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In the smart grid era, the number of data available for different applications has increased

considerably. However, data could not perfectly represent the phenomenon or process

under analysis, so their usability requires a preliminary validation carried out by experts

of the specific domain. The process of data gathering and transmission over the

communication channels has to be verified to ensure that data are provided in a useful

format, and that no external effect has impacted on the correct data to be received.

Consistency of the data coming from different sources (in terms of timings and data

resolution) has to be ensured and managed appropriately. Suitable procedures are

needed for transforming data into knowledge in an effective way. This contribution

addresses the previous aspects by highlighting a number of potential issues and the

solutions in place in different power and energy system, including the generation, grid

and user sides. Recent references, as well as selected historical references, are listed to

support the illustration of the conceptual aspects.

Keywords: data-driven, data analytics, machine learning, big data, internet of things, smart energy, knowledge

extraction, uncertainty

INTRODUCTION

The present evolution of the electrical systems follows the ideas developed under the smart grid
paradigm. This paradigm, launched in the first decade of this Millennium in Europe (European
Commission, 2006) and in the U.S. (U.S., 2007), deals with the modernisation of the electrical
systems by exploiting solutions driven by advanced information and communication technology
(ICT) to assist system operation and planning. With the progressive integration of ICT in the smart
grid, the power systems are being viewed in the framework of cyber-physical systems (CPS) mostly
related to increasingly relevant security aspects (Sridhar et al., 2012), also with the development of
corresponding testbeds (Cintuglu et al., 2017).

Data-driven approaches are emerging to deal with all the topics referring to the smart grid. The
data-driven approach is seen as an alternative to themodel-based approach, in which computational
models are developed by using physical properties and parameters of the modelled system. The
model-based approach has been used for many years, with analytical and computational models
developed to make simulations and studies on power system operation and planning. However, in
recent years many advances occurred in techniques for signal processing and data analytics (Zhang
et al., 2018; Bhattarai et al., 2019). These advances are making the data-driven approachmore viable
and effective, especially because of the independence of the possible approximation of the system
model and uncertainty of the parameters used (Musleh et al., 2020). The main advantages and the
drawbacks of the model-based and data-driven approaches are summarised in Table 1. It may be
seen that there are many opposite characteristics between the two approaches. As such, the choice
of whether to adopt a model-based or data-driven approach is often a crucial aspect. A common
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and practical drawback of the two approaches is the sensibility on
the variability in time of data gathered in dynamic conditions.

For smart grid applications, Table 2 reports some examples
that show limitations of the existing models and possible
advances given by the adoption of the data-driven approach.

The next sections are organised to provide a broad view on
the nature of the data considered in the smart grid domain. The
focus is set on data consistency, highlighting the different forms
related to the characteristics and quality of the data and of the
information that can be extracted from data. The general aim
is to indicate the meaning of the various terms adopted and to
provide some insights on specific areas of applications. However,
a detailed analysis of the many individual data-driven problems
in smart grids and related solution algorithms is outside the scope
of this chapter.

The general term referring to the data-driven applications of
interest is learning, defined as the process with which similarities
are identified in a dataset with different inputs. The data-driven
approaches used for learning fall into three main categories:

1) Unsupervised learning: the algorithm provides the results
without any input to verify the validity of the choices. Data
are not labelled and are partitioned into groups on the basis of
their features by using a suitable computational technique.

2) Supervised learning: the algorithm first creates an internal
model through specific training in which both input data and
the expected outputs are given. Then, the model is used to
provide results when new data are given as inputs. The dataset
has to be fully representative of the situations analysed, to
avoid extrapolations of the results outside of the model created
when new input data are provided.

3) Reinforcement learning: the operator provides only some
directions to affect the learning process. The learning occurs
through trial and error, without using training data.

The data-driven approach is useful to discuss the solutions
determined from data and measurements referring to real
cases (Chen et al., 2017). For this purpose, the data-driven
outcomes are directly taken from actual situations and are not
affected by theoretical assumptions and hypotheses that could be
approximated or over-simplified.

DATA CONSISTENCY

Working with a consistent set of data is at the basis of
developing appropriate procedures and applications. But what
is the meaning of data consistency, and how can this concept be

Abbreviations: CDF, Cumulative Distribution Function; CPS, Cyber-Physical
System; DRO, Distributionally robust optimization; FDI, False Data Injection;
GDPR, General Data Protection Regulation; GOOSE, Generic Object Oriented
Substation Event; HAN, Home Area Network; HMI, Human Machine Interface;
ICT, Information and Communication Technology; IED, Intelligent Electronic
Device; IFS, Intuitionistic Fuzzy Set; IGDT, Information Gap Decision Theory;
IoT, Internet of Things; MMS, Manufacturing Messaging Specification; MPC,
Model Predictive Control; MU, Merging Unit; NAN, Neighbourhood Area
Network; NILM, Non-Intrusive Load Monitoring; OPF, Optimal Power Flow;
PDC, Phasor Data Concentrator; PDF, Probability Density Function; PMU, Phasor
Measurement Unit; PTP, Precision Time Protocol; SCADA, Supervisory Control
And Data Acquisition; WAN, Wide Area Network.

quantified? The meaning might depend on the specific domain.
Consistency for data communication refers to the possibility of
transmitting the data, if needed developing suitable means to
allow data exchange among different standards (Kim et al., 2014).
Consistency in database systemsmostly refers to the fact that data
are available, the data format is correct, and the relations with
other data are properly preserved. However, this does not mean
that the data themselves are correct in terms of representing the
phenomenon or process under analysis. For this purpose, data
consistency in the specific domain goes beyond the appropriate
storage of data in the databases. Manifold aspects characterise
data consistency for smart grid applications, as indicated in
Table 3 with a conceptual partitioning into data characteristics,
data quality, and information quality aspects. These aspects have
to be checked before using the data for the specific purposes.
With reference to Table 3, the details are addressed in the
next subsections.

The rationale of the partitioning indicated in Table 3 is
as follows:

- Data characteristics refer to the origin of the data (“from
where”), concerning data structures and representation. Data
with a given structure have to be available, non-corrupted,
representative of the phenomena studied, and have to reflect
significant inputs.

- Data quality refers to the data usability (“for which use”),
concerning the absence of limitations to the effectiveness of
their use in data management procedures.

- Information quality concerns the data elaboration (“for what
purpose”), to reach meaningful results in the process of
transforming data into knowledge.

Data consistency is in many cases taken for granted in model-
based approaches, when data could be generated artificially, and
in this case would not be affected by real-life issues. However, for
data-driven applications it is essential to understand the various
causes of non-consistency, trying to mitigate the negative effects
of non-consistency whenever possible.

DATA CHARACTERISTICS

Presence of the Data
This aspect is related to the absence of missing data. In practise,
missing data can be of two types:

1) Missing values or records, for which there is no data available.
This may bring severe issues, as the absence of data has to be
detected and managed in due time, avoiding that the data are
stored in a non-regular way.

2) Flagged missing data, detected during the data acquisition
process, flagging the location in which the data should be saved
with an appropriate entry, such as not-a-number (NaN) or
conventional values (e.g., negative values when only positive
values are meaningful, also using different values to identify
different causes of missing data).

After the missing data have been detected and flagged, the need
for carrying out further pre-processing actions depends on the
usage of the data for the specific applications. In particular:
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TABLE 1 | Advantages and drawbacks of the model-based and data-driven approaches.

Approach Advantages Drawbacks

Model-based • No historical data required

• Limited dependence on data privacy issues

• Limited memory needs

• No training required

• Representative of the physical properties of the system

• Useful to simulate extreme or new situations

• System model required

• System parameters required

• Sensible to model and parameter uncertainty

• Possible excessively high computational burden for real-time applications

• Need for explicitly modelling non-linearities

• Possible divergence

• Possible scalability issues

• Sensible to the variation in time of dynamic data

Data-driven • No system model required

• No system parameter required

• Computational burden (after training) consistent with real-time

applications

• Useful to discover unknown non-linear characteristics

• Scalable

• Historical data required

• Data privacy issues

• High memory needs

• Sensible to measurement accuracy

• Training required with appropriate data

• Possible overfitting of the training data

• Possible lack of representativeness of the physical properties of the system

• Limited capabilities for extrapolation and analysis of new situations

• Vulnerability of data and exposure to cyber attacks

• Sensible to the variation in time of dynamic data

TABLE 2 | Some limitations of existing models and possible data-driven solutions.

Topic Theoretical approach and limitation Data-driven solutions

Electricity markets

Guo et al. (2020)

Some microeconomic models or game theory are developed

under the ideal assumption that the players act in a rational

way to maximise their payoffs, using complete information.

In real cases, the players have only incomplete

information. Real market data should be used for

the analysis of the bidding behaviours.

Demand modelling and forecasting

(appliance level)

Ji et al. (2020)

Some models try to represent the characteristics of the users

and of the appliances by determining suitable probability

distributions, for example used within a bottom-up approach

Capasso et al., 1994. However, the uncertainty of the

behaviour of the individuals and of the external variables, as

well as the differences between various types of appliances,

are rather difficult to be modelled. Also, the state dynamics of

the load are generally not modelled.

Data-driven learning techniques consider the

system as a black box and do not require any initial

knowledge about the characteristics of the

appliances. This avoids the need to describe the

real data with probability distributions.

State estimation Weng et al. (2017) In traditional electrical systems, the estimate of the previous

state can be used as an initial value for state estimation,

assuming that the system does not change considerably in

the short time. However, in a smart grid the generation and

consumption may change rapidly, and also frequent changes

in the topology lead to fast changes in the states during

operation.

The data-driven approach uses historical data to

enhance state estimation, provided that sufficient

data are available on topologies and measured

outcomes recorded for the past operation.

Power system security

Tan et al. (2017) and Ruben et al. (2020)

The traditional techniques of analysis used, based on

statistical tests, security metrics and state estimation solution

with weighted least-squares, may be inadequate to work in

case of cleverly conceived false data injection (FDI) attacks.

The adoption of pure data-driven approaches is

limited by the scarce availability of real data gathered

during security-threatening events.

The crucial importance of power system security

needs the deployment of hybrid model-based and

data-driven solutions for anomaly detection.

Battery storage

How et al. (2019)

The operation of battery storage systems is affected by many

uncertainties on environmental variables and internal

electrochemical variables. All these uncertainties are difficult

to be modelled in a highly non-linear and time-dependent

model.

A black-box data-driven approach may be useful to

represent the complexity of the interactions that

occur in the battery system and the corresponding

non-linearities.

• No further action is needed if the flagged missing data can be
skipped by the procedures of analysis. For example, if the data
provided have to be used as regular time series, and the data of
multiple users have to be averaged for creating a representative
load pattern (Chicco, 2012), it is possible to average at each
time step only the available values, calculating the average on
different numbers of entries for each time step.

• Data replacement is needed when the integrity of the time
series or pattern is essential, e.g., in forecasting procedures,
or approaches that transform the original time series into
duration curves, in which the relation with time is lost but
the presence of missing data would invalidate the meaning
of the entire duration curve. Data replacement is carried out
with different approaches, depending on the type and location
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of the missing data. For example, for a time series, when
only one or a few data are missing, interpolation algorithms
are classically used (e.g., polynomial splines, or based on
maximum likelihood with reference to predefined scenarios).
Conversely, when many data are missing (for longer periods),
the missing data sequence can be reconstructed by adopting
prediction tools capable to exploit information on pattern
regularities or correlations. Parametric models are used, in
which each incomplete attribute is determined by solving a
linear regression problem, or the joint probability distribution
of all attributes is handled with an expectation maximisation
procedure. However, if the relations among attributes is
complex, parametric models could be limited in providing
effective results (Liu and Zhang, 2021). Thereby, non-
parametric models can be used, which do not need to represent
relations among the attributes. Most non-parametric methods
use artificial neural networks, whereas other solutions have
been successfully adopted, such as the principal components
pursuit based on the sparse nature of the outliers (Mateos
and Giannakis, 2013). Some useful concepts have been based
on adopting simultaneous forecasting and backcasting of
the missing values (Bokde et al., 2018), exploiting multiple
imputation as a way to get many time series, analyse them
separately and combining the results (Liu et al., 2018),
and considering indicators that represent the re-alignment
of the time series in the post-missing data (Chicco et al.,
2019). Further solutions combine Extreme Learning Machines
with Gaussian Mixture Model (Sovilj et al., 2016), analyse
correlation-connected clusters to exploit local correlation
amongmeasurements for estimating the missing data (Razavi-
Far et al., 2020), apply a denoising convolutional autoencoder
(Ryu et al., 2020), or combine statistical and deep learning
methods for missing PMU data correction (Zhu and Lin,
2021). The number and variety of the recently proposed
methods indicate that the research onmissing data imputation
for data-driven applications is still very open, in particular to
develop applications able to provide corrections close to the
real time, which can bring benefits also to other procedures
that use the gathered data for different tasks.

Data Type
Different types of data are involved in the analyses of smart grids.
Concerning datasets, data categorisation is essential to set up
an effective data pre-processing strategy. Practical experiences
in the field have shown that, when data are coming from
different sources, data pre-processing could need most of the
time dedicated to data analysis. For example, combining the
data formats may require time for solving compatibility issues,
starting from basic inconsistencies such as the use of decimal dots
or commas in the databases, as well as the nature of the field
separators and the presence of empty or symbolic entries in a
dataset that should contain only numerical values.

The data types can be:

• Qualitative (or categorical) data, which cannot be measured,
and describe the subject by using discrete attributes or values.
Qualitative data are further partitioned into nominal (which

TABLE 3 | Data consistency for smart grid applications.

Data characteristics Data quality Information quality

• Presence

• Data type

• Size

• Trust

• Certainty

• Determinacy

• Resolution

• Alignment

• Accuracy

• Cleanness

• Fitting

• Privacy

• Completeness

• Value

have no natural ordering) or ordered (for which an internal
ranking is possible). Data encoding for qualitative data is a
key aspect. Depending on the procedures used, the qualitative
information can be handled through numerical data or other
labels. Numerical data are typically integer numbers. However,
these numbers do not represent the notion of distance among
the entries. A particular example of categorical variable is the
one that contains the information about date and time, which
may have different formats and different extension (from year
to sub-second values).

• Quantitative data can be represented by integer numbers or
real numbers. The quantitative data representation enables
the application of a notion of distance, according with a
specified metric.

The data exchange in smart grid applications could be critical,
because of the variety of data types and formats, and of many
interacting individuals. Specific standards have been set up to
enable uniformity or at least viable interactions among the
products built by different vendors and exploited in different
applications (Dong and Kezunovic, 2011).

As a noteworthy example, the Standard IEC 61850 provides
ways to exchange information between relays with high-speed
communication networks through software, using the same data
model for any vendor. The datamodel is structured in a dedicated
way, using objects to describe data for different data sources.
Relays are modelled as functions, and in turn functions are
modelled as logical nodes. The data encoding follows dedicated
rules with specific references for the logical nodes and for the
data attributes.

For the example of a substation (Lei et al., 2014), the substation
automation system considers different levels (station, bay and
process) with different interfacing components:

• Supervisory Control And Data Acquisition (SCADA), which
provides an architecture for supervisory management that
includes data communication and control devices.

• Intelligent Electronic Devices (IEDs), which communicate
with other devices and have some processing capabilities.

• HumanMachine Interface (HMI), which includes a dashboard
that allows communication between a person and a machine,
device or system.

• Merging Unit (MU), which gathers voltage and current signals
from the physical system and transform these signals into
digital form.

The Standard IEC 61850 uses three specific types of protocols
inside the substation:
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X Generic Object Oriented Substation Event (GOOSE), with
an event-driven real-time communication. When there
is a change, the status of the system changes and is
immediately updated, and possible commands can be sent.
The communication is unconfirmed, to be fast and efficient.
No receipt confirmation is asked, and data reliability is
guaranteed by repeating the messages at different timings, to
avoid losing the packets. The repetition interval is shorter
at the beginning and becomes longer during time, until its
maximum value is reached.

X Sampled Values, in which data are sampled and published in
a regular way, using an unconfirmed communication, to be
faster. The burden to the communication network can be high,
and there are limits to the sampling rate and to the number
of devices.

X Client/Server (or Manufacturing Messaging Specification –
MMS): uses a confirmed communication, in which the server
receives a request from the client and sends a response. It
is used to send reports and information that are not time
critical. The timing is longer but has to remain acceptable
for SCADA. The reports can be sent by the server to the
control centre when there is a status change, or when there is a
specific request. The objectives are trust and verification of the
substation status.

Size
The present technologies make it possible to extract an enormous
amount of information. However, it is important to be able
to decide which data are gathered, and how data are gathered.
In fact, if the data are too many with respect to the needs,
the analysis could become difficult already at the stages of
communicating, storing, viewing, or reading the data.

A recent trend has led to the emergence of the big data
concept, together with the related “4V’s” (Volume, Variety,
Velocity, and Veracity), then increased to “5V’s” (Volume,
Variety, Velocity, Veracity, and Value) (Yin and Kaynak, 2015)
that express the main points of data usage.

The term big data summarises the possibility of using huge
amounts of available data to extract and interpret the knowledge
inherent in the processes that generate the data, with different
purposes (Hu and Vasilakos, 2016). Big data analytics are
used across all the value chain of generation, transmission,
distribution, and demand side management (Zhou et al., 2016).

The main aspects of the big data conceptualisation can be
related to the smart grid domain, namely:

• Volume of information, generally referring to the amount of
data handled. For smart grid applications, the rates of the
significant events are very different. In some cases, many
data with high resolution are needed to sample the electrical
variables, for the purpose of representing the details of the
phenomena to be analysed (e.g., for power system dynamics
or power quality assessment). However, it is also important to
avoid the generation of an excessive amount of data when it
is not necessary. Having terabytes or more of high-resolution
data to handle when the system is operating in quasi steady-
state conditions would be highly ineffective. High volumes of

data are needed when they come from multiple points and
represent aspects to analyse in which comparison of these data
or calculation of the correlations is needed (e.g., to study the
effects of disturbances in the grid).

• Velocity of data generation and processing. In smart grids,
the need for handling information gathered in real-time and
that need fast elaboration to provide commands requires
appropriate data resolution in time.

• Variety of data available in structured, semi-structured, and
non-structured forms, such that it could be even impossible
to store the data into conventional relational databases. It also
considers the usage of images or photos, voice, transactional
information, or texts. All these aspects correspond to current
practises for sending information concerning power system
operation and planning.

• Veracity, referring to the quality of the data gathered. It
depends on working with real data, or with misleading or
incorrect information. A particular situation for smart grids
is the presence of false data injections that may occur in case
of cyber-attacks.

• Value, considered as a compromise between costs and benefits
for the specific application.

The International research community, in an impetus to
endeavour further “V’s,” identified other expressions that
can be adopted in different contexts to provide a more
detailed view on the initial definitions. These further “V’s”
may have an interpretation in terms of smart grid-related
data, namely:

• Viscosity, refers to the complexity of the processes that
transform data into knowledge. Working with data that have
different resolution in time and need non-trivial elaborations
to compare them is a form of viscosity. It can also be
conditioned by the lack of standardisation of the data formats.

• Visualisation, linked to the ways to make the information
available to the relevant operators. Data visualisation in the
smart grid context is crucial to convey the right information at
the right time, especially during alerts in case of contingencies
(Sun and Overbye, 2004). The visualisation aspects are quite
challenging for large power systems. This leads to a continuing
effort to identify new effective ways to reproduce the useful
information (Birchfield and Overbye, 2020).

• Virality, especially referring to the fast diffusion of data
through the Internet, also from social networks. It is a form
of velocity, but it is not linked to the mechanism of making
the data available. While in general this aspect could be less
relevant to smart grids, the developments in progress will
further emphasise the delivery of data referring to consumer
preferences in local energy systems, such as in the interactions
among prosumers within energy communities (Hahnel et al.,
2020), or electric vehicles that circulate in the road traffic, for
which privacy issues extended from personal data to vehicle
location in the Social Internet of Vehicles (Jia et al., 2020).

• Variability, particularly relevant by considering the variations
in time and unpredictability of many phenomena that occur
in the power systems. Variability is a major challenge for
data-driven approaches not supported by a physically based
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model, which only rely upon historical data and tools for
data analytics.

The amount of data used in the computational procedures can
be reduced by using data size reduction (or data compression)
techniques. The use of compressed data helps reduce the burden
on the communication system. In lossless compression the initial
signal can be reconstructed without losing any point, and the
compression depends on how the data are arranged before being
transmitted over the communication channels. Conversely, in
lossy compression a reasonable compromise has to be reached
between the data size and the preservation of the information
that characterise the data. The latter mainly depends on the
type of application, namely, after data compression there are two
typical situations:

1) The data can be analysed by using the features available
from their compressed forms. This is applied when clustering
algorithms are exploited for categorisation of the users’ groups
(Chicco et al., 2004).

2) The data have to be reconstructed for being used for further
applications. In this case, the data compression technique
chosen has to enable near-perfect data reconstruction.

The effectiveness of the various techniques for data size reduction
also depends on the need and purposes of the possible data
reconstruction. For power quality analysis, transform-based
coding is applied with a three-stage process, in which the input
signal is transformed to obtain uncorrelated coefficients, then
scalar or vector quantization is applied to each coefficient,
followed by entropy coding (Tcheou et al., 2014). Harmonics-
based approaches are useful when some periodicity appears,
otherwise wavelet-based approaches or parametric coding
with damped sinusoids have been mostly considered. For
compression of irregular data, temporal and spatial correlations
can be exploited (Stankovic et al., 2013). For electrical load
pattern analysis, some techniques, such as singular value
decomposition (de Souza et al., 2017), principal component
analysis, curvilinear component analysis, and Sammon maps
(Chicco et al., 2006), are established to change the nature of the
data through mathematical transformations for which an inverse
transformation is not defined. The use of shape-related features
(Chicco et al., 2003) enables capturing dedicated aspects of the
time series during selected groups of hours. Harmonics-based
methods are also viable because of some load pattern periodicity
(Carpaneto et al., 2006). The wavelet-based approach enables
effective data reconstruction through the use of the inverse
transform (Ning et al., 2011).

Further solutions have been developed in different directions:

• Symbolic approximation is based on the definition of an
alphabet of symbols that can be applied after the horizontal
and vertical axes have been partitioned depending on the
variations of the data along these axes (Notaristefano et al.,
2013).

• Compressive sensing techniques consider that data are sparse,
either in their initial form or after a linear transformation.
However, actual data are sparse only to a limited extent, so that

the data compression result in approximation errors. The use
of dynamic compression schemes could improve the situation,
especially if the metric used to quantify sparsity is appropriate,
as the coefficient of variation proposed in Joshi et al. (2019).

• Event-based approaches aim at identifying the presence of
events in the dataset. Event-driven energy metering has been
proposed for reducing considerably the amount of data needed
to represent load patterns (Simonov et al., 2017c). In the
feature-based load data compression proposed in Tong et al.
(2016), the generalised extreme value distribution is used
to provide the distinction of the load features into base
states and load events. Both techniques lead to high data
reconstruction effectiveness.

• Phasor principal component analysis has been proposed to
exploit the correlation between amplitudes and phases of
synchrophasor data (Zhang F. et al., 2021).

• Hybrid solutions have been considered, such as the
combination of wavelet transform, spectral shape estimation
with dynamic bit allocation and entropy coding (Cormane
and Nascimento, 2016).

Trust
The notion of trust refers to the ability to inspire confidence or
faith. The relevant issue is data corruption, which could appear in
different ways:

- Data coming from non-trustable sources: A specific aspect
is the possible human intervention to modify the data, in
order to hide information, alter the values that could indicate
fraudulent behaviour, or building fictitious records to fill
existing gaps (e.g., copying a succession of entries of a time
series from the same time period of a previous day). When
dealing with a massive amount of data, discovering these
situations is not easy, however in some cases the data analysis
procedures can show strange results that the expert of the
domain can interpret by investigating the causes.

- Data corrupted from deliberate attacks, such as False Data
Injection (FDI) attacks. Cyber-physical attacks are a major
issue for smart grid operation, and can be directed to the
communication system, the network, or the data (Radoglou-
Grammatikis and Sarigiannidis, 2019; Zhang H. et al., 2021).
FDI is the most diffuse type of attack acting on the data
without affecting the computational codes (Musleh et al.,
2020). Denial of service is a type of attack that affects the
network by impacting on availability of the service (even when
power could be available) because of lack of power supply,
control, communication, or data availability (Huseinović
et al., 2020; Zhou et al., 2020). Man-in-the-middle is another
form of attack that requires specific attention when it is
simulated in dedicated platforms (Liu Z. et al., 2020). Time
synchronisation attacks affect the specific synchronisation
capability of Phasor Measurement Units (PMUs). Preventive
measures for mitigating the risks of being damaged by data
attacks on PMUs include the introduction of data redundancy
frommultiple points, or the enhancement of data security. The
occurrence of an attack on PMUs can be identified through
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data-driven methods such as clustering algorithms (Wang
X. et al., 2019) or by considering the correlation between
the frequency adjustments implemented by the clock and
the change in the measured phase angle (Shereen and Dán,
2020). Challenging types of attack act by knowing only data
for a limited time period and are able to bypass the bad
data detection procedures (Lakshminarayana et al., 2021).
Cyber security applications protect devices, networks and data
against digital attacks (Sun et al., 2018).

Certainty: Handling Uncertainties
One of the most challenging aspects for data-driven analysis is
the uncertainty of the phenomena studied. Different types of
uncertainty affect data in the smart grid domain:

a. Environmental: mostly linked to the generation side, due
to the dependence on weather conditions of many types
of generation, in particular supplied by renewable energy
resources. However, dependency on weather conditions also
appears for the demand (e.g., with temperature-dependent
loads) and grid components (e.g., with impacts on the thermal
rating of overhead lines or cables).

b. Behavioural: in many cases the users’ behaviour and
lifestyle has a deep impact on the demand, especially
for residential demand, while new behavioural aspects
refer to the exploitation of electric vehicles, also with
interactions with external uncertainties such as road traffic,
and users’ preferences.

c. Technical: referring to the accuracy of the results indicated
from measurement systems.

d. Economics-based: depending on costs and prices, particularly
challenging when uncommon behaviours such as price spikes
appear. Uncertainty in economic variables also depends on
many exogenous variables, most of which refer to external
causes that cannot be modelled in a simplified way.

In the treatment of uncertainties, it is possible to make
a distinction between large-scale and small-scale uncertainty
(Carpaneto et al., 2011). This distinction is particularly useful for
dealing with planning problems and is based on the identification
of different time frames:

• When dealing with large-scale uncertainty, the time horizon
considered is long (e.g., many years), and the random variables
that characterise the specific problem (e.g., load patterns,
energy prices) could exhibit variations so large that cannot
be represented by probability distributions in a meaningful
way. In fact, these probability distributions would have very
high standard deviations and their mean values could be
poorly meaningful. In addition, for some random variables
it is requested to represent the trend for future periods,
without having references in the past history. For this purpose,
scenario analyses are most suitable to be considered, in
which each scenario is characterised by the evolution of the
corresponding random variables, with trends expressed in a
more specific way. In a scenario-based approach, different
plausible hypotheses and scenarios are tested in order to gain
more insights on the potential outcomes of the problem. The

scenarios are then weighted according to the preferences of
the decision-maker and are studied through approaches based
on decision theory (French, 1989) or risk analysis (Miranda
and Proença, 1998; Pereira et al., 2000). Besides planning,
scenarios are also used in operational problems for those
random variables for which it is not simple to set up their
values due to high variability in the time steps under analysis.
A typical example is the severe uncertainty that can be handled
through information gap decision theory (IGDT) to exploit
the gap between actual and predicted variables, which may
come from electricity demand and prices (Soroudi and Ehsan,
2013; Zhao et al., 2017). Another typical case is the wind
speed, which could exhibit large variations in hourly intervals
(Khazali et al., 2018). Extreme cases deal with the application
of IGDT to low-probability high-impact situations found in
resilience studies (Salimi et al., 2020).

• When dealing with small-scale uncertainty, the operational
characteristics of the system (e.g., load patterns, energy prices)
are assumed to be known at time steps called elementary
time intervals. It is possible to construct groups of random
variables whose uncertainty has a relatively low magnitude
around the mean value for all the random variables in a given
set of elementary time intervals (even not consecutive). In
this case, it is possible to construct probabilistic aggregations
of random variables for the time intervals belonging to
the same group, also taking into account their possible
correlations through covariance matrices. On the basis of
the probabilistic representation of the random variables, a
Monte Carlo approach (with Cholesky factorisation in case of
correlated variables) can be used to get the instances of the
random variables for each group of elementary time intervals,
carrying out probabilistic analysis without executing time-
domain simulations.

Another application of the small-scale uncertainty concept
is the generation of patterns that represent coupled-in-time
evolution of aggregate random variables. An example is the
generation of aggregate demand patterns, useful for scenario
studies (Sajjad et al., 2015). The random values at different time
steps cannot be chosen independently, due to their coupling
in time. The construction of a time-coupled probabilistic
model of the aggregate residential demand data starts from
the available time series of all the individual patterns for a
relatively high number of comparable time periods. At each
time step, the aggregate demand patterns are constructed, then
their cumulative distribution function is determined and is
partitioned into a user-defined number of quantiles. Taking the
pattern points that fall within the same quantile, the probability
distribution of the points reached at the successive time interval
is constructed. This procedure is followed for each quantiles
and time steps (excluding the last one, for which there is no
successive pattern). Small-scale uncertainty is applied inside each
quantile. In this way, a reference set of probability distributions
is available. It is then possible to pass to the aggregate pattern
generation phase, by extracting at random a pattern amplitude
at the initial time step, finding the quantile to which it belongs,
and select at random the new amplitude from the probability
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distribution corresponding to that quantile at the following time
step. The process is then repeated as a moving window for the
successive time steps. It is not strictly needed to use standard
probability distributions, as the procedure can be carried out
by using the empirical distributions formed with the initial
data. With this procedure, many aggregate demand patterns
can be generated starting from the same set of initial data.
The effectiveness of the results can be assessed by comparing
the autocorrelations obtained for demand patterns from initial
data-based and simulated datasets.

For addressing uncertainties, the different approaches used are
categorised into:

1) Probabilistic approaches: the random variables are expressed
through probability density functions (PDFs), covariance
matrices in case of correlated variables, and cumulative
distribution functions (CDFs). Monte Carlo simulations,
scenario-based analyses or point estimation methods (Aien
et al., 2014) are typically used in these approaches. For these
approaches, it is important to identify the PDFs or CDFs
of all the relevant variables in an accurate way. Moreover,
the effectiveness of the results can be limited when scenario
reduction techniques are used for reducing the computational
burden. Stochastic programming has been used in various
applications, while specific attention is needed to handle data-
driven cases in which the historical PDFs are being updated in
time (Ding et al., 2018). However, the many random variables
and scenarios to be analysed make the computational burden
for real-size problems almost intractable (Zio and Aven, 2011).
Chance-constrained optimisation ensures that the probability
that a constraint is satisfied is higher than a given confidence
level. If joint chance constraints are considered, the numerical
solutions to ensure that the constraints are satisfied overall
within a given confidence level could become challenging to
solve. Chance-constrained optimisation is a viable solution for
problems such as the optimal power flow (OPF), in particular
when the uncertainty is bounded inside known constraints
and there is a small probability of constraint violation (Baker
and Bernstein, 2019) and has been used for solving various
problems under different formulations (Roald and Andersson,
2018; Tang et al., 2021). The use of chance constraints becomes
challenging when the constraints on the uncertain variables
are non-linear.

2) Possibilistic approaches: the variables used are represented by
using fuzzy logic rules (Zadeh, 1965), in which the degree of
truth is variable between 0 and 1, and the uncertain variables
are represented as fuzzy sets. Many applications to smart
grids have been proposed. However, one of the drawbacks
of these approaches is the difficulty in assigning appropriate
membership functions and degrees of membership.

3) Interval-based approaches: in these approaches, ranges of
input and output variables are used, starting from the
basic concepts of interval analysis, in which bounds on
measurement and rounding errors are considered. The
advantage of these approaches for data-driven calculations
is that no information about the type of uncertainty of the
relevant variables is requested. Interval analysis is suitable

to solve linear problems, however for non-linear problems
extensions are needed. Interval arithmetic is a first step to
solve non-linear systems, however it considers independent
variations of the uncertain inputs in the corresponding
intervals, and as such tends to produce wider and over-
conservative ranges of the output variables with respect
to the exact ranges. The main issues are the dependency
problem (in the presence of intervals considered several times
during the calculations, each occurrence is independent and
results in an undesired expansion of the intervals in the
results) and the wrapping effect (if two variables have a
linear relation, in terms of intervals the region to consider
becomes a rectangle). Affine arithmetic makes the further
step of introducing relations between input variables and
results. With affine arithmetic, power flow solutions have
been proposed to determine the bounds of the power flow
solutions by using linear programming Vaccaro et al. (2010),
non-linear programming Vaccaro et al. (2013), and the use
of polar and rectangular coordinates (Zhang et al., 2017),
while recent studies are in progress to deal with interval
correlated input random variables (Ran et al., 2020). Further
applications of affine arithmetic include the three-phase power
flow (Wang et al., 2015), also in integrated transmission
and distribution networks (Tang et al., 2020), optimal power
flow (Vaccaro and Cañizares, 2017), energy management in
microgrids (Romero-Quete and Cañizares, 2019), and the
calculation of interval overvoltage risk in distribution systems
with distributed energy resources (Wang S. et al., 2020).

4) Robust optimisation is a further possibility for handling
uncertainties, which does not need to know the probability
distributions of the uncertain variables. Robustness may refer
to the objective function or to the constraints. In addition,
local robustness analysis is carried out in the presence of
known boundaries within which the optimal solution has
to be found, while non-local robustness analysis should
be able to consider also rare events with high impact.
Robust optimisation is based on the definition of uncertainty
sets. Box-like uncertainty sets can be further elaborated
by searching for an internal convex hull (Wang C. et al.,
2020). Robust optimisation searches for the solution that
performs best in the worst-case scenarios, and could be over-
conservative, due to the very low possibility of handling
extreme scenarios. Moreover, spatio-temporal correlations can
be added to avoid the presence of unreasonable scenarios (Qiu
et al., 2021).

5) Distributionally robust optimization (DRO): for data-driven
applications, the distribution of the uncertain parameters can
be observed only through a finite dataset (Zymler et al.,
2013; Esfahani and Kuhn, 2018; Cherukuri and Cortés,
2020). The initial assumption is that the exact (unknown)
probability distribution belongs to an ambiguity set, which
becomes smaller when the number of historical data increases,
provided that the data represent comparable situations. The
DRO minimises the expected cost in the worst-case over the
ambiguity set. An empirical probability distribution can be
determined by using the historical data, and the distance
between the empirical probability distribution and the exact
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probability distribution (that belongs to the ambiguity set)
can be expressed through the Wasserstein distance (Liu
et al., 2020) or the Kullback–Leibler divergence (Chen
et al., 2018). DRO has relatively simple requirements on
uncertainty with respect to stochastic programming, as well as
a simple mathematical tractability. Recent applications refer
to optimisation of energy hub operation (Zhao et al., 2020)
and determination of bidding strategy models for aggregators
(Hajebrahimi et al., 2020).

6) Model predictive control (MPC): for data-driven applications,
new data may become available during time in dynamic
processes. This type of uncertainty cannot be captured by
using open-loop optimisation methods; however, it can be
handled by MPC methods that perform progressively updated
re-optimisation (Huang et al., 2021). On the other side, in
MPC the randomness of the uncertain variables depends on
forecasts, so that it is not easy to be described. Stochastic
MPC considers the uncertainty representation to formulate
chance constraints (Jiang et al., 2019), trading off between
meeting the control objectives and satisfying the probabilistic
constraints (Mesbah, 2016). The use of a distributionally
robust MPC (Huang et al., 2021) can complement the
advantages of DRO and MPC, by constructing the ambiguity
set by using historical data and recent measurements,
then performing re-optimisation by taking into account the
forecast errors.

7) Hybrid approaches have also been used, in which the variables
are of different types. Hybrid stochastic/robust optimisation
methods have been used to limit the disadvantages of
heavy computational burden of stochastic programming and
conservativeness of robust optimisation (Chang et al., 2021).
Similarly, hybrid data-driven distributionally robust chance-
constrained program has been used for determining a risk-
averse offering strategy for a distributed energy resource
aggregator (Zhang et al., 2019).

Determinacy
Determinacy deals with the presence of significant information
on the data or the related uncertainties. Lack of significant
information is addressed by resorting to different approaches:

• Intuitionistic fuzzy sets (IFS): the IFS theory was introduced
by Atanassov (1986) as an extension of the fuzzy set theory
to add non-determinacy (hesitation) and represent cases in
which the fuzzy set theory is not able to use all the information
available. Handling together uncertainty and non-determinacy
is one of the challenging aspects in the studies on smart grid
applications, which can be addressed by following the general
principles recalled in Charwand et al. (2020) for electrical
load pattern clustering. IFS have been used in power system
fault diagnosis to deal with incomplete and uncertain alarm
messages (Peng et al., 2018).

• Rough sets: rough sets were introduced to deal with uncertainty
and vagueness in decision problems (Pawlak, 1982). They
have been used in data-driven systems (Pawlak, 1998),
including applications with both vagueness and missing
data (Kryszkiewicz, 1998), for example for developing fault

detection and diagnosis approaches robust to missing data
(Ghimire et al., 2018). The rough set theory has also been
combined with deep learning for capturing interval knowledge
from wind speed time series (Khodayar et al., 2019), and with
fuzzy sets to provide solutions to the missing data imputation
problem (Amiri and Jensen, 2016).

• Shadowed and neutrosophic sets: under the concept of
shadowed sets (Pedrycz, 1998), an outcome is represented by
using a three-value logic (yes, no, and unknown). Another
three-value logic representation is used in the definition of
neutrosophic sets (Smarandache, 2005).

• Credal partition is based on the evidence theory (or belief
functions theory), for quantifying the uncertainty for which an
input cannot be assigned with certainty to a cluster (Denoeux
and Masson, 2004).

The approaches recalled above have not been widely used
for smart grid applications yet. However, the related concepts
can provide useful insights for future research on data-
driven applications.

DATA QUALITY

Resolution
Among the different ways to gather data, a significant aspect is
the resolution (or granularity) with which data are available. With
reference to data gathered as time series, resolution can be seen
in two ways (Chicco, 2010):

• horizontal resolution, referring to the way data become
available in time:

• vertical resolution, referring to the minimum difference with
which the amplitude is represented.

Concerning horizontal resolution, data can be represented:

- At regular intervals, such as interval metering. As data are
gathered from different sources and in different formats, in
a data-driven approach the alignment of the data along the
coordinates (e.g., time steps) is essential. However, in many
cases it is needed to perform some adjustments for aligning
the data.

- Event-based, as it happens for different cases:

– Triggered events, used in the power quality analysers, where
the relevant point is the ability to identify and characterise
the cause of the event on the basis of the data.

– Event-driven energy metering (Simonov, 2013), where the
relevant information is the exact representation of the
energy between successive events (Simonov et al., 2017b).

About vertical resolution, this issue also depends on the number
of digits with which the data are represented within the
measurement instrument or the data platform. A typical situation
could occur when instruments set up to measure tens of kilowatts
are used to measure a few watts in low-loading periods. The
modern instrumentation has increased the number of digits,
however lower resolution still appears in data loggers scattered
in the field.
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Alignment
When data come from different sources, it is possible that the
resolutions are not the same. For this purpose, a pre-processing
phase is needed to obtain data representations with the same
time step. These aspects have been discussed in Chicco et al.
(2014a). However, while the data averaging from a shorter time
step to a longer one just needs to consider the way the initial
data are represented (e.g., stair-wise, or with linear interpolation),
if the final time step is shorter than the initial one there is the
conceptual limitation that data at shorter time steps generally
have greater variability in amplitude during these short time
steps. As such, the reconstruction of data with smaller time
steps is not conceptually justified, unless specific information
on variability at these smaller time steps is known (e.g., from
available data for the same user in other periods, or from
similar users) and is applied to reconstruct the time series with
higher variability.

As an example of data alignment, for a photovoltaic system
the useful period of time is from sunrise to sunset, and the
corresponding period of time changes day by day. In addition, the
ideal conditions for exploiting the photovoltaic system depend
on the day of the year, with different maximum solar irradiance
that can be reached at clear sky. To ensure comparability among
the conditions in which data are used, pre-processing of the solar
irradiance data (Chicco et al., 2014b) can be used by normalising:

a) The vertical (amplitude) axis to make the solar irradiance
values comparable. The solar irradiance taken from a clear-
sky model (e.g., the Moon-Spencer model, Moon and Spencer,
1942) are used to define a reference solar irradiance pattern
for each day. The maximum solar irradiance of each day is
used as the normalising factor at that day to re-scale the
measured values.

b) The horizontal (time) axis in order to make the time periods
with non-null values (from sunrise to sunset) comparable.
The periods from sunrise to sunset are mapped onto the
[0,1] range. The corresponding solar irradiance patterns are
“stretched” to fit the new horizontal axis. However, the solar
irradiance patterns have a different number of points. An
interpolation procedure is applied to represent all the patterns
in the normalised space with the same number of points.

The reconstructed patterns can then be sent to a clustering
procedure, to find out an appropriate grouping of the days (e.g.,
clear sky and cloudy as the two extreme cases, and a number of
intermediate solutions).

Accuracy
Data accuracy can be addressed by considering different aspects,
referring to:

• Time, related to data synchronisation, delay and latency.
Further insights are reported below.

• Location, related to the availability of data gathered in the
specific point. Location issues appear in particular with
reference to weather data available at meteorological stations,
because the location of the measuring devices could be
relatively far from the point of interest. For a wind system,

relations to correct the wind speed data depending on the
location (height) of the anemometers are available, and the
local installation of the anemometer is also relevant (Spertino
et al., 2012). Solar irradiance data and temperature data can be
available closer to the location of interest. However, for solar
irradiance sensors the inclination angles and relevant to the
appropriateness of the data measured.

• Amplitude, affected by the quality of themeasurement systems.
For direct measurements, the accuracy of the measurement
instrument matters. For indirect measurements, the output
is affected by the internal errors of the measurement
transformers and of the measuring instruments. For solar
irradiance sensors, the spectral response has to be similar to
those of the photovoltaic cell used, to ensure that the spectral
components transformed into electricity correspond to the
ones represented by the sensor.

• Topology, consisting of correct indication on the grid
structure currently in use. In particular, the presence of
topology changes has to be promptly communicated, to allow
appropriate interpretation of the data gathered from the points
that refer to a given grid scheme.

Considering smart grid communication, the communication
coverage areas of interest can be partitioned into Wide
Area Network (WAN), referring to the utility system, the
Neighbourhood Area Network (NAN), corresponding to a
portion of the distribution system served by the same
transformer, and the Home Area Network (HAN) located at the
user’s premises (Erol-Kantarci andMouftah, 2015; Avancini et al.,
2019). Data accuracy affects all the data-driven applications for
smart grid monitoring and control (Sakis Meliopoulos et al.,
2011), PMU-based wide-area measurement systems (De La Ree
et al., 2010), quasi-dynamic state estimations in distribution
systems (Huang et al., 2015), and distributed control strategies
of microgrids (Zhou et al., 2020), just to name a few.

In data-driven assessments, simultaneity among the data
referring to the same time instant should be ensured. However,
perfect simultaneity cannot be guaranteed, because of the
intrinsic delays that occur in the data gathering processes. The
lower the delays with respect to the dynamics of the problem
under analysis, the more the related issues can be disregarded.
The Standard IEEE 1588 v2 (also known as Precision Time
Protocol, PTP) is a time synchronisation technology that enables
synchronisation accuracy at the nanosecond level. PTP is used
to synchronise the real-time clocks in the nodes of a distributed
system that communicate through a network. One of the clocks
takes the role of Grandmaster Clock and imposes the time base
for the system. The other clocks are managed with a master-
slave hierarchy. The event messages need accurate timestamp at
both sending and receipt, while general messages do not require
timestamps. After a synchronisation event, the slave sends a
delay request and receives a response, and on the basis of the
available indications calculates the mean propagation delay. In
addition to synchronisation, during operation of an application
that follows the Standard IEC 61850, data conversion delaysmake
data publishing a bit irregular, and further network delay to the
receiver has to be considered.
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Latency is the time delay between the timestamp of an
input data and the timestamp of the same data that reaches
an application. For a PMU, the Synchrophasor standard IEEE
C37.118.1a (IEEE, 2014) defines the PMU reporting latency as
the time difference between the first bit of a PMU report message
and the timestamp contained in the report. In WAN monitoring
applications based on PMU data, the phasor data concentrator
(PDC) has the role of mitigating the latency variations depending
on the components of a synchrophasor network. The PDC uses
data aggregation to aggregate data sent by many PMUs, and data
pushing for sending a time-aligned dataset to the applications
(Derviškadić et al., 2018). The PDC reporting latency is the
relevant quantity that expresses the delay with which a PMU
data reaches the application and is given by the sum of the PMU
latency, the latency of the communication network, and the PDC
latency. Characterising the actual latency of PMUmeasurements
is a challenging open issue (Blair et al., 2019).

For applications to energy management systems, in which a
centralised system collects information from the smart metres
installed in the local nodes, the round-trip latency is the time
elapsed from the request of measurements and the completion
of the reply from all nodes. The round-trip latency can also
serve to determine the maximum number of nodes that a given
centralised system can host (Heron et al., 2018). Latency is also
relevant to the coordination among real-time simulators located
in different sites, used to solve problems in which different
networks and hardware-in-the-loop solutions are integrated in
the same computational environment (Covrig et al., 2016).

Cleanness
In the absence of missing data, it is important to cheque whether
data are clean, namely, are not affected by noise or by the
presence of bad data. The procedures for data cleaning depend
on the specific application:

• For applications in which the goal is detecting anomalous
conditions (e.g., for power quality purposes), the procedures
for identifying noise and bad data have to be accurate
enough to avoid confusing true data anomality with problems
occurring in the data representation.

• For applications aimed at producing data in normal conditions
(e.g., to be used for clustering of load patterns), removing noise
and bad data is essential to highlight only the characteristics of
the data considered.

A review of data cleansing methods is provided in Chen et al.
(2010). Smoothing techniques, among which non-parametric
regression, B-spline smoothing, and Kernel smoothing, are
recalled, and non-parametric regression is applied to time series
that contain outliers and noise, to detect locally corrupted and
globally corrupted data with different levels of confidence. Robust
non-parametric regression is used in Mateos and Giannakis
(2012) with application to electrical load curves. More recent
solutions are indicated in Tang et al. (2014) with the introduction
of the portrait data, and in El Kababji and Srikantha (2020),
among which the Generative Adversarial Networks together with
a kernel density estimator are run on individual appliances.
The various steps of data pre-processing can be combined a

comprehensive approach that includes time synchronisation,
noise cleansing, missing data imputation and performance
assessment (Martinez-Luengo et al., 2019).

In the data-driven context, also the solution to the classical
power flow problem with noisy input data has been addressed,
leading to the linearisation of the power flow equations (Liu
Y. et al., 2020). Anomaly detection is also applied to short-
term load forecasting, with procedures based on robust statistical
methods (Chakhchoukh et al., 2011; Guo et al., 2012) and
dynamic regression model (Luo et al., 2018). For data denoising,
the wavelet decomposition has been mostly applied (Khan et al.,
2016).

Fitting
Data fitting refers to the choice and usage of training data in
a supervised learning approach. The aim of the training phase
is to learn the relations between inputs and outputs that are
embedded in the training data. In general, the use of too many
training data is not beneficial, because the training outcomes
could try to reproduce to many details of the relation between
the data, trying to reach all data points as close as possible.
This becomes a disadvantage when the data points are affected
by noise. This aspect is denoted as overfitting, and results in
reducing the possibility of learning the true relation between
inputs and outputs. In this way, the relation constructed will not
perform well when is used on data different with respect to the
ones considered during training. Overfitting tends to construct a
relationmore complex thanwhat is necessary, and can be avoided
in two different ways:

• Use of a regularisation term to penalise the cost function
considered in the learning process. The penalty term depends
on the complexity of themodel and drives the solution towards
simpler models.

• Application of early stopping, by dividing the data used for
training into the training set and the validation set, using
the latter to cheque the quality of the learning process. In
practise, an approximation error is defined as the difference
between actual values and predicted values, and the training
is stopped when the approximation error decreases for the
training set and increases for the validation set. In this way,
the identification of the possible poor performance due to
overfitting is anticipated in the training phase.

INFORMATION QUALITY

Privacy
Privacy is both a limiting factor for data availability and a
critical issue concerning the usage of the data by subjects that
are gathering the user’s data, for the purpose of monitoring the
system operation, or for administrative reasons. For protecting
the privacy of the users, the observation of the energy
consumption data for the purpose of electricity pricing may
happen only in the aggregate way (Xu et al., 2018). The
objective of reaching any object of our daily life through the
Internet of Things (IoT), as well as management of transactions,
open challenging issues for privacy preservation (MacDermott
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et al., 2020). The General Data Protection Regulation (GDPR)
harmonises data privacy laws across Europe (European Union,
2016). Preservation of privacy in clustering analysis may be
addressed by exploiting the differential privacy concept, by
adding random noise in such a way that the true electrical
behaviour cannot be identified (Guan et al., 2020).

A typical privacy-related data-driven problem is the
identification of the equipment or appliances used in a given
system, starting from the data that can be gathered at the supply
point of the aggregated load. In Hart (1992) this problem has
been given the acronym NALM (Non-intrusive Appliance
Load Monitoring), while the acronyms NILM or NIALM are
mostly used today with the same meaning. The advantage of
non-intrusiveness is the possibility of adopting less hardware
(located in a single point of the circuit) and more software, with
a final cost-effective balance.

Since its conceptualisation, many approaches have been
exploited for understanding how to find effective ways to
identify the presence of the loads, and especially which new load
appears in the system when a change in the features monitored
is detected.

The definition of the features is a fundamental aspect for
ensuring the effectiveness of NILM. Among the most used
features, it is possible to consider:

• Active power, gathered with different time steps. Active power
from different loads has the advantage that can be added.
However, in general the loads have not a constant power
nature, and their power could depend on voltage, which
changes during time within a normal operation range that
could be up to±10% of the rated voltage. If the information on
the voltage magnitude is available (even though it is not at the
load terminals), a voltage-dependent model P = P0 (V/V0)α

can be used, where α is a further parameter to be deducted
theoretically or experimentally to represent the nature of the
load (e.g., α = 0 for constant power, α = 1 for constant current,
α = 2 for constant admittance, or other values). Plots of active
power vs. reactive power variations may enable identification
of some appliances (Hart, 1992).

• Reactive power, gathered with different time steps. Similar
reasoning as above leads to a voltage-dependent model Q =

Q0 (V/V0)β , where β is a further parameter to be deducted
theoretically or experimentally to represent the nature of the
load (e.g., β = 0 for constant power, β = 1 for constant current,
β = 2 for constant admittance, or other values).

• Voltage and current RMS values or waveforms, gathered from
data sampling at different sampling rates. Voltage and current
trajectories are used in Lam et al. (2007) for determining
shape features and constructing a taxonomy of the electrical
appliances. Detection of spikes, for example the one that could
appear when a given appliance is switched on, can provide
further knowledge to identify the appliances. In addition to
the use of time-domain data, the characterisation of the loads
could benefit from the use of frequency-domain data, where
specific information is obtained by computing the harmonic
spectra through the Fast Fourier Transform. Time-frequency
analysis and computation of the wavelet coefficients have been

exploited for identifying new features. In Li et al. (2021),
time-frequency feature fusion is used for converting one-
dimensional time series into two-dimensional images that
retain information from the time-frequency domain.

The main differences among the NILM approaches the depend
on whether or not there is previous knowledge about the features
of the loads:

a) The features can be studied online individually for different
types of load, by switching on and off one load at a time. In this
way, some characteristics of the load “signatures” are identified
for constructing an internal library of characteristics that
replaces the training process of a NILM solver. However, high
differences between the time series of the features for different
loads (also for the same load) could appear, depending on
the possible controlled load operation, as well as on the user’s
behaviour in managing the loads.

b) A library of initial features can be provided a priori (e.g.,
gathered off-line for each individual load), so that an initial
individual online study is not needed. Then, an adaptive
process refines the features by using the information about the
loads during operation.

Once the features to be used have been selected, the NILM
process includes successive stages of data acquisition, event
detection, feature extraction, appliance recognition and, when
needed, energy estimation. These stages generally contain
different aspects, in particular:

a) Data acquisition occurs through high-frequency sampling,
low-frequency sampling at regular time intervals, or in an
event-based mode. In the first two cases, the various hardware
solutions can be partitioned into low-frequency (1Hz or
less) and high-frequency (over 1 kHz), see Zeifman and Roth
(2011). The frequency range from 1Hz to 1 kHz is considered
of interest by Carrie Armel et al. (2013), because in this
range data can be provided by smart metres, however suitable
algorithms to handle these data have to be developed. In the
high-frequency case, better distinction can be achieved also
for relatively small appliances that are hard to be identified
without availability of more refined information. Event-based
NILM is described in Faustine et al. (2021).

b) Concerning event detection, an event occurs when there
is the activation of a new load, or the deactivation of
a load already in operation. The challenging part of the
event detection is to consider a time step sufficiently short
to perform the distinction of the start-up of a single
load, without superposition of the start-up of multiple
loads. However, as time steps are not synchronised with
the beginning of the event, even a steep increase of a
relevant feature during the load start-up can be partitioned
into successive time steps. Because of this, it is not
easy to find sudden changes at successive time steps
higher than a given threshold and associate them to a
specific load.

c) Feature extraction depends on the sampling rate, whichmakes
different kinds of data available. When the sampling rate is
sufficiently high, the transient characteristics can be measured,
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which can provide detailed information on the individual
signatures of different appliances.

d) Appliance recognition is carried out by using specific tools,
customised with respect to the type of data to be handled.
From a probabilistic view, in the presence of the switch-on of a
new appliance, the NILM algorithms can be applied to express
the probability that the new appliance corresponds to one load
or another.

e) Energy estimation is a relevant aspect for NILM, because it
makes it possible to assign the energy consumption to the
different types of loads identified. The principles of event-
driven energy metering (Simonov et al., 2017a), applied to
maintain the actual energy consumption to the reconstructed
time series of a load pattern, can be extended to estimate the
energy of the individual appliances with the guarantee that the
total energy is maintained.

Due to the many aspects referring to NILM, to date there is no
ultimatemethodology that can give a satisfactory overall response
to the load disaggregation problem. The recent availability
of publicly available datasets is providing useful common
benchmarks for testing different approaches. Pereira and Nunes
(2018) review a set of information concerning publicly available
datasets, performance metrics, frameworks and toolkits. PLAID
(Plug-Load Appliance Identification Dataset) is one of the most
used public datasets, with high-frequency sampling (30 kHz)
of voltages and currents of different appliances, where the
monitored individual and aggregate appliances include switch-
on and switch-off instants of the appliances (Medico et al., 2020).
In addition to datasets of residential appliances, the recent trend
is to extend the analysis to industrial datasets, e.g., LILACD with
data gathered at 30 kHz (Kahl et al., 2019), for applying load
disaggregation procedures in the context of Industry 4.0.

Further challenges linked to the deployment and evolution of
NILM include:

- The use of the information elaborated from NILM for
diagnostic purposes, to identify mis-operation cases
and failures and assist the development of tools for
predictive maintenance.

- The integration of external information, for example on the
appliance location in the building, for overcoming the lack of
assessment of the appliance location from NILM (which uses
only single-point information) and make more information
available for enhancing the energy management in buildings
without extensive monitoring of all the internal loads, in
alternative to IoT-based sensing.

- The construction of a probabilistic framework for addressing
the analysis of the data gathered from NILM, which can
be integrated with further probabilistic information, e.g., on
weather or persons’ lifestyle (including possible correlations),
to develop more refined models for carrying out energy-
related analyses.

- Privacy of NILM data has been addressed by analysing the
impact of time granularity (Eibl and Engel, 2015). Privacy of
online data has to be guaranteed in emerging applications such
as NILM in the cloud (Asres et al., 2021).

Completeness of the Information
When many data are available, a further issue remains: are data
good enough to convey the information needed for the study of
interest? Some relevant aspects are:

- Are data complete with respect to the purpose of the analysis?
- Are data useful to extract knowledge from them?

Concerning the first question, in data-driven approaches
incomplete information could have different meanings. The
typical example of incomplete information is the missing data
concerning bidding in the electricity markets. Even though some
information on the market outcomes is available, information
about the internal costs of the market players is private and is not
disclosed. Another type of incompleteness refers to lack of data
on network topology. This is relevant to state estimation, as well
as to the fact that for an attacker the information on the network
is not known, being private information of the network operator
(Liu and Li, 2017; Li and Wang, 2019).

Regarding the extraction of knowledge, the characteristics
of the data referring to smart grids are somehow different
with respect to other physical systems. Because of the
external interactions with the ambient and in case with
the users (Wang W. et al., 2019), the collection of many
data from different datasets matters. In future applications
directed towards smart cities, the data sources will increase
in number and type, posing further challenges. The
big data platforms developed from information science
experts need to be adapted to the smart grid purposes (Tu
et al., 2017), to handle a large flow of data from many
distributed sources, whose relevance also depends on different
time scales.

Transforming data into knowledge is the main goal. The
process of knowledge discovery requires the identification of
the most effective features considering their complex relations
(De Caro et al., 2020). On the information side, the discovery
of patterns and relations from datasets is the objective of data
mining (Hu et al., 2014). However, specific reasoning is needed
to interpret the results. Data analytics provide different methods
to address the management of data to reach specific objectives
(Tan et al., 2017):

a) Descriptive analytics, which describes the past and current
system status, visualising synthetic indicators.

b) Predictive analytics, which exploits models and tools for
predicting future trends and estimate the potential risks
associated to these trends.

c) Prescriptive analytics, which exploits advanced decision-
making techniques to support the decision process of the user,
indicate which are the effects of the decisions, and propose the
actions needed to face with possible issues.

d) Automated analytics, which provides tools to implement in
automatic way the actions of interest on the basis of the results.

Data analytics is given the challenging task of transforming data
into useful information to be further processed according with
specific purposes to extract the relevant knowledge. The expert
of the domain has to interact with this process, to avoid that

Frontiers in Big Data | www.frontiersin.org 13 May 2021 | Volume 4 | Article 683682

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Chicco Data-Driven Smart Energy Assessment

non-meaningful data are processed. Some recently developed
fields include:

• The establishment of a data-driven framework for addressing
cyber-security, in which there is the convergence of cloud
computing and big data analytics to deal with data generation,
acquisition, storage and processing, followed by security
analytics (Tan et al., 2017).

• The data analytics with strong integration of many data of
different nature, for example to extract useful knowledge from
the multitude of electric vehicles, including technical and
behavioural data, as well as external conditions concerning the
traffic, the economics of reaching the parking lots for charging,
and the non-scattered location of the charging points (Li et al.,
2017).

• The data analytics referring to IoT applications in different
contexts, for example to implement transactive energy
systems, in which the balance between demand and supply
(including storage) to be achieved through the grid is governed
by suitable economic mechanisms and control strategies
(Zhang Y. et al., 2020). Edge computing, in which local tools
are able to perform calculations and actions (e.g., on IoT
individuals) before connecting to the cloud, provides an
interesting prospect for reducing privacy and security issues
and alleviate congestion in the various networks (El-Sayed
et al., 2018).

• The development of digital twin applications, based on the
recent success in the manufacturing and automotive industry
(Teng et al., 2021). The digital twin is a digital replication of
a system in which the last available information is reported.
In the power system studies, the networks are traditionally
modelled and simulated to understand their response to
abnormal events. The novelty brought by the digital twin is
to deal with the introduction of IoT and cloud computing in
the electrical grid seen as a cyber-physical system (Saad et al.,
2020).

A different approach has to be considered when it is requested to
apply data-driven analyses to satisfy known objectives or needs.
In this case, with the application-driven knowledge (Alahakoon
and Yu, 2016), the objectives of stakeholders, business operators,
privacy, environmental policies and others are known, and
the related analyses can be carried out also with supervised
learning tools.

Value
The value of data has already been indicated among the big
data attributes. Besides the economic value of data, already
very complicated to determine, the key aspect is the value of
the information referring to the data, which goes beyond the
economic cost of the data gathering process. Obtaining too
many data could have high costs, but only if these data are in
a form suitable to be interpreted there can be a benefit for the
decision maker. Timeliness of the availability of the information
is another crucial aspect. Data analytics has to provide useful
results in the due time to be effective. While data quality has been
summarised as “fitness for use” (Tayi and Ballou, 1998), the value
of the information coming from data elaborated through data
analytics is linked to numerous aspects difficult to evaluate, such

as understandability, cost effectiveness, competitivity, efficiency
and innovation, all of which reflect on the future of the specific
business (Mocnej et al., 2021).

In the smart grid context, information quality metrics
such as information age (i.e., the time elapsed from the local
measurement to when the control signal is received) and
mismatch probability (i.e., the probability that the change of a
quantity from the local measurement time to when the control
signal is received is lower than a given mismatch interval) have
been used for a controlled system (le Fevre Kristensen et al.,
2018). These metrics refer to the data themselves and add up
to other explicit metrics such as the ratio of errors in the data,
or the number of missing values (Koziel et al., 2021). A data
quality management system for smart grids can be established
by combining different categorised data quality concepts (Ge
et al., 2019). However, the definition of an information quality
framework is more challenging because of the different meanings
the information could have in different contexts of application.

FINAL REMARKS

A conceptual overview on the nature of the data to be used
in data-driven applications relevant in the smart grid context
has been presented. Data-driven analyses are based on real
data coming from the field, which provide actual information,
rather than on hypotheses and assumptions introduced to
obtain suitable inputs for theoretical or simulation models.
The role of the expert of the domain has been identified
as crucial for understanding the correctness of the data. In
particular, resorting to the specific expertise is appropriate when
a huge amount of data becomes available and it is needed to
philtre out bad data, as well as for interpreting the results of
the calculations.

The available literature contains many details on aspects
that have not been highlighted here. Among them, it is
worth mentioning data representation and visualisation, data
storage and databases, data processing paradigms for datasets,
characterisation of data analytics methodologies, solution
methods with machine learning algorithms, computational
issues, interfaces, data processing tools (such as clustering
for categorisation purposes or outlier detection, data mining,
forecasting methods), and performance metrics to quantify data
exploitation effectiveness.

The electrical system is subject to an energy transition from
the smart grid to the more extended framework of smart city,
in which extensive measurement, monitoring and surveillance
systems lead to collect several data, not limited to technical
aspects only. In this way, data-driven procedures could evolve
towards knowledge-driven approaches, as already established
in different contexts, such as for smart home (Chen et al.,
2012) and smart grid (Qiu et al., 2020) applications, and
manufacturing systems (Iarovyi et al., 2016; Zhang C. et al.,
2020). In the knowledge-driven approach, services, data, and
physical component descriptions are addressed by exploiting
knowledge of the domain, ontological models, and semantic
reasoning. Themain challenge is to assess whether the complexity
of the power system is not excessive to allow the operators
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implement knowledge-based applications. Appropriate data-
driven procedures may offer opportunities to system operators,
users and service providers for identifying the most suitable
business models and revenue streams.
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