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Hyperparameter Optimization of Long Short-Term
Memory Based Forecasting DNN for Antenna

Modeling through Stochastic Methods
Lida Kouhalvandi , Member, IEEE, and Ladislau Matekovits , Senior Member, IEEE.

Abstract—This letter presents an impressive optimization
method for determining the optimal model hyperparameters of a
deep neural network (DNN) targeted to model the characteristics
of antennas. In this paper we propose an innovative approach
of efficient yield analysis for modeling and sizing antennas. It
is based on the long short-term memory (LSTM) DNN aiming
to forecast the extended frequency responses, where various
stochastic methods are applied for determining the optimal
hyperparameters while training a DNN. Among the various
methods, the one which models the antenna accurately in terms
of input scattering parameter, gain, and radiation patterns is
the winner. The proposed method is compact and addresses
the problem of heavy reliance to the designer experience in
determining the hyperparameters. Additionally, forecasting the
future frequency responses of the antenna reduces the designer’s
effort substantially in measuring large frequency band; hence,
measuring whole frequency band would not be needed. For
validating the effectiveness of the proposed method, the fabri-
cated two element antenna array is used for modeling where the
results demonstrate that the Thompson sampling (TS) algorithm
can determine optimal hyperparameters with minimum error
in comparison with other reported stochastic methods leads to
predict the future frequency band accurately.

Index Terms—antenna, deep neural network (DNN), forecast-
ing, long short-term memory (LSTM), optimal hyperparameter,
stochastic methods.

I. INTRODUCTION

The next generation mobile communication networks, i.e.,
sixth-generation (6G) systems, are expected to be world-
widely developed. Among other components, such systems
need substantially high performance antennas [1]. Analyzing
the various performances and specifications of antennas re-
quires accurate and effective modeling techniques. Recently,
machine learning and deep neural network (DNN) prove the
validity in modeling sophisticated circuits; hence, they become
popular in nowadays design methodology [2]. Even though the
DNN is a sufficient modeling method, it requires systematical
steps to be trained and constructed. One of the important
and not straightforward consideration is achieving the optimal
model hyperparameters that are required to construct the layers
of any DNN includes input, hidden, and output layers.
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For determining the optimal hyperprameters various strate-
gies, as trial-error, grid search, random search, Bayesian opti-
mization, genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) have been presented as methods of optimization
[3], [4]. Even if these methods are useful in specifying the
hyperparameters, however, various swarm intelligence and
stochastic methods must be considered in order to configure
the suitable method in optimizing various model hyperparam-
eters of any DNN. In the recently reported literature, what
is lack importantly is the investigation of various stochastic
methods and the accuracy response of each of them. Secondly,
what is appreciated in complex designs as antennas, is training
the DNN that can provide responses for a large bandwidth.
This expectation would not be provided straightforwardly and
is missed in the recently reported literature [5].

This letter presents the investigation over various stochastic
methods for concluding the appropriate algorithm for deter-
mining the optimal hyperparameter of the DNN that is used
for modeling the behavior of antennas. To the best of authors’
knowledge, the proposed method is for the very first time
reported in the literature. In particular it is: 1) presenting the
suitable method for optimizing the hyperparameters in terms
of neuron number (NN), layer number (LN), learning rate
(LR), dropout rate (DR), and batch size (BS) for antenna
designs; 2) training the regression DNN by using the long short
term memory (LSTM) layers for performing in the considered
frequency range, and 3) forecasting the extended frequency
band responses in terms of S11, gain (G), E-plane and H-plane
radiation patterns (RPs).

The paper is organized as following: Sec. II, presents
concisely the proposed optimization theory. Section III is
devoted to provide the experimental results of the applied
method. Finally, Sec. IV concludes this work.

II. OPTIMIZATION METHOD IN A NUTSHELL

The DNNs, multi-layer neural networks, have proved their
well-performance in various radio frequency (RF) applications
leading to better accuracy rather than other reported methods
in [6]. The essential need of wireless 6G networks is to provide
wide-band designs. Hence, the performance of antennas in
the whole frequency band must be considered. Such a design
is time and memory demanding. Reduction of these aspects
is beneficial and in turn reduces time-to-market part of the
design. Moreover, forecasting the behaviour of the antennas in
frequency band out of the interested range must be executed
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also for enhancing the overall performance of 6G communi-
cation systems including security and privacy perspectives as
well [7].

For these reasons, we train and model the practical antenna
with the regression DNN which includes the LSTM layers for
considering the antenna’s specifications in a large frequency
band. The purpose of the LSTM layers is to accurately
predict the EM responses beyond the frequency band of
input sampling data. They are employed for learning long-
term dependencies between frequency steps of sequences of
data [8] includes frequency-dependent input layer features
(i.e., S11, gain, with E-plane and H-plane RPs). Additionally,
forecasting DNN is constructed for predicting the future fre-
quency series of antennas to be used in the 6G systems more
trustfully. The significant question for any designer is this: how
hyperparameters can be determined? Providing the optimal
hyperparameters of any DNN is not straightforward and needs
additional efforts. In order to have successful neural network,
appropriate hyperparameters including LN, LR, DR, BS, and
activation functions must be determined for controlling the
behavior of trained NN. For this case, we list the various
stochastic methods and apply them for predicting the optimal
hyperparameters where finally we conclude which of the
methods can be suitable for training LSTM-based DNN in
terms of accuracy.

Figure 1 presents the general structure of proposed DNN for
modeling the practical antenna’s performances in terms of S11,
gain, E-plane and H-plane RPs where future frequency band
is forecasted. For training a successful DNN, suitable model
hyperparameters are required. Recently, the GA has been
presented for hyperparameter optimization in power amplifier
designs [3] and we extend this optimization by considering
various swarm intelligence and stochastic methods reported in
[9], [10] in terms of NN, LN, LR, DR, and BS. The various
examined stochastic methods are: particle swarm optimization
(PSO), artificial bee colony (ABC), ant colony optimization
(ACO), firefly algorithm (FA), grey wolf optimizer (GWO),
whale optimization algorithm (WOA), harris hawks optimizer
(HHO), and Thompson sampling (TS). These stochastic meth-
ods are initialized with a random set of solutions and they
are improved until finding the best solution. Generally, these
methods are called multi-solution due to the existence of
multiple solutions.

Algorithm 1 (at the end of this section) presents the sum-
mary of the proposed optimization method. The initial and the
most important step of training any DNN is to provide suit-
able amount of dataset including training (XTrain), validation
(XVal), testing data (XTest), and corresponding desired outputs
(YTrain, YVal, and YTest), here with a ratio of 70%, 15%, and
15%, respectively (Step-1). This amount of data is prepared
by arranging a co-simulation environment between Microwave
Studio (Dassault Systèmes) and numerical analyzer (such as
MATLAB) [11]. Some design parameters of the antenna are
determined and by using the co-simulation environment in
the Microwave Studio, the generated data is transferred into
the MATLAB environment. In simple words, the Microwave
Studio is working in the background and MATLAB tool is
handling all the generated data. These parameters are swept
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Figure 1: Proposed LSTM-based regression DNN for forecast-
ing future frequency band used for modeling antennas.

within the range of [∓5%-∓25%] and the step size of ∓5%.
The dataset is the combination of the values as S11i , Gi, E-
plane RPi and H-plane RPi for (i = 0, 1, ..., k) corresponding
to the parameter setups of antenna, denoted as

∑
i. After gen-

erating dataset, input and output layer features are determined
(Step-2) and then the LSTM-based hidden layers with fully
connected layer are constructed for the regression DNN (Step-
3). Afterwards, the hyperparameter specifications are defined
and stochastic methods are employed regarding antenna’s
specifications as S11, gain, and RPs. Each of these methods can
be defined and constructed by getting knowledge from [12],
[13] and using MATLAB tool [14] (Step-4). For our problem,
the regression DNN can be trained and constructed using
(1). The testing accuracy of this network can be achieved by
calculating the difference between the actual testing outputs,
i.e., YTest, and predicted outputs, i.e., YPred (2) (Step-5).

net = trainNetwork(XTrain, YTrain, layers, options) (1)

YPred = predict(net, XTest) (2)

Finally, the CPU execution environment is prepared and
’predictAndUpdateState’ function is employed [15] for fore-
casting the future frequency series of modeled antenna. The
convergence of the proposed regression DNN is determined by
the normalized root mean square error (RMSE) of testing data,
presented as testing accuracy in the manuscript, is expected to
be less that 1 (Step-6). In the proposed method, the rectified
linear unit (ReLU) function is employed as the activation
function, and the loss function is determined as the mean
squared error for training the regression DNN.
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Figure 2: Designed 2 × 2 antenna array with the dimension
sizes (width and length are in mm; drawing not in scale).

Algorithm 1 Overview of proposed method for determining
optimal hyperparameters of LSTM-based DNN

1: Prepare XTrain, XVal, and XTest data;
2: Determine input and output layer features in a large
frequency band (i.e., [f1...fn...fm]) as S11, gain, E-plane and
H-plane RPs;
3: Construct LSTM layers following by the fully connected
Layer;
4: Apply the stochastic methods for variables as: NN, LN, LR,
DR, and BS;
5: Train the network using the ’trainNetwork’ option in
MATLAB for forecasting the future frequency series;
6: If the RMSE value is < 1, then apply ’predictAndUpdateS-
tate’ for predicting the final and accurate frequency extended
outcomes.

III. EXPERIMENTAL RESULTS

For validating the proposed method, we provide the mea-
surement setup for the fabricated antenna array in Fig. 1
for various central frequencies where the detailed sizes are
presented in Fig. 2. Additionally, the practical CPU execution
environment includes an Intel Core i7-4790 CPU @ 3.60 GHz
equipped with 32.0 GB RAM is used. The fabricated antenna
is on the full ground plane where the four unit patch elements
and array feed of antenna are realized using TSM-30-0600-
C1/C2 (εr= 3) substrate with the height of 1.52 mm and 0.76
mm, respectively.

As the initial step, 2000 sequences include multi-segment
S11, gain, E-plane and H-plane RPs over the operation band-
width are extracted from the arranged setup. Then, hidden
layer structure as presented in Fig. 1 is provided. Afterwards,
the training options are set as solver to ’adam’ and ’gradient
threshold’ to 1. The Adam optimization algorithm and stan-
dard gradient descent algorithm are employed for updating
the weights and biases of the network. Then, variables for
optimization are set for achieving optimal NN, LN, LR, DR,
and BS. These parameters are optimized using the nominated
stochastic methods in Sec. II. These variables are optimized

Figure 3: S11 and gain performances of fabricated antenna with
measurement results (left side area and pink curve on the right
hand side) and predicted performance by the proposed DNN
(right side area).

in the case of training a regression DNN leading to forecast
the behaviour of the system in adjacent or far frequency
band. The optimization methodology is generated and Tab.
I presents the optimal achieved hyperparameters from each
method. Figure 3 presents the S11 and gain performances
in a large frequency band where from 11.5 to 13 GHz are
the data achieved directly from the measurement; the range
13-14.5 GHz corresponds to the targeted output response
in comparison with other predicted outcomes using various
stochastic methods. This yellow region is predicted using the
achieved hyperparameters in Tab. I, where the accuracy of
regression DNN with the processing time of our proposed
optimization process is presented in Tab. II. As it can be
observed from this figure, the TS method can forecast the S11
performance more close to the targeted output response in the
frequency band of 13-14.5 GHz.

For clarifying the effectiveness of the TS method, training
accuracy and testing accuracy of the regression DNN with the
optimal hyperparameters of 250 neurons in each ’4’ LSTM-
layer are depicted in Fig. 4 where the testing accurcay is
around 0.0439. Figure 5 summarizes the accuracy prediction
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Table I: Antenna Modeling with the Proposed Methodology
using Stochastic Methods

Method NN LN LR DR BS

GA 70 1 0.02 0.3 0.8

PSO 110 2 0.01 0.5 1

ABC 100 1 0.01 0.5 1

ACO 180 3 0.007 0.6 0.95

FA 200 3 0.007 0.5 1

GWO 200 4 0.01 0.5 1

WOA 150 2 0.006 0.5 0.8

HHO 100 3 0.006 0.5 0.7

TS 250 4 0.005 0.5 1

Table II: Specifications of Trained DNN for Modeling Antenna
through Stochastic Methods

Method Normalized
testing
accuracy

Processing
time (min)

Normalized
training
accuracy

GA 4.58 40 4.48

PSO 2.89 62 2.65

ABC 3.09 55 2.87

ACO 1.08 160 0.97

FA 1.02 188 0.84

GWO 0.74 202 0.67

WOA 1.96 105 1.78

HHO 1.55 125 1.48

TS 0.55 225 0.43

of various methods and illustrates that the TS method can
predict the targeted output responses (i.e., S11, gain, E-plane
and H-plane RPs) more reliable than other methods with
the overall normalized RMSE value of 0.55. The outcomes
achieved from the TS method verifies the measurement results
lead to suitable convergence to the E-plane and H-plane RPs.
As Fig. 3 demonstrates, the large bandwidth is divided into
two parts as ‘actual measured data’ and ‘ predicted by various
method’ in the two frequency bands of 11.5-13 GHz and 13-
14.5 GHz, respectively. As it is results, the TS method can
provide successful hyperparameters leads to forecast the half
of the whole bandwidth, importantly.

In the paper results related to the input scattering parameter
(matching) and gain are reported, since they are presenting a
higher dynamics in their variation with respect to RPs. These
later are less sensitive versus frequency, also considering the
equal length feeding structure employed in the design (See Fig.
2). However, in case of other beam forming mechanisms, also
allowing steering the beam, the variation in the RPs can be
incorporated in the optimisation process with a higher weight.
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Figure 4: Normalized RMSE for training and testing data by
employing the TS method for S11 performance.
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Figure 5: Overall normalized RMSE for providing testing
accuracy achieved from each method.

IV. CONCLUSION

This letter presents two novel concepts in modeling the
antennas through the DNN: determining the optimal hyper-
parameters in constructing the LSTM-based DNN and pre-
dicting the extended output specifications of antennas. These
contributions, proposed for the very first time in literature
in the present form, help designers to construct the DNN
reliable and to forecast the future antenna specifications lead
to reduce effort in measuring, substantially. Various stochastic
methods are employed for achieving the hyperparameters of
the DNN that is for forecasting the future antenna perfor-
mances in terms of S11, gain, and RPs. We train and construct
the DNN on the fabricated 2 × 2 antenna array and the
simulation results demonstrates that the TS method among
the other reported methods is powerful enough to be applied
in determine the hyperparameters of the LSTM-based DNN.
Any antenna designer can employ this algorithm in antenna
modeling for determining optimal hyperparameters lead to an
accurate antenna’s behavioral modeling and forecasting the
extended antenna’s specifications.



5

REFERENCES

[1] C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang,
and M. Liyanage, “Survey on 6G frontiers: Trends, applications, re-
quirements, technologies and future research,” IEEE Open Journal of
the Communications Society, vol. 2, pp. 836–886, 2021.

[2] D. Gao, Q. Guo, and Y. C. Eldar, “Massive MIMO as an extreme
learning machine,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 1, pp. 1046–1050, 2021.

[3] S. Wang, M. Roger, J. Sarrazin, and C. Lelandais-Perrault, “Hyperpa-
rameter optimization of two-hidden-layer neural networks for power am-
plifiers behavioral modeling using genetic algorithms,” IEEE Microwave
and Wireless Components Letters, vol. 29, no. 12, pp. 802–805, 2019.

[4] P. R. Lorenzo, J. Nalepa, L. S. Ramos, and J. R. Pastor, “Hyper-
parameter selection in deep neural networks using parallel particle
swarm optimization,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, ser. GECCO ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 1864–1871.
[Online]. Available: https://doi.org/10.1145/3067695.3084211

[5] F. Mir, L. Kouhalvandi, L. Matekovits, and E. O. Gunes, “Automated
optimization for broadband flat-gain antenna designs with artificial
neural network,” IET Microwaves, Antennas & Propagation, vol. 15,
no. 12, pp. 1537–1544, 2021. [Online]. Available: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/mia2.12137

[6] J. Jin, C. Zhang, F. Feng, W. Na, J. Ma, and Q.-J. Zhang, “Deep
neural network technique for high-dimensional microwave modeling
and applications to parameter extraction of microwave filters,” IEEE
Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp.
4140–4155, 2019.

[7] P. Porambage, G. Gür, D. P. M. Osorio, M. Liyanage, A. Gurtov, and
M. Ylianttila, “The roadmap to 6G security and privacy,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 1094–1122, 2021.

[8] L. Kouhalvandi, O. Ceylan, and S. Ozoguz, “Automated deep neural
learning-based optimization for high performance high power amplifier
designs,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 12, pp. 4420–4433, 2020.

[9] Q.-V. Pham, D. C. Nguyen, S. Mirjalili, D. T. Hoang, D. N. Nguyen,
P. N. Pathirana, and W.-J. Hwang, “Swarm intelligence for next-
generation wireless networks: Recent advances and applications,” 2020.

[10] E. Bradford, A. M. Schweidtmann, and A. Lapkin, “Efficient
multiobjective optimization employing gaussian processes, spectral
sampling and a genetic algorithm,” Journal of Global Optimization,
vol. 71, no. 2, pp. 407–438, Jun 2018. [Online]. Available:
https://doi.org/10.1007/s10898-018-0609-2

[11] L. Kouhalvandi, L. Matekovits, and I. Peter, “Key generation of biomed-
ical implanted antennas through artificial neural networks,” In press
at Proceedings of IEEE/ACM Conference on Connected Health Ap-
plications, Systems, and Engineering Technologies (IEEE/ACM CHASE
2021), 2021.

[12] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili,
“Slime mould algorithm: A new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X19320941

[13] T. T. Ngo, A. Sadollah, and J. H. Kim, “A cooperative particle
swarm optimizer with stochastic movements for computationally
expensive numerical optimization problems,” Journal of Computational
Science, vol. 13, pp. 68–82, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877750316300047

[14] “Open source codes for generating optimization methods,” https://nl.
mathworks.com/matlabcentral/profile/authors/2943818, accessed: 2021-
12-22.

[15] “Predict responses using a trained network,” http://https://nl.mathworks.
com/, accessed: 2021-07-16.

https://doi.org/10.1145/3067695.3084211
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/mia2.12137
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/mia2.12137
https://doi.org/10.1007/s10898-018-0609-2
https://www.sciencedirect.com/science/article/pii/S0167739X19320941
https://www.sciencedirect.com/science/article/pii/S0167739X19320941
https://www.sciencedirect.com/science/article/pii/S1877750316300047
https://www.sciencedirect.com/science/article/pii/S1877750316300047
https://nl.mathworks.com/matlabcentral/profile/authors/2943818
https://nl.mathworks.com/matlabcentral/profile/authors/2943818
http://https://nl.mathworks.com/
http://https://nl.mathworks.com/

	Introduction
	Optimization Method in a Nutshell
	Experimental Results
	Conclusion
	References

