rom source buildings to study building temperature evolution. Then

eight initialization was used to enhance the performance of the target

uilding. In that case, the whole model was fine-tuned without freezing

ny hidden layers. Similarly, Chen et al. [72] applied transfer learning

o predict not only internal temperature but also relative humidity. In

ther studies (such as [73] ), the hidden layers have been frozen while

nly the last fully connected layers were fine-tuned. It was found that

he deep supervised domain adaptation is effective to adapt the pre-

rained model from one building to another, and has better predictive

erformance than learning from scratch with only a limited amount of

ata [71] . 

Hossain et al. [74] trained a Bayesian neural network (BNN) to di-

ectly learn an RC model rather than estimating parameters. The work

roved that at least several weeks of data are necessary to obtain good

erformance. The paper proposes a methodology on how to transfer

hese models in new buildings with only one day of data, identifying and

electing the best RC model according to consumption patterns and out-

erforming time-series methods directly constructed on available data. 

Additionally, data-driven models have been used to represent spe-

ific temperature evolution, as in Kazmi et al. [75] , which applied TL
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o train a model to predict the thermal behaviors of hot water storage

ystems; or Hu et al. [76] , which applied transfer learning to predict the

hermal comfort state in buildings. Lastly, Grubinger et al. [40] present

n interesting approach of online transfer learning coupling the resulting

rediction with an MPC controller, paving the way for possible applica-

ion of this technique. 

.2.4. Occupancy & activities 

Building occupancy data are useful for improving the effectiveness

f energy management systems so that energy consumption may be

educed while occupant comfort is maintained. Occupancy prediction

ims to predict the occupant counts/states using the historical occupant

ounts/states (for instance, in [77] ). 

Occupancy detection aims to predict the number of occupants in a

pace from images ( [78] , [79] ) or environmental sensors (primarily CO 2 
ensors, such as in the study [80] , [81] , [82] ), while activity recogni-

ion finds wide applications in remote elderly care and the healthcare

ndustry [83] , [84] , [85] , [86] , [39] . Among the 77 papers reviewed, 16

re about occupancy detection or activity recognition. Regarding the

rst topic, CNN have been widely used to deal with camera images, and

ransfer learning can help to avoid having to train a complicated CNN

rom scratch, speeding the process or dealing with insufficient data. For

nstance, Mosaico et al. [79] transferred a pretrained AlexNet to extract

eatures from images captured by thermal cameras to identify the num-

er of occupants, and confirmed that the occupant detection approach

uilt upon transfer learning can achieve higher performance with re-

pect to standard models. Another way to detect the occupant counts

ses environmental sensing data; Arief-Ang et al. [81] applied semi-

upervised domain adaptation to a human occupancy counting model

o it could be implemented in any room without adequate labelled data,

hile Weber et al. [80] applied TL to pretrain and transfer a deep neural

etwork to reduce the amount of data needed for training. Lastly, occu-

ant counts can be predicted from historical occupant data, and using

his approach RNN is the most widely used algorithm. Similar to apply-

ng TL to predict building load, TL was applied to pretrain either RNN

r LSTM ( [87] [77] ). 

On the other hand, most of the existing activity recognition meth-

ds are based on supervised classification algorithms, which are limited

y the shortcoming that the classification model learned in one smart

ome environment usually cannot be used in another. For a new smart

ome environment, sufficient sensor readings have to be collected and

abelled to learn the needed classification model. This process is time

onsuming and expensive. Transfer learning can help to address this

hallenge. Niu et al. [88] used TL to improve activity recognition in

mart homes, comparing the approach with standard unsupervised ML

odels and outperforming them, avoiding negative transfer. Inoue and

an [84] proposed an approach for improving the accuracy of home ac-

ivity estimation by transferring existing data to a new household with

 novel approach that exploited unsupervised learning. 

.2.5. Others 

Our literature review shows that transfer learning has been applied

xtensively in other domains of the building field as well. 

For example, Dowling and Zhang [89] applied transfer learning to

evelop a log-likelihood classifier to detect faults, errors, and degrada-

ion of HVAC systems. The detector was pretrained on a building with

 larger amount of data and then used on a building with less data.

imilarly, [90] performed an in-depth analysis of the application of TL

or the classification of fault detection and diagnosis of chillers, explor-

ng several architectures and analysing the effect of data availability on

L performances. Hong et al. [91] used transfer learning to develop a

etadata model for buildings. The model can learn a set of statistic clas-

ifiers of the metadata from a labelled source building and adaptively

ntegrate those classifiers to another unlabelled target building, even if

he two buildings have very different metadata conventions. This ap-

roach can automatically label more than 36% percent of the labels in
14 
 new building with at least 85% accuracy, and for some cases up to

1% with more than 96% accuracy. TL was also used to tackle the miss-

ng value problem in building energy related data using a bidirectional

STM [92] , or combined with RL to represent the occupant behavior on

et point adjustment and thermal comfort [93] . Some other applications

nclude applying TL to predict weather data [94] or comfort conditions

n different cities according to weather data [95] . Cai et al. [96] utilized

nstance-based transfer learning to improve the accuracy of probabilis-

ic wind power forecasting, in which different weights are assigned to

ifferent auxiliary training sets according to their relatedness to the tar-

et problem to reflect the real relatedness between source domains and

he target domain. 

Another common application is related to the use of pretrained Im-

geNet for classification tasks in building systems. Abdi and Jabari

97] and Masrour et al. [98] transferred a ResNet-18 CNN model to

etect the building damage resulting from an earthquake and age-

elated deterioration. Zyout and Oatawneh [99] transferred a pretrained

lexNet to classify the surface of photovoltaic (PV) panel images as ei-

her normal or defective. Mao et al. [100] used the same approach for

uilding identification with a pretrained Recog-Net, increasing the ac-

uracy by 10%. Lastly, [38] converted time-series into images and used

retrained CNN to identify night setback in district heating substations,

nd retrained classification layers using target domain data. 

Additionally, to predict the personal exposure to air pollution, Zhao

nd Zettsu [101] designed a transfer learning framework based on an

ncoder-decoder structure, in which the Wasserstein Distance was used

o match the heterogeneous distribution of the source domain (the data

rom the atmospheric monitoring stations) and the target domain (the

ersonal air quality), which is referred to as decoder transfer learning

DTL). DTL matched the feature distributions by reducing the Wasser-

tein distance between the source feature distributions and the target

eature distributions. 

Lastly, Paudel et al. [102] exploited TL for activity recognition, using

uch modelling to increase the performance of an LSTM model used to

imulate building dynamics, and in turn using this model to optimize

nergy consumption. It is worth mentioning that the paper combines

lmost every application identified, highlighting integration of TL in

he built environment ecosystem. 

.3. Transfer learning approaches in smart buildings 

After analysing the main application of TL in smart buildings, this

tudy analyzes the relation among applications and the classification in-

roduced in Section 2 , providing insights on the type of algorithms used

or each of them. As Fig. 8 (c) shows, we analysed TL in smart buildings

onsidering the following classifications: (1) applications, (2) solutions,

3) labels, (4) space. The TL parallel categorical plot in Fig. 8 (c) re-

ates the four types of classification, in which each chunk indicates the

umber of studies, color-coded by applications (Load Prediction, Oc-

upancy & Activities, Systems Control, Building Dynamics, and Other).

nalysing the solution classifications, it can be noticed the absence of

eviewed work that adopted relation-based TL, since multi-relational

ataset applications are not so common in buildings and emerging

echniques like graph neural networks still need to be properly ex-

lored in this field. Moreover, looking at label classification, it can

e seen that unsupervised TL is used only in a few works for occu-

ancy detection and activity recognition, due to the intrinsic nature of

hese problems, while other applications have not explored this type

f transfer learning. Lastly, despite being used in different applica-

ions, the number of homogeneous and heterogeneous works is almost

he same, suggesting that their use mainly depends on data availabil-

ty and task. The subsection unfolds over the three main solution ap-

roaches used in transfer learning, assessing their relation with the other

lassifications. 
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Fig. 9. Solution categorization: (a) over the years; (b) by solution type, with further division for parameter-based classification 
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Fig. 10. Sankey diagram of application and parameter-based classification of 

TL in smart buildings. 
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.3.1. Instance-based transfer learning 

As shown in Fig. 9 (b), instance-based TL has been used in 6 pa-

ers out of 77, with sparse application across the years. This approach

as been used mainly in occupancy detection and activity recognition,

hanks to the ability to directly reuse source data to improve perfor-

ance in the target domain. Among the papers that exploited instance-

ased for occupancy detection and activity recognition, [103] used data

rom multiple source spaces to recognize activities using no labelled data

rom the target space, improving the results despite the different apart-

ent layouts and resident schedules. This also can be seen looking at

ig. 8 , which shows that all the instance-based approaches used for ac-

ivity recognition are transductive transfer learning applications, high-

ighting how this approach is particularly useful in absence of labelled

ata. Moreover, few applications of load prediction used instance-based

L to improve their performance. Among them, Qian et al. [55] used

nstance-based TL with the aim of improving medium-term energy pre-

iction of a building with few data. To achieve that goal, the paper

xploited the TrAdaBoost algorithm using real data and simulated data

rom a source building, to improve load prediction of the target building,

olving the data availability problem and comparing the performance

ith Artificial Neural Network (ANN) methods. Moon et al. [104] used

nstance-based TL, studying the similarity among the target building

nd source buildings, using different distance metrics creating a robust

ethodology called SPROUT, and improving prediction with respect to

ther ML methods. Lastly, other applications that involve the use of

nstance-based TL can be found in probabilistic wind power forecasting,

n which the goodness of source data are quantified using maximum

ikelihood, consequently weighting the source data to increase predic-

ion accuracy in the target domain. 

.3.2. Feature-based transfer learning 

Fig. 9 (b) shows that 14 of the 77 papers reviewed used feature-

ased TL. Feature-based TL represents the second most used method;

t is applied mainly in load prediction and occupancy detection, and is

sed together with other applications in the context of smart buildings.

mong the load prediction applications, feature-based TL was used in

54] and [105] for NILM. Looking at occupancy detection application,

eature-extraction has been used in [81] to determine the occupancy

f rooms based on 𝐶𝑂 2 sensor data, extracting features that allow the

roposed algorithm DA-HOC, to improve the binary classification. So-

ia and Baruah [106] exploited feature-based TL for activity recogni-

ion in several smart homes. In particular, the analysis dealt with dif-

erent numbers and types of sensors, finding relations among location,

umber, and type of sensors between the source and the target domain.

he main advantage of the proposed methodology relies on its ability

o find similarities without labelled data in both domains, representing

ne of the few applications of unsupervised transfer learning. Moreover,

eature-based TL has been used in [91] for metadata representation in
15 
uildings, and Chernov et al. [107] used it for intelligent decision sup-

ort for power systems characterized by a high-dimensional space and

imited data availability. 

.3.3. Parameter-based TL 

Parameter-based TL represents the most used method in smart build-

ngs, with the largest adoption occurring during the last few years.

mong the 77 papers reviewed, 57 used a parameter-based approach,

epresenting the vast majority of the papers reviewed. Fig. 10 shows

hat parameter-based methods are mostly used in load prediction, with

everal architectures including: MLP ( [108] ) LSTM ( [109] ), GRU (gated

ecurrent units, [56] ), CNN (convolutional neural network, [58,110] ),

NN + LSTM ( [62] ), and LSTM-TLL ( [111] ). Other common applica-

ions are building dynamics and systems control, linked by the nonlinear

ature of these topics, affected by stochastic variables or driven by phys-

cal laws that justify the wide adoption of neural networks. Fig. 4 pro-

ides insights on the relation between the application and the parameter

lassification, weight-initialization, or feature-extraction. 

Feature-extraction 

In particular, classification tasks such as activity recognition or im-

ge processing applications often rely on feature-extraction; among

he others, the tackled problems include building damage detection

97] , building quality assessment [112] , and historical building detec-

ion [113,114] . In these cases, feature-extraction enables users to ex-

loit commonly used pretrained neural networks such as ResNet-18 and

esNet50 to overcome data scarcity, adapting input and output layers

ith a fine-tuning process. Moreover, [115] proposed a novel method to

erform energy disaggregation, exploiting CNN to extract features and
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Fig. 11. Countplot of most popular tools and treemap of data sources used for 

TL works in smart buildings. 
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onsequently adapting the domain to account for different appliances,

rying to minimize the distribution discrepancy using semi-supervised

earning. Singaravel et al. [116] exploited feature-extraction to speed

he prediction of heating and cooling demand by a factor of 1,000. The

ethod used LSTM and TL to speed building performance simulation,

educing prediction gaps for a high number of buildings. Looking at

uilding load prediction applications, Fang et al. [57] exploited several

eep Neural Network (DNN) architectures as feature-extractors, includ-

ng fully connected layers (FC), convolutional neural networks (CNN),

nd long short-term memory (LSTM) neural networks to improve short-

erm energy prediction among buildings. 

Weight-initialization 

A large part of regression task problems, such as load prediction,

uilding dynamics, and system control, are often associated with weight-

nitialization, followed by a fine-tuning process that exploits target data.

emianenko and De Gaetani [117] used ANN and TL to speed the cre-

tion of parametric datasets when performing building simulations. The

roposed approach is able to significantly reduce the simulation period,

onsidering multiple design factors and evaluating the impact on the fi-

al value of energy use intensity (EUI). Similarly, Banda et al. [118] pro-

osed a similarity-based chained transfer learning to increase the accu-

acy of load prediction exploiting data from smart meters in an iterative

ashion. Lastly, parameter-based TL has been used in system control,

here weight-initialization can help data-driven controllers to jumpstart

heir performance while trying to achieve an optimal control policy.

an et al. [64] used TL to exploit accumulated knowledge of an RL con-

roller used to schedule the optimal strategy of a microgrid, fine-tuning

he learned policy (encoded in the DNN) and deploying it in another

nvironment. The same approach was used in Lissa et al. [65] and Lissa

t al. [67] to speed the training of a DRL controller for heat pump and

VAC management. 

Hybrid method and comparison 

A last approach analyses complex architectures, in which both

eature-extraction and weight-initialization are performed for different

arts of the neural networks, or the two approaches are compared. Gao

t al. [119] proposed two neural-network architectures (seq2seq and

NN) deployed in five models, using different TL approaches. In par-

icular, they compared the necessity to adopt feature-extraction of the

ontext vector for the seq2seq LSTM and the CNN, comparing it with a

imple TL of a dense-layer in the LSTM. Zhu et al. [120] used different ar-

hitectures of a DNN to detect faults in building chillers. The first layers

ere used to extract features and frozen, while the other hidden layers

ere fine-tuned. Finally, Fan et al. [62] and Chen et al. [72] proposed

 detailed comparison among the two approaches for the application

f load prediction and building dynamics, respectively, providing use-

ul insights on the difference between the two methods. In particular,

an et al. [62] performed a statistical investigation on the lack of data

nd its distribution among time periods when performing TL for load

rediction, while Chen et al. [72] selected several MLP architectures

nalysing the role of the first and last layers of the neural network when

erforming TL for building dynamics. Another interesting application

ombined parameter-based and instance-based TL [121] for load pre-

iction, accounting for seasonal and trend adjustment using data from

imilar buildings. Kazmi et al. [75] compared feature-based TL with a

arameter-based TL that exploited weight-initialization, observing that

hen approaching a heterogeneous TL problem, weight-initialization

nd fine-tuning represent the best option; on the other hand, feature-

ased TL was found to better perform in a homogeneous context. 

.4. Tools and metrics 

The subsection focuses on the description of adopted tools, data, and

etrics to assess the performance of TL. Particular focus was devoted

n the approaches adopted to evaluate similarities among source and

arget datasets. 
16 
.4.1. Tools and data 

Fig. 11 shows the most commonly used tools: Python, MATLAB, and

 and the data source (i.e., measured, simulated, or both). Fig. 11 dis-

lays how only about 20 papers out of the 77 surveyed clearly stated

he tools adopted for the analysis. The most popular tool is Python,

hich allows an easy implementation of parameter-based TL thanks to

he packages TensorFlow [122] , Keras [123] , and PyTorch [124] . On the

ther hand, MATLAB uses Deep Learning Toolbox [125] to ease the im-

lementation of neural networks, followed by R [126] . Looking at data

vailability, it can be seen that more than 80% of the analysed papers re-

ied on monitoring data, highlighting the practical role of TL in the built

nvironment. Few cases exploited both real data and simulated data to

ncrease the accuracy of predictive models, while control application

ith RL exploited only simulated data. 

.4.2. Metrics 

From the analysis it was observed that a large part of surveyed works

ely on measured data, and that the most common metrics are the ones

ypically used to measure performance in other machine learning tasks.

here are few new metrics being proposed specifically for transfer learn-

ng, to evaluate similarities between the datasets and to specifically

uantify TL performance. 

Fig. 12 displays three common measures used to quantify learning

mprovement. The first metric used is the ”jumpstart, ” which describes

he increase in the initial performance achievable in the target task us-

ng the transferred knowledge, before any further learning. The second

etric is the ”time to threshold, ” used to quantify the amount of time it

akes to achieve certain performance in the target task given the trans-

erred knowledge, compared to the amount of time necessary to learn

t from scratch. The last metric is the ”asymptotic performance ” level

chievable in the target task compared to the one without transfer. In-

ependently from the specific ML task, jumpstart and asymptotic per-

ormances are evaluated, often using the same metrics according to the

roblem, while the time to threshold is measured as a reduction in com-

utational cost. The following subsections describe the principal metrics

ncountered in classification and regression tasks, together with other

etrics used to quantify the similarities between buildings or tasks. 
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Fig. 12. Common measures used to quantify the performance of transfer learn- 

ing. 
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.4.3. Classification 

This subsection analyses common metrics used for classification

roblems to quantify the jumpstart or asymptotic performance due to

he application of TL with respect to ML. Results show that for classifi-

ation problems the most widely used metric is accuracy, found in 24 of

he 77 papers analysed, followed by F1-score (or Macro F1), precision,

nd recall. An example of accuracy application can be found in [88] ,

hich used the metric to quantify the improvement of activity recog-

ition models using transfer learning with respect to unsupervised ma-

hine learning models. Precision, recall, and F1-score have often been

oupled with accuracy to get a better understanding of the performance

f the classification model. In fact, if there is significant class imbalance,

hen it might be beneficial to check the F1-score rather than just accu-

acy. For instance, in [105] , the main aim was to attain high accuracy in

oad disaggregation. Since the data were heavily imbalanced, accuracy

as complemented with metrics like Macro-F1 score and Transfer Gain

the difference between the F1-score of the transfer learning model and

he F1-score of a model trained on the target data from scratch). 

Another metric used (such as in Rashidi, Parisa and Cook [103] )

s the recognition rate, defined as the “percentage of sensor events

redicted with the correct label. ” This metric provides an overall un-

erstanding of how well the model is recognizing different activities.

noue and Pan [84] delve deeper by using metrics like true positive

ate (TP-rate), true negative rate (TN-rate), and balanced classification

ate. These, if used in combination, provide an imbalance independent

verview on the model. 

.4.4. Regression 

As previously done for classification problems, common metrics used

n regression problems are analysed to quantify jumpstart or asymptotic

erformance. The most widely used metrics among the surveyed pa-

ers in the regression task is root mean squared error (RMSE) or mean

quared error (MSE), found in 29 works. An example of using MSE is

ardamean et al. [78] , which uses transfer learning in the context of

omputer vision to count the number of occupants in a room through

ideo data, employing the RMSE to evaluate the performance increase

ue to the transfer learning application. 

Other popular metrics are mean absolute error (MAE), mean absolute

ercentage error (MAPE), and 𝑅 

2 . MAE was used in about 19 different

apers and MAPE in 15 papers. Additionally, some variations of MAPE

re found in the reviewed studies, such as mean MAPE (MMAPE, in

59] ) and symmetric MAPE (SMAPE, in [127] and [101] ). 
17 
Additionally, quantile forecasting score (QS) has been used to mea-

ure the performance of quantile regression used to estimate wind power

uantiles in Cai et al. [96] . 

Mosaico et al. [79] used mean bias error and calculated the standard

eviation of this error by defining another metric called error standard

eviation. 

In papers focusing on energy forecasting or disaggregation, like

’Incecco et al. [60] , some unique metrics have been defined. For ex-

mple, D’Incecco et al. [60] uses normalized signal aggregate error (rel-

tive error of the total energy predicted), energy per day (absolute error

n predicted energy used in a day), and normalized disaggregate error

normalized error of the squared difference between the prediction and

he ground truth of the appliances). 

.4.5. Other metrics 

In transfer learning, a necessary step to avoid performance decrease,

lso called negative transfer, is to use it when source and target datasets

ave a certain degree of similarity. It is therefore important to propose

 robust methodology to quantify similarities. Among the various ap-

lications that attempt to quantify building similarities, the greatest ef-

orts have been made in the field of load prediction. For example, Jung

t al. [37] evaluated the Pearson correlation coefficient (PCC) to select

he most similar time-series and used it to initialize the weights of a

NN. Ozer et al. [128] studied the correlation of newly constructed

uilding characterized by low data availability with other buildings,

o employ weight-initialization, outperforming DNN directly trained on

he target building. Mocanu et al. [129] used the Kolmogorov-Smirnov

est, with the maximum difference between an empirical and a hypo-

hetical cumulative distribution. Moreover,Lu et al. [59] studied the

nalogies among the datasets using similarity measurement index, while

ian et al. [130] employed Euclidean, Cosign, and Manhattan distances

etween the distributions. Looking at feature-based applications, Chen

t al. [86] used principal component analysis (PCA) in the source and

arget domain to a space with a higher divergence that contains more in-

ependent information, adopting Gale-Shapley similarity measurement

nd Jensen-Shannon divergence to estimate similarity between each fea-

ure as the reference for feature mapping. Lastly, clustering is an unsu-

ervised learning technique that can help group domains and aid the

rocess of choosing an appropriate source domain for a corresponding

arget, enhancing the process of transfer learning. An important metric

sed for clustering is silhouette coefficient, used in Le et al. [131] , which

ndicates the consistency of data within clusters and for each point, pro-

ides information how similar that point is to the other data points in

ts cluster compared to other clusters. 

. Discussion 

In this section we present and discuss the reviewed works, as well as

ey challenges and opportunities of applying TL in smart buildings. 

.1. Research trends and open questions 

Applying transfer learning in smart buildings is an emerging research

opic that has attracted increasing research attention. The idea of trans-

er learning was originated from machine learning, which was acceler-

ted as more data and computing power became available in the past

ecade. As shown in Fig. 7 , the number of publications on this topic has

ncreased since 2015. Also, due to the multidisciplinary research area,

he papers on this topic have been published in both computer science-

riented journals and at conferences (e.g., IEEE, ACM), as well as in

uilding science-oriented journals (e.g., Energy and Buildings, Building

nd Environment, and Applied Energy ). 

However, research on this topic is still at the very early stage or, in

he case of relation-based TL, still needs to be explored in smart build-

ngs. Moreover, despite using real data, existing literature used such
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ata in an offline fashion, without deploying them in real world appli-

ations. This approach tends to be simplified and may not reflect real

orld problems in real buildings. More in-field studies are needed to

alidate TL performance in real buildings. Collaboration and coordina-

ion between academia, industry, and policymakers are needed to apply

L to solve real-world problems and make true impacts. 

Despite the emerging interest for transfer learning in smart buildings,

 number of research gaps still need to be addressed. Below are reported

onsiderations and insights for a number of open questions based on the

nowledge extracted from the present review: 

Why Transfer Learning for energy and buildings? Higher data

vailability in buildings is leading more and more to a data-centric en-

rgy management with the opportunity of exploiting complex AI-based

odels. In this context, TL can support the penetration of ML for energy

anagement in buildings by contributing to reduced implementation

osts (i.e., pipeline of the machine learning frameworks) and time. The

atural use of TL can be found in existing buildings recently equipped

ith monitoring infrastructure (i.e., no historical data) or new build-

ngs (with limited historical data). However, guidance on the type and

umber of sensors needed to fully exploit the benefits of TL are heav-

ly dependent on applications, and are still not clear. The present re-

iew highlights different use cases according to the applications pre-

iously discussed. For example, while aggregated building load can be

stimated analysing similar buildings, hourly and sub-hourly resolution

an be difficult to estimate. In this context, transfer learning can help

o increase the accuracy of building load predicition even at sub-meter

evel, such as in NILM applications. Moreover, while building dynamics

ften requires physics-based approaches or a lot of data, limiting their

doption, transfer learning can speed-up and overcome data availabil-

ty, allowing for an effective coupling with advanced control strategy.

he same considerations can be performed for occupancy detection, that

an benefit from the application of this technique. Looking at energy sys-

ems control, the application of transfer learning is crucial to broaden

he adoption of advanced control strategies, which have a bottleneck of

igh effort to train and tune models. In fact, these approaches are too

ata intensive to be applied at scale. Lastly, there are other applications

n the building energy field that can benefit from transfer learning, es-

ecially classification application that can highly benefit from the com-

rehensive and large-volume datasets. In general, the main advantages

f TL use in smart buildings are the increase of performance and the

otential to scale-up and speed-up ML processes. However, compared

o computer vision applications, deep learning models used for build-

ngs are not computationally demanding, therefore further analysis is

eeded to assess computational advantages when the scale of the anal-

sis is larger (e.g.,communities, districts, or cities). 

When to use Transfer Learning in the built environment? 

As previously said, TL find its natural application when trying to

pply ML models in existing buildings with few, poor, or no historical

ata, as well as new buildings without historical data. However, its ap-

lication is further complicated by the type of task to be completed. A

rerequisite for TL applications is a certain degree of similarity among

he two domains; however, except for a few studies in building load

rediction that tried to quantify time-series analogies, no studies have

uantified the specific features importance on the similarity, and those

tudies are needed.In particular, looking at building load prediction and

uilding dynamics estimation, similarity plays a key role, since build-

ngs can have similar (or different) shape, use, climatic condition, and

quipment that, depending on the considered task, may have more or

ess influence. Therefore, to fully understand the advantages of transfer

earning applications in building load prediction and dynamics estima-

ion, a proper definition of similarity must be defined, to contour the

ange of application of transfer learning. Looking at occupancy detec-

ion and activity recognition, transfer learning can be used to overcome

ata unavailability for specific room in a building, leveraging informa-

ion from other rooms. In this context, another research question to be

xplored is related to the opportunity of setting minimum requirements
18 
n terms of data availability that can effectively enable a parameter-

ased TL. Lastly, control application may benefit from transfer learning

hen buildings are subject to a retrofit of energy systems and the opti-

al control strategy may obtain a significant jumpstart using the initial

ontrol policy from a similar building. 

What are the challenges? 

Summarizing the previous questions, the review highlighted the

ain challenges related to the application of TL in buildings. Some chal-

enges are common to the different tasks and related to the models,

hile others are related to specific applications. In particular, further

tudies are necessary to propose robust methods on how to select the

ight source building, quantifying the similarity between buildings, thus

voiding negative transfer. Some solutions have been proposed and ex-

lored [132,133] ; for instance, Ahmed et al. [105] proposed to use an

uxiliary discriminator to determine whether the source domain and

he target domain follow the same distribution. TL will be applied only

hen the statistical distance between the source and the target domains

n the feature space are small enough. Despite these attempts, there are

o well recognized standards or principles, and guidance is needed in

his regard. 

In particular, looking at parameter-based TL, it is not yet clear which

f the feature-extraction and weight-initialization brings the greatest

enefits in smart buildings applications. In particular, the analysis shows

hat the feature-extraction is much more used for classification prob-

ems, while for regression problems there is not enough evidence, rep-

esenting one of the challenges to be overcome to increase the effective-

ess of transfer learning. 

Another common question that still needs to be addressed is related

o the amount of data necessary in the source building and the amount

f data necessary to properly transfer knowledge in the target build-

ngs. This becomes even more true when considering applications that

an be highly dependent on seasonality, such as building dynamics, sys-

ems control or load prediction. Regarding specific application, in RL

here are a lot of unexplored TL settings, that in principle can drastically

ncrease the application of such control strategies in the built environ-

ent. Despite the potential of TL for energy systems control, one of the

ain challenges is related to ensuring a safe control policy that does not

reclude user comfort or increase costs associated with control. Further-

ore, as pointed out by [35] , the effectiveness of transferring high-level

nowledge in energy systems still need to be assessed. 

.2. Future opportunities 

Based on this literature review, transfer learning has demonstrated

ts potential to enhance data efficiency, accelerate training speed, and

ncrease model accuracy. To promote the application of TL in the smart

uilding field, comprehensive, large-volume, well-recognized datasets

an be very helpful. A good example is how ImageNet advanced the field

f computer vision (CV) through transfer learning [134] . ImageNet was

sed to train CV models, which can be transferred to other tasks with

ome fine tuning. In the building field, the Building Data Genome Project

135] can be really helpful in promoting a more robust TL process from

wo perspectives. First, models learned from more buildings are more

ikely to be generalizable. Second, the availability of data from a very

igh number of buildings can be used to help perform a benchmarking

nalysis to compare different TL methods. In contrast to the Building

ata Genome Project, which focuses on hundreds of different buildings,

136] contains about 1400 simulations of a medium office considering

everal climatic conditions, energy efficiency levels of the building and

ystems, and different occupant behaviour, which can be used to analyse

he effects of different features on building dynamics or control appli-

ations. 

The second opportunity for applying TL in the building field is the

otential to scale-out advanced controls in single buildings and ease the

cale-up of multiple buildings’ controllers with multi-agent architectures

owards data-driven energy communities. Indeed, the vast majority of
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Fig. 13. Research questions and short answers 
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xisting studies are mainly focused on supervised learning tasks (such

s prediction), overlooking the potential of TL for control. The major

ain-point of applying data-driven controllers (such as reinforcement

earning) to buildings is that it takes too much time and data to train

he controller; however, controllers in buildings have a certain degree of

imilarity, which provide an opportunity that can be leveraged by using

L. In this context, TL can help to scale data-driven control by trans-

erring the knowledge of the controller or transferring the knowledge

f the building dynamics (e.g., differentiable predictive control [137] ),

s done in Grubinger et al. [138] , which integrated online TL to model

uilding dynamics for control purposes. 

The third research opportunity is about benchmarking the perfor-

ance of TL. Researchers applied different TL techniques in different

asks, all claiming TL can help to improve accuracy or accelerate train-

ng. However, a standardized evaluation framework to benchmark and

ompare different TL approaches is still needed. The standardized eval-

ation framework needs to include (a) a couple of well defined building-

elated tasks, (b) prepared datasets for the source and task domain, and

c) well-recognized performance metrics to quantify the benefits of TL.

any research questions still need to be answered to develop this eval-

ation framework. Taking the metrics, for example, it might be easy to

uantify the accuracy improvement, but consensus about how to quan-

ify the training acceleration is still lacking. 

.3. Contribution and limitations 

This paper presents a comprehensive review on applying transfer

earning in smart buildings, which has not been done before. This review

ocuses on various categorizations of TL and how TL is used to solve
19 
ifferent tasks in the smart building field. By doing so, it provides a

lear picture of which categorization of TL is the most widely used in

he smart building field, and which categorization might demand more

esearch attention; which tasks use TL more frequently; how TL performs

n different tasks; and more. Based on this review, we identified the

urrent research trends and future research opportunities on this topic. 

One limitation of this study is that the smart building related ap-

lication is a vague term. For instance [114] applied transfer learning

o recognize a type of historical building in Peru. This is a typical com-

uter vision task, rather than a smart building task. But to make sure this

eview is as inclusive as possible, we included this study in this review

nder the category of ”others. ” Therefore in the ”others ” category, there

re some nontypical smart building related applications, which readers

ight need to pay attention to. 

Another limitation is the algorithm level of details present in the re-

iewed papers, which does not always include clear information about

eural network architectures and hyper-parameter settings, thus limit-

ng capability to reproduce results and to conduct critical analysis on

ach study. 

. Conclusions 

This review focuses on applications and algorithms of transfer learn-

ng in smart buildings, which has been identified as a promising tech-

ique to scale up the adoption of machine learning models in real-world

pplications. 

The study first presented the main applications of machine learning

n buildings, divided into energy information systems and automated

ystem optimization, followed by a theoretical background on transfer
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earning and its classifications. These two concepts were used to per-

orm a systematic review with the aim of identifying the most common

pplications and relating them with the type of transfer learning and the

echniques adopted. 

The review analyzed 77 papers, leading to the conclusion that the

ain applications can be categorized in four groups: (1) building load

rediction, (2) occupancy detection and activity recognition, (3) build-

ng dynamics prediction, and (4) energy systems control. 

The most adopted application was found to be in building load pre-

iction; however, despite using real data, few studies were deployed

n the real world, highlighting the necessity to fully integrate transfer

earning in an end-to-end machine learning pipeline, ensuring a certain

uality even in the presence of few data. To this end, techniques such as

ata augmentation and online learning seem to represent the best ways

o deal with the problem. 

Moreover, the review highlighted the use of different categorizations

f transfer learning, with the most and least used solutions; respectively,

arameter-based and relation-based transfer learning. Given the preva-

ence of the contribution of parameter-based transfer learning (over 50%

f the papers), a specific analysis on deep learning models was carried

ut, assessing the recent use of LSTM and CNN in regression and classi-

cation tasks. 

Finally, Fig. 13 summarizes the research questions, along with con-

ensed answers based on the results of the review. Research gaps and

uture directions have been identified, as follows: 

• There is still no clear way to identify the right ”source building ” to

perform an effective transfer learning. Further studies on how dif-

ferent monitoring infrastructure, use destination, climate condition,

building features, and data availability affects transfer learning re-

sults are required, specifically in building dynamics and energy sys-

tems control. 
• Further analysis on the application of transfer learning in building

dynamics simulation and energy systems control can unveil trans-

fer learning potential to scale-up data-driven energy management in

buildings. However, the safety of the transferred control policy or

building dynamic models should be better investigated. 
• Workflow standardization and open source codes are fundamental

to increase the reproducibility of the works. It is needed to de-

fine common guidelines to evaluate transfer learning performance

across different applications (e.g., regression, classification) and cre-

ate high-quality datasets to benchmark different transfer learning

approaches. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

cknowledgment 

Dr. Zhe Wang and Dr. Tianzhen Hong’s work was supported by

he Laboratory Directed Research and Development (LDRD) Program

f Lawrence Berkeley National Laboratory, provided by the Director,

ffice of Science, of the U.S. Department of Energy under Contract No.

E-AC02-05CH11231. 

ppendix A 

The following tables describe the analysed literature based on their

pplication. To provide a more readable table, the following abbrevia-

ions are used: in the column NN, that describes the two subcategories

f parameter-based TL, Weights is used to represent weight initializa-

ion, while Features is used to represent feature-extraction (note that

Features ” in the NN column should not be confused with ”Feature ” in

he previous column, which represents feature-based TL). 
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